Pannexin‐1 limits the production of proinflammatory cytokines during necroptosis

The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 20; no. 10; pp. e47840 - n/a
Main Authors Douanne, Tiphaine, André‐Grégoire, Gwennan, Trillet, Kilian, Thys, An, Papin, Antonin, Feyeux, Magalie, Hulin, Philippe, Chiron, David, Gavard, Julie, Bidère, Nicolas
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.10.2019
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. Synopsis The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis. Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking. Pannexin‐1 is dispensable for necroptotic cell death. Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis. Graphical Abstract The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines.
AbstractList The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. Synopsis The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis. Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking. Pannexin‐1 is dispensable for necroptotic cell death. Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis. The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines.
The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
The activation of mixed lineage kinase‐like ( MLKL ) by receptor‐interacting protein kinase‐3 ( RIPK 3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 ( PANX 1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTP ase RAB 27A and RAB 27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX 1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX 1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL , RAB 27, and PANX 1 and propose ways to interfere with inflammation associated with necroptosis.
The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. Synopsis The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis. Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking. Pannexin‐1 is dispensable for necroptotic cell death. Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis. Graphical Abstract The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines.
The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apopto-sis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proin-flammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels , concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellu-lar vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
Author Hulin, Philippe
Douanne, Tiphaine
Thys, An
Papin, Antonin
Feyeux, Magalie
Gavard, Julie
André‐Grégoire, Gwennan
Trillet, Kilian
Bidère, Nicolas
Chiron, David
AuthorAffiliation 4 Institut de Cancérologie de l'Ouest Site René Gauducheau Saint‐Herblain France
1 CRCINA, INSERM, CNRS Université de Nantes Université d'Angers Nantes France
3 L'Héma‐NexT, i‐Site NexT Nantes France
2 GDR3697 Micronit CNRS Nantes France
5 MicroPICell Imaging Core Facility SFR Santé F. Bonamy UMS016 INSERM, CNRS Université de Nantes Nantes France
AuthorAffiliation_xml – name: 5 MicroPICell Imaging Core Facility SFR Santé F. Bonamy UMS016 INSERM, CNRS Université de Nantes Nantes France
– name: 1 CRCINA, INSERM, CNRS Université de Nantes Université d'Angers Nantes France
– name: 4 Institut de Cancérologie de l'Ouest Site René Gauducheau Saint‐Herblain France
– name: 3 L'Héma‐NexT, i‐Site NexT Nantes France
– name: 2 GDR3697 Micronit CNRS Nantes France
Author_xml – sequence: 1
  givenname: Tiphaine
  surname: Douanne
  fullname: Douanne, Tiphaine
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
– sequence: 2
  givenname: Gwennan
  surname: André‐Grégoire
  fullname: André‐Grégoire, Gwennan
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT, Institut de Cancérologie de l'Ouest, Site René Gauducheau
– sequence: 3
  givenname: Kilian
  surname: Trillet
  fullname: Trillet, Kilian
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
– sequence: 4
  givenname: An
  orcidid: 0000-0002-6838-312X
  surname: Thys
  fullname: Thys, An
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
– sequence: 5
  givenname: Antonin
  surname: Papin
  fullname: Papin, Antonin
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
– sequence: 6
  givenname: Magalie
  surname: Feyeux
  fullname: Feyeux, Magalie
  organization: MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes
– sequence: 7
  givenname: Philippe
  surname: Hulin
  fullname: Hulin, Philippe
  organization: MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes
– sequence: 8
  givenname: David
  surname: Chiron
  fullname: Chiron, David
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
– sequence: 9
  givenname: Julie
  surname: Gavard
  fullname: Gavard, Julie
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT, Institut de Cancérologie de l'Ouest, Site René Gauducheau
– sequence: 10
  givenname: Nicolas
  orcidid: 0000-0001-9177-0008
  surname: Bidère
  fullname: Bidère, Nicolas
  email: nicolas.bidere@inserm.fr
  organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31410978$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-02281304$$DView record in HAL
BookMark eNqFUstu1DAUtVARfcCaHYrEhgXT-hHbMQukUhWKNAhUgcTOchyn45LYwXYKs-MT-Ea-BIdMSxmpYuVr3XPOfZ19sOO8MwA8RvAQUUzxkenrcIghEiWvSngP7KGSiQVBvNrZxBijz7tgP8ZLCCEVvHoAdgkqEczhHjj_oJwz36379eMnKjrb2xSLtDLFEHwz6mS9K3w7_axrO9X3KvmwLvQ6-S_WmVg0Y7DuonBGBz8kH218CO63qovm0eY9AJ9en348OVss3795e3K8XGiGGFzoljcNaymh1DQC1dhQUTOqiYJCt4TjWkOu66qCDa8EQrSpa8gbXLWKMoE5OQAvZ91hrHvTaONSUJ0cgu1VWEuvrPw34-xKXvgryThnWTALPJ8FVlu0s-OltC6a0EuIcYUILK8m-LNNveC_jiYm2duoTdcpZ_wYJc49YYIRnFp7ugW99GNweRsSk3wFIhifBJ_cHuCmhevrZACdAXm3MQbTSm2Tmm6S57GdRFD-cYGcXCBvXJB5R1u8a-m7GS9mxjfbmfX_4PL03avz22Q4k-MwecGEv9PeVe83JJvXdw
CitedBy_id crossref_primary_10_3389_fcell_2022_1020826
crossref_primary_10_1002_1878_0261_13596
crossref_primary_10_1126_scisignal_abc6178
crossref_primary_10_1016_j_isci_2022_105118
crossref_primary_10_3390_ijms241210108
crossref_primary_10_1038_s41421_021_00259_0
crossref_primary_10_1111_febs_16255
crossref_primary_10_1159_000527240
crossref_primary_10_1038_s42003_023_05676_3
crossref_primary_10_1007_s11064_020_02981_9
crossref_primary_10_1016_j_cellimm_2020_104133
crossref_primary_10_1038_s41419_024_06513_z
crossref_primary_10_1016_j_smallrumres_2023_107143
crossref_primary_10_1248_bpb_b21_00292
crossref_primary_10_1038_s41419_023_06408_5
crossref_primary_10_15252_embj_2020105753
crossref_primary_10_1038_s41419_021_04286_3
crossref_primary_10_1016_j_lfs_2020_118347
crossref_primary_10_1038_s41467_024_47142_6
crossref_primary_10_3390_genes14020446
crossref_primary_10_1002_jev2_12261
crossref_primary_10_1007_s10456_020_09763_5
crossref_primary_10_1016_j_phymed_2021_153548
crossref_primary_10_3390_cancers12051113
crossref_primary_10_1111_jnc_15004
crossref_primary_10_1038_s41467_020_16887_1
Cites_doi 10.1101/gad.312561.118
10.1371/journal.pbio.2002711
10.15252/embj.2019101638
10.1038/nature19076
10.1038/ncb2883
10.1038/ncomms14324
10.1073/pnas.1613305114
10.1016/j.tcb.2015.08.003
10.1093/bioinformatics/btw413
10.1073/pnas.1408987111
10.1016/j.cell.2011.11.031
10.1073/pnas.1200012109
10.1016/j.cell.2009.05.037
10.1038/nchembio711
10.1016/j.immuni.2015.10.009
10.1016/j.cell.2018.03.032
10.1016/j.tcb.2016.06.003
10.1126/science.1247005
10.1038/nature09413
10.1016/j.cell.2009.05.021
10.1038/ncomms8439
10.1016/j.celrep.2014.04.026
10.1038/nrm.2016.149
10.1016/j.biochi.2018.02.007
10.1038/s41419-018-0524-y
10.1038/srep15915
10.1126/scisignal.aaw3423
10.1126/science.1172308
10.1038/nature13147
10.1016/j.celrep.2017.03.024
10.1038/s41586-018-0519-y
10.1016/j.molcel.2017.02.024
10.1038/nmeth.4185
10.1016/j.celrep.2019.04.036
10.1093/jnci/djq153
10.1124/mol.116.104000
10.1016/j.molcel.2014.03.003
10.1016/j.immuni.2013.06.018
10.1146/annurev-cellbio-101512-122326
10.1038/cr.2016.87
10.1146/annurev-pathol-052016-100247
10.1038/nmeth.3047
10.1080/15384101.2017.1371889
10.1016/j.molcel.2018.05.010
10.1016/j.cell.2017.03.020
10.1016/j.immuni.2017.06.001
10.1074/jbc.M702422200
10.1085/jgp.201711888
ContentType Journal Article
Copyright The Author(s) 2019
2019 The Authors
2019 The Authors.
2019 EMBO
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019
– notice: 2019 The Authors
– notice: 2019 The Authors.
– notice: 2019 EMBO
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embr.201947840
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Tiphaine Douanne et al
EISSN 1469-3178
EndPage n/a
ExternalDocumentID PMC6776911
oai_HAL_inserm_02281304v1
31410978
10_15252_embr_201947840
EMBR201947840
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Centre National de la Recherche Scientifique (CNRS)
  grantid: PICS
  funderid: 10.13039/501100004794
– fundername: Ligue Contre le Cancer
  funderid: 10.13039/501100004099
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: DEQ20180339184
  funderid: 10.13039/501100002915
– fundername: Région Pays de la Loire et Nantes Métropole
– fundername: Fondation ARC pour la Recherche sur le Cancer (ARC)
  funderid: 10.13039/501100004097
– fundername: Connect Talent Grant
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐16‐IDEX‐0007
  funderid: 10.13039/501100001665
– fundername: Fondation de France
  funderid: 10.13039/501100004431
– fundername: SIRIC ILIAD
  grantid: INCa‐DGOS‐Inserm_12558
– fundername: Fondation ARC pour la Recherche sur le Cancer (ARC)
– fundername: Ligue Contre le Cancer
– fundername: Centre National de la Recherche Scientifique (CNRS)
  funderid: PICS
– fundername: Fondation pour la Recherche Médicale (FRM)
  funderid: DEQ20180339184
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐16‐IDEX‐0007
– fundername: SIRIC ILIAD
  funderid: INCa‐DGOS‐Inserm_12558
– fundername: Fondation de France
– fundername: Centre National de la Recherche Scientifique (CNRS)
  grantid: PICS
– fundername: SIRIC ILIAD
  grantid: INCa-DGOS-Inserm_12558
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: DEQ20180339184
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-16-IDEX-0007
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐16‐IDEX‐0007
GroupedDBID ---
-DZ
-Q-
0R~
1OC
24P
29G
2WC
33P
36B
39C
53G
5GY
5VS
70F
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
ZGI
ZZTAW
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c6160-cf7dd6f5355ed91b2e59b65c3a09cf372bc07cb880d789115dbb07d28fa569273
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 14:02:32 EDT 2025
Fri May 09 12:23:44 EDT 2025
Thu Jul 10 23:17:22 EDT 2025
Sun Jul 13 05:08:50 EDT 2025
Wed Feb 19 02:13:18 EST 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 02:32:07 EDT 2025
Wed Jan 22 16:38:29 EST 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords cytokines
Pannexin‐1
MLKL
inflammation
necroptosis
Pannexin-1
Pannexin-1 Subject Categories Autophagy & Cell Death
Immunology
Membrane & Trafficking
Language English
License 2019 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6160-cf7dd6f5355ed91b2e59b65c3a09cf372bc07cb880d789115dbb07d28fa569273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9177-0008
0000-0002-6838-312X
0000-0001-8100-1504
0000-0002-7985-9007
0000-0002-9167-8727
OpenAccessLink https://inserm.hal.science/inserm-02281304
PMID 31410978
PQID 2300539671
PQPubID 26169
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6776911
hal_primary_oai_HAL_inserm_02281304v1
proquest_miscellaneous_2273232107
proquest_journals_2300539671
pubmed_primary_31410978
crossref_citationtrail_10_15252_embr_201947840
crossref_primary_10_15252_embr_201947840
wiley_primary_10_15252_embr_201947840_EMBR201947840
springer_journals_10_15252_embr_201947840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 04 October 2019
PublicationDateYYYYMMDD 2019-10-04
PublicationDate_xml – month: 10
  year: 2019
  text: 04 October 2019
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Chen, Demarco, Heilig, Shkarina, Boettcher, Farady, Pelczar, Broz (CR25) 2019; 38
Hendrix, Maynard, Pauwels, Braems, Denys, Van den Broecke, Lambert, Van Belle, Cocquyt, Gespach (CR41) 2010; 102
Chekeni, Elliott, Sandilos, Walk, Kinchen, Lazarowski, Armstrong, Penuela, Laird, Salvesen (CR23) 2010; 467
Chiu, Schappe, Desai, Bayliss (CR33) 2018; 150
Ros, Pena‐Blanco, Hanggi, Kunzendorf, Krautwald, Wong, Garcia‐Saez (CR31) 2017; 19
Boassa, Ambrosi, Qiu, Dahl, Gaietta, Sosinsky (CR29) 2007; 282
Shan, Pan, Najafov, Yuan (CR1) 2018; 32
Zargarian, Shlomovitz, Erlich, Hourizadeh, Ofir‐Birin, Croker, Regev‐Rudzki, Edry‐Botzer, Gerlic (CR11) 2017; 15
Dovey, Diep, Clarke, Hale, McNamara, Guo, Brown, Cao, Grace, Gough (CR13) 2018; 70
Gong, Guy, Olauson, Becker, Yang, Fitzgerald, Linkermann, Green (CR12) 2017; 169
Atkin‐Smith, Tixeira, Paone, Mathivanan, Collins, Liem, Goodall, Ravichandran, Hulett, Poon (CR36) 2015; 6
Colombo, Raposo, Thery (CR21) 2014; 30
Hildebrand, Tanzer, Lucet, Young, Spall, Sharma, Pierotti, Garnier, Dobson, Webb (CR27) 2014; 111
Chiu, Jin, Medina, Leonhardt, Kiessling, Bennett, Shu, Tamm, Yeager, Ravichandran (CR44) 2017; 8
Zhang, Shao, Lin, Zhang, Lu, Lin, Dong, Han (CR5) 2009; 325
Gong, Guy, Crawford, Green (CR17) 2017; 16
Mompean, Li, Li, Laage, Siemer, Bozkurt, Wu, McDermott (CR9) 2018; 173
Wang, Sun, Su, Rizo, Liu, Wang, Wang, Wang (CR14) 2014; 54
Yang, He, Muñoz‐Planillo, Liu, Núñez (CR24) 2015; 43
Cai, Zhang, Choksi, Li, Li, Zhang, Liu (CR32) 2016; 26
Kearney, Martin (CR37) 2017; 65
Conos, Chen, De Nardo, Hara, Whitehead, Nunez, Masters, Murphy, Schroder, Vaux (CR34) 2017; 114
Douanne, André‐Grégoire, Thys, Trillet, Gavard, Bidère (CR40) 2019; 27
He, Wang, Miao, Wang, Du, Zhao, Wang (CR4) 2009; 137
Sun, Wang, Wang, He, Chen, Liao, Wang, Yan, Liu, Lei (CR3) 2012; 148
Seehawer, Heinzmann, D'Artista, Harbig, Roux, Hoenicke, Dang, Klotz, Robinson, Dore (CR38) 2018; 562
Galluzzi, Kepp, Chan, Kroemer (CR26) 2017; 12
Ball, Demmerle, Kaufmann, Davis, Dobbie, Schermelleh (CR45) 2015; 5
Weinlich, Oberst, Beere, Green (CR2) 2017; 18
Fan, Guo, Gao, Zhang, Ling, Xu, Pan, Li, Chen, Wang (CR20) 2019; 12
Legland, Arganda‐Carreras, Andrey (CR46) 2016; 32
Shalem, Sanjana, Hartenian, Shi, Scott, Mikkelsen, Heckl, Ebert, Root, Doench (CR42) 2014; 343
Segawa, Nagata (CR35) 2015; 25
Strilic, Yang, Albarran‐Juarez, Wachsmuth, Han, Muller, Pasparakis, Offermanns (CR39) 2016; 536
Poon, Chiu, Armstrong, Kinchen, Juncadella, Bayliss, Ravichandran (CR28) 2014; 507
Sanjana, Shalem, Zhang (CR43) 2014; 11
Boyd‐Tressler, Lane, Dubyak (CR30) 2017; 92
Zhao, Jitkaew, Cai, Choksi, Li, Luo, Liu (CR8) 2012; 109
Cho, Challa, Moquin, Genga, Ray, Guildford, Chan (CR7) 2009; 137
Andre‐Gregoire, Bidere, Gavard (CR47) 2018; 155
Cai, Jitkaew, Zhao, Chiang, Choksi, Liu, Ward, Wu, Liu (CR15) 2014; 16
Murphy, Czabotar, Hildebrand, Lucet, Zhang, Alvarez‐Diaz, Lewis, Lalaoui, Metcalf, Webb (CR10) 2013; 39
Yoon, Kovalenko, Bogdanov, Wallach (CR19) 2017; 47
Esseltine, Laird (CR22) 2016; 26
Degterev, Huang, Boyce, Li, Jagtap, Mizushima, Cuny, Mitchison, Moskowitz, Yuan (CR6) 2005; 1
Van Deun, Mestdagh, Agostinis, Akay, Anand, Anckaert, Martinez, Baetens, Beghein, Bertier (CR48) 2017; 14
Dondelinger, Declercq, Montessuit, Roelandt, Goncalves, Bruggeman, Hulpiau, Weber, Sehon, Marquis (CR16) 2014; 7
Zhu, Liang, Ma, Xu, Cao, Lu, Liu, Shan, Qian, Yuan (CR18) 2018; 9
2018; 562
2017; 8
2015; 6
2015; 5
2007; 282
2017; 47
2019; 12
2010; 467
2017; 65
2010; 102
2016; 32
2019; 38
2012; 148
2014; 111
2017; 114
2009; 137
2012; 109
2018; 9
2018; 155
2015; 25
2014; 507
2018; 173
2013; 39
2017; 92
2018; 150
2017; 15
2017; 14
2017; 16
2016; 536
2015; 43
2017; 12
2018; 70
2014; 16
2019; 27
2005; 1
2017; 19
2017; 18
2014; 30
2018; 32
2014; 7
2017; 169
2016; 26
2014; 11
2009; 325
2014; 54
2014; 343
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 70
  start-page: 936
  year: 2018
  end-page: 948
  ident: CR13
  article-title: MLKL requires the inositol phosphate code to execute necroptosis
  publication-title: Mol Cell
– volume: 30
  start-page: 255
  year: 2014
  end-page: 289
  ident: CR21
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu Rev Cell Dev Biol
– volume: 467
  start-page: 863
  year: 2010
  end-page: 867
  ident: CR23
  article-title: Pannexin 1 channels mediate ‘find‐me’ signal release and membrane permeability during apoptosis
  publication-title: Nature
– volume: 282
  start-page: 31733
  year: 2007
  end-page: 31743
  ident: CR29
  article-title: Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane
  publication-title: J Biol Chem
– volume: 5
  start-page: 15915
  year: 2015
  ident: CR45
  article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy
  publication-title: Sci Rep
– volume: 150
  start-page: 19
  year: 2018
  end-page: 39
  ident: CR33
  article-title: Revisiting multimodal activation and channel properties of Pannexin 1
  publication-title: J Gen Physiol
– volume: 11
  start-page: 783
  year: 2014
  end-page: 784
  ident: CR43
  article-title: Improved vectors and genome‐wide libraries for CRISPR screening
  publication-title: Nat Methods
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  ident: CR3
  article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
– volume: 32
  start-page: 3532
  year: 2016
  end-page: 3534
  ident: CR46
  article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ
  publication-title: Bioinformatics
– volume: 155
  start-page: 11
  year: 2018
  end-page: 15
  ident: CR47
  article-title: Temozolomide affects extracellular vesicles released by glioblastoma cells
  publication-title: Biochimie
– volume: 8
  start-page: 14324
  year: 2017
  ident: CR44
  article-title: A quantized mechanism for activation of pannexin channels
  publication-title: Nat Commun
– volume: 54
  start-page: 133
  year: 2014
  end-page: 146
  ident: CR14
  article-title: Mixed lineage kinase domain‐like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3
  publication-title: Mol Cell
– volume: 9
  start-page: 500
  year: 2018
  ident: CR18
  article-title: Necroptosis promotes cell‐autonomous activation of proinflammatory cytokine gene expression
  publication-title: Cell Death Dis
– volume: 92
  start-page: 30
  year: 2017
  end-page: 47
  ident: CR30
  article-title: Up‐regulated ectonucleotidases in Fas‐associated death domain protein‐ and receptor‐interacting protein kinase 1‐deficient Jurkat leukemia cells counteract extracellular ATP/AMP accumulation via Pannexin‐1 channels during chemotherapeutic drug‐induced apoptosis
  publication-title: Mol Pharmacol
– volume: 15
  start-page: e2002711
  year: 2017
  ident: CR11
  article-title: Phosphatidylserine externalization, ‘necroptotic bodies’ release, and phagocytosis during necroptosis
  publication-title: PLoS Biol
– volume: 38
  start-page: e101638
  year: 2019
  ident: CR25
  article-title: Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly
  publication-title: EMBO J
– volume: 12
  start-page: eaaw3423
  year: 2019
  ident: CR20
  article-title: Flotillin‐mediated endocytosis and ALIX–syntenin‐1–mediated exocytosis protect the cell membrane from damage caused by necroptosis
  publication-title: Sci Signal
– volume: 47
  start-page: 51
  year: 2017
  end-page: 65
  ident: CR19
  article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation
  publication-title: Immunity
– volume: 32
  start-page: 327
  year: 2018
  end-page: 340
  ident: CR1
  article-title: Necroptosis in development and diseases
  publication-title: Genes Dev
– volume: 102
  start-page: 866
  year: 2010
  end-page: 880
  ident: CR41
  article-title: Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis
  publication-title: J Natl Cancer Inst
– volume: 109
  start-page: 5322
  year: 2012
  end-page: 5327
  ident: CR8
  article-title: Mixed lineage kinase domain‐like is a key receptor interacting protein 3 downstream component of TNF‐induced necrosis
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 639
  year: 2015
  end-page: 650
  ident: CR35
  article-title: An apoptotic ‘eat me’ signal: phosphatidylserine exposure
  publication-title: Trends Cell Biol
– volume: 27
  start-page: 1657
  year: 2019
  end-page: 1665
  ident: CR40
  article-title: CYLD regulates centriolar satellites proteostasis by counteracting the E3 ligase MIB1
  publication-title: Cell Rep
– volume: 19
  start-page: 175
  year: 2017
  end-page: 187
  ident: CR31
  article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium
  publication-title: Cell Rep
– volume: 173
  start-page: 1244
  year: 2018
  end-page: 1253
  ident: CR9
  article-title: The structure of the necrosome RIPK1‐RIPK3 core, a human hetero‐amyloid signaling complex
  publication-title: Cell
– volume: 1
  start-page: 112
  year: 2005
  end-page: 119
  ident: CR6
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
– volume: 507
  start-page: 329
  year: 2014
  end-page: 334
  ident: CR28
  article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis
  publication-title: Nature
– volume: 26
  start-page: 886
  year: 2016
  end-page: 900
  ident: CR32
  article-title: Activation of cell‐surface proteases promotes necroptosis, inflammation and cell migration
  publication-title: Cell Res
– volume: 12
  start-page: 103
  year: 2017
  end-page: 130
  ident: CR26
  article-title: Necroptosis: mechanisms and relevance to disease
  publication-title: Annu Rev Pathol
– volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  ident: CR5
  article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis
  publication-title: Science
– volume: 169
  start-page: 286
  year: 2017
  end-page: 300
  ident: CR12
  article-title: ESCRT‐III acts downstream of MLKL to regulate necroptotic cell death and its consequences
  publication-title: Cell
– volume: 7
  start-page: 971
  year: 2014
  end-page: 981
  ident: CR16
  article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
  publication-title: Cell Rep
– volume: 26
  start-page: 944
  year: 2016
  end-page: 955
  ident: CR22
  article-title: Next‐generation connexin and pannexin cell biology
  publication-title: Trends Cell Biol
– volume: 111
  start-page: 15072
  year: 2014
  end-page: 15077
  ident: CR27
  article-title: Activation of the pseudokinase MLKL unleashes the four‐helix bundle domain to induce membrane localization and necroptotic cell death
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 7439
  year: 2015
  ident: CR36
  article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads‐on‐a‐string membrane structure
  publication-title: Nat Commun
– volume: 562
  start-page: 69
  year: 2018
  end-page: 75
  ident: CR38
  article-title: Necroptosis microenvironment directs lineage commitment in liver cancer
  publication-title: Nature
– volume: 18
  start-page: 127
  year: 2017
  end-page: 136
  ident: CR2
  article-title: Necroptosis in development, inflammation and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 1748
  year: 2017
  end-page: 1760
  ident: CR17
  article-title: Biological events and molecular signaling following MLKL activation during necroptosis
  publication-title: Cell Cycle
– volume: 114
  start-page: E961
  year: 2017
  end-page: E969
  ident: CR34
  article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 228
  year: 2017
  end-page: 232
  ident: CR48
  article-title: EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research
  publication-title: Nat Methods
– volume: 65
  start-page: 965
  year: 2017
  end-page: 973
  ident: CR37
  article-title: An inflammatory perspective on necroptosis
  publication-title: Mol Cell
– volume: 16
  start-page: 55
  year: 2014
  end-page: 65
  ident: CR15
  article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis
  publication-title: Nat Cell Biol
– volume: 536
  start-page: 215
  year: 2016
  end-page: 218
  ident: CR39
  article-title: Tumour‐cell‐induced endothelial cell necroptosis via death receptor 6 promotes metastasis
  publication-title: Nature
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: CR42
  article-title: Genome‐scale CRISPR‐Cas9 knockout screening in human cells
  publication-title: Science
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  ident: CR4
  article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha
  publication-title: Cell
– volume: 43
  start-page: 923
  year: 2015
  end-page: 932
  ident: CR24
  article-title: Caspase‐11 requires the Pannexin‐1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock
  publication-title: Immunity
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  ident: CR7
  article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation
  publication-title: Cell
– volume: 39
  start-page: 443
  year: 2013
  end-page: 453
  ident: CR10
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
– volume: 39
  start-page: 443
  year: 2013
  end-page: 453
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
– volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis
  publication-title: Science
– volume: 30
  start-page: 255
  year: 2014
  end-page: 289
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu Rev Cell Dev Biol
– volume: 5
  start-page: 15915
  year: 2015
  article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy
  publication-title: Sci Rep
– volume: 536
  start-page: 215
  year: 2016
  end-page: 218
  article-title: Tumour‐cell‐induced endothelial cell necroptosis via death receptor 6 promotes metastasis
  publication-title: Nature
– volume: 70
  start-page: 936
  year: 2018
  end-page: 948
  article-title: MLKL requires the inositol phosphate code to execute necroptosis
  publication-title: Mol Cell
– volume: 6
  start-page: 7439
  year: 2015
  article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads‐on‐a‐string membrane structure
  publication-title: Nat Commun
– volume: 32
  start-page: 327
  year: 2018
  end-page: 340
  article-title: Necroptosis in development and diseases
  publication-title: Genes Dev
– volume: 169
  start-page: 286
  year: 2017
  end-page: 300
  article-title: ESCRT‐III acts downstream of MLKL to regulate necroptotic cell death and its consequences
  publication-title: Cell
– volume: 109
  start-page: 5322
  year: 2012
  end-page: 5327
  article-title: Mixed lineage kinase domain‐like is a key receptor interacting protein 3 downstream component of TNF‐induced necrosis
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 103
  year: 2017
  end-page: 130
  article-title: Necroptosis: mechanisms and relevance to disease
  publication-title: Annu Rev Pathol
– volume: 102
  start-page: 866
  year: 2010
  end-page: 880
  article-title: Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis
  publication-title: J Natl Cancer Inst
– volume: 16
  start-page: 1748
  year: 2017
  end-page: 1760
  article-title: Biological events and molecular signaling following MLKL activation during necroptosis
  publication-title: Cell Cycle
– volume: 8
  start-page: 14324
  year: 2017
  article-title: A quantized mechanism for activation of pannexin channels
  publication-title: Nat Commun
– volume: 25
  start-page: 639
  year: 2015
  end-page: 650
  article-title: An apoptotic ‘eat me’ signal: phosphatidylserine exposure
  publication-title: Trends Cell Biol
– volume: 150
  start-page: 19
  year: 2018
  end-page: 39
  article-title: Revisiting multimodal activation and channel properties of Pannexin 1
  publication-title: J Gen Physiol
– volume: 282
  start-page: 31733
  year: 2007
  end-page: 31743
  article-title: Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane
  publication-title: J Biol Chem
– volume: 14
  start-page: 228
  year: 2017
  end-page: 232
  article-title: EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research
  publication-title: Nat Methods
– volume: 11
  start-page: 783
  year: 2014
  end-page: 784
  article-title: Improved vectors and genome‐wide libraries for CRISPR screening
  publication-title: Nat Methods
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha
  publication-title: Cell
– volume: 32
  start-page: 3532
  year: 2016
  end-page: 3534
  article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ
  publication-title: Bioinformatics
– volume: 562
  start-page: 69
  year: 2018
  end-page: 75
  article-title: Necroptosis microenvironment directs lineage commitment in liver cancer
  publication-title: Nature
– volume: 173
  start-page: 1244
  year: 2018
  end-page: 1253
  article-title: The structure of the necrosome RIPK1‐RIPK3 core, a human hetero‐amyloid signaling complex
  publication-title: Cell
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  article-title: Genome‐scale CRISPR‐Cas9 knockout screening in human cells
  publication-title: Science
– volume: 26
  start-page: 886
  year: 2016
  end-page: 900
  article-title: Activation of cell‐surface proteases promotes necroptosis, inflammation and cell migration
  publication-title: Cell Res
– volume: 19
  start-page: 175
  year: 2017
  end-page: 187
  article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium
  publication-title: Cell Rep
– volume: 7
  start-page: 971
  year: 2014
  end-page: 981
  article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
  publication-title: Cell Rep
– volume: 16
  start-page: 55
  year: 2014
  end-page: 65
  article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis
  publication-title: Nat Cell Biol
– volume: 92
  start-page: 30
  year: 2017
  end-page: 47
  article-title: Up‐regulated ectonucleotidases in Fas‐associated death domain protein‐ and receptor‐interacting protein kinase 1‐deficient Jurkat leukemia cells counteract extracellular ATP/AMP accumulation via Pannexin‐1 channels during chemotherapeutic drug‐induced apoptosis
  publication-title: Mol Pharmacol
– volume: 26
  start-page: 944
  year: 2016
  end-page: 955
  article-title: Next‐generation connexin and pannexin cell biology
  publication-title: Trends Cell Biol
– volume: 65
  start-page: 965
  year: 2017
  end-page: 973
  article-title: An inflammatory perspective on necroptosis
  publication-title: Mol Cell
– volume: 155
  start-page: 11
  year: 2018
  end-page: 15
  article-title: Temozolomide affects extracellular vesicles released by glioblastoma cells
  publication-title: Biochimie
– volume: 43
  start-page: 923
  year: 2015
  end-page: 932
  article-title: Caspase‐11 requires the Pannexin‐1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock
  publication-title: Immunity
– volume: 18
  start-page: 127
  year: 2017
  end-page: 136
  article-title: Necroptosis in development, inflammation and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 15
  start-page: e2002711
  year: 2017
  article-title: Phosphatidylserine externalization, ‘necroptotic bodies’ release, and phagocytosis during necroptosis
  publication-title: PLoS Biol
– volume: 12
  start-page: eaaw3423
  year: 2019
  article-title: Flotillin‐mediated endocytosis and ALIX–syntenin‐1–mediated exocytosis protect the cell membrane from damage caused by necroptosis
  publication-title: Sci Signal
– volume: 38
  start-page: e101638
  year: 2019
  article-title: Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly
  publication-title: EMBO J
– volume: 9
  start-page: 500
  year: 2018
  article-title: Necroptosis promotes cell‐autonomous activation of proinflammatory cytokine gene expression
  publication-title: Cell Death Dis
– volume: 467
  start-page: 863
  year: 2010
  end-page: 867
  article-title: Pannexin 1 channels mediate ‘find‐me’ signal release and membrane permeability during apoptosis
  publication-title: Nature
– volume: 1
  start-page: 112
  year: 2005
  end-page: 119
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
  publication-title: Nat Chem Biol
– volume: 54
  start-page: 133
  year: 2014
  end-page: 146
  article-title: Mixed lineage kinase domain‐like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3
  publication-title: Mol Cell
– volume: 507
  start-page: 329
  year: 2014
  end-page: 334
  article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis
  publication-title: Nature
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation
  publication-title: Cell
– volume: 47
  start-page: 51
  year: 2017
  end-page: 65
  article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation
  publication-title: Immunity
– volume: 27
  start-page: 1657
  year: 2019
  end-page: 1665
  article-title: CYLD regulates centriolar satellites proteostasis by counteracting the E3 ligase MIB1
  publication-title: Cell Rep
– volume: 114
  start-page: E961
  year: 2017
  end-page: E969
  article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 15072
  year: 2014
  end-page: 15077
  article-title: Activation of the pseudokinase MLKL unleashes the four‐helix bundle domain to induce membrane localization and necroptotic cell death
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_7_2_1
  doi: 10.1101/gad.312561.118
– ident: e_1_2_7_12_1
  doi: 10.1371/journal.pbio.2002711
– ident: e_1_2_7_26_1
  doi: 10.15252/embj.2019101638
– ident: e_1_2_7_40_1
  doi: 10.1038/nature19076
– ident: e_1_2_7_16_1
  doi: 10.1038/ncb2883
– ident: e_1_2_7_45_1
  doi: 10.1038/ncomms14324
– ident: e_1_2_7_35_1
  doi: 10.1073/pnas.1613305114
– ident: e_1_2_7_36_1
  doi: 10.1016/j.tcb.2015.08.003
– ident: e_1_2_7_47_1
  doi: 10.1093/bioinformatics/btw413
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.1408987111
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cell.2011.11.031
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.1200012109
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cell.2009.05.037
– ident: e_1_2_7_7_1
  doi: 10.1038/nchembio711
– ident: e_1_2_7_25_1
  doi: 10.1016/j.immuni.2015.10.009
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cell.2018.03.032
– ident: e_1_2_7_23_1
  doi: 10.1016/j.tcb.2016.06.003
– ident: e_1_2_7_43_1
  doi: 10.1126/science.1247005
– ident: e_1_2_7_24_1
  doi: 10.1038/nature09413
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cell.2009.05.021
– ident: e_1_2_7_37_1
  doi: 10.1038/ncomms8439
– ident: e_1_2_7_17_1
  doi: 10.1016/j.celrep.2014.04.026
– ident: e_1_2_7_3_1
  doi: 10.1038/nrm.2016.149
– ident: e_1_2_7_48_1
  doi: 10.1016/j.biochi.2018.02.007
– ident: e_1_2_7_19_1
  doi: 10.1038/s41419-018-0524-y
– ident: e_1_2_7_46_1
  doi: 10.1038/srep15915
– ident: e_1_2_7_21_1
  doi: 10.1126/scisignal.aaw3423
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1172308
– ident: e_1_2_7_29_1
  doi: 10.1038/nature13147
– ident: e_1_2_7_32_1
  doi: 10.1016/j.celrep.2017.03.024
– ident: e_1_2_7_39_1
  doi: 10.1038/s41586-018-0519-y
– ident: e_1_2_7_38_1
  doi: 10.1016/j.molcel.2017.02.024
– ident: e_1_2_7_49_1
  doi: 10.1038/nmeth.4185
– ident: e_1_2_7_41_1
  doi: 10.1016/j.celrep.2019.04.036
– ident: e_1_2_7_42_1
  doi: 10.1093/jnci/djq153
– ident: e_1_2_7_31_1
  doi: 10.1124/mol.116.104000
– ident: e_1_2_7_15_1
  doi: 10.1016/j.molcel.2014.03.003
– ident: e_1_2_7_11_1
  doi: 10.1016/j.immuni.2013.06.018
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev-cellbio-101512-122326
– ident: e_1_2_7_33_1
  doi: 10.1038/cr.2016.87
– ident: e_1_2_7_27_1
  doi: 10.1146/annurev-pathol-052016-100247
– ident: e_1_2_7_44_1
  doi: 10.1038/nmeth.3047
– ident: e_1_2_7_18_1
  doi: 10.1080/15384101.2017.1371889
– ident: e_1_2_7_14_1
  doi: 10.1016/j.molcel.2018.05.010
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2017.03.020
– ident: e_1_2_7_20_1
  doi: 10.1016/j.immuni.2017.06.001
– ident: e_1_2_7_30_1
  doi: 10.1074/jbc.M702422200
– ident: e_1_2_7_34_1
  doi: 10.1085/jgp.201711888
SSID ssj0005978
Score 2.438009
SecondaryResourceType review_article
Snippet The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of...
The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of...
The activation of mixed lineage kinase‐like ( MLKL ) by receptor‐interacting protein kinase‐3 ( RIPK 3) controls the execution of necroptosis, a regulated form...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e47840
SubjectTerms Activation
Apoptosis
Cancer
Cell death
Cell Membrane - metabolism
Cell Membrane Permeability
Cell surface
Cell Survival
Channel pores
Channels
Connexins - metabolism
Cytokines
Cytokines - metabolism
EMBO07
EMBO19
EMBO20
Gene Silencing
Guanosine triphosphatases
HT29 Cells
Humans
Inflammation
Inflammation Mediators - metabolism
Interleukins
Intracellular
Isoforms
Kinases
Life Sciences
MAP kinase
Membrane fusion
MLKL
Mortality
Necroptosis
Necrosis
Nerve Tissue Proteins - metabolism
Oligomerization
Oligomers
Pannexin‐1
Phosphatidylserine
Protein kinase
Protein Kinases - metabolism
Protein Multimerization
Transport Vesicles - metabolism
Vesicles
Title Pannexin‐1 limits the production of proinflammatory cytokines during necroptosis
URI https://link.springer.com/article/10.15252/embr.201947840
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201947840
https://www.ncbi.nlm.nih.gov/pubmed/31410978
https://www.proquest.com/docview/2300539671
https://www.proquest.com/docview/2273232107
https://inserm.hal.science/inserm-02281304
https://pubmed.ncbi.nlm.nih.gov/PMC6776911
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7RIhAXBOUv0FZBAgkOobET2_GxXbVaIRZQRaW9RbHjqCu6TtXdVuqtj9Bn5EmYSbIpUakQt43s3STzY3_emfkG4J0uZWwcY5FTvIhSm7HIqCqOXIl7S2p0ah3VO0--yvFR-nkqph1JEtXC_Bm_F1zwHTc3RNuJZ22FZ5E1uC9YoqhHw0iObnI5dLPkotfriHM27Th8_vIDg-1n7ZiSH28jy9sJkn2UdIhhm03o4Ak87tBjuNuq-yncc34DHrT9JC834OGki5Q_g8PvhSeaS__r6pqFJ1TGtAgR7IWnLcUrqiOsK7pCE0OrmDfR9tBeLuuflAkftvWLoXfU42tZL2aL53B0sP9jNI66_gmRlUzGka1UWcpKIKRwpWaGO6GNFDYpYm2rRHFjY2UNenCpMlz0RGlMrEqeVYWQGnHNC1j3tXevINQILFWZVCjHAuWIS5NgJksSm-FxEmFaAJ9WYs1tRy5OPS5OcjpkkB5y0kPe6yGAD_0XTltejbunvkc99bOID3u8-yWfefTReU78PbgPpxcsgM2VJvPOERc5Jzr-REuFw2_7YXQhiosU3tXnOAdflVMtkwrgZav4_m4J5cGidQWgBiYxeJzhiJ8dNzTdUimJUg3g48p4bh7rzldNGuv6l0jy_cneYX_1-j_u8AYe0ecmHTHdhPXl2bnbQli1NNuNS23Tv5TffgPfrRps
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61W0F7QVCgBAoECSQ4hMZ52PFxQa2WZbdCpZX2ZsWOo67aTSp2W6k3fgK_kV_CTF5VVCrEMbGTOPPyWDPzDcBbmXFfW8Y8K4LUi0zCPC1y37MZ7i2RlpGxVO88PeSjk2g8i2drwNpamCrbvQ1JVpa66dET7NmFJgBPPHULPJWsw0YS8yQewMZwOP4-vsnrkJX5RQsgvSBgswbP5y-v6G1F66eUCHnby7ydLNlFTPv-bLUhHTyEB40n6Q5r1j-CNVtsw726t-T1NtyfNlHzx3D0LS0I8rL4_fMXc8-ppGnpouPnXtRwr8gat8zpCsUNJWRRRd5dc70qzygr3q1rGd3CUr-vVbmcL5_AycH-8eeR1_RS8Axn3PdMLrKM5zG6FzaTTAc2lprHJkx9afJQBNr4wmjU5kwkaADjTGtfZEGSpzGX6OM8hUFRFvYZuBKdTJGFOdIxRTqimYqZTsLQJHi0RJfNgY8tWZVpgMap38W5ogMH8UERH1THBwfedw9c1Bgbd099h3zqZhE29mg4UfMC9XWhCMsH9-Toijmw23JSNUq5VAFB84eSCxx-0w2jOlGMJC1seYlz8FcDqmsSDuzUjO--FlJOLEqXA6InEr3l9EeK-WkF2c2F4EhVBz60wnOzrDt_Nayk618kUfvTT0fd1fP_-MJr2BwdTydq8uXw6wvYovtVmmK0C4PVj0v7Et2tlX7VKNgfqcEh0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoERUXBOUVKBAkkOCQNs7Djo9l6WqBblVVVNqbFT-irug6K5Ii9cZP4DfyS5jJq4pKhTgmdhJnHvaMZuYbQt4Iw0JlKQ0sj_Ig0RkNFC_CwBo4WxIlEm2x3nl-xGanyedFuuhyc6o-270PSbY1DYjS5Oq9tSn6fj3Rnl0pBPMED5yDh7JBboObQtH3mrDJVYaHaDZi2AtEEEV00SH7_OUFo0Np4wxTIq_bm9fTJofY6diybY6m6X1yr7Mp_f1WCB6QW9Ztkzttl8nLbbI17-LnD8nJce4Q_NL9_vmL-udY3FT5YAL66xb4FZjklwVegeCBrKyaGLyvL-vyG-bH-21Vo-8sdv6qy2pZPSKn04Ovk1nQdVUINKMsDHTBjWFFCoaGNYKqyKZCsVTHeSh0EfNI6ZBrBXpteAZbYWqUCrmJsiJPmQBr5zHZdKWzT4kvwNzkJi6AjjnQETaslKosjnUGTiYYbx7Z7ckqdQc5jp0vziW6HsgHiXyQAx888m54YN2ibdw89S3waZiFKNmz_UO5dKC5K4moPnA6Jz-oR3Z6TspOPSsZIUh_LBiH4dfDMCgWRktyZ8sLmAO_GmGFE_fIk5bxw9dizI4F6fIIH4nEaDnjEbc8a8C7GecMqOqR973wXC3rxl-NG-n6F0nkwfzDyXD17D--8IpsHX-cysNPR1-ek7t4u8lXTHbIZv39wr4Au6tWLxvt-gP8uSSq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pannexin%E2%80%901+limits+the+production+of+proinflammatory+cytokines+during+necroptosis&rft.jtitle=EMBO+reports&rft.au=Douanne%2C+Tiphaine&rft.au=Andr%C3%A9%E2%80%90Gr%C3%A9goire%2C+Gwennan&rft.au=Trillet%2C+Kilian&rft.au=Thys%2C+An&rft.date=2019-10-04&rft.pub=Nature+Publishing+Group+UK&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=20&rft.issue=10&rft_id=info:doi/10.15252%2Fembr.201947840&rft.externalDocID=10_15252_embr_201947840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon