Modified Lysozymes as Novel Broad Spectrum Natural Antimicrobial Agents in Foods

In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial ag...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science Vol. 79; no. 6; pp. R1077 - R1090
Main Authors Aminlari, Ladan, Mohammadi Hashemi, Marjan, Aminlari, Mahmoud
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram‐positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram‐positive and Gram‐negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram‐negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. Practical Application The subject described in this review article can lead to the development of methods to produce new broad‐spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
AbstractList In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram‐positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram‐positive and Gram‐negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram‐negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. Practical Application The subject described in this review article can lead to the development of methods to produce new broad‐spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. Practical Application The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives. [PUBLICATION ABSTRACT]
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram‐positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram‐positive and Gram‐negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram‐negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry.
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram‐positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram‐positive and Gram‐negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram‐negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli . In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad‐spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry.UNLABELLEDIn recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry.The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.PRACTICAL APPLICATIONThe subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
Author Aminlari, Mahmoud
Mohammadi Hashemi, Marjan
Aminlari, Ladan
Author_xml – sequence: 1
  givenname: Ladan
  surname: Aminlari
  fullname: Aminlari, Ladan
  organization: Dept. of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz Univ, Shiraz, Iran
– sequence: 2
  givenname: Marjan
  surname: Mohammadi Hashemi
  fullname: Mohammadi Hashemi, Marjan
  organization: Dept. of Food Science and Technology, College of Agriculture, Shiraz Univ, 71345, Shiraz, Iran
– sequence: 3
  givenname: Mahmoud
  surname: Aminlari
  fullname: Aminlari, Mahmoud
  email: aminlari@shirazu.ac.ir
  organization: Dept. of Food Science and Technology, College of Agriculture, Shiraz Univ, 71345, Shiraz, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24837015$$D View this record in MEDLINE/PubMed
BookMark eNqNks9PFDEUxxsDkQU9ezOTePEy0N_TOSK6KFlXEkC9NZ1Oa4oz06XtqOtfb4eFPXAQ3qV5zef7fcn7vn2wM_jBAPAKwUOU6whVDJZEUHSIMOXwGZhtf3bADEKMS4RotQf2Y7yGU0_4c7CHqSAVRGwGzj_71lln2mKxjv7vujexULFY-l-mK94Fr9riYmV0CmNfLFUag-qK4yG53ungGzd1P8yQYuGGYu59G1-AXau6aF7evQfgav7h8uRjufhy-unkeFFqjjgsa26w0QoLqyDhVDCqKk5qQVprFKuxxS2uuCYKM2qp1pZzbFHTqAZr2ghEDsDbje8q-JvRxCR7F7XpOjUYP0aJ6lxMUCEeRyuOEcWkfoIrYwhygWH9BJSwbAsxzOibB-i1H8OQ13NriAhhdJr9-o4am960chVcr8Ja3oeVgaMNkFcfYzB2iyAop3OQU_hyCl_enkNWsAcK7ZJKzg8pKNf9R8c3ut-uM-vHxsiz-fuLe2G5EbqYzJ-tUIWfklekYvLb8lRefv-aM58vJSP_AOUH0oM
CODEN JFDSAZ
CitedBy_id crossref_primary_10_1038_s41598_024_68765_1
crossref_primary_10_1016_j_foodchem_2019_05_182
crossref_primary_10_1134_S1061933X23601336
crossref_primary_10_1371_journal_pone_0217504
crossref_primary_10_3390_pharmaceutics14010069
crossref_primary_10_1021_acs_biomac_2c01226
crossref_primary_10_1039_C4RA09606A
crossref_primary_10_1016_j_btre_2019_e00381
crossref_primary_10_1016_j_foodcont_2016_11_010
crossref_primary_10_3389_fcimb_2020_540898
crossref_primary_10_3390_antibiotics12091473
crossref_primary_10_1016_j_foodres_2024_115480
crossref_primary_10_1080_10717544_2018_1446476
crossref_primary_10_1099_jmm_0_001167
crossref_primary_10_1038_s41598_020_80239_8
crossref_primary_10_1038_s41598_020_62062_3
crossref_primary_10_1021_acs_langmuir_6b00235
crossref_primary_10_1093_molbev_msaa138
crossref_primary_10_3136_nskkk_63_358
crossref_primary_10_1021_acssuschemeng_1c01424
crossref_primary_10_1021_acsmaterialslett_4c00662
crossref_primary_10_1016_j_ijfoodmicro_2016_06_006
crossref_primary_10_1016_j_molliq_2021_117917
crossref_primary_10_1016_j_procbio_2021_12_022
crossref_primary_10_1016_j_ijpharm_2017_05_002
crossref_primary_10_1016_j_jddst_2021_102846
crossref_primary_10_3358_shokueishi_59_89
crossref_primary_10_1007_s11694_022_01668_9
crossref_primary_10_1038_srep11819
crossref_primary_10_1039_C9BM00935C
crossref_primary_10_1128_AAC_00292_17
crossref_primary_10_3390_foods11162434
crossref_primary_10_3390_scipharm86040048
crossref_primary_10_1159_000486757
crossref_primary_10_1021_acsabm_0c00087
crossref_primary_10_3390_ijms232314628
crossref_primary_10_3390_antibiotics9110744
crossref_primary_10_3390_molecules27196305
crossref_primary_10_1021_acs_jafc_9b05364
crossref_primary_10_1039_D2NJ01744J
crossref_primary_10_31857_S0023291224020127
crossref_primary_10_1007_s00216_023_04638_2
crossref_primary_10_3390_ijms21051635
crossref_primary_10_1016_j_crci_2018_09_011
crossref_primary_10_1016_j_jchromb_2024_124405
crossref_primary_10_1016_j_colsurfb_2021_111695
crossref_primary_10_1111_1462_2920_13501
crossref_primary_10_1016_j_carbpol_2022_119611
crossref_primary_10_3390_molecules28062658
Cites_doi 10.1007/BF00285225
10.1021/la702785b
10.1021/jf00011a039
10.1021/jf990989c
10.1016/S0168-1605(02)00171-X
10.1016/j.jcs.2007.05.003
10.1016/j.lwt.2013.02.001
10.1016/S0958-6946(00)00065-0
10.1021/jf0345752
10.1016/j.ijpharm.2010.03.036
10.1016/S0928-0987(97)10026-4
10.1016/j.bbamem.2004.12.004
10.1371/journal.pone.0067469
10.1128/AEM.67.1.339-344.2001
10.1107/S090744499501674X
10.1080/10408397609527208
10.1002/(SICI)1521-3803(199808)42:03/04<187::AID-FOOD187>3.0.CO;2-F
10.1016/S0969-2126(01)00220-9
10.1016/0166-3542(89)90033-8
10.1016/S0021-9258(18)67888-3
10.1016/0006-3002(63)91033-3
10.1080/09629359890893
10.1080/10408699891274354
10.1016/S0378-5173(96)04839-9
10.1111/j.1472-765X.1994.tb00932.x
10.1007/s00217-011-1424-x
10.1079/WPS19910015
10.1111/j.1476-5381.1954.tb00845.x
10.1016/j.jbiosc.2008.11.019
10.1533/9781845695873.495
10.1007/s00217-010-1347-y
10.1002/med.20154
10.1002/1521-3803(20001201)44:6<407::AID-FOOD407>3.0.CO;2-1
10.1007/s10570-011-9563-6
10.1039/9781847552570
10.3168/jds.S0022-0302(84)81633-1
10.1016/S0963-9969(01)00144-2
10.1016/0014-5793(94)01165-6
10.1021/jf9507147
10.1016/j.lwt.2014.01.040
10.1016/j.idairyj.2009.05.007
10.4315/0362-028X-71.2.411
10.1021/jf9904822
10.1002/1521-3803(20000501)44:3<201::AID-FOOD201>3.0.CO;2-S
10.1021/jf00044a046
10.2174/1568012052931232
10.1021/jf00004a003
10.1142/S0192415X06004041
10.3136/fstr.8.193
10.1093/ajcn/77.6.1537S
10.1016/j.carbpol.2011.01.005
10.1007/BF01576045
10.1016/j.fsi.2012.03.027
10.1080/20014091091841
10.2527/jas.2012-5782
10.1002/jsfa.2320
10.1016/0014-5793(96)00260-8
10.1080/10408398809527473
10.1128/IAI.00503-13
10.1007/s11483-009-9144-5
10.4315/0362-028X.JFP-12-075
10.1016/0003-2697(86)90413-6
10.1016/S0021-9258(17)37654-8
10.4315/0362-028X-71.2.319
10.1038/35090602
10.1016/S0308-8146(00)00079-0
10.1111/j.1365-2621.2011.02737.x
10.1533/9781845695873.252
10.1016/j.foodhyd.2009.08.008
10.1111/j.1365-2621.2004.tb09890.x
10.1016/j.jff.2011.12.004
10.1021/jf021005d
10.1128/JB.00291-13
10.1021/jf900246b
10.1016/j.bbagen.2005.07.008
10.1111/j.1745-4514.1998.tb00253.x
10.1016/0959-440X(94)90271-2
10.1002/art.23973
10.1021/jf00017a005
10.1046/j.1365-2672.1997.00372.x
10.1002/jsfa.3400
10.1038/206757a0
10.1007/s002390010136
10.1533/9781845695873.186
10.1016/j.foodchem.2005.08.003
10.1002/psc.1258
10.1111/j.1750-3841.2008.00849.x
10.1016/j.cub.2009.04.001
10.2174/1381612023395349
10.1016/0022-2836(91)90021-W
10.1016/S0168-1605(03)00172-7
ContentType Journal Article
Copyright 2014 Institute of Food Technologists
Copyright_xml – notice: 2014 Institute of Food Technologists
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/1750-3841.12460
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Engineering Research Database
Technology Research Database
AGRICOLA
CrossRef
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1750-3841
EndPage R1090
ExternalDocumentID 3392523511
24837015
10_1111_1750_3841_12460
JFDS12460
ark_67375_WNG_TXV036FN_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Natural Antimicrobial Center of Excellence, Iran
– fundername: Shiraz Univ. Research Council
  funderid: 92‐GR‐VT‐11
GroupedDBID ---
-~X
.3N
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29K
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABJNI
ABPVW
ACAHQ
ACBNA
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P-O
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RXW
SAMSI
SJN
SUPJJ
TAE
TN5
UB1
UBH
UHB
UKR
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
Y6R
YQJ
ZCA
ZCG
ZGI
ZT4
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
K9.
NAPCQ
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c6160-96e2eca28fa0364854a763983dfea592f2d276c3a254f4ccf662f1bbab2c4b813
IEDL.DBID DR2
ISSN 0022-1147
1750-3841
IngestDate Fri Jul 11 18:38:52 EDT 2025
Fri Jul 11 02:23:53 EDT 2025
Fri Jul 11 02:39:42 EDT 2025
Fri Jul 11 09:03:56 EDT 2025
Fri Jul 25 10:00:55 EDT 2025
Mon Jul 21 06:04:08 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 02:39:20 EDT 2025
Wed Jan 22 16:47:14 EST 2025
Wed Oct 30 09:50:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords glycation
Maillard reaction
natural antimicrobial
lysozyme
conjugation
chemical-enzymatic modifications
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Institute of Food Technologists
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6160-96e2eca28fa0364854a763983dfea592f2d276c3a254f4ccf662f1bbab2c4b813
Notes Natural Antimicrobial Center of Excellence, Iran
istex:779770F94828CC6135FD1D98C69BF3303D1F0E7E
ark:/67375/WNG-TXV036FN-5
ArticleID:JFDS12460
Shiraz Univ. Research Council - No. 92-GR-VT-11
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1750-3841.12460
PMID 24837015
PQID 1551133541
PQPubID 40513
PageCount 14
ParticipantIDs proquest_miscellaneous_1999958488
proquest_miscellaneous_1762142391
proquest_miscellaneous_1551068209
proquest_miscellaneous_1535214020
proquest_journals_1551133541
pubmed_primary_24837015
crossref_primary_10_1111_1750_3841_12460
crossref_citationtrail_10_1111_1750_3841_12460
wiley_primary_10_1111_1750_3841_12460_JFDS12460
istex_primary_ark_67375_WNG_TXV036FN_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle Journal of food science
PublicationTitleAlternate Journal of Food Science
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Liu ST, Sugimoto T, Azakami H, Kato A. 2000a. Lipophilization of lysozyme by short and middle chain fatty acids. J Agric Food Chem 48: 265-9.
Ramezani R, Esmailpour M, Aminlari M. 2008. Effect of conjugation with glucosamine on the functional properties of lysozyme and casein. J Sci Food Agric 88:2730-37.
Nakamura S, Kato A. 2000. Multi-functional biopolymer prepared by covalent attachment of galactomannan to egg-white proteins through naturally occurring Maillard reaction. Nahrung 44:201-6.
Touch V, Hayakawa S, Fukada K, Aratani Y, Sun Y. 2003. Preparation of antimicrobial reduced lysozyme compatible in food applications. J Agric Food Chem 51:5154-61.
Scaman C, Nakai, S, Aminlari M. 2006. Effect of pH, temperature and sodium bisulfite or cysteine on the level of Maillard-based conjugation of lysozyme with dextran, galactomannan and mannan. Food Chem 99:368-80.
Wang SSS, Chao HS, Liu HL, Liu HS. 2009. Stability of hen egg white lysozyme during denaturation is enhanced by pretreatment with supercritical carbon dioxide. J Biosci Bioeng 107:355-9.
Freitas DS, Abrahao-Neto J. 2010. Biochemical and biophysical characterization of lysozyme modified by PEGylation. Inte J Pharmac 392:111-7.
Anitha LA, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. 2011. Preparation, characterization: in vitro drug release and biological studies of curcumin loaded dextran sulfate-chitosan nanoparticles. Carbohyd Polym 84:1158-64.
Sawitzke AD, Shi H, Finco M, Dunlop DD, Bingham CO, Harris CL, Singer NG Bradley GD, Silver D, Jackson CG, Lane NE, Oddis CV, Wolfe F, Lisse J, Furst DE, Reda DJ, Moskowitz RW, Williams HJ, Clegg DO. 2008. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a GAIT report. Arthritis Rheum 58:3183-91.
Takahashi K, Lou X, Ishii Y, Hattori M. 2000. Lysozyme-glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier. J Agric Food Chem 48:2044-9.
Sonboli A, Gholipour A, Yousefzadi M. 2012. Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran. Nat Prod Res 26:2121-5.
Sompong T, Pukcothanung Y, Preecharram S, Daduang S, Patramanon R, Fukamizo T, Araki T. 1970. Antimicrobial peptides derived from goose egg white lysozyme. Comp Biochem Physiol Part C: Toxicol Pharmacol 3:515-643.
Park SI, Aeschel MA, Zhao Y. 2004. Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69:M215-M222.
Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. 1965. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206:757-61.
Wang Q, Wang C, Wu C, Zhang L, Zhao J. 2013b. A novel C-Type lysozyme from mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One.8:e67469. [doi:10.1371/journal.pone.0067469.]
Cegielska-Radziejewska R, Lesnierowski G, Szablewski T, Kijowski J. 2010. Physico-chemical properties and antibacterial activity of modified egg white lysozyme. Eur Food Res Technol 231:959-64.
Gonzalez R, Albericio F, Casconea O, Iannuccia NB. 2010. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution. J Peptide Sci 16:424-9.
Wang C, Hu Y, Sun B, Li J, Sun L. 2013a. Edwardsiella tarda Ivy: a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that depends on the conserved cysteine residue. Infec Immun 8:3527-33.
Duan J, Kim K, Daeschel MA, Zhao Y. 2008. Storability of antimicrobial chitosan-lysozyme composite coating and film-forming solutions. J Food Sci 73:M321-M329.
Koshani, R. 2013. Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer [MSc thesis]. Shiraz, Iran: Shiraz University.
Li S, Yu S, Yao P, Jiang M. 2008. Lysozyme−dextran core−shell nanogels prepared via a green process. Langmuir 24:3486-92.
Song Y, Babiker E, Usui M, Saito A, Kato A. 2002. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates. Food Res Int 35:459-66.
Jolles J, Jauregui-Adell J, Bernier I, Jolles P. 1963. The chemical structure of hen's egg white lysozyme: the detailed study. Biochim Biophys Acta 78:668-89.
Nakashima H, Yoshida O, Bob M, de Clercq E, Yamamoto N. 1989. Anti-HIV activity of dextran sulfate as determined under different experimental conditions. Antiviral Res 11:233-46.
Valenta C, Bernkop-Schnürch A, Schwartz, M. 1997. Modification of lysozyme with cinnamaldehyde: a strategy for constructing novel preservatives for dermatics. Inter J Pharm 148:131-7.
Rezaei Behbehani G, Taherkhani A, Barzegar L, Saboury AA, Divsalar A. 2011. Refolding of lysozyme upon interaction with β-cyclodextrin. J Sci Islamic Rep Iran 22:117-20.
Means GE, Feeney RE. 1998.Chemical modifications of proteins: a review. J Food Biochem 22:399-426.
Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-9.
Proctor VA, Cunningham FE. 1988. The chemistry of lysozyme and it use as a food preservative and a pharmaceutical. Crit Rev Food Sci Nutr 26:359-95.
Ibrahim,HR. 1998. On the novel catalytically-independent antimicrobial function of hen egg-white lysozyme: a conformation-dependent activity. Nahrung 42:187-93.
El-Adawy TK. 2000. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem 70:83-91.
Lazaridou A, Biliaderis CG. 2007. Molecular aspects of cereal-glucan functionalities: physical properties, techno-logical applications and physiological effects. J Cereal Sci 46:101-18.
Lönnerdal B. 2003. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S-43S
Amasino RM. 1985. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem 152:304-7.
Belitz HD, Grosch W, Schieberle P. 2009. Food chemistry. 4th ed. Berlin Heidelberg:Springer-Verlag. 296 p.
Strynadka NCG, James MNG. 1991. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bund in site D. J Mol Biol 220:401-24
Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. 2001. Inactivation of Gram-negative bacteria by lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339-44.
Wang S, Shao B, Chang J, Rao P. 2011. Isolation and identification of a plant lysozyme from Momordica charantia L. Eur Food Res Technol 232:613-9.
Aminlari M, Ramezani R, Jadidi F. 2005. Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein. J Sci Food Agric 85:2617-24.
Ansari S. 2008. Effect of Maillard-based conjugation of beta-glucan of lysozyme on its functional and antimicrobial properties [MSc thesis]. Shiraz, Iran:Shiraz University.
Kato A, Takasaki H, Ban M. 1994. Polymannosylation to asparagine-19 in hen egg white lysozyme in yeast. FEBBS Lett 355:76-80.
Brown CA, Wang B, Oh JH. 2008. Antimicrobial activity of lactoferrin against food borne pathogenic bacteria incorporated into edible chitosan film. J Food Prot 71:319-24.
Naidu AS. 2000. Natural food antimicrobial systems. Washington, D.C.: CRC Press, Culinary and Hospitality Industry Publications Services. P 1-4.
Branen KJ, Davidson PM. 2004. Enhancement of nisin, lysozyme and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lacto-ferrin. Int J Food Microbiol 90:63-73.
Cegielska-Radziejewska R, Szablewski T. 2013. Effect of modified lysozyme on the microflora and sensory attributes of ground pork. J Food Prot 76:338-42.
Ibrahim HR, Inazaki D, Abdou A, Aoki T, Kim M. 2005. Processing of lysozyme at distinct loops by pepsin: a novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochim Biophys Acta 1726:102-14.
Cisani G, Varaldo PE, Ingianni A, Pompei R, Satta G. 1984. Inhibition of herpes simplex virus-induced cytopathic effect by modified hen egg-white lysozymes. Curr Microbiol 10:35-40.
Kuhi M. 2010. Studies on the effect of dextran-conjugated lysozyme on the treatment of bacterial isolates from cows with mastitis [DVM thesis]. Shahrekord, Iran: Islamic Azad University of Shahrekord.
Kato A. 2002. Industrial applications of Maillard-type protein-polysaccharide onjugates. Food Sci Technol Res 8:193-9.
Mine Y, Ma F, Lauriau S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52:1088-94.
Clardy J, Fischbach MA, Currie CR. 2009. The natural history of antibiotics. Curr Biol 19:R437-R441.
Nakamura, S, Kato A, Kobayashi K. 1992. Bifunctional lysozyme-galactomannan conjugate having excellent emulsifying properties and bactericidal effect. J Agric Food Chem 40:735-9.
Vocadlo DJ, Davies GJ, Laine R, Withers SG. 2001 Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature412 (6849):835-8.
Balaghi S, Mohammadifar MA, Zargaraan A. 2010. Physiochemical and rheological characterization of gum tragacanth exudates from six species of Iranian astragalus. Food Biophys 5:59-71.
Liu S, Azakami H, Kato A. 2000b. Improvement in the yield of lipophilized lysozyme by the combination with Maillard-type glycosylation. Nahrung 44:407-10.
Nakamura S, Gohya Y, Losso JN, Nakai S, Kato A. 1996. Protective effect of lysozyme-galactomannan or lysozyme-palmitic acid conjugates against Edwardsiella tarda infection in carp, Cyprinus carpio. FEBS Lett 383:251-4.
Amiri S, Ramezani R, Aminlari M. 2008 Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J Food Prot 71:411-5.
Masschalck B, Michiels CW. 2003. Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria. Cri Rev Microbiol 29:192-214.
Ibrahim HR, Higashiguchi S, Koketsu M, Juneja LR, Kim M, Yamamoto T 1996. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J Agric Food Chem 44:1416-23.
Seo S, Karboune S, L'Hocine L, Yaylayan VA. 2013. Chara
1984; 63
2010; 16
2006; 34
1984; 67
1996; 383
2003; 51
2001; 41
2011; 232
1991; 220
1997; 148
2003; 208
2010; 24
1963; 78
1991; 87
2000; 10
2013; 53
2010; 231
2008; 24
1954; 9
2013; 195
2012; 26
2009; 19
2010; 5
2001; 412
2001; 52
1992; 40
1965; 206
1994b; 269
2011; 84
2002; 8
2013; 91
2008; 58
1998
2005; 85
2000; 70
1994
2013b
1993
1995; 3
2012; 33
2012; 31
1976; 7
2004; 52
2005; 19
2013; 76
1994; 19
1988; 26
2000a; 48
2005; 4
2003; 29
2005; 1668
1998; 7
2009; 107
1998; 6
1985; 152
1997; 82
2000; 48
2004; 69
2000; 44
2008; 73
2008; 71
2011; 18
1998; 42
1970; 3
2009; 57
2005; 1726
2013; 14
1991; 47
2000
1984; 10
1994a; 42
2011; 22
2014; 57
2010; 392
1994; 355
2000b; 44
1991; 39
2003; 80
2012
2010
2006; 99
2013a; 8
2002; 35
1963; 238
2009
2008
1996; 52
2005
2004; 90
2001; 67
1998; 22
2009; 29
1970; 58
2003; 77
1998; 38
1989; 11
2011; 46
2008; 88
2013
2012; 4
1969
2007; 46
1994; 4
1996; 44
e_1_2_4_84_1
e_1_2_4_80_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_65_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_69_1
e_1_2_4_88_1
e_1_2_4_108_1
e_1_2_4_100_1
e_1_2_4_104_1
e_1_2_4_5_1
Ibrahim HR (e_1_2_4_38_1) 2003; 208
e_1_2_4_73_1
e_1_2_4_50_1
e_1_2_4_92_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_54_1
e_1_2_4_16_1
e_1_2_4_58_1
e_1_2_4_112_1
e_1_2_4_39_1
Ibrahim H R (e_1_2_4_41_1) 1994; 269
Nursten HE. (e_1_2_4_77_1) 2005
e_1_2_4_85_1
e_1_2_4_62_1
e_1_2_4_81_1
Smith LJ (e_1_2_4_94_1) 2013; 14
e_1_2_4_20_1
e_1_2_4_66_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_107_1
e_1_2_4_47_1
e_1_2_4_89_1
Masschalck B (e_1_2_4_61_1) 2003; 29
Haghighi‐manesh S (e_1_2_4_35_1) 2012; 31
e_1_2_4_2_1
e_1_2_4_93_1
e_1_2_4_6_1
Stokke BT (e_1_2_4_98_1) 1998
e_1_2_4_74_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_78_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_97_1
Dubois‐Prevost R. (e_1_2_4_28_1) 1970; 58
e_1_2_4_115_1
Sompong T (e_1_2_4_95_1) 1970; 3
e_1_2_4_111_1
e_1_2_4_82_1
Rezaei Behbehani G (e_1_2_4_86_1) 2011; 22
e_1_2_4_40_1
e_1_2_4_63_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_67_1
e_1_2_4_25_1
Dickerson RE (e_1_2_4_26_1) 1969
e_1_2_4_48_1
Sonboli A (e_1_2_4_96_1) 2012; 26
e_1_2_4_106_1
e_1_2_4_29_1
e_1_2_4_102_1
e_1_2_4_3_1
e_1_2_4_90_1
e_1_2_4_71_1
Carne AF. (e_1_2_4_17_1) 1994
Kuhi M. (e_1_2_4_52_1) 2010
e_1_2_4_56_1
e_1_2_4_33_1
e_1_2_4_75_1
Tenovuo J (e_1_2_4_103_1) 1991; 87
e_1_2_4_14_1
e_1_2_4_37_1
e_1_2_4_79_1
e_1_2_4_18_1
Koshani R. (e_1_2_4_51_1) 2013
e_1_2_4_114_1
Ansari S. (e_1_2_4_7_1) 2008
e_1_2_4_110_1
e_1_2_4_83_1
BeMiller JN (e_1_2_4_10_1) 2008
e_1_2_4_60_1
e_1_2_4_109_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_64_1
e_1_2_4_105_1
e_1_2_4_49_1
e_1_2_4_87_1
e_1_2_4_68_1
e_1_2_4_101_1
e_1_2_4_4_1
Belitz HD (e_1_2_4_9_1) 2009
e_1_2_4_8_1
Naidu AS. (e_1_2_4_70_1) 2000
e_1_2_4_30_1
e_1_2_4_72_1
e_1_2_4_91_1
Losso JN (e_1_2_4_59_1) 2000
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_76_1
e_1_2_4_15_1
e_1_2_4_57_1
e_1_2_4_99_1
e_1_2_4_113_1
e_1_2_4_19_1
References_xml – reference: Ramezani R, Esmailpour M, Aminlari M. 2008. Effect of conjugation with glucosamine on the functional properties of lysozyme and casein. J Sci Food Agric 88:2730-37.
– reference: McCarter JD, Withers SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885-92.
– reference: Ansari S. 2008. Effect of Maillard-based conjugation of beta-glucan of lysozyme on its functional and antimicrobial properties [MSc thesis]. Shiraz, Iran:Shiraz University.
– reference: Ricketts CR. 1954. The blood anticoagulant effect of short chain-length dextran sulfates. Brit J Pharmacol 9:224-8.
– reference: Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-9.
– reference: Wang S, Shao B, Chang J, Rao P. 2011. Isolation and identification of a plant lysozyme from Momordica charantia L. Eur Food Res Technol 232:613-9.
– reference: Wang C, Hu Y, Sun B, Li J, Sun L. 2013a. Edwardsiella tarda Ivy: a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that depends on the conserved cysteine residue. Infec Immun 8:3527-33.
– reference: Amiri S, Ramezani R, Aminlari M. 2008 Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J Food Prot 71:411-5.
– reference: Vaney MC, Maignan S, Ries-Kautt M, Ducriux A. 1996. High-resolution structure (1.33 ºA) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Crytall Section D: Biol Crystall 52:505-17.
– reference: Haghighi-manesh S, Aminlari M, Ramezani R. 2012. Optimization of lysozyme: inulin conjugation and investigation on its functional properties. Iran Agric Res 31:63-74.
– reference: Takahashi K, Lou X, Ishii Y, Hattori M. 2000. Lysozyme-glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier. J Agric Food Chem 48:2044-9.
– reference: Belitz HD, Grosch W, Schieberle P. 2009. Food chemistry. 4th ed. Berlin Heidelberg:Springer-Verlag. 296 p.
– reference: Memarpoor-Yazdi M, Asoodeh A, Chamani J. 2012. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J Functional Foods 4:278-86.
– reference: Sonboli A, Gholipour A, Yousefzadi M. 2012. Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran. Nat Prod Res 26:2121-5.
– reference: Sawitzke AD, Shi H, Finco M, Dunlop DD, Bingham CO, Harris CL, Singer NG Bradley GD, Silver D, Jackson CG, Lane NE, Oddis CV, Wolfe F, Lisse J, Furst DE, Reda DJ, Moskowitz RW, Williams HJ, Clegg DO. 2008. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a GAIT report. Arthritis Rheum 58:3183-91.
– reference: Masschalck B, Michiels CW. 2003. Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria. Cri Rev Microbiol 29:192-214.
– reference: Rezaei Behbehani G, Taherkhani A, Barzegar L, Saboury AA, Divsalar A. 2011. Refolding of lysozyme upon interaction with β-cyclodextrin. J Sci Islamic Rep Iran 22:117-20.
– reference: Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. 1965. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206:757-61.
– reference: Hunter NH, Jing W, Schibli DJ, Trinh T, Park IY, Kim SC, Vogel HJ. 2005. The interactions of antimicrobial peptides derived from lysozyme with model membrane system. Biochim Biophys Acta 1668:175-89.
– reference: El-Adawy TK. 2000. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem 70:83-91.
– reference: Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M. 2001. Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353-62.
– reference: Alahdad Z, Ramezani R, Aminlari M, Majzoobi M. 2009. Preparation and properties of dextran sulfate-lysozyme conjugate. J Agric Food Chem 57:6449-54.
– reference: Ibrahim HR, Kato A, Kobayashi K. 1991. Antimicrobial effects of lysozyme against gram-negative bacteria due to covalent binding of palmitic acid. J Agric Food Chem 39:2077-82
– reference: Freitas DS, Abrahao-Neto J. 2010. Biochemical and biophysical characterization of lysozyme modified by PEGylation. Inte J Pharmac 392:111-7.
– reference: Cegielska-Radziejewska R, Szablewski T. 2013. Effect of modified lysozyme on the microflora and sensory attributes of ground pork. J Food Prot 76:338-42.
– reference: Brown CA, Wang B, Oh JH. 2008. Antimicrobial activity of lactoferrin against food borne pathogenic bacteria incorporated into edible chitosan film. J Food Prot 71:319-24.
– reference: Demain AL. 2009. Antibiotics: natural products essential to human health. Med Res Rev 29:821-42.
– reference: Naidu AS. 2000. Natural food antimicrobial systems. Washington, D.C.: CRC Press, Culinary and Hospitality Industry Publications Services. P 1-4.
– reference: Amasino RM. 1985. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem 152:304-7.
– reference: Means GE, Feeney RE. 1998.Chemical modifications of proteins: a review. J Food Biochem 22:399-426.
– reference: Song Y, Babiker E, Usui M, Saito A, Kato A. 2002. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates. Food Res Int 35:459-66.
– reference: Gonzalez R, Albericio F, Casconea O, Iannuccia NB. 2010. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution. J Peptide Sci 16:424-9.
– reference: Kuhi M. 2010. Studies on the effect of dextran-conjugated lysozyme on the treatment of bacterial isolates from cows with mastitis [DVM thesis]. Shahrekord, Iran: Islamic Azad University of Shahrekord.
– reference: Park SI, Aeschel MA, Zhao Y. 2004. Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69:M215-M222.
– reference: Scaman C, Nakai, S, Aminlari M. 2006. Effect of pH, temperature and sodium bisulfite or cysteine on the level of Maillard-based conjugation of lysozyme with dextran, galactomannan and mannan. Food Chem 99:368-80.
– reference: Ibrahim HR, Inazaki D, Abdou A, Aoki T, Kim M. 2005. Processing of lysozyme at distinct loops by pepsin: a novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochim Biophys Acta 1726:102-14.
– reference: Ibrahim HR, Hatta Hl, Fujiki M, Kim M, Yamamoto T. 1994a. Enhanced anti-microbial action of lysozyme against gram-negative and gram-positive bacteria due to modification with perillaldehyde. J Agric Food Chem 42:1813-7.
– reference: Mohammadi Hashemi M, Aminlari M, Moosavinasab M. 2014. Preparation of and studies on the functional properties and bactericidal activity of the lysozym-exanthan gum conjugate. LWT- Food Sci Technol 57:594-602.
– reference: Wang SSS, Chao HS, Liu HL, Liu HS. 2009. Stability of hen egg white lysozyme during denaturation is enhanced by pretreatment with supercritical carbon dioxide. J Biosci Bioeng 107:355-9.
– reference: Branen KJ, Davidson PM. 2004. Enhancement of nisin, lysozyme and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lacto-ferrin. Int J Food Microbiol 90:63-73.
– reference: Smith LJ, Bowen AM, Di Paolo AD, Matagne A, Redfield C. 2013. The dynamics of lysozyme from bcteriophage lambda in solution probed by NMR and MD simulations. Chem Biochem 14:1780-88.
– reference: Mao X, GuJ, Sun Y, Xu S, Zhang X, Yang H, Ren F. 2005. Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Int Dairy J 19:703-8.
– reference: Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. 2001. Inactivation of Gram-negative bacteria by lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339-44.
– reference: Mine Y, Ma F, Lauriau S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52:1088-94.
– reference: Kato A, Takasaki H, Ban M. 1994. Polymannosylation to asparagine-19 in hen egg white lysozyme in yeast. FEBBS Lett 355:76-80.
– reference: Ibrahim HR, Aoki T. 2003. New promises of lysozyme as immune modulator and antimicrobial agent for nutraceuticals. Foods Ingredients J Jpn 208:361-74.
– reference: Schmitt C, Sanchez C, Desobry-Banon S, Hardy J. 1998. Structural and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr 38:689-753.
– reference: Blackburn NT, Clarke AJ. 2001. Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol. 52:78-84.
– reference: Nakashima H, Yoshida O, Bob M, de Clercq E, Yamamoto N. 1989. Anti-HIV activity of dextran sulfate as determined under different experimental conditions. Antiviral Res 11:233-46.
– reference: Liu S, Azakami H, Kato A. 2000b. Improvement in the yield of lipophilized lysozyme by the combination with Maillard-type glycosylation. Nahrung 44:407-10.
– reference: Pellegrini A, Thomas N, Bramaz N, Klauser S, Hunziker P, von Fellenber R. 1997. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J Appl Microbiol 82:372-378.
– reference: Nakamura S, Kato A. 2000. Multi-functional biopolymer prepared by covalent attachment of galactomannan to egg-white proteins through naturally occurring Maillard reaction. Nahrung 44:201-6.
– reference: Varahan S, Iyer VS, Moore WT, Hancock LE. 2013. Eep confers lysozyme resistance to Enterococcus faecalis via the activation of the ECF sigma2 factor, SigV. J Bacteriol 195:3125-34.
– reference: Kester JJ, Richardson T. 1984. Modification of whey protein to improve functionality. J Dairy Sci 67:2757-74.
– reference: Cisani G, Varaldo PE, Ingianni A, Pompei R, Satta G. 1984. Inhibition of herpes simplex virus-induced cytopathic effect by modified hen egg-white lysozymes. Curr Microbiol 10:35-40.
– reference: Niu LY, Jiang SI, Pan LJ, Zhai YS. 2011. Characteristics and functional properties of wheat germ protein glycated with saccharides through Maillard reaction. Int J Food Sci Technol 46: 2197-203.
– reference: Pellegrini1 A, Engels M. 2005. Antiviral compounds derived from naturally occurring proteins. Curr Med Chem Anti-Infective Agents 4:55-66.
– reference: Koshani, R. 2013. Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer [MSc thesis]. Shiraz, Iran: Shiraz University.
– reference: Canfield RE. 1963. The amino acid sequence of egg white lysozyme. J Biol Chem 238:2698-707.
– reference: Lazaridou A, Biliaderis CG. 2007. Molecular aspects of cereal-glucan functionalities: physical properties, techno-logical applications and physiological effects. J Cereal Sci 46:101-18.
– reference: Aminlari M, Ramezani R, Jadidi F. 2005. Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein. J Sci Food Agric 85:2617-24.
– reference: Gill AO, Holley RA. 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24°C. Int J Food Microbiol 80:251-9.
– reference: Corzo-Martinez M, Moreno FJ, Villamiel M, Hartre FM. 2010. Characterization and improvement of rheological properties of sodium caseinate glycated with galactose, lactose and dextran. Food Hydrocoll 24:88-97.
– reference: Ibrahim HR, Aoki T, Pellegrini A. 2002. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Curr Pharm Design 8:671-93
– reference: Jolles J, Jauregui-Adell J, Bernier I, Jolles P. 1963. The chemical structure of hen's egg white lysozyme: the detailed study. Biochim Biophys Acta 78:668-89.
– reference: Wang Q, Wang C, Wu C, Zhang L, Zhao J. 2013b. A novel C-Type lysozyme from mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One.8:e67469. [doi:10.1371/journal.pone.0067469.]
– reference: Kinsella JE. 1976. Functional properties of proteins in foods: a survey. Crit Rev Food Nut 7:219-80.
– reference: Li S, Yu S, Yao P, Jiang M. 2008. Lysozyme−dextran core−shell nanogels prepared via a green process. Langmuir 24:3486-92.
– reference: Valenta C, Bernkop-Schnürch A, Schwartz, M. 1997. Modification of lysozyme with cinnamaldehyde: a strategy for constructing novel preservatives for dermatics. Inter J Pharm 148:131-7.
– reference: Nursten HE. 2005. The Maillard reaction: chemistry, biochemistry and implications. U.K.: Royal Society of Chemistry.
– reference: Clardy J, Fischbach MA, Currie CR. 2009. The natural history of antibiotics. Curr Biol 19:R437-R441.
– reference: Liu ST, Sugimoto T, Azakami H, Kato A. 2000a. Lipophilization of lysozyme by short and middle chain fatty acids. J Agric Food Chem 48: 265-9.
– reference: Vocadlo DJ, Davies GJ, Laine R, Withers SG. 2001 Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature412 (6849):835-8.
– reference: Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. 2006. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 34:511-22.
– reference: Jolles P, Jolles J. 1984. What's new in lysozyme research?Cell Biochem 63:165-89.
– reference: Proctor VA, Cunningham FE. 1988. The chemistry of lysozyme and it use as a food preservative and a pharmaceutical. Crit Rev Food Sci Nutr 26:359-95.
– reference: Anitha LA, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. 2011. Preparation, characterization: in vitro drug release and biological studies of curcumin loaded dextran sulfate-chitosan nanoparticles. Carbohyd Polym 84:1158-64.
– reference: Dubois-Prevost R. 1970. The lysozyme and its nutritional uses. Aliment Vie 58:44-9.
– reference: Pellegrino L, Tirelli A. 2000. A sensitive HPLC method to detect hen's egg white lysozyme in milk and dairy products. Int Dairy J 10:435-42.
– reference: Nakamura, S, Kato A, Kobayashi K. 1992. Bifunctional lysozyme-galactomannan conjugate having excellent emulsifying properties and bactericidal effect. J Agric Food Chem 40:735-9.
– reference: Nakamura S, Gohya Y, Losso JN, Nakai S, Kato A. 1996. Protective effect of lysozyme-galactomannan or lysozyme-palmitic acid conjugates against Edwardsiella tarda infection in carp, Cyprinus carpio. FEBS Lett 383:251-4.
– reference: Nakamura S, Kato A, Kobayashi K. 1991. New antimicrobial characteristics of lysozyme-dextran conjugate. J Agric Food Chem 39:647-50.
– reference: Duan J, Kim K, Daeschel MA, Zhao Y. 2008. Storability of antimicrobial chitosan-lysozyme composite coating and film-forming solutions. J Food Sci 73:M321-M329.
– reference: Ibrahim,HR. 1998. On the novel catalytically-independent antimicrobial function of hen egg-white lysozyme: a conformation-dependent activity. Nahrung 42:187-93.
– reference: Sompong T, Pukcothanung Y, Preecharram S, Daduang S, Patramanon R, Fukamizo T, Araki T. 1970. Antimicrobial peptides derived from goose egg white lysozyme. Comp Biochem Physiol Part C: Toxicol Pharmacol 3:515-643.
– reference: Oliver WT, Wells JE. 2013. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J Anim Sci 91:3129-36.
– reference: Santos JA, Gonzalez C, García-López ML, García-Fernaández MC, Otero A. 1994. Antibacterial activity of the lactoperoxidase system against Aeromonas hydrophila in broth, skim milk and ewes' milk. Lett App Microbiol 19:161-4.
– reference: Wei S, Huang Y, Cai J, Huang X, Fu J, Qin Q. 2012. Molecular cloning and characterization of c-type lysozyme gene in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 33:186-96.
– reference: Edwards J, Condon VF, Prevost NT, French A. 2011. Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation. Cellulose 18:1239-49.
– reference: Touch V, Hayakawa S, Fukada K, Aratani Y, Sun Y. 2003. Preparation of antimicrobial reduced lysozyme compatible in food applications. J Agric Food Chem 51:5154-61.
– reference: Seo S, Karboune S, L'Hocine L, Yaylayan VA. 2013. Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: effect of glycation on functional properties of lysozyme. LWT: Food Sci Technol 53:44-53.
– reference: Strynadka NCG, James MNG. 1991. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bund in site D. J Mol Biol 220:401-24
– reference: Cunningham FE, Proctor VA, Goetsch SJ. 1991. Egg-white lysozyme as a food preservative: an overview. World's Poult Sci J 47:141-63.
– reference: Tenovuo J, Lumikari M, Soukka T. 1991. Salivary lysozyme, lactoferrin and peroxidases: antibacterial effects on cariogenic bacteria and clinical applications in preventive dentistry. Proc Finnish Dental So 87:197-208.
– reference: Ibrahim H R, Yamada M, Matsushita K, Kobayashi K, Kato A. 1994b. Enhanced bactericidal action of lysozyme to Escherchia coli by inserting a hydrophobic pentapeptide into its C-terminus. J Biol Chem 269:5059-6331.
– reference: Mo O. 1998. A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation. Mediators Inflamm 7:363-5.
– reference: Bernkop-Schnürch A, Kirst S, Vehabovic M, Valenta C. 1998. Synthesis and evaluation of lysozyme derivatives exhibiting an enhanced antimicrobial action. Eur J Pharmac Sci 6:301-6.
– reference: Cegielska-Radziejewska R, Lesnierowski G, Szablewski T, Kijowski J. 2010. Physico-chemical properties and antibacterial activity of modified egg white lysozyme. Eur Food Res Technol 231:959-64.
– reference: Ibrahim HR, Higashiguchi S, Koketsu M, Juneja LR, Kim M, Yamamoto T 1996. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J Agric Food Chem 44:1416-23.
– reference: Balaghi S, Mohammadifar MA, Zargaraan A. 2010. Physiochemical and rheological characterization of gum tragacanth exudates from six species of Iranian astragalus. Food Biophys 5:59-71.
– reference: Lönnerdal B. 2003. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S-43S
– reference: Kato A. 2002. Industrial applications of Maillard-type protein-polysaccharide onjugates. Food Sci Technol Res 8:193-9.
– volume: 152
  start-page: 304
  year: 1985
  end-page: 7
  article-title: Acceleration of nucleic acid hybridization rate by polyethylene glycol
  publication-title: Anal Biochem
– volume: 99
  start-page: 368
  year: 2006
  end-page: 80
  article-title: Effect of pH, temperature and sodium bisulfite or cysteine on the level of Maillard‐based conjugation of lysozyme with dextran, galactomannan and mannan
  publication-title: Food Chem
– volume: 85
  start-page: 2617
  year: 2005
  end-page: 24
  article-title: Effect of Maillard‐based conjugation with dextran on the functional properties of lysozyme and casein
  publication-title: J Sci Food Agric
– volume: 6
  start-page: 301
  year: 1998
  end-page: 6
  article-title: Synthesis and evaluation of lysozyme derivatives exhibiting an enhanced antimicrobial action
  publication-title: Eur J Pharmac Sci
– volume: 46
  start-page: 101
  year: 2007
  end-page: 18
  article-title: Molecular aspects of cereal‐glucan functionalities: physical properties, techno‐logical applications and physiological effects
  publication-title: J Cereal Sci
– year: 2005
– volume: 53
  start-page: 44
  year: 2013
  end-page: 53
  article-title: Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: effect of glycation on functional properties of lysozyme
  publication-title: LWT: Food Sci Technol
– start-page: 296 p
  year: 2009
– volume: 76
  start-page: 338
  year: 2013
  end-page: 42
  article-title: Effect of modified lysozyme on the microflora and sensory attributes of ground pork
  publication-title: J Food Prot
– volume: 90
  start-page: 63
  year: 2004
  end-page: 73
  article-title: Enhancement of nisin, lysozyme and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lacto‐ferrin
  publication-title: Int J Food Microbiol
– volume: 383
  start-page: 251
  year: 1996
  end-page: 4
  article-title: Protective effect of lysozyme‐galactomannan or lysozyme‐palmitic acid conjugates against infection in carp,
  publication-title: FEBS Lett
– volume: 87
  start-page: 197
  year: 1991
  end-page: 208
  article-title: Salivary lysozyme, lactoferrin and peroxidases: antibacterial effects on cariogenic bacteria and clinical applications in preventive dentistry
  publication-title: Proc Finnish Dental So
– volume: 8
  start-page: 193
  year: 2002
  end-page: 9
  article-title: Industrial applications of Maillard‐type protein‐polysaccharide onjugates
  publication-title: Food Sci Technol Res
– volume: 355
  start-page: 76
  year: 1994
  end-page: 80
  article-title: Polymannosylation to asparagine‐19 in hen egg white lysozyme in yeast
  publication-title: FEBBS Lett
– volume: 26
  start-page: 359
  year: 1988
  end-page: 95
  article-title: The chemistry of lysozyme and it use as a food preservative and a pharmaceutical
  publication-title: Crit Rev Food Sci Nutr
– volume: 41
  start-page: 353
  year: 2001
  end-page: 62
  article-title: Inulin and oligofructose as dietary fiber: a review of the evidence
  publication-title: Crit Rev Food Sci Nutr
– volume: 18
  start-page: 1239
  year: 2011
  end-page: 49
  article-title: Covalent attachment of lysozyme to cotton/cellulose materials: protein verses solid support activation
  publication-title: Cellulose
– volume: 57
  start-page: 6449
  year: 2009
  end-page: 54
  article-title: Preparation and properties of dextran sulfate‐lysozyme conjugate
  publication-title: J Agric Food Chem
– volume: 1726
  start-page: 102
  year: 2005
  end-page: 14
  article-title: Processing of lysozyme at distinct loops by pepsin: a novel action for generating multiple antimicrobial peptide motifs in the newborn stomach
  publication-title: Biochim Biophys Acta
– volume: 51
  start-page: 5154
  year: 2003
  end-page: 61
  article-title: Preparation of antimicrobial reduced lysozyme compatible in food applications
  publication-title: J Agric Food Chem
– volume: 238
  start-page: 2698
  year: 1963
  end-page: 707
  article-title: The amino acid sequence of egg white lysozyme
  publication-title: J Biol Chem
– volume: 71
  start-page: 319
  year: 2008
  end-page: 24
  article-title: Antimicrobial activity of lactoferrin against food borne pathogenic bacteria incorporated into edible chitosan film
  publication-title: J Food Prot
– volume: 3
  start-page: 853
  year: 1995
  end-page: 9
  article-title: Structures and mechanisms of glycosyl hydrolases
  publication-title: Structure
– year: 2008
– start-page: 186
  year: 2009
  end-page: 202
– volume: 77
  start-page: 1537S
  year: 2003
  end-page: 43S
  article-title: Nutritional and physiologic significance of human milk proteins
  publication-title: Am J Clin Nutr
– volume: 9
  start-page: 224
  year: 1954
  end-page: 8
  article-title: The blood anticoagulant effect of short chain‐length dextran sulfates
  publication-title: Brit J Pharmacol
– volume: 33
  start-page: 186
  year: 2012
  end-page: 96
  article-title: Molecular cloning and characterization of c‐type lysozyme gene in orange‐spotted grouper, Epinephelus coioides
  publication-title: Fish Shellfish Immunol
– year: 1993
– volume: 44
  start-page: 201
  year: 2000
  end-page: 6
  article-title: Multi‐functional biopolymer prepared by covalent attachment of galactomannan to egg‐white proteins through naturally occurring Maillard reaction
  publication-title: Nahrung
– volume: 232
  start-page: 613
  year: 2011
  end-page: 9
  article-title: Isolation and identification of a plant lysozyme from Momordica charantia L
  publication-title: Eur Food Res Technol
– volume: 39
  start-page: 647
  year: 1991
  end-page: 50
  article-title: New antimicrobial characteristics of lysozyme‐dextran conjugate. J Agric
  publication-title: Food Chem
– volume: 4
  start-page: 885
  year: 1994
  end-page: 92
  article-title: Mechanisms of enzymatic glycoside hydrolysis
  publication-title: Curr Opin Struct Biol
– volume: 22
  start-page: 117
  year: 2011
  end-page: 20
  article-title: Refolding of lysozyme upon interaction with β‐cyclodextrin
  publication-title: J Sci Islamic Rep Iran
– volume: 5
  start-page: 59
  year: 2010
  end-page: 71
  article-title: Physiochemical and rheological characterization of gum tragacanth exudates from six species of Iranian astragalus
  publication-title: Food Biophys
– volume: 78
  start-page: 668
  year: 1963
  end-page: 89
  article-title: The chemical structure of hen's egg white lysozyme: the detailed study
  publication-title: Biochim Biophys Acta
– volume: 80
  start-page: 251
  year: 2003
  end-page: 9
  article-title: Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24°C
  publication-title: Int J Food Microbiol
– volume: 11
  start-page: 233
  year: 1989
  end-page: 46
  article-title: Anti‐HIV activity of dextran sulfate as determined under different experimental conditions
  publication-title: Antiviral Res
– volume: 148
  start-page: 131
  year: 1997
  end-page: 7
  article-title: Modification of lysozyme with cinnamaldehyde: a strategy for constructing novel preservatives for dermatics
  publication-title: Inter J Pharm
– volume: 35
  start-page: 459
  year: 2002
  end-page: 66
  article-title: Emulsifying properties and bactericidal action of chitosan–lysozyme conjugates
  publication-title: Food Res Int
– volume: 58
  start-page: 3183
  year: 2008
  end-page: 91
  article-title: The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a GAIT report
  publication-title: Arthritis Rheum
– volume: 26
  start-page: 2121
  year: 2012
  end-page: 5
  article-title: Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran
  publication-title: Nat Prod Res
– year: 2013b
  article-title: A novel C‐Type lysozyme from mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C‐type lysozymes
  publication-title: PLoS One.8:e67469
– volume: 39
  start-page: 2077
  year: 1991
  end-page: 82
  article-title: Antimicrobial effects of lysozyme against gram‐negative bacteria due to covalent binding of palmitic acid
  publication-title: J Agric Food Chem
– start-page: 495
  year: 2009
  end-page: 527
– volume: 46
  start-page: 2197
  year: 2011
  end-page: 203
  article-title: Characteristics and functional properties of wheat germ protein glycated with saccharides through Maillard reaction
  publication-title: Int J Food Sci Technol
– year: 2010
– volume: 16
  start-page: 424
  year: 2010
  end-page: 9
  article-title: Improved antimicrobial activity of h‐lysozyme (107–115) by rational Ala substitution
  publication-title: J Peptide Sci
– year: 2012
  article-title: Effects of conjugation of with gum Arabic and xanthan gum on the enzymatic, antimicrobial and functional properties of lysozyme in a food system
– start-page: 252
  year: 2009
  end-page: 73
– volume: 7
  start-page: 219
  year: 1976
  end-page: 80
  article-title: Functional properties of proteins in foods: a survey
  publication-title: Crit Rev Food Nut
– volume: 52
  start-page: 1088
  year: 2004
  end-page: 94
  article-title: Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme
  publication-title: J Agric Food Chem
– volume: 48
  start-page: 2044
  year: 2000
  end-page: 9
  article-title: Lysozyme‐glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier
  publication-title: J Agric Food Chem
– volume: 88
  start-page: 2730
  year: 2008
  end-page: 37
  article-title: Effect of conjugation with glucosamine on the functional properties of lysozyme and casein
  publication-title: J Sci Food Agric
– volume: 22
  start-page: 399
  year: 1998
  end-page: 426
  article-title: Chemical modifications of proteins: a review
  publication-title: J Food Biochem
– volume: 42
  start-page: 187
  year: 1998
  end-page: 93
  article-title: On the novel catalytically‐independent antimicrobial function of hen egg‐white lysozyme: a conformation‐dependent activity
  publication-title: Nahrung
– volume: 47
  start-page: 141
  year: 1991
  end-page: 63
  article-title: Egg‐white lysozyme as a food preservative: an overview
  publication-title: World's Poult Sci J
– start-page: 433
  year: 1998
  end-page: 72
– volume: 4
  start-page: 55
  year: 2005
  end-page: 66
  article-title: Antiviral compounds derived from naturally occurring proteins
  publication-title: Curr Med Chem Anti‐Infective Agents
– year: 2013
– volume: 4
  start-page: 278
  year: 2012
  end-page: 86
  article-title: A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates
  publication-title: J Functional Foods
– volume: 71
  start-page: 411
  year: 2008
  end-page: 5
  article-title: Antibacterial activity of dextran‐conjugated lysozyme against and in cheese curd
  publication-title: J Food Prot
– volume: 38
  start-page: 689
  year: 1998
  end-page: 753
  article-title: Structural and technofunctional properties of protein‐polysaccharide complexes: a review
  publication-title: Crit Rev Food Sci Nutr
– volume: 107
  start-page: 355
  year: 2009
  end-page: 9
  article-title: Stability of hen egg white lysozyme during denaturation is enhanced by pretreatment with supercritical carbon dioxide
  publication-title: J Biosci Bioeng
– volume: 3
  start-page: 515
  year: 1970
  end-page: 643
  article-title: Antimicrobial peptides derived from goose egg white lysozyme
  publication-title: Comp Biochem Physiol Part C: Toxicol Pharmacol
– volume: 52
  start-page: 505
  year: 1996
  end-page: 17
  article-title: High‐resolution structure (1.33 ºA) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab‐01 mission
  publication-title: Acta Crytall Section D: Biol Crystall
– start-page: 1
  year: 2000
  end-page: 4
– volume: 208
  start-page: 361
  year: 2003
  end-page: 74
  article-title: New promises of lysozyme as immune modulator and antimicrobial agent for nutraceuticals
  publication-title: Foods Ingredients J Jpn
– volume: 40
  start-page: 735
  year: 1992
  end-page: 9
  article-title: Bifunctional lysozyme‐galactomannan conjugate having excellent emulsifying properties and bactericidal effect
  publication-title: J Agric Food Chem
– start-page: 185
  year: 2000
  end-page: 210
– volume: 73
  start-page: M321
  year: 2008
  end-page: M329
  article-title: Storability of antimicrobial chitosan‐lysozyme composite coating and film‐forming solutions
  publication-title: J Food Sci
– year: 1994
– volume: 48
  start-page: 265
  year: 2000a
  end-page: 9
  article-title: Lipophilization of lysozyme by short and middle chain fatty acids
  publication-title: J Agric Food Chem
– start-page: 69 p
  year: 1969
– volume: 67
  start-page: 339
  year: 2001
  end-page: 44
  article-title: Inactivation of Gram‐negative bacteria by lysozyme‐derived peptides under high hydrostatic pressure
  publication-title: Appl Environ Microbiol
– volume: 19
  start-page: R437
  year: 2009
  end-page: R441
  article-title: The natural history of antibiotics
  publication-title: Curr Biol
– volume: 392
  start-page: 111
  year: 2010
  end-page: 7
  article-title: Biochemical and biophysical characterization of lysozyme modified by PEGylation
  publication-title: Inte J Pharmac
– volume: 34
  start-page: 511
  year: 2006
  end-page: 22
  article-title: Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume
  publication-title: Am J Chin Med
– volume: 24
  start-page: 88
  year: 2010
  end-page: 97
  article-title: Characterization and improvement of rheological properties of sodium caseinate glycated with galactose, lactose and dextran
  publication-title: Food Hydrocoll
– volume: 24
  start-page: 3486
  year: 2008
  end-page: 92
  article-title: Lysozyme−dextran core−shell nanogels prepared via a green process
  publication-title: Langmuir
– volume: 29
  start-page: 192
  year: 2003
  end-page: 214
  article-title: Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria
  publication-title: Cri Rev Microbiol
– volume: 7
  start-page: 363
  year: 1998
  end-page: 5
  article-title: A novel anti‐inflammatory activity of lysozyme: modulation of serum complement activation
  publication-title: Mediators Inflamm
– volume: 19
  start-page: 161
  year: 1994
  end-page: 4
  article-title: Antibacterial activity of the lactoperoxidase system against Aeromonas hydrophila in broth, skim milk and ewes’ milk
  publication-title: Lett App Microbiol
– year: 2013
  article-title: Isolation, purification and determination of bioactive properties of trypsin‐ and ficin digested dextran conjugate
– volume: 8
  start-page: 3527
  year: 2013a
  end-page: 33
  article-title: Edwardsiella tarda Ivy: a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that depends on the conserved cysteine residue
  publication-title: Infec Immun
– year: 2013
  article-title: Application of dextran conjugated lysozyme as natural antibacterial agent against and S.aureus in milk
– volume: 269
  start-page: 5059
  year: 1994b
  end-page: 6331
  article-title: Enhanced bactericidal action of lysozyme to by inserting a hydrophobic pentapeptide into its C‐terminus
  publication-title: J Biol Chem
– volume: 58
  start-page: 44
  year: 1970
  end-page: 9
  article-title: The lysozyme and its nutritional uses
  publication-title: Aliment Vie
– volume: 52
  start-page: 78
  year: 2001
  end-page: 84
  article-title: Identification of four families of peptidoglycan lytic transglycosylases
  publication-title: J Mol Evol.
– volume: 70
  start-page: 83
  year: 2000
  end-page: 91
  article-title: Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate
  publication-title: Food Chem
– volume: 84
  start-page: 1158
  year: 2011
  end-page: 64
  article-title: Preparation, characterization: in vitro drug release and biological studies of curcumin loaded dextran sulfate‐chitosan nanoparticles
  publication-title: Carbohyd Polym
– volume: 29
  start-page: 821
  year: 2009
  end-page: 42
  article-title: Antibiotics: natural products essential to human health
  publication-title: Med Res Rev
– volume: 206
  start-page: 757
  year: 1965
  end-page: 61
  article-title: Structure of hen egg‐white lysozyme: a three‐dimensional Fourier synthesis at 2 Angstrom resolution
  publication-title: Nature
– volume: 69
  start-page: M215
  year: 2004
  end-page: M222
  article-title: Functional properties of antimicrobial lysozyme–chitosan composite films
  publication-title: J Food Sci
– volume: 10
  start-page: 435
  year: 2000
  end-page: 42
  article-title: A sensitive HPLC method to detect hen's egg white lysozyme in milk and dairy products
  publication-title: Int Dairy J
– volume: 91
  start-page: 3129
  year: 2013
  end-page: 36
  article-title: Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs
  publication-title: J Anim Sci
– volume: 19
  start-page: 703
  year: 2005
  end-page: 8
  article-title: Anti‐proliferative and anti‐tumour effect of active components in donkey milk on A549 human lung cancer cells
  publication-title: Int Dairy J
– volume: 44
  start-page: 407
  year: 2000b
  end-page: 10
  article-title: Improvement in the yield of lipophilized lysozyme by the combination with Maillard‐type glycosylation
  publication-title: Nahrung
– volume: 44
  start-page: 1416
  year: 1996
  end-page: 23
  article-title: A structural phase of heat‐denatured lysozyme with novel antimicrobial action
  publication-title: J Agric Food Chem
– volume: 67
  start-page: 2757
  year: 1984
  end-page: 74
  article-title: Modification of whey protein to improve functionality
  publication-title: J Dairy Sci
– volume: 31
  start-page: 63
  year: 2012
  end-page: 74
  article-title: Optimization of lysozyme: inulin conjugation and investigation on its functional properties
  publication-title: Iran Agric Res
– volume: 63
  start-page: 165
  year: 1984
  end-page: 89
  article-title: What's new in lysozyme research
  publication-title: Cell Biochem
– volume: 231
  start-page: 959
  year: 2010
  end-page: 64
  article-title: Physico‐chemical properties and antibacterial activity of modified egg white lysozyme
  publication-title: Eur Food Res Technol
– volume: 220
  start-page: 401
  year: 1991
  end-page: 24
  article-title: Lysozyme revisited: crystallographic evidence for distortion of an N‐acetylmuramic acid residue bund in site D
  publication-title: J Mol Biol
– volume: 412
  start-page: 835
  issue: 6849
  year: 2001
  end-page: 8
  article-title: Catalysis by hen egg‐white lysozyme proceeds via a covalent intermediate
  publication-title: Nature
– volume: 14
  start-page: 1780
  year: 2013
  end-page: 88
  article-title: The dynamics of lysozyme from bcteriophage lambda in solution probed by NMR and MD simulations
  publication-title: Chem Biochem
– volume: 10
  start-page: 35
  year: 1984
  end-page: 40
  article-title: Inhibition of herpes simplex virus‐induced cytopathic effect by modified hen egg‐white lysozymes
  publication-title: Curr Microbiol
– volume: 1668
  start-page: 175
  year: 2005
  end-page: 89
  article-title: The interactions of antimicrobial peptides derived from lysozyme with model membrane system
  publication-title: Biochim Biophys Acta
– volume: 42
  start-page: 1813
  year: 1994a
  end-page: 7
  article-title: Enhanced anti‐microbial action of lysozyme against gram‐negative and gram‐positive bacteria due to modification with perillaldehyde
  publication-title: J Agric Food Chem
– volume: 82
  start-page: 372
  year: 1997
  end-page: 378
  article-title: Identification and isolation of a bactericidal domain in chicken egg white lysozyme
  publication-title: J Appl Microbiol
– volume: 195
  start-page: 3125
  year: 2013
  end-page: 34
  article-title: Eep confers lysozyme resistance to via the activation of the ECF sigma2 factor, SigV
  publication-title: J Bacteriol
– volume: 8
  start-page: 671
  year: 2002
  end-page: 93
  article-title: Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules
  publication-title: Curr Pharm Design
– start-page: 83
  year: 2008
  end-page: 154
– volume: 57
  start-page: 594
  year: 2014
  end-page: 602
  article-title: Preparation of and studies on the functional properties and bactericidal activity of the lysozym‐exanthan gum conjugate
  publication-title: LWT‐ Food Sci Technol
– ident: e_1_2_4_45_1
  doi: 10.1007/BF00285225
– volume: 29
  start-page: 192
  year: 2003
  ident: e_1_2_4_61_1
  article-title: Antimicrobial properties of lysozyme in relation to food borne vegetative bacteria
  publication-title: Cri Rev Microbiol
– ident: e_1_2_4_54_1
  doi: 10.1021/la702785b
– ident: e_1_2_4_39_1
  doi: 10.1021/jf00011a039
– ident: e_1_2_4_101_1
  doi: 10.1021/jf990989c
– volume: 87
  start-page: 197
  year: 1991
  ident: e_1_2_4_103_1
  article-title: Salivary lysozyme, lactoferrin and peroxidases: antibacterial effects on cariogenic bacteria and clinical applications in preventive dentistry
  publication-title: Proc Finnish Dental So
– ident: e_1_2_4_68_1
– volume: 58
  start-page: 44
  year: 1970
  ident: e_1_2_4_28_1
  article-title: The lysozyme and its nutritional uses
  publication-title: Aliment Vie
– ident: e_1_2_4_33_1
  doi: 10.1016/S0168-1605(02)00171-X
– volume-title: Effect of Maillard‐based conjugation of beta‐glucan of lysozyme on its functional and antimicrobial properties
  year: 2008
  ident: e_1_2_4_7_1
– ident: e_1_2_4_53_1
  doi: 10.1016/j.jcs.2007.05.003
– ident: e_1_2_4_93_1
  doi: 10.1016/j.lwt.2013.02.001
– start-page: 83
  volume-title: Fenemma's food chemistry
  year: 2008
  ident: e_1_2_4_10_1
– ident: e_1_2_4_83_1
  doi: 10.1016/S0958-6946(00)00065-0
– ident: e_1_2_4_66_1
  doi: 10.1021/jf0345752
– ident: e_1_2_4_32_1
  doi: 10.1016/j.ijpharm.2010.03.036
– ident: e_1_2_4_11_1
  doi: 10.1016/S0928-0987(97)10026-4
– volume-title: Methods in molecular biology, vol 32: basic protein and peptide protocols
  year: 1994
  ident: e_1_2_4_17_1
– ident: e_1_2_4_36_1
  doi: 10.1016/j.bbamem.2004.12.004
– volume: 26
  start-page: 2121
  year: 2012
  ident: e_1_2_4_96_1
  article-title: Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran
  publication-title: Nat Prod Res
– ident: e_1_2_4_112_1
  doi: 10.1371/journal.pone.0067469
– ident: e_1_2_4_62_1
  doi: 10.1128/AEM.67.1.339-344.2001
– ident: e_1_2_4_106_1
  doi: 10.1107/S090744499501674X
– ident: e_1_2_4_50_1
  doi: 10.1080/10408397609527208
– ident: e_1_2_4_37_1
  doi: 10.1002/(SICI)1521-3803(199808)42:03/04<187::AID-FOOD187>3.0.CO;2-F
– volume: 14
  start-page: 1780
  year: 2013
  ident: e_1_2_4_94_1
  article-title: The dynamics of lysozyme from bcteriophage lambda in solution probed by NMR and MD simulations
  publication-title: Chem Biochem
– volume: 22
  start-page: 117
  year: 2011
  ident: e_1_2_4_86_1
  article-title: Refolding of lysozyme upon interaction with β‐cyclodextrin
  publication-title: J Sci Islamic Rep Iran
– ident: e_1_2_4_24_1
  doi: 10.1016/S0969-2126(01)00220-9
– ident: e_1_2_4_75_1
  doi: 10.1016/0166-3542(89)90033-8
– ident: e_1_2_4_16_1
  doi: 10.1016/S0021-9258(18)67888-3
– ident: e_1_2_4_46_1
  doi: 10.1016/0006-3002(63)91033-3
– ident: e_1_2_4_67_1
  doi: 10.1080/09629359890893
– ident: e_1_2_4_92_1
  doi: 10.1080/10408699891274354
– ident: e_1_2_4_105_1
  doi: 10.1016/S0378-5173(96)04839-9
– ident: e_1_2_4_89_1
  doi: 10.1111/j.1472-765X.1994.tb00932.x
– ident: e_1_2_4_110_1
  doi: 10.1007/s00217-011-1424-x
– ident: e_1_2_4_23_1
  doi: 10.1079/WPS19910015
– ident: e_1_2_4_87_1
  doi: 10.1111/j.1476-5381.1954.tb00845.x
– ident: e_1_2_4_109_1
  doi: 10.1016/j.jbiosc.2008.11.019
– ident: e_1_2_4_57_1
  doi: 10.1533/9781845695873.495
– ident: e_1_2_4_19_1
  doi: 10.1007/s00217-010-1347-y
– ident: e_1_2_4_25_1
  doi: 10.1002/med.20154
– ident: e_1_2_4_56_1
  doi: 10.1002/1521-3803(20001201)44:6<407::AID-FOOD407>3.0.CO;2-1
– ident: e_1_2_4_29_1
  doi: 10.1007/s10570-011-9563-6
– volume-title: The Maillard reaction: chemistry, biochemistry and implications
  year: 2005
  ident: e_1_2_4_77_1
  doi: 10.1039/9781847552570
– ident: e_1_2_4_49_1
  doi: 10.3168/jds.S0022-0302(84)81633-1
– ident: e_1_2_4_97_1
  doi: 10.1016/S0963-9969(01)00144-2
– ident: e_1_2_4_48_1
  doi: 10.1016/0014-5793(94)01165-6
– ident: e_1_2_4_42_1
  doi: 10.1021/jf9507147
– ident: e_1_2_4_69_1
  doi: 10.1016/j.lwt.2014.01.040
– ident: e_1_2_4_60_1
  doi: 10.1016/j.idairyj.2009.05.007
– ident: e_1_2_4_5_1
  doi: 10.4315/0362-028X-71.2.411
– ident: e_1_2_4_55_1
  doi: 10.1021/jf9904822
– ident: e_1_2_4_71_1
  doi: 10.1002/1521-3803(20000501)44:3<201::AID-FOOD201>3.0.CO;2-S
– ident: e_1_2_4_40_1
  doi: 10.1021/jf00044a046
– ident: e_1_2_4_81_1
  doi: 10.2174/1568012052931232
– ident: e_1_2_4_72_1
  doi: 10.1021/jf00004a003
– ident: e_1_2_4_79_1
  doi: 10.1142/S0192415X06004041
– ident: e_1_2_4_47_1
  doi: 10.3136/fstr.8.193
– ident: e_1_2_4_58_1
  doi: 10.1093/ajcn/77.6.1537S
– start-page: 433
  volume-title: Polysaccharides: structural diversity and functional versatility
  year: 1998
  ident: e_1_2_4_98_1
– ident: e_1_2_4_6_1
  doi: 10.1016/j.carbpol.2011.01.005
– volume: 31
  start-page: 63
  year: 2012
  ident: e_1_2_4_35_1
  article-title: Optimization of lysozyme: inulin conjugation and investigation on its functional properties
  publication-title: Iran Agric Res
– ident: e_1_2_4_20_1
  doi: 10.1007/BF01576045
– ident: e_1_2_4_113_1
  doi: 10.1016/j.fsi.2012.03.027
– ident: e_1_2_4_31_1
  doi: 10.1080/20014091091841
– ident: e_1_2_4_78_1
  doi: 10.2527/jas.2012-5782
– ident: e_1_2_4_4_1
  doi: 10.1002/jsfa.2320
– ident: e_1_2_4_74_1
  doi: 10.1016/0014-5793(96)00260-8
– ident: e_1_2_4_84_1
  doi: 10.1080/10408398809527473
– ident: e_1_2_4_111_1
  doi: 10.1128/IAI.00503-13
– ident: e_1_2_4_8_1
  doi: 10.1007/s11483-009-9144-5
– start-page: 1
  volume-title: Natural food antimicrobial systems
  year: 2000
  ident: e_1_2_4_70_1
– ident: e_1_2_4_18_1
  doi: 10.4315/0362-028X.JFP-12-075
– ident: e_1_2_4_3_1
  doi: 10.1016/0003-2697(86)90413-6
– volume: 269
  start-page: 5059
  year: 1994
  ident: e_1_2_4_41_1
  article-title: Enhanced bactericidal action of lysozyme to Escherchia coli by inserting a hydrophobic pentapeptide into its C‐terminus
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)37654-8
– ident: e_1_2_4_15_1
  doi: 10.4315/0362-028X-71.2.319
– ident: e_1_2_4_108_1
  doi: 10.1038/35090602
– ident: e_1_2_4_30_1
  doi: 10.1016/S0308-8146(00)00079-0
– ident: e_1_2_4_76_1
  doi: 10.1111/j.1365-2621.2011.02737.x
– ident: e_1_2_4_88_1
– ident: e_1_2_4_114_1
  doi: 10.1533/9781845695873.252
– ident: e_1_2_4_22_1
  doi: 10.1016/j.foodhyd.2009.08.008
– ident: e_1_2_4_115_1
– volume-title: Production and properties of tragacanthin‐conjugated lysozyme as a new multifunctional biopolymer
  year: 2013
  ident: e_1_2_4_51_1
– start-page: 185
  volume-title: Natural food antimicrobial systems
  year: 2000
  ident: e_1_2_4_59_1
– volume-title: Studies on the effect of dextran‐conjugated lysozyme on the treatment of bacterial isolates from cows with mastitis
  year: 2010
  ident: e_1_2_4_52_1
– ident: e_1_2_4_80_1
  doi: 10.1111/j.1365-2621.2004.tb09890.x
– start-page: 296 p
  volume-title: Food chemistry
  year: 2009
  ident: e_1_2_4_9_1
– ident: e_1_2_4_65_1
  doi: 10.1016/j.jff.2011.12.004
– ident: e_1_2_4_102_1
– volume: 208
  start-page: 361
  year: 2003
  ident: e_1_2_4_38_1
  article-title: New promises of lysozyme as immune modulator and antimicrobial agent for nutraceuticals
  publication-title: Foods Ingredients J Jpn
– ident: e_1_2_4_104_1
  doi: 10.1021/jf021005d
– ident: e_1_2_4_107_1
  doi: 10.1128/JB.00291-13
– ident: e_1_2_4_2_1
  doi: 10.1021/jf900246b
– start-page: 69 p
  volume-title: The structure and action of proteins
  year: 1969
  ident: e_1_2_4_26_1
– ident: e_1_2_4_44_1
  doi: 10.1016/j.bbagen.2005.07.008
– ident: e_1_2_4_64_1
  doi: 10.1111/j.1745-4514.1998.tb00253.x
– ident: e_1_2_4_63_1
  doi: 10.1016/0959-440X(94)90271-2
– ident: e_1_2_4_90_1
  doi: 10.1002/art.23973
– ident: e_1_2_4_73_1
  doi: 10.1021/jf00017a005
– ident: e_1_2_4_82_1
  doi: 10.1046/j.1365-2672.1997.00372.x
– ident: e_1_2_4_85_1
  doi: 10.1002/jsfa.3400
– ident: e_1_2_4_13_1
  doi: 10.1038/206757a0
– ident: e_1_2_4_12_1
  doi: 10.1007/s002390010136
– ident: e_1_2_4_100_1
  doi: 10.1533/9781845695873.186
– ident: e_1_2_4_91_1
  doi: 10.1016/j.foodchem.2005.08.003
– ident: e_1_2_4_34_1
  doi: 10.1002/psc.1258
– ident: e_1_2_4_27_1
  doi: 10.1111/j.1750-3841.2008.00849.x
– volume: 3
  start-page: 515
  year: 1970
  ident: e_1_2_4_95_1
  article-title: Antimicrobial peptides derived from goose egg white lysozyme
  publication-title: Comp Biochem Physiol Part C: Toxicol Pharmacol
– ident: e_1_2_4_21_1
  doi: 10.1016/j.cub.2009.04.001
– ident: e_1_2_4_43_1
  doi: 10.2174/1381612023395349
– ident: e_1_2_4_99_1
  doi: 10.1016/0022-2836(91)90021-W
– ident: e_1_2_4_14_1
  doi: 10.1016/S0168-1605(03)00172-7
SSID ssj0002236
Score 2.3447652
SecondaryResourceType review_article
Snippet In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R1077
SubjectTerms Anti-Bacterial Agents - pharmacology
anti-infective agents
Antiinfectives and antibacterials
Antimicrobial agents
antimicrobial properties
Bacteria
Bacteriology
cell walls
chemical-enzymatic modifications
Conjugation
E coli
Enzymes
Escherichia coli
Food
food industry
food preservatives
Food Preservatives - pharmacology
Foods
functional properties
glycation
Gram-negative bacteria
Gram-Negative Bacteria - drug effects
Gram-positive bacteria
heat stability
Humans
lactoferrin
Lysozyme
Maillard reaction
Muramidase - pharmacology
Natural & organic foods
natural antimicrobial
polysaccharides
Preservatives
Saccharides
solubility
Walls
Title Modified Lysozymes as Novel Broad Spectrum Natural Antimicrobial Agents in Foods
URI https://api.istex.fr/ark:/67375/WNG-TXV036FN-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.12460
https://www.ncbi.nlm.nih.gov/pubmed/24837015
https://www.proquest.com/docview/1551133541
https://www.proquest.com/docview/1535214020
https://www.proquest.com/docview/1551068209
https://www.proquest.com/docview/1762142391
https://www.proquest.com/docview/1999958488
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL70egICMhxCXLxnGc5FgBoapohKCF3izbcaRVuwlqdhHtr2fGeUArWIS4ZZXxbjyZ8XyznvkM8Dx1vDY2c2EcVy4U2s5DzV0V1vOUx1WKEdI3ie2XcvdQ7B0lYzUh9cL0_BDTH27kGX69JgfXpvvFyTHuETOsiGYYoiRl7VSxRbDo408CKQx-cuQLR-SfDuQ-VMtzafyFuHSVVPz9d6DzIob1Qai4CWZ8_L725Hi2XpmZPb_E7Phf87sFNwaIynZ6m7oNV1xzB66NHczdXfiw31aLGrEre3_WtednS9cx3bGy_eZOGOb1umJ0rP3qdL1kpfbEHmynWS2WC8_6RJ-ooatji4YVbVt19-CweHvwejccTmYIrYzkPMyl485qntWa9jGzRGhcp_Isrmqnk5zXvOKptLHG9LMW1tZS8joyRhtuhcmi-D5sNW3jHgJLTRQLPreCWnRzMo5cxPSFibbSJCaA2fhelB1oy-n0jBM1pi-kKEWKUl5RAbycBnztGTv-LPrCv-hJTp8eU6Fbmqgv5Tt1cPQZZ1eUKglge7QENfh4pwhsYoafiCiAZ9Nt9E7actGNa9ckgwA3ohx9kwyuixKRWL5BBmNWRFyNm34LsX6OeDLLAnjQW-s0MU4HByDyC-CVt7m_aUbtFW8--atH_zziMVxHVCn6erpt2EJrc08Qua3MU--cPwBFfDJh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQ9jBeYPwOG2AkhHhJaRzHSR4nRiijjRB00DfLdhyp2pqgpUVsfz13TlK2CYoQb4lySeTLne87x_cdIS9iy0ptEuuHYWF9rszQV8wWfjmMWVjEECFdkdgkF6NjfjSLZpdqYVp-iPWCG3qGm6_RwXFB-pKXQ-BDalgeDCBGCUjbt7GvN_LnH376RSEF4U_0jOGA_eOO3gd381x7wJXItI1K_vE72HkVxbowlN0mph9Au_vkZLBa6oG5uMbt-H8j3CW3OpRKD1qzukNu2Oou2emLmJt75OOkLuYlwFc6Pm_qi_OFbahqaF5_t6cUUntVUOxsvzxbLWiuHLcHPaiW88XcET_hGdZ0NXRe0ayui-Y-Oc7eTt-M_K45g29EIIZ-KiyzRrGkVPgrM4m4gqkqTcKitCpKWckKFgsTKshAS25MKQQrA62VZobrJAgfkK2qruwjQmMdhJwNDccq3RTtI-UhPjBSRuhIe2TQfxhpOuZybKBxKvsMBhUlUVHSKcojr9Y3fGtJO_4s-tJ96bWcOjvBvW5xJL_m7-R09gVGl-Uy8sh-bwqyc_NGIt6EJD_igUeery-Dg-JfF1XZeoUygHEDTNM3ycDUKACMpRtkIGwFSNe46V0A91OAlEnikYetua4HxrB3AIA_j7x2Rvc3zcij7PCzO3r8z3c8Izuj6WQsx-_zD3vkJoBM3m6v2ydbYHn2CQC5pX7qPPUndRA2fQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQJgEvfH8EBhgJIV7SNY7jJI8TJYyxRRNssDfLdmyp2ppMS4vY_nrunKSwCYoQL1WrXpL6cuf7XXP3O0JepZY5bTIbxnFlQ67MOFTMVqEbpyyuUoiQvklsrxTbh3znKBmqCbEXpuOHWP7hhp7h92t08NPK_eLkEPeQGZZHIwhRArL2dXjNcXrD5NNPBimIfmIgDAfon_bsPljMc-UElwLTOur4--9Q52UQ66NQcZvo4fd3xSfHo8Vcj8zFFWrH_1rgHXKrx6h0qzOqu-Sare-RG0MLc3uf7O811dQBeKW7521zcT6zLVUtLZtv9oRCYq8qinPt52eLGS2VZ_agW_V8Opt62if8hB1dLZ3WtGiaqn1ADot3B2-3w340Q2hEJMZhLiyzRrHMKXyQmSVcwUaVZ3HlrEpy5ljFUmFiBfmn48Y4IZiLtFaaGa6zKH5I1uqmto8JTXUUczY2HHt0c7SOnMd4wkQZoRMdkNFwX6TpectxfMaJHPIXVJRERUmvqIC8WR5w2lF2_Fn0tb_RSzl1doyVbmkiv5bv5cHRF1hdUcokIBuDJcjeyVuJaBNS_IRHAXm5_BrcE5-5qNo2C5QBhBthkr5KBjZGAVAsXyEDQStCssZV1wKwnwOgzLKAPOqsdbkwhpMDAPoFZNPb3N80I3eKyWf_7sk_H_GCXN-fFHL3Q_nxKbkJCJN3tXUbZA0Mzz4DFDfXz72f_gCJozUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Lysozymes+as+Novel+Broad+Spectrum+Natural+Antimicrobial+Agents+in+Foods&rft.jtitle=Journal+of+food+science&rft.au=Aminlari%2C+Ladan&rft.au=Mohammadi+Hashemi%2C+Marjan&rft.au=Aminlari%2C+Mahmoud&rft.date=2014-06-01&rft.issn=0022-1147&rft.volume=79&rft.issue=6+p.R1077-R1090&rft_id=info:doi/10.1111%2F1750-3841.12460&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon