Pannexin‐1 limits the production of proinflammatory cytokines during necroptosis
The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the...
Saved in:
Published in | EMBO reports Vol. 20; no. 10; pp. e47840 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.10.2019
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
Synopsis
The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines.
Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis.
Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking.
Pannexin‐1 is dispensable for necroptotic cell death.
Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis.
Graphical Abstract
The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. |
---|---|
AbstractList | The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.
Synopsis
The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines.
Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis.
Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking.
Pannexin‐1 is dispensable for necroptotic cell death.
Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis.
The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis.The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. The activation of mixed lineage kinase‐like ( MLKL ) by receptor‐interacting protein kinase‐3 ( RIPK 3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 ( PANX 1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTP ase RAB 27A and RAB 27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX 1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX 1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL , RAB 27, and PANX 1 and propose ways to interfere with inflammation associated with necroptosis. The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apoptosis‐deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proinflammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin‐1 (PANX1) channels, concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane “leakiness” requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellular vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin‐8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. Synopsis The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. Pannexin‐1 is activated concomitantly to phosphatidylserine exposure during early steps of necroptosis. Activation of Pannexin‐1 by MLKL oligomers requires intracellular vesicles trafficking. Pannexin‐1 is dispensable for necroptotic cell death. Pannexin‐1 restrains the production of proinflammatory cytokines associated with necroptosis. Graphical Abstract The activation of MLKL by RIPK3 controls the execution of necroptosis. During the early stages of necroptotic cell death, MLKL oligomers promote the activation of Pannexin‐1 channels, which constricts the production of proinflammatory cytokines. The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of necrosis that occurs in apopto-sis-deficient conditions. Active oligomerized MLKL triggers the exposure of phosphatidylserine residues on the cell surface and disrupts the plasma membrane integrity by forming lytic pores. MLKL also governs endosomal trafficking and biogenesis of small extracellular vesicles as well as the production of proin-flammatory cytokines during the early steps of necroptosis; however, the molecular basis continues to be elucidated. Here, we find that MLKL oligomers activate Pannexin-1 (PANX1) channels , concomitantly to the loss of phosphatidylserine asymmetry. This plasma membrane "leakiness" requires the small GTPase RAB27A and RAB27B isoforms, which regulate intracellu-lar vesicle trafficking, docking, and fusion with the plasma membrane. Although cells in which PANX1 is silenced or inhibited normally undergo necroptotic death, they display enhanced production of cytokines such as interleukin-8, indicating that PANX1 may tamper with inflammation. These data identify a novel signaling nexus between MLKL, RAB27, and PANX1 and propose ways to interfere with inflammation associated with necroptosis. |
Author | Hulin, Philippe Douanne, Tiphaine Thys, An Papin, Antonin Feyeux, Magalie Gavard, Julie André‐Grégoire, Gwennan Trillet, Kilian Bidère, Nicolas Chiron, David |
AuthorAffiliation | 4 Institut de Cancérologie de l'Ouest Site René Gauducheau Saint‐Herblain France 1 CRCINA, INSERM, CNRS Université de Nantes Université d'Angers Nantes France 3 L'Héma‐NexT, i‐Site NexT Nantes France 2 GDR3697 Micronit CNRS Nantes France 5 MicroPICell Imaging Core Facility SFR Santé F. Bonamy UMS016 INSERM, CNRS Université de Nantes Nantes France |
AuthorAffiliation_xml | – name: 5 MicroPICell Imaging Core Facility SFR Santé F. Bonamy UMS016 INSERM, CNRS Université de Nantes Nantes France – name: 1 CRCINA, INSERM, CNRS Université de Nantes Université d'Angers Nantes France – name: 4 Institut de Cancérologie de l'Ouest Site René Gauducheau Saint‐Herblain France – name: 3 L'Héma‐NexT, i‐Site NexT Nantes France – name: 2 GDR3697 Micronit CNRS Nantes France |
Author_xml | – sequence: 1 givenname: Tiphaine surname: Douanne fullname: Douanne, Tiphaine organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT – sequence: 2 givenname: Gwennan surname: André‐Grégoire fullname: André‐Grégoire, Gwennan organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT, Institut de Cancérologie de l'Ouest, Site René Gauducheau – sequence: 3 givenname: Kilian surname: Trillet fullname: Trillet, Kilian organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT – sequence: 4 givenname: An orcidid: 0000-0002-6838-312X surname: Thys fullname: Thys, An organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT – sequence: 5 givenname: Antonin surname: Papin fullname: Papin, Antonin organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT – sequence: 6 givenname: Magalie surname: Feyeux fullname: Feyeux, Magalie organization: MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes – sequence: 7 givenname: Philippe surname: Hulin fullname: Hulin, Philippe organization: MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes – sequence: 8 givenname: David surname: Chiron fullname: Chiron, David organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT – sequence: 9 givenname: Julie surname: Gavard fullname: Gavard, Julie organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT, Institut de Cancérologie de l'Ouest, Site René Gauducheau – sequence: 10 givenname: Nicolas orcidid: 0000-0001-9177-0008 surname: Bidère fullname: Bidère, Nicolas email: nicolas.bidere@inserm.fr organization: CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, GDR3697 Micronit, CNRS, L'Héma‐NexT, i‐Site NexT |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31410978$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-02281304$$DView record in HAL |
BookMark | eNqFUstu1DAUtVARfcCaHYrEhgXT-hHbMQukUhWKNAhUgcTOchyn45LYwXYKs-MT-Ea-BIdMSxmpYuVr3XPOfZ19sOO8MwA8RvAQUUzxkenrcIghEiWvSngP7KGSiQVBvNrZxBijz7tgP8ZLCCEVvHoAdgkqEczhHjj_oJwz36379eMnKjrb2xSLtDLFEHwz6mS9K3w7_axrO9X3KvmwLvQ6-S_WmVg0Y7DuonBGBz8kH218CO63qovm0eY9AJ9en348OVss3795e3K8XGiGGFzoljcNaymh1DQC1dhQUTOqiYJCt4TjWkOu66qCDa8EQrSpa8gbXLWKMoE5OQAvZ91hrHvTaONSUJ0cgu1VWEuvrPw34-xKXvgryThnWTALPJ8FVlu0s-OltC6a0EuIcYUILK8m-LNNveC_jiYm2duoTdcpZ_wYJc49YYIRnFp7ugW99GNweRsSk3wFIhifBJ_cHuCmhevrZACdAXm3MQbTSm2Tmm6S57GdRFD-cYGcXCBvXJB5R1u8a-m7GS9mxjfbmfX_4PL03avz22Q4k-MwecGEv9PeVe83JJvXdw |
CitedBy_id | crossref_primary_10_3389_fcell_2022_1020826 crossref_primary_10_1002_1878_0261_13596 crossref_primary_10_1126_scisignal_abc6178 crossref_primary_10_1016_j_isci_2022_105118 crossref_primary_10_3390_ijms241210108 crossref_primary_10_1038_s41421_021_00259_0 crossref_primary_10_1111_febs_16255 crossref_primary_10_1159_000527240 crossref_primary_10_1038_s42003_023_05676_3 crossref_primary_10_1007_s11064_020_02981_9 crossref_primary_10_1016_j_cellimm_2020_104133 crossref_primary_10_1038_s41419_024_06513_z crossref_primary_10_1016_j_smallrumres_2023_107143 crossref_primary_10_1248_bpb_b21_00292 crossref_primary_10_1038_s41419_023_06408_5 crossref_primary_10_15252_embj_2020105753 crossref_primary_10_1038_s41419_021_04286_3 crossref_primary_10_1016_j_lfs_2020_118347 crossref_primary_10_1038_s41467_024_47142_6 crossref_primary_10_3390_genes14020446 crossref_primary_10_1002_jev2_12261 crossref_primary_10_1007_s10456_020_09763_5 crossref_primary_10_1016_j_phymed_2021_153548 crossref_primary_10_3390_cancers12051113 crossref_primary_10_1111_jnc_15004 crossref_primary_10_1038_s41467_020_16887_1 |
Cites_doi | 10.1101/gad.312561.118 10.1371/journal.pbio.2002711 10.15252/embj.2019101638 10.1038/nature19076 10.1038/ncb2883 10.1038/ncomms14324 10.1073/pnas.1613305114 10.1016/j.tcb.2015.08.003 10.1093/bioinformatics/btw413 10.1073/pnas.1408987111 10.1016/j.cell.2011.11.031 10.1073/pnas.1200012109 10.1016/j.cell.2009.05.037 10.1038/nchembio711 10.1016/j.immuni.2015.10.009 10.1016/j.cell.2018.03.032 10.1016/j.tcb.2016.06.003 10.1126/science.1247005 10.1038/nature09413 10.1016/j.cell.2009.05.021 10.1038/ncomms8439 10.1016/j.celrep.2014.04.026 10.1038/nrm.2016.149 10.1016/j.biochi.2018.02.007 10.1038/s41419-018-0524-y 10.1038/srep15915 10.1126/scisignal.aaw3423 10.1126/science.1172308 10.1038/nature13147 10.1016/j.celrep.2017.03.024 10.1038/s41586-018-0519-y 10.1016/j.molcel.2017.02.024 10.1038/nmeth.4185 10.1016/j.celrep.2019.04.036 10.1093/jnci/djq153 10.1124/mol.116.104000 10.1016/j.molcel.2014.03.003 10.1016/j.immuni.2013.06.018 10.1146/annurev-cellbio-101512-122326 10.1038/cr.2016.87 10.1146/annurev-pathol-052016-100247 10.1038/nmeth.3047 10.1080/15384101.2017.1371889 10.1016/j.molcel.2018.05.010 10.1016/j.cell.2017.03.020 10.1016/j.immuni.2017.06.001 10.1074/jbc.M702422200 10.1085/jgp.201711888 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019 The Authors 2019 The Authors. 2019 EMBO Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019 The Authors – notice: 2019 The Authors. – notice: 2019 EMBO – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embr.201947840 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Tiphaine Douanne et al |
EISSN | 1469-3178 |
EndPage | n/a |
ExternalDocumentID | PMC6776911 oai_HAL_inserm_02281304v1 31410978 10_15252_embr_201947840 EMBR201947840 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Centre National de la Recherche Scientifique (CNRS) grantid: PICS funderid: 10.13039/501100004794 – fundername: Ligue Contre le Cancer funderid: 10.13039/501100004099 – fundername: Fondation pour la Recherche Médicale (FRM) grantid: DEQ20180339184 funderid: 10.13039/501100002915 – fundername: Région Pays de la Loire et Nantes Métropole – fundername: Fondation ARC pour la Recherche sur le Cancer (ARC) funderid: 10.13039/501100004097 – fundername: Connect Talent Grant – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐16‐IDEX‐0007 funderid: 10.13039/501100001665 – fundername: Fondation de France funderid: 10.13039/501100004431 – fundername: SIRIC ILIAD grantid: INCa‐DGOS‐Inserm_12558 – fundername: Fondation ARC pour la Recherche sur le Cancer (ARC) – fundername: Ligue Contre le Cancer – fundername: Centre National de la Recherche Scientifique (CNRS) funderid: PICS – fundername: Fondation pour la Recherche Médicale (FRM) funderid: DEQ20180339184 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐16‐IDEX‐0007 – fundername: SIRIC ILIAD funderid: INCa‐DGOS‐Inserm_12558 – fundername: Fondation de France – fundername: Centre National de la Recherche Scientifique (CNRS) grantid: PICS – fundername: SIRIC ILIAD grantid: INCa-DGOS-Inserm_12558 – fundername: Fondation pour la Recherche Médicale (FRM) grantid: DEQ20180339184 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR-16-IDEX-0007 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐16‐IDEX‐0007 |
GroupedDBID | --- -DZ -Q- 0R~ 1OC 24P 29G 2WC 33P 36B 39C 53G 5GY 5VS 70F 8R4 8R5 AAESR AAEVG AAHBH AAHHS AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BFHJK BHPHI BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM E3Z EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HK~ HYE H~9 KQ8 L7B LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TR2 WBKPD WIH WIK WIN WOHZO WXSBR WYJ ZGI ZZTAW ABJNI AASML AAYXX ABZEH CITATION NAO CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c6160-cf7dd6f5355ed91b2e59b65c3a09cf372bc07cb880d789115dbb07d28fa569273 |
IEDL.DBID | C6C |
ISSN | 1469-221X 1469-3178 |
IngestDate | Thu Aug 21 14:02:32 EDT 2025 Fri May 09 12:23:44 EDT 2025 Thu Jul 10 23:17:22 EDT 2025 Sun Jul 13 05:08:50 EDT 2025 Wed Feb 19 02:13:18 EST 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 02:32:07 EDT 2025 Wed Jan 22 16:38:29 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | cytokines Pannexin‐1 MLKL inflammation necroptosis Pannexin-1 Pannexin-1 Subject Categories Autophagy & Cell Death Immunology Membrane & Trafficking |
Language | English |
License | 2019 The Authors. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6160-cf7dd6f5355ed91b2e59b65c3a09cf372bc07cb880d789115dbb07d28fa569273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9177-0008 0000-0002-6838-312X 0000-0001-8100-1504 0000-0002-7985-9007 0000-0002-9167-8727 |
OpenAccessLink | https://inserm.hal.science/inserm-02281304 |
PMID | 31410978 |
PQID | 2300539671 |
PQPubID | 26169 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6776911 hal_primary_oai_HAL_inserm_02281304v1 proquest_miscellaneous_2273232107 proquest_journals_2300539671 pubmed_primary_31410978 crossref_citationtrail_10_15252_embr_201947840 crossref_primary_10_15252_embr_201947840 wiley_primary_10_15252_embr_201947840_EMBR201947840 springer_journals_10_15252_embr_201947840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 04 October 2019 |
PublicationDateYYYYMMDD | 2019-10-04 |
PublicationDate_xml | – month: 10 year: 2019 text: 04 October 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Chen, Demarco, Heilig, Shkarina, Boettcher, Farady, Pelczar, Broz (CR25) 2019; 38 Hendrix, Maynard, Pauwels, Braems, Denys, Van den Broecke, Lambert, Van Belle, Cocquyt, Gespach (CR41) 2010; 102 Chekeni, Elliott, Sandilos, Walk, Kinchen, Lazarowski, Armstrong, Penuela, Laird, Salvesen (CR23) 2010; 467 Chiu, Schappe, Desai, Bayliss (CR33) 2018; 150 Ros, Pena‐Blanco, Hanggi, Kunzendorf, Krautwald, Wong, Garcia‐Saez (CR31) 2017; 19 Boassa, Ambrosi, Qiu, Dahl, Gaietta, Sosinsky (CR29) 2007; 282 Shan, Pan, Najafov, Yuan (CR1) 2018; 32 Zargarian, Shlomovitz, Erlich, Hourizadeh, Ofir‐Birin, Croker, Regev‐Rudzki, Edry‐Botzer, Gerlic (CR11) 2017; 15 Dovey, Diep, Clarke, Hale, McNamara, Guo, Brown, Cao, Grace, Gough (CR13) 2018; 70 Gong, Guy, Olauson, Becker, Yang, Fitzgerald, Linkermann, Green (CR12) 2017; 169 Atkin‐Smith, Tixeira, Paone, Mathivanan, Collins, Liem, Goodall, Ravichandran, Hulett, Poon (CR36) 2015; 6 Colombo, Raposo, Thery (CR21) 2014; 30 Hildebrand, Tanzer, Lucet, Young, Spall, Sharma, Pierotti, Garnier, Dobson, Webb (CR27) 2014; 111 Chiu, Jin, Medina, Leonhardt, Kiessling, Bennett, Shu, Tamm, Yeager, Ravichandran (CR44) 2017; 8 Zhang, Shao, Lin, Zhang, Lu, Lin, Dong, Han (CR5) 2009; 325 Gong, Guy, Crawford, Green (CR17) 2017; 16 Mompean, Li, Li, Laage, Siemer, Bozkurt, Wu, McDermott (CR9) 2018; 173 Wang, Sun, Su, Rizo, Liu, Wang, Wang, Wang (CR14) 2014; 54 Yang, He, Muñoz‐Planillo, Liu, Núñez (CR24) 2015; 43 Cai, Zhang, Choksi, Li, Li, Zhang, Liu (CR32) 2016; 26 Kearney, Martin (CR37) 2017; 65 Conos, Chen, De Nardo, Hara, Whitehead, Nunez, Masters, Murphy, Schroder, Vaux (CR34) 2017; 114 Douanne, André‐Grégoire, Thys, Trillet, Gavard, Bidère (CR40) 2019; 27 He, Wang, Miao, Wang, Du, Zhao, Wang (CR4) 2009; 137 Sun, Wang, Wang, He, Chen, Liao, Wang, Yan, Liu, Lei (CR3) 2012; 148 Seehawer, Heinzmann, D'Artista, Harbig, Roux, Hoenicke, Dang, Klotz, Robinson, Dore (CR38) 2018; 562 Galluzzi, Kepp, Chan, Kroemer (CR26) 2017; 12 Ball, Demmerle, Kaufmann, Davis, Dobbie, Schermelleh (CR45) 2015; 5 Weinlich, Oberst, Beere, Green (CR2) 2017; 18 Fan, Guo, Gao, Zhang, Ling, Xu, Pan, Li, Chen, Wang (CR20) 2019; 12 Legland, Arganda‐Carreras, Andrey (CR46) 2016; 32 Shalem, Sanjana, Hartenian, Shi, Scott, Mikkelsen, Heckl, Ebert, Root, Doench (CR42) 2014; 343 Segawa, Nagata (CR35) 2015; 25 Strilic, Yang, Albarran‐Juarez, Wachsmuth, Han, Muller, Pasparakis, Offermanns (CR39) 2016; 536 Poon, Chiu, Armstrong, Kinchen, Juncadella, Bayliss, Ravichandran (CR28) 2014; 507 Sanjana, Shalem, Zhang (CR43) 2014; 11 Boyd‐Tressler, Lane, Dubyak (CR30) 2017; 92 Zhao, Jitkaew, Cai, Choksi, Li, Luo, Liu (CR8) 2012; 109 Cho, Challa, Moquin, Genga, Ray, Guildford, Chan (CR7) 2009; 137 Andre‐Gregoire, Bidere, Gavard (CR47) 2018; 155 Cai, Jitkaew, Zhao, Chiang, Choksi, Liu, Ward, Wu, Liu (CR15) 2014; 16 Murphy, Czabotar, Hildebrand, Lucet, Zhang, Alvarez‐Diaz, Lewis, Lalaoui, Metcalf, Webb (CR10) 2013; 39 Yoon, Kovalenko, Bogdanov, Wallach (CR19) 2017; 47 Esseltine, Laird (CR22) 2016; 26 Degterev, Huang, Boyce, Li, Jagtap, Mizushima, Cuny, Mitchison, Moskowitz, Yuan (CR6) 2005; 1 Van Deun, Mestdagh, Agostinis, Akay, Anand, Anckaert, Martinez, Baetens, Beghein, Bertier (CR48) 2017; 14 Dondelinger, Declercq, Montessuit, Roelandt, Goncalves, Bruggeman, Hulpiau, Weber, Sehon, Marquis (CR16) 2014; 7 Zhu, Liang, Ma, Xu, Cao, Lu, Liu, Shan, Qian, Yuan (CR18) 2018; 9 2018; 562 2017; 8 2015; 6 2015; 5 2007; 282 2017; 47 2019; 12 2010; 467 2017; 65 2010; 102 2016; 32 2019; 38 2012; 148 2014; 111 2017; 114 2009; 137 2012; 109 2018; 9 2018; 155 2015; 25 2014; 507 2018; 173 2013; 39 2017; 92 2018; 150 2017; 15 2017; 14 2017; 16 2016; 536 2015; 43 2017; 12 2018; 70 2014; 16 2019; 27 2005; 1 2017; 19 2017; 18 2014; 30 2018; 32 2014; 7 2017; 169 2016; 26 2014; 11 2009; 325 2014; 54 2014; 343 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 70 start-page: 936 year: 2018 end-page: 948 ident: CR13 article-title: MLKL requires the inositol phosphate code to execute necroptosis publication-title: Mol Cell – volume: 30 start-page: 255 year: 2014 end-page: 289 ident: CR21 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu Rev Cell Dev Biol – volume: 467 start-page: 863 year: 2010 end-page: 867 ident: CR23 article-title: Pannexin 1 channels mediate ‘find‐me’ signal release and membrane permeability during apoptosis publication-title: Nature – volume: 282 start-page: 31733 year: 2007 end-page: 31743 ident: CR29 article-title: Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane publication-title: J Biol Chem – volume: 5 start-page: 15915 year: 2015 ident: CR45 article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy publication-title: Sci Rep – volume: 150 start-page: 19 year: 2018 end-page: 39 ident: CR33 article-title: Revisiting multimodal activation and channel properties of Pannexin 1 publication-title: J Gen Physiol – volume: 11 start-page: 783 year: 2014 end-page: 784 ident: CR43 article-title: Improved vectors and genome‐wide libraries for CRISPR screening publication-title: Nat Methods – volume: 148 start-page: 213 year: 2012 end-page: 227 ident: CR3 article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell – volume: 32 start-page: 3532 year: 2016 end-page: 3534 ident: CR46 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 155 start-page: 11 year: 2018 end-page: 15 ident: CR47 article-title: Temozolomide affects extracellular vesicles released by glioblastoma cells publication-title: Biochimie – volume: 8 start-page: 14324 year: 2017 ident: CR44 article-title: A quantized mechanism for activation of pannexin channels publication-title: Nat Commun – volume: 54 start-page: 133 year: 2014 end-page: 146 ident: CR14 article-title: Mixed lineage kinase domain‐like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3 publication-title: Mol Cell – volume: 9 start-page: 500 year: 2018 ident: CR18 article-title: Necroptosis promotes cell‐autonomous activation of proinflammatory cytokine gene expression publication-title: Cell Death Dis – volume: 92 start-page: 30 year: 2017 end-page: 47 ident: CR30 article-title: Up‐regulated ectonucleotidases in Fas‐associated death domain protein‐ and receptor‐interacting protein kinase 1‐deficient Jurkat leukemia cells counteract extracellular ATP/AMP accumulation via Pannexin‐1 channels during chemotherapeutic drug‐induced apoptosis publication-title: Mol Pharmacol – volume: 15 start-page: e2002711 year: 2017 ident: CR11 article-title: Phosphatidylserine externalization, ‘necroptotic bodies’ release, and phagocytosis during necroptosis publication-title: PLoS Biol – volume: 38 start-page: e101638 year: 2019 ident: CR25 article-title: Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly publication-title: EMBO J – volume: 12 start-page: eaaw3423 year: 2019 ident: CR20 article-title: Flotillin‐mediated endocytosis and ALIX–syntenin‐1–mediated exocytosis protect the cell membrane from damage caused by necroptosis publication-title: Sci Signal – volume: 47 start-page: 51 year: 2017 end-page: 65 ident: CR19 article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation publication-title: Immunity – volume: 32 start-page: 327 year: 2018 end-page: 340 ident: CR1 article-title: Necroptosis in development and diseases publication-title: Genes Dev – volume: 102 start-page: 866 year: 2010 end-page: 880 ident: CR41 article-title: Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis publication-title: J Natl Cancer Inst – volume: 109 start-page: 5322 year: 2012 end-page: 5327 ident: CR8 article-title: Mixed lineage kinase domain‐like is a key receptor interacting protein 3 downstream component of TNF‐induced necrosis publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 639 year: 2015 end-page: 650 ident: CR35 article-title: An apoptotic ‘eat me’ signal: phosphatidylserine exposure publication-title: Trends Cell Biol – volume: 27 start-page: 1657 year: 2019 end-page: 1665 ident: CR40 article-title: CYLD regulates centriolar satellites proteostasis by counteracting the E3 ligase MIB1 publication-title: Cell Rep – volume: 19 start-page: 175 year: 2017 end-page: 187 ident: CR31 article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium publication-title: Cell Rep – volume: 173 start-page: 1244 year: 2018 end-page: 1253 ident: CR9 article-title: The structure of the necrosome RIPK1‐RIPK3 core, a human hetero‐amyloid signaling complex publication-title: Cell – volume: 1 start-page: 112 year: 2005 end-page: 119 ident: CR6 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat Chem Biol – volume: 507 start-page: 329 year: 2014 end-page: 334 ident: CR28 article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis publication-title: Nature – volume: 26 start-page: 886 year: 2016 end-page: 900 ident: CR32 article-title: Activation of cell‐surface proteases promotes necroptosis, inflammation and cell migration publication-title: Cell Res – volume: 12 start-page: 103 year: 2017 end-page: 130 ident: CR26 article-title: Necroptosis: mechanisms and relevance to disease publication-title: Annu Rev Pathol – volume: 325 start-page: 332 year: 2009 end-page: 336 ident: CR5 article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis publication-title: Science – volume: 169 start-page: 286 year: 2017 end-page: 300 ident: CR12 article-title: ESCRT‐III acts downstream of MLKL to regulate necroptotic cell death and its consequences publication-title: Cell – volume: 7 start-page: 971 year: 2014 end-page: 981 ident: CR16 article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates publication-title: Cell Rep – volume: 26 start-page: 944 year: 2016 end-page: 955 ident: CR22 article-title: Next‐generation connexin and pannexin cell biology publication-title: Trends Cell Biol – volume: 111 start-page: 15072 year: 2014 end-page: 15077 ident: CR27 article-title: Activation of the pseudokinase MLKL unleashes the four‐helix bundle domain to induce membrane localization and necroptotic cell death publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 7439 year: 2015 ident: CR36 article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads‐on‐a‐string membrane structure publication-title: Nat Commun – volume: 562 start-page: 69 year: 2018 end-page: 75 ident: CR38 article-title: Necroptosis microenvironment directs lineage commitment in liver cancer publication-title: Nature – volume: 18 start-page: 127 year: 2017 end-page: 136 ident: CR2 article-title: Necroptosis in development, inflammation and disease publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 1748 year: 2017 end-page: 1760 ident: CR17 article-title: Biological events and molecular signaling following MLKL activation during necroptosis publication-title: Cell Cycle – volume: 114 start-page: E961 year: 2017 end-page: E969 ident: CR34 article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 228 year: 2017 end-page: 232 ident: CR48 article-title: EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research publication-title: Nat Methods – volume: 65 start-page: 965 year: 2017 end-page: 973 ident: CR37 article-title: An inflammatory perspective on necroptosis publication-title: Mol Cell – volume: 16 start-page: 55 year: 2014 end-page: 65 ident: CR15 article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis publication-title: Nat Cell Biol – volume: 536 start-page: 215 year: 2016 end-page: 218 ident: CR39 article-title: Tumour‐cell‐induced endothelial cell necroptosis via death receptor 6 promotes metastasis publication-title: Nature – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: CR42 article-title: Genome‐scale CRISPR‐Cas9 knockout screening in human cells publication-title: Science – volume: 137 start-page: 1100 year: 2009 end-page: 1111 ident: CR4 article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha publication-title: Cell – volume: 43 start-page: 923 year: 2015 end-page: 932 ident: CR24 article-title: Caspase‐11 requires the Pannexin‐1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock publication-title: Immunity – volume: 137 start-page: 1112 year: 2009 end-page: 1123 ident: CR7 article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation publication-title: Cell – volume: 39 start-page: 443 year: 2013 end-page: 453 ident: CR10 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity – volume: 39 start-page: 443 year: 2013 end-page: 453 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity – volume: 325 start-page: 332 year: 2009 end-page: 336 article-title: RIP3, an energy metabolism regulator that switches TNF‐induced cell death from apoptosis to necrosis publication-title: Science – volume: 30 start-page: 255 year: 2014 end-page: 289 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu Rev Cell Dev Biol – volume: 5 start-page: 15915 year: 2015 article-title: SIMcheck: a toolbox for successful super‐resolution structured illumination microscopy publication-title: Sci Rep – volume: 536 start-page: 215 year: 2016 end-page: 218 article-title: Tumour‐cell‐induced endothelial cell necroptosis via death receptor 6 promotes metastasis publication-title: Nature – volume: 70 start-page: 936 year: 2018 end-page: 948 article-title: MLKL requires the inositol phosphate code to execute necroptosis publication-title: Mol Cell – volume: 6 start-page: 7439 year: 2015 article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads‐on‐a‐string membrane structure publication-title: Nat Commun – volume: 32 start-page: 327 year: 2018 end-page: 340 article-title: Necroptosis in development and diseases publication-title: Genes Dev – volume: 169 start-page: 286 year: 2017 end-page: 300 article-title: ESCRT‐III acts downstream of MLKL to regulate necroptotic cell death and its consequences publication-title: Cell – volume: 109 start-page: 5322 year: 2012 end-page: 5327 article-title: Mixed lineage kinase domain‐like is a key receptor interacting protein 3 downstream component of TNF‐induced necrosis publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 103 year: 2017 end-page: 130 article-title: Necroptosis: mechanisms and relevance to disease publication-title: Annu Rev Pathol – volume: 102 start-page: 866 year: 2010 end-page: 880 article-title: Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis publication-title: J Natl Cancer Inst – volume: 16 start-page: 1748 year: 2017 end-page: 1760 article-title: Biological events and molecular signaling following MLKL activation during necroptosis publication-title: Cell Cycle – volume: 8 start-page: 14324 year: 2017 article-title: A quantized mechanism for activation of pannexin channels publication-title: Nat Commun – volume: 25 start-page: 639 year: 2015 end-page: 650 article-title: An apoptotic ‘eat me’ signal: phosphatidylserine exposure publication-title: Trends Cell Biol – volume: 150 start-page: 19 year: 2018 end-page: 39 article-title: Revisiting multimodal activation and channel properties of Pannexin 1 publication-title: J Gen Physiol – volume: 282 start-page: 31733 year: 2007 end-page: 31743 article-title: Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane publication-title: J Biol Chem – volume: 14 start-page: 228 year: 2017 end-page: 232 article-title: EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research publication-title: Nat Methods – volume: 11 start-page: 783 year: 2014 end-page: 784 article-title: Improved vectors and genome‐wide libraries for CRISPR screening publication-title: Nat Methods – volume: 148 start-page: 213 year: 2012 end-page: 227 article-title: Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell – volume: 137 start-page: 1100 year: 2009 end-page: 1111 article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐alpha publication-title: Cell – volume: 32 start-page: 3532 year: 2016 end-page: 3534 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 562 start-page: 69 year: 2018 end-page: 75 article-title: Necroptosis microenvironment directs lineage commitment in liver cancer publication-title: Nature – volume: 173 start-page: 1244 year: 2018 end-page: 1253 article-title: The structure of the necrosome RIPK1‐RIPK3 core, a human hetero‐amyloid signaling complex publication-title: Cell – volume: 343 start-page: 84 year: 2014 end-page: 87 article-title: Genome‐scale CRISPR‐Cas9 knockout screening in human cells publication-title: Science – volume: 26 start-page: 886 year: 2016 end-page: 900 article-title: Activation of cell‐surface proteases promotes necroptosis, inflammation and cell migration publication-title: Cell Res – volume: 19 start-page: 175 year: 2017 end-page: 187 article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium publication-title: Cell Rep – volume: 7 start-page: 971 year: 2014 end-page: 981 article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates publication-title: Cell Rep – volume: 16 start-page: 55 year: 2014 end-page: 65 article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF‐induced necroptosis publication-title: Nat Cell Biol – volume: 92 start-page: 30 year: 2017 end-page: 47 article-title: Up‐regulated ectonucleotidases in Fas‐associated death domain protein‐ and receptor‐interacting protein kinase 1‐deficient Jurkat leukemia cells counteract extracellular ATP/AMP accumulation via Pannexin‐1 channels during chemotherapeutic drug‐induced apoptosis publication-title: Mol Pharmacol – volume: 26 start-page: 944 year: 2016 end-page: 955 article-title: Next‐generation connexin and pannexin cell biology publication-title: Trends Cell Biol – volume: 65 start-page: 965 year: 2017 end-page: 973 article-title: An inflammatory perspective on necroptosis publication-title: Mol Cell – volume: 155 start-page: 11 year: 2018 end-page: 15 article-title: Temozolomide affects extracellular vesicles released by glioblastoma cells publication-title: Biochimie – volume: 43 start-page: 923 year: 2015 end-page: 932 article-title: Caspase‐11 requires the Pannexin‐1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock publication-title: Immunity – volume: 18 start-page: 127 year: 2017 end-page: 136 article-title: Necroptosis in development, inflammation and disease publication-title: Nat Rev Mol Cell Biol – volume: 15 start-page: e2002711 year: 2017 article-title: Phosphatidylserine externalization, ‘necroptotic bodies’ release, and phagocytosis during necroptosis publication-title: PLoS Biol – volume: 12 start-page: eaaw3423 year: 2019 article-title: Flotillin‐mediated endocytosis and ALIX–syntenin‐1–mediated exocytosis protect the cell membrane from damage caused by necroptosis publication-title: Sci Signal – volume: 38 start-page: e101638 year: 2019 article-title: Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly publication-title: EMBO J – volume: 9 start-page: 500 year: 2018 article-title: Necroptosis promotes cell‐autonomous activation of proinflammatory cytokine gene expression publication-title: Cell Death Dis – volume: 467 start-page: 863 year: 2010 end-page: 867 article-title: Pannexin 1 channels mediate ‘find‐me’ signal release and membrane permeability during apoptosis publication-title: Nature – volume: 1 start-page: 112 year: 2005 end-page: 119 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat Chem Biol – volume: 54 start-page: 133 year: 2014 end-page: 146 article-title: Mixed lineage kinase domain‐like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3 publication-title: Mol Cell – volume: 507 start-page: 329 year: 2014 end-page: 334 article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis publication-title: Nature – volume: 137 start-page: 1112 year: 2009 end-page: 1123 article-title: Phosphorylation‐driven assembly of the RIP1‐RIP3 complex regulates programmed necrosis and virus‐induced inflammation publication-title: Cell – volume: 47 start-page: 51 year: 2017 end-page: 65 article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation publication-title: Immunity – volume: 27 start-page: 1657 year: 2019 end-page: 1665 article-title: CYLD regulates centriolar satellites proteostasis by counteracting the E3 ligase MIB1 publication-title: Cell Rep – volume: 114 start-page: E961 year: 2017 end-page: E969 article-title: Active MLKL triggers the NLRP3 inflammasome in a cell‐intrinsic manner publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 15072 year: 2014 end-page: 15077 article-title: Activation of the pseudokinase MLKL unleashes the four‐helix bundle domain to induce membrane localization and necroptotic cell death publication-title: Proc Natl Acad Sci USA – ident: e_1_2_7_2_1 doi: 10.1101/gad.312561.118 – ident: e_1_2_7_12_1 doi: 10.1371/journal.pbio.2002711 – ident: e_1_2_7_26_1 doi: 10.15252/embj.2019101638 – ident: e_1_2_7_40_1 doi: 10.1038/nature19076 – ident: e_1_2_7_16_1 doi: 10.1038/ncb2883 – ident: e_1_2_7_45_1 doi: 10.1038/ncomms14324 – ident: e_1_2_7_35_1 doi: 10.1073/pnas.1613305114 – ident: e_1_2_7_36_1 doi: 10.1016/j.tcb.2015.08.003 – ident: e_1_2_7_47_1 doi: 10.1093/bioinformatics/btw413 – ident: e_1_2_7_28_1 doi: 10.1073/pnas.1408987111 – ident: e_1_2_7_4_1 doi: 10.1016/j.cell.2011.11.031 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.1200012109 – ident: e_1_2_7_8_1 doi: 10.1016/j.cell.2009.05.037 – ident: e_1_2_7_7_1 doi: 10.1038/nchembio711 – ident: e_1_2_7_25_1 doi: 10.1016/j.immuni.2015.10.009 – ident: e_1_2_7_10_1 doi: 10.1016/j.cell.2018.03.032 – ident: e_1_2_7_23_1 doi: 10.1016/j.tcb.2016.06.003 – ident: e_1_2_7_43_1 doi: 10.1126/science.1247005 – ident: e_1_2_7_24_1 doi: 10.1038/nature09413 – ident: e_1_2_7_5_1 doi: 10.1016/j.cell.2009.05.021 – ident: e_1_2_7_37_1 doi: 10.1038/ncomms8439 – ident: e_1_2_7_17_1 doi: 10.1016/j.celrep.2014.04.026 – ident: e_1_2_7_3_1 doi: 10.1038/nrm.2016.149 – ident: e_1_2_7_48_1 doi: 10.1016/j.biochi.2018.02.007 – ident: e_1_2_7_19_1 doi: 10.1038/s41419-018-0524-y – ident: e_1_2_7_46_1 doi: 10.1038/srep15915 – ident: e_1_2_7_21_1 doi: 10.1126/scisignal.aaw3423 – ident: e_1_2_7_6_1 doi: 10.1126/science.1172308 – ident: e_1_2_7_29_1 doi: 10.1038/nature13147 – ident: e_1_2_7_32_1 doi: 10.1016/j.celrep.2017.03.024 – ident: e_1_2_7_39_1 doi: 10.1038/s41586-018-0519-y – ident: e_1_2_7_38_1 doi: 10.1016/j.molcel.2017.02.024 – ident: e_1_2_7_49_1 doi: 10.1038/nmeth.4185 – ident: e_1_2_7_41_1 doi: 10.1016/j.celrep.2019.04.036 – ident: e_1_2_7_42_1 doi: 10.1093/jnci/djq153 – ident: e_1_2_7_31_1 doi: 10.1124/mol.116.104000 – ident: e_1_2_7_15_1 doi: 10.1016/j.molcel.2014.03.003 – ident: e_1_2_7_11_1 doi: 10.1016/j.immuni.2013.06.018 – ident: e_1_2_7_22_1 doi: 10.1146/annurev-cellbio-101512-122326 – ident: e_1_2_7_33_1 doi: 10.1038/cr.2016.87 – ident: e_1_2_7_27_1 doi: 10.1146/annurev-pathol-052016-100247 – ident: e_1_2_7_44_1 doi: 10.1038/nmeth.3047 – ident: e_1_2_7_18_1 doi: 10.1080/15384101.2017.1371889 – ident: e_1_2_7_14_1 doi: 10.1016/j.molcel.2018.05.010 – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2017.03.020 – ident: e_1_2_7_20_1 doi: 10.1016/j.immuni.2017.06.001 – ident: e_1_2_7_30_1 doi: 10.1074/jbc.M702422200 – ident: e_1_2_7_34_1 doi: 10.1085/jgp.201711888 |
SSID | ssj0005978 |
Score | 2.438009 |
SecondaryResourceType | review_article |
Snippet | The activation of mixed lineage kinase‐like (MLKL) by receptor‐interacting protein kinase‐3 (RIPK3) controls the execution of necroptosis, a regulated form of... The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) controls the execution of necroptosis, a regulated form of... The activation of mixed lineage kinase‐like ( MLKL ) by receptor‐interacting protein kinase‐3 ( RIPK 3) controls the execution of necroptosis, a regulated form... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e47840 |
SubjectTerms | Activation Apoptosis Cancer Cell death Cell Membrane - metabolism Cell Membrane Permeability Cell surface Cell Survival Channel pores Channels Connexins - metabolism Cytokines Cytokines - metabolism EMBO07 EMBO19 EMBO20 Gene Silencing Guanosine triphosphatases HT29 Cells Humans Inflammation Inflammation Mediators - metabolism Interleukins Intracellular Isoforms Kinases Life Sciences MAP kinase Membrane fusion MLKL Mortality Necroptosis Necrosis Nerve Tissue Proteins - metabolism Oligomerization Oligomers Pannexin‐1 Phosphatidylserine Protein kinase Protein Kinases - metabolism Protein Multimerization Transport Vesicles - metabolism Vesicles |
Title | Pannexin‐1 limits the production of proinflammatory cytokines during necroptosis |
URI | https://link.springer.com/article/10.15252/embr.201947840 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201947840 https://www.ncbi.nlm.nih.gov/pubmed/31410978 https://www.proquest.com/docview/2300539671 https://www.proquest.com/docview/2273232107 https://inserm.hal.science/inserm-02281304 https://pubmed.ncbi.nlm.nih.gov/PMC6776911 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7RIhAXBOUv0FZBAgkOobET2_GxXbVaIRZQRaW9RbHjqCu6TtXdVuqtj9Bn5EmYSbIpUakQt43s3STzY3_emfkG4J0uZWwcY5FTvIhSm7HIqCqOXIl7S2p0ah3VO0--yvFR-nkqph1JEtXC_Bm_F1zwHTc3RNuJZ22FZ5E1uC9YoqhHw0iObnI5dLPkotfriHM27Th8_vIDg-1n7ZiSH28jy9sJkn2UdIhhm03o4Ak87tBjuNuq-yncc34DHrT9JC834OGki5Q_g8PvhSeaS__r6pqFJ1TGtAgR7IWnLcUrqiOsK7pCE0OrmDfR9tBeLuuflAkftvWLoXfU42tZL2aL53B0sP9jNI66_gmRlUzGka1UWcpKIKRwpWaGO6GNFDYpYm2rRHFjY2UNenCpMlz0RGlMrEqeVYWQGnHNC1j3tXevINQILFWZVCjHAuWIS5NgJksSm-FxEmFaAJ9WYs1tRy5OPS5OcjpkkB5y0kPe6yGAD_0XTltejbunvkc99bOID3u8-yWfefTReU78PbgPpxcsgM2VJvPOERc5Jzr-REuFw2_7YXQhiosU3tXnOAdflVMtkwrgZav4_m4J5cGidQWgBiYxeJzhiJ8dNzTdUimJUg3g48p4bh7rzldNGuv6l0jy_cneYX_1-j_u8AYe0ecmHTHdhPXl2bnbQli1NNuNS23Tv5TffgPfrRps |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61W0F7QVCgBAoECSQ4hMZ52PFxQa2WZbdCpZX2ZsWOo67aTSp2W6k3fgK_kV_CTF5VVCrEMbGTOPPyWDPzDcBbmXFfW8Y8K4LUi0zCPC1y37MZ7i2RlpGxVO88PeSjk2g8i2drwNpamCrbvQ1JVpa66dET7NmFJgBPPHULPJWsw0YS8yQewMZwOP4-vsnrkJX5RQsgvSBgswbP5y-v6G1F66eUCHnby7ydLNlFTPv-bLUhHTyEB40n6Q5r1j-CNVtsw726t-T1NtyfNlHzx3D0LS0I8rL4_fMXc8-ppGnpouPnXtRwr8gat8zpCsUNJWRRRd5dc70qzygr3q1rGd3CUr-vVbmcL5_AycH-8eeR1_RS8Axn3PdMLrKM5zG6FzaTTAc2lprHJkx9afJQBNr4wmjU5kwkaADjTGtfZEGSpzGX6OM8hUFRFvYZuBKdTJGFOdIxRTqimYqZTsLQJHi0RJfNgY8tWZVpgMap38W5ogMH8UERH1THBwfedw9c1Bgbd099h3zqZhE29mg4UfMC9XWhCMsH9-Toijmw23JSNUq5VAFB84eSCxx-0w2jOlGMJC1seYlz8FcDqmsSDuzUjO--FlJOLEqXA6InEr3l9EeK-WkF2c2F4EhVBz60wnOzrDt_Nayk618kUfvTT0fd1fP_-MJr2BwdTydq8uXw6wvYovtVmmK0C4PVj0v7Et2tlX7VKNgfqcEh0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoERUXBOUVKBAkkOCQNs7Djo9l6WqBblVVVNqbFT-irug6K5Ii9cZP4DfyS5jJq4pKhTgmdhJnHvaMZuYbQt4Iw0JlKQ0sj_Ig0RkNFC_CwBo4WxIlEm2x3nl-xGanyedFuuhyc6o-270PSbY1DYjS5Oq9tSn6fj3Rnl0pBPMED5yDh7JBboObQtH3mrDJVYaHaDZi2AtEEEV00SH7_OUFo0Np4wxTIq_bm9fTJofY6diybY6m6X1yr7Mp_f1WCB6QW9Ztkzttl8nLbbI17-LnD8nJce4Q_NL9_vmL-udY3FT5YAL66xb4FZjklwVegeCBrKyaGLyvL-vyG-bH-21Vo-8sdv6qy2pZPSKn04Ovk1nQdVUINKMsDHTBjWFFCoaGNYKqyKZCsVTHeSh0EfNI6ZBrBXpteAZbYWqUCrmJsiJPmQBr5zHZdKWzT4kvwNzkJi6AjjnQETaslKosjnUGTiYYbx7Z7ckqdQc5jp0vziW6HsgHiXyQAx888m54YN2ibdw89S3waZiFKNmz_UO5dKC5K4moPnA6Jz-oR3Z6TspOPSsZIUh_LBiH4dfDMCgWRktyZ8sLmAO_GmGFE_fIk5bxw9dizI4F6fIIH4nEaDnjEbc8a8C7GecMqOqR973wXC3rxl-NG-n6F0nkwfzDyXD17D--8IpsHX-cysNPR1-ek7t4u8lXTHbIZv39wr4Au6tWLxvt-gP8uSSq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pannexin%E2%80%901+limits+the+production+of+proinflammatory+cytokines+during+necroptosis&rft.jtitle=EMBO+reports&rft.au=Douanne%2C+Tiphaine&rft.au=Andr%C3%A9%E2%80%90Gr%C3%A9goire%2C+Gwennan&rft.au=Trillet%2C+Kilian&rft.au=Thys%2C+An&rft.date=2019-10-04&rft.pub=Nature+Publishing+Group+UK&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=20&rft.issue=10&rft_id=info:doi/10.15252%2Fembr.201947840&rft.externalDocID=10_15252_embr_201947840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |