Modified Lysozymes as Novel Broad Spectrum Natural Antimicrobial Agents in Foods
In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial ag...
Saved in:
Published in | Journal of food science Vol. 79; no. 6; pp. R1077 - R1090 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram‐positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram‐positive and Gram‐negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram‐negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry.
Practical Application
The subject described in this review article can lead to the development of methods to produce new broad‐spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives. |
---|---|
Bibliography: | Natural Antimicrobial Center of Excellence, Iran istex:779770F94828CC6135FD1D98C69BF3303D1F0E7E ark:/67375/WNG-TXV036FN-5 ArticleID:JFDS12460 Shiraz Univ. Research Council - No. 92-GR-VT-11 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 0022-1147 1750-3841 1750-3841 |
DOI: | 10.1111/1750-3841.12460 |