First Principles Theory of the hcp-fcc Phase Transition in Cobalt
Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 3778 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.06.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K. |
---|---|
AbstractList | Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at similar to 700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K. Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K. Abstract Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K. Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K.Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion. Our analysis of the energy of the phases shows that magnetic effects alone cannot drive the fcc-hcp transition in Co and that the largest contribution to the stabilization of the fcc phase comes from the vibration of the ionic lattice. By including all the contributions to the free energy considered here we obtain a theoretical transition temperature of 825 K. |
ArticleNumber | 3778 |
Author | Vitos, Levente Lizárraga, Raquel Pan, Fan Gercsi, Zsolt Holmström, Erik Bergqvist, Lars |
Author_xml | – sequence: 1 givenname: Raquel orcidid: 0000-0002-6794-6744 surname: Lizárraga fullname: Lizárraga, Raquel email: raqli@kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) – sequence: 2 givenname: Fan surname: Pan fullname: Pan, Fan organization: Department of Materials and Nano Physics, School of Information and Communication Technology, Royal Institute of Technology (KTH), Swedish e-Science Research center (SeRC), Royal Institute of Technology (KTH) – sequence: 3 givenname: Lars surname: Bergqvist fullname: Bergqvist, Lars organization: Department of Materials and Nano Physics, School of Information and Communication Technology, Royal Institute of Technology (KTH), Swedish e-Science Research center (SeRC), Royal Institute of Technology (KTH) – sequence: 4 givenname: Erik surname: Holmström fullname: Holmström, Erik organization: Sandvik Coromant R&D – sequence: 5 givenname: Zsolt surname: Gercsi fullname: Gercsi, Zsolt organization: School of Physics and CRANN, Trinity College – sequence: 6 givenname: Levente surname: Vitos fullname: Vitos, Levente organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28630476$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211395$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330730$$DView record from Swedish Publication Index |
BookMark | eNqFks1v0zAYxiM0xD7YP8ABReKyAwF_O7kgVYWNSZPYoXC1HOdN45LaxU5A--9xmzK1kwBf_PV7Hr-2n_PsxHkHWfYKo3cY0fJ9ZJhXZYGwLNJUyoI_y84IYrwglJCTg_FpdhnjCqXGScVw9SI7JaWgiElxls2ubYhDfh-sM3bTQ8wXHfjwkPs2HzrIO7MpWmPy-05HyBdBu2gH611uXT73te6Hl9nzVvcRLvf9Rfb1-tNi_rm4-3JzO5_dFUZgPhRAQbZVyWqQZY0Fa2pTtYANACaV1AaoRggzUWsCdd0KBI0wpRCCatkITelFdjv5Nl6v1CbYtQ4Pymurdgs-LJUOgzU9KJbksgaeDDBjqC65rjBpDBGMNpRB8no7ecVfsBnrI7eP9tts5zaOilIkKUp48X_8-9ApgjGteOI_THyC19AYcEPQ_ZHseMfZTi39T8XTn3C5PfBqbxD8jxHioNY2Guh77cCPUeEKY4mQ2KFvnqArPwaXfiJRnAtJKMWJen1Y0WMpf4KQADIBJvgYA7SPCEZqGzg1BU6lwKld4NT2nuUTkbGD3sYj3cr2_5bS_ZOmc9wSwkHZf1f9BvWd6PY |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_144333 crossref_primary_10_1007_s11837_021_04936_z crossref_primary_10_1016_j_matpr_2020_09_374 crossref_primary_10_1016_S1872_2067_19_63385_1 crossref_primary_10_1029_2019JB017375 crossref_primary_10_3390_ma14092324 crossref_primary_10_1016_j_jallcom_2019_05_223 crossref_primary_10_1016_j_vacuum_2024_113268 crossref_primary_10_1016_j_apsusc_2020_145779 crossref_primary_10_1039_C8CP01474D crossref_primary_10_1016_j_jallcom_2020_155978 crossref_primary_10_1007_s11661_022_06891_z crossref_primary_10_1149_1945_7111_ad0077 crossref_primary_10_1021_acsaem_2c01499 crossref_primary_10_1007_s13632_018_0444_3 crossref_primary_10_1016_j_diamond_2024_111300 crossref_primary_10_1016_j_jmmm_2022_169660 crossref_primary_10_1016_j_apsusc_2022_154002 crossref_primary_10_3390_catal14120922 crossref_primary_10_1063_5_0079981 crossref_primary_10_1103_PhysRevB_106_075156 crossref_primary_10_1016_j_apmt_2018_07_001 crossref_primary_10_1016_j_ijrmhm_2022_105946 crossref_primary_10_1016_j_jmrt_2024_06_143 crossref_primary_10_1016_j_physb_2022_413765 crossref_primary_10_1063_1_5133652 crossref_primary_10_1016_j_eng_2019_11_006 crossref_primary_10_1016_j_apcatb_2020_118859 crossref_primary_10_1103_PhysRevMaterials_7_124412 crossref_primary_10_1021_acs_iecr_4c03410 crossref_primary_10_15625_0868_3166_30_3_13858 crossref_primary_10_1016_j_actamat_2017_07_010 crossref_primary_10_1088_1361_648X_ac8bc1 crossref_primary_10_1557_jmr_2020_294 crossref_primary_10_1016_j_mtcomm_2023_107945 crossref_primary_10_1016_j_mattod_2024_08_023 crossref_primary_10_1016_j_jallcom_2018_08_255 crossref_primary_10_1021_acs_chemmater_2c03786 crossref_primary_10_1007_s12598_024_03052_6 crossref_primary_10_1038_s41598_022_14302_x crossref_primary_10_1021_acs_jpcc_0c02142 crossref_primary_10_1002_smll_202401221 crossref_primary_10_1016_j_jer_2023_10_040 crossref_primary_10_1016_j_jallcom_2022_168196 crossref_primary_10_1016_j_jallcom_2024_176849 crossref_primary_10_1103_PhysRevB_108_235170 crossref_primary_10_1038_s41598_024_70548_7 crossref_primary_10_1016_j_wear_2021_203990 crossref_primary_10_1063_1_5040148 crossref_primary_10_1016_j_electacta_2019_05_044 crossref_primary_10_1016_j_nanoms_2023_11_006 crossref_primary_10_3390_e20090655 crossref_primary_10_1016_j_calphad_2019_101729 crossref_primary_10_1021_acs_jpclett_4c03309 crossref_primary_10_1016_j_ijrmhm_2019_105102 crossref_primary_10_1103_PhysRevMaterials_7_064409 crossref_primary_10_1016_j_ijleo_2021_166388 crossref_primary_10_1007_s12274_022_5263_9 crossref_primary_10_1016_j_actamat_2020_09_056 crossref_primary_10_1103_PhysRevB_108_054431 crossref_primary_10_1016_j_ijhydene_2024_09_128 crossref_primary_10_20964_2021_12_34 crossref_primary_10_1016_j_apmt_2020_100825 crossref_primary_10_1103_PhysRevApplied_19_034004 crossref_primary_10_1016_j_jallcom_2021_160157 crossref_primary_10_1016_j_matchemphys_2022_126136 crossref_primary_10_1149_1945_7111_acde64 crossref_primary_10_1002_admi_202202516 crossref_primary_10_1080_14786435_2021_1922776 crossref_primary_10_1021_acs_chemrev_3c00510 crossref_primary_10_1016_j_jmst_2020_10_078 crossref_primary_10_1007_s11144_021_02099_1 crossref_primary_10_1039_D2NA00444E crossref_primary_10_1021_acscatal_2c05110 crossref_primary_10_3390_ma15041315 crossref_primary_10_1016_j_matchemphys_2020_123672 crossref_primary_10_1016_j_cattod_2020_05_002 crossref_primary_10_1016_j_matdes_2020_109396 crossref_primary_10_1021_acs_chemrev_3c00402 crossref_primary_10_1016_j_cattod_2019_10_016 crossref_primary_10_1007_s00339_023_07260_2 crossref_primary_10_1016_j_jnoncrysol_2018_08_017 crossref_primary_10_1103_PhysRevB_102_155107 crossref_primary_10_1016_j_ijhydene_2024_11_245 crossref_primary_10_1039_D0SC06496C crossref_primary_10_1080_14686996_2022_2080512 crossref_primary_10_1016_j_commatsci_2019_06_007 crossref_primary_10_1016_j_actamat_2019_06_041 crossref_primary_10_1016_j_jallcom_2020_154102 crossref_primary_10_1016_j_apcatb_2023_123537 crossref_primary_10_1021_acscatal_8b01691 crossref_primary_10_1007_s43390_020_00133_1 crossref_primary_10_1088_1361_648X_ac7f17 crossref_primary_10_7566_JPSJ_89_114710 crossref_primary_10_1016_j_calphad_2021_102252 crossref_primary_10_1021_acs_chemmater_1c03092 crossref_primary_10_1103_PhysRevMaterials_2_094407 crossref_primary_10_1002_qua_26054 crossref_primary_10_1007_s10948_020_05575_2 crossref_primary_10_1016_j_est_2024_111298 crossref_primary_10_1016_j_apcata_2024_119874 crossref_primary_10_1016_j_colsurfa_2024_133687 crossref_primary_10_1016_j_commatsci_2020_109906 crossref_primary_10_1103_PhysRevMaterials_7_044403 crossref_primary_10_1016_j_cattod_2020_04_067 crossref_primary_10_5781_JWJ_2021_39_6_7 |
Cites_doi | 10.1103/RevModPhys.73.515 10.1103/PhysRevB.64.144104 10.1103/PhysRev.156.809 10.1103/PhysRevB.85.125104 10.1016/S0081-1947(08)60503-2 10.1103/PhysRevLett.77.334 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevB.25.5122 10.1103/PhysRevB.74.012103 10.1103/PhysRevB.92.224420 10.1103/PhysRevB.34.1784 10.1016/0038-1098(78)90354-X 10.1073/pnas.0904859106 10.1088/0305-4608/12/10/019 10.1103/PhysRevB.31.1909 10.1103/PhysRevB.33.7852 10.1103/PhysRevB.50.5918 10.1103/PhysRevB.50.17953 10.1088/0305-4608/15/6/018 10.1016/0038-1098(85)90569-1 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.47.558 10.1017/CBO9780511805769 10.1016/0304-8853(87)90721-9 10.1103/PhysRevLett.77.3865 10.1007/BF02868089 10.1103/PhysRevB.78.134106 10.1103/PhysRevB.75.245109 10.1103/PhysRevB.27.7046 10.1103/PhysRevLett.87.156401 10.1017/CBO9780511619885 10.1103/PhysRevB.79.045209 10.1103/PhysRevB.15.2726 10.1139/p79-032 10.1142/5060 10.1088/0034-4885/74/9/096501 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jun 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jun 2017 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8V ACNBI D8T DF2 ZZAVC DOA |
DOI | 10.1038/s41598-017-03877-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Uppsala universitet full text SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_4f607be56c81440b85a912dc2643d34e oai_DiVA_org_uu_330730 oai_DiVA_org_kth_211395 PMC5476570 28630476 10_1038_s41598_017_03877_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8V IPNFZ RIG ACNBI D8T DF2 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c615t-e3e7f984be78b164dbc9fe1cee1297ace3a00146ba2ebbf60ed6c86663a7d6a33 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:42 EDT 2025 Thu Aug 21 06:47:08 EDT 2025 Thu Aug 21 06:47:11 EDT 2025 Thu Aug 21 14:11:59 EDT 2025 Fri Jul 11 08:43:11 EDT 2025 Wed Aug 13 04:43:36 EDT 2025 Thu Apr 03 07:08:32 EDT 2025 Tue Jul 01 01:33:07 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c615t-e3e7f984be78b164dbc9fe1cee1297ace3a00146ba2ebbf60ed6c86663a7d6a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6794-6744 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-03877-5 |
PMID | 28630476 |
PQID | 1955672331 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4f607be56c81440b85a912dc2643d34e swepub_primary_oai_DiVA_org_uu_330730 swepub_primary_oai_DiVA_org_kth_211395 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476570 proquest_miscellaneous_1911700670 proquest_journals_1955672331 pubmed_primary_28630476 crossref_primary_10_1038_s41598_017_03877_5 crossref_citationtrail_10_1038_s41598_017_03877_5 springer_journals_10_1038_s41598_017_03877_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-19 |
PublicationDateYYYYMMDD | 2017-06-19 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Landau, D. P. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000). Dove, M. T. Introduction to Lattice Dynamics (Cambridge University Press, New York, 1993). Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169–11186 http://cms.mpi.univie.ac.at/vasp/ (1996). Kübler, J. Theory of Itinerant Electron Magnetism (Oxford University Press, Oxford, 2000). Wallace, D. C. Statistical Physics of Crystals and Liquids (World Scientific, 2002). Moruzzi, V. L. Calculated Electronic Properties of Metals (Pergamon, New York, 1978). KulikovNIKulatovETElectronic band structure, Fermi surface and optical properties of cobalt under pressureJ. Phys. F19821222671982JPhF...12.2267K1:CAS:528:DyaL3sXktVyjtw%3D%3D10.1088/0305-4608/12/10/019 EbertHMankovskySAnisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theoryPhys. Rev. B2009790452092009PhRvB..79d5209E10.1103/PhysRevB.79.045209 YooC-SSöderlindPCynnHThe phase diagram of cobalt at high pressure and temperature: the stability of γ(fcc)-cobalt and new ε′(dhcp)-cobaltJ. Phys.: Condens. Matter199810L311L3181:CAS:528:DyaK1cXjvFWlsrc%3D KörmannFDickAGrabowskiBHickelTNeugebauerJAtomic forces at finite magnetic temperatures: Phonons in paramagnetic ironPhys. Rev. B2012851251042012PhRvB..85l5104K10.1103/PhysRevB.85.125104 DongZThermal spin fluctuation effect on the elastic constants of paramagnetic Fe from first principlesPhys. Rev. B2015922244202015PhRvB..92v4420D10.1103/PhysRevB.92.224420 PerdewJPBurkeKErnzerhofMGeneralized Gradient Approximation Made SimplePhys. Rev. Lett.19967738651996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.386510062328 UhlMKüblerJExchange-Coupled Spin-Fluctuation Theory: Application to Fe, Co, and NiPhys. Rev. Lett.1996773343371996PhRvL..77..334U1:CAS:528:DyaK28XktVahsLo%3D10.1103/PhysRevLett.77.33410062425 MoruzziVLMarcusPMSchwarzKMohnPFerromagnetic phases of bcc and fcc Fe, Co, and NiPhys. Rev. B19863417841986PhRvB..34.1784M1:CAS:528:DyaL28XltVOjs7k%3D10.1103/PhysRevB.34.1784 TogoAObaFTanakaIFirst-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressuresPhys. Rev. B2008781341061341142008PhRvB..78m4106T10.1103/PhysRevB.78.134106 SvenssonECPowellBMWoodsADBTenchertWDPhonon dispersion in Co0.92Fe0.08Can. J. Phys.1979572531979CaJPh..57..253S1:CAS:528:DyaE1MXks1Kmtr0%3D10.1139/p79-032 TolédanoPKrexnerGPremMWeberHPDmitrievVPTheory of the martensitic transformation in cobaltPhys. Rev. B2001641441042001PhRvB..64n4104T10.1103/PhysRevB.64.144104 Ebert, H. (The Munich SPR-KKR package, version 6.3 and 7.2). http://ebert.cup.uni-muenchen.de/SPRKKR. ModakPVermaAKRaoRSGodwalBKJeanlozRAb initio total-energy and phonon calculations of Co at high pressuresPhys. Rev. B2006740121032006PhRvB..74a2103M10.1103/PhysRevB.74.012103 Vitos, L. Computational Quantum Mechanics for materials Engineers (Springer-Verlag, London, 2007). WakabayashiNSchermRHSmithHGLattice dynamics of Ti, Co, Tc, and other hcp transition metalsPhys. Rev. B19822551221982PhRvB..25.5122W1:CAS:528:DyaL38XktFCqt7Y%3D10.1103/PhysRevB.25.5122 BagayokoDZieglerACallawayJBand structure of bcc cobaltPhys. Rev. B19832770461983PhRvB..27.7046B1:CAS:528:DyaL3sXksVektrk%3D10.1103/PhysRevB.27.7046 JanakJFFirst principles phonon calculations in materials scienceSol. State Commun197825531978SSCom..25...53J1:CAS:528:DyaE1cXpvVeitQ%3D%3D10.1016/0038-1098(78)90354-X ShapiroSMMossSCLattice dynamics of face-centered-cubic Co0.92Fe0.08Phys. Rev. B19771527261977PhRvB..15.2726S1:CAS:528:DyaE2sXhs1ekurY%3D10.1103/PhysRevB.15.2726 MatarSFHouariABelkhirMAAb initio studies of magnetic properties of cobalt and tetracobalt nitride Co4NPhys. Rev. B2007752451092007PhRvB..75x5109M10.1103/PhysRevB.75.245109 KresseGFurthmüllerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475581993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 GyorffyBPindorAStauntonJStocksGWinterHA first-principles theory of ferromagnetic phase transitions in metalsJ. Phys. F19851513371985JPhF...15.1337G1:CAS:528:DyaL2MXktFGksLk%3D10.1088/0305-4608/15/6/018 SovenPCoherent-Potential Model of Substitutional Disordered AlloysPhys. Rev19671568091967PhRv..156..809S1:CAS:528:DyaF2sXksVOru7Y%3D10.1103/PhysRev.156.809 TogoATanakaIFirst principles phonon calculations in materials scienceScr. Mater2015108151:CAS:528:DC%2BC2MXht1GltLbE10.1016/j.scriptamat.2015.07.021 MinBIOguchiTFreemanAJStructural, electronic, and magnetic properties of Co: Evidence for magnetism-stabilizinging structurePhys. Rev. B19863378521986PhRvB..33.7852M1:CAS:528:DyaL28XktlCiur4%3D10.1103/PhysRevB.33.7852 NishizawaTIshidaKThe Co (Cobalt) SystemBulletin of Alloy Phase Diagrams1983438710.1007/BF02868089 EbertHKödderitzschDMinarJCalculating condensed matter properties using the KKR-Green’s function method-recent developments and applicationsRep. Prog. Phys.2011740965012011RPPh...74i6501E10.1088/0034-4885/74/9/096501 Note from the authors. During the reviewing process it came to our attention the results of an unpublished experimental work on the hcp-fcc phase transition temperature under the effect of a magnetic field, that supports our results. This work will be published elsewhere. MarcusPMMoruzziVLEquilibrium properties of the cubic phases of cobaltSol. State Commun1985559711985SSCom..55..971M1:CAS:528:DyaL2MXltlakt7w%3D10.1016/0038-1098(85)90569-1 Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004). Cobalt Monograph (Centre d’Information du Cobalt, The Netherlands, 1960). BaroniSde GironcoliSCorsoADGiannozziPPhonons and related crystal properties from density-functional perturbation theoryRev. Mod. Phys.2001735155622001RvMP...73..515B1:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515 Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67 (1987). SöderlindPAhujaRErikssonOWillsJMJohanssonBCrystal structure and elastic-constant anomalies in the magnetic 3d transition metalsPhys. Rev. B19945059181994PhRvB..50.5918S10.1103/PhysRevB.50.5918 KádasKVitosLJohanssonBAhujaRStability of body-centered cubic iron-magnesium alloys in the Earth’s inner corePNAS200910615560155622009PNAS..10615560K10.1073/pnas.0904859106198052142747160 HeineVElectronic Structure From the Point of View of the Local Atomic EnvironmentSol. State Phys.19813511981PSSBR.104....1H10.1016/S0081-1947(08)60503-2 Zener, C. Phase stability in Metals and Alloys (McGraw-Hill, New York, 1967). Grimvall, G. Thermophyisical Properties of Materials (Elsevier, The Netherlands, 1999). BlöchlPEProjector augmented-wave methodPhys. Rev. B199450179531994PhRvB..5017953B10.1103/PhysRevB.50.17953 SkriverHCrystal structure from one-electron theoryPhys. Rev. B19853119091985PhRvB..31.1909S1:CAS:528:DyaL2MXhsVWgsr0%3D10.1103/PhysRevB.31.1909 Wohlfarth, E. P. (ed.). Ferromagnetic Materials (Amsterdam: North-Holland, 2000). VitosLAbrikosovIAJohanssonBAnisotropic Lattice Distortions in Random Alloys from First-Principles TheoryPhys. Rev. Lett.2001871564012001PhRvL..87o6401V1:STN:280:DC%2BD3MrjsVyrtA%3D%3D10.1103/PhysRevLett.87.15640111580714 VerstraeteMAb initio calculation of spin-dependent electronphonon coupling in iron and cobaltJ. Phys.: Condens. Matter2013251360012013JPCM...25m6001V K Kádas (3877_CR35) 2009; 106 3877_CR16 3877_CR38 3877_CR37 P Tolédano (3877_CR4) 2001; 64 Z Dong (3877_CR24) 2015; 92 3877_CR36 3877_CR13 A Togo (3877_CR27) 2008; 78 3877_CR12 NI Kulikov (3877_CR18) 1982; 12 H Skriver (3877_CR9) 1985; 31 3877_CR33 SM Shapiro (3877_CR15) 1977; 15 3877_CR32 C-S Yoo (3877_CR11) 1998; 10 N Wakabayashi (3877_CR14) 1982; 25 SF Matar (3877_CR34) 2007; 75 JF Janak (3877_CR17) 1978; 25 VL Moruzzi (3877_CR6) 1986; 34 L Vitos (3877_CR22) 2001; 87 B Gyorffy (3877_CR42) 1985; 15 PE Blöchl (3877_CR43) 1994; 50 M Uhl (3877_CR8) 1996; 77 BI Min (3877_CR5) 1986; 33 V Heine (3877_CR44) 1981; 35 D Bagayoko (3877_CR19) 1983; 27 S Baroni (3877_CR26) 2001; 73 P Soven (3877_CR41) 1967; 156 JP Perdew (3877_CR40) 1996; 77 3877_CR48 3877_CR25 P Modak (3877_CR21) 2006; 74 3877_CR45 H Ebert (3877_CR47) 2011; 74 A Togo (3877_CR28) 2015; 108 3877_CR7 PM Marcus (3877_CR20) 1985; 55 EC Svensson (3877_CR30) 1979; 57 3877_CR1 3877_CR2 P Söderlind (3877_CR10) 1994; 50 H Ebert (3877_CR46) 2009; 79 T Nishizawa (3877_CR3) 1983; 4 G Kresse (3877_CR39) 1993; 47 M Verstraete (3877_CR31) 2013; 25 F Körmann (3877_CR23) 2012; 85 3877_CR29 |
References_xml | – reference: KádasKVitosLJohanssonBAhujaRStability of body-centered cubic iron-magnesium alloys in the Earth’s inner corePNAS200910615560155622009PNAS..10615560K10.1073/pnas.0904859106198052142747160 – reference: NishizawaTIshidaKThe Co (Cobalt) SystemBulletin of Alloy Phase Diagrams1983438710.1007/BF02868089 – reference: GyorffyBPindorAStauntonJStocksGWinterHA first-principles theory of ferromagnetic phase transitions in metalsJ. Phys. F19851513371985JPhF...15.1337G1:CAS:528:DyaL2MXktFGksLk%3D10.1088/0305-4608/15/6/018 – reference: Zener, C. Phase stability in Metals and Alloys (McGraw-Hill, New York, 1967). – reference: VerstraeteMAb initio calculation of spin-dependent electronphonon coupling in iron and cobaltJ. Phys.: Condens. Matter2013251360012013JPCM...25m6001V – reference: ShapiroSMMossSCLattice dynamics of face-centered-cubic Co0.92Fe0.08Phys. Rev. B19771527261977PhRvB..15.2726S1:CAS:528:DyaE2sXhs1ekurY%3D10.1103/PhysRevB.15.2726 – reference: BagayokoDZieglerACallawayJBand structure of bcc cobaltPhys. Rev. B19832770461983PhRvB..27.7046B1:CAS:528:DyaL3sXksVektrk%3D10.1103/PhysRevB.27.7046 – reference: SovenPCoherent-Potential Model of Substitutional Disordered AlloysPhys. Rev19671568091967PhRv..156..809S1:CAS:528:DyaF2sXksVOru7Y%3D10.1103/PhysRev.156.809 – reference: JanakJFFirst principles phonon calculations in materials scienceSol. State Commun197825531978SSCom..25...53J1:CAS:528:DyaE1cXpvVeitQ%3D%3D10.1016/0038-1098(78)90354-X – reference: Wohlfarth, E. P. (ed.). Ferromagnetic Materials (Amsterdam: North-Holland, 2000). – reference: VitosLAbrikosovIAJohanssonBAnisotropic Lattice Distortions in Random Alloys from First-Principles TheoryPhys. Rev. Lett.2001871564012001PhRvL..87o6401V1:STN:280:DC%2BD3MrjsVyrtA%3D%3D10.1103/PhysRevLett.87.15640111580714 – reference: Wallace, D. C. Statistical Physics of Crystals and Liquids (World Scientific, 2002). – reference: Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004). – reference: Note from the authors. During the reviewing process it came to our attention the results of an unpublished experimental work on the hcp-fcc phase transition temperature under the effect of a magnetic field, that supports our results. This work will be published elsewhere. – reference: BaroniSde GironcoliSCorsoADGiannozziPPhonons and related crystal properties from density-functional perturbation theoryRev. Mod. Phys.2001735155622001RvMP...73..515B1:CAS:528:DC%2BD3MXlvFKrtLc%3D10.1103/RevModPhys.73.515 – reference: HeineVElectronic Structure From the Point of View of the Local Atomic EnvironmentSol. State Phys.19813511981PSSBR.104....1H10.1016/S0081-1947(08)60503-2 – reference: KörmannFDickAGrabowskiBHickelTNeugebauerJAtomic forces at finite magnetic temperatures: Phonons in paramagnetic ironPhys. Rev. B2012851251042012PhRvB..85l5104K10.1103/PhysRevB.85.125104 – reference: BlöchlPEProjector augmented-wave methodPhys. Rev. B199450179531994PhRvB..5017953B10.1103/PhysRevB.50.17953 – reference: MarcusPMMoruzziVLEquilibrium properties of the cubic phases of cobaltSol. State Commun1985559711985SSCom..55..971M1:CAS:528:DyaL2MXltlakt7w%3D10.1016/0038-1098(85)90569-1 – reference: TolédanoPKrexnerGPremMWeberHPDmitrievVPTheory of the martensitic transformation in cobaltPhys. Rev. B2001641441042001PhRvB..64n4104T10.1103/PhysRevB.64.144104 – reference: DongZThermal spin fluctuation effect on the elastic constants of paramagnetic Fe from first principlesPhys. Rev. B2015922244202015PhRvB..92v4420D10.1103/PhysRevB.92.224420 – reference: PerdewJPBurkeKErnzerhofMGeneralized Gradient Approximation Made SimplePhys. Rev. Lett.19967738651996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.386510062328 – reference: SöderlindPAhujaRErikssonOWillsJMJohanssonBCrystal structure and elastic-constant anomalies in the magnetic 3d transition metalsPhys. Rev. B19945059181994PhRvB..50.5918S10.1103/PhysRevB.50.5918 – reference: WakabayashiNSchermRHSmithHGLattice dynamics of Ti, Co, Tc, and other hcp transition metalsPhys. Rev. B19822551221982PhRvB..25.5122W1:CAS:528:DyaL38XktFCqt7Y%3D10.1103/PhysRevB.25.5122 – reference: Cobalt Monograph (Centre d’Information du Cobalt, The Netherlands, 1960). – reference: Landau, D. P. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000). – reference: MoruzziVLMarcusPMSchwarzKMohnPFerromagnetic phases of bcc and fcc Fe, Co, and NiPhys. Rev. B19863417841986PhRvB..34.1784M1:CAS:528:DyaL28XltVOjs7k%3D10.1103/PhysRevB.34.1784 – reference: YooC-SSöderlindPCynnHThe phase diagram of cobalt at high pressure and temperature: the stability of γ(fcc)-cobalt and new ε′(dhcp)-cobaltJ. Phys.: Condens. Matter199810L311L3181:CAS:528:DyaK1cXjvFWlsrc%3D – reference: ModakPVermaAKRaoRSGodwalBKJeanlozRAb initio total-energy and phonon calculations of Co at high pressuresPhys. Rev. B2006740121032006PhRvB..74a2103M10.1103/PhysRevB.74.012103 – reference: Vitos, L. Computational Quantum Mechanics for materials Engineers (Springer-Verlag, London, 2007). – reference: Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67 (1987). – reference: KulikovNIKulatovETElectronic band structure, Fermi surface and optical properties of cobalt under pressureJ. Phys. F19821222671982JPhF...12.2267K1:CAS:528:DyaL3sXktVyjtw%3D%3D10.1088/0305-4608/12/10/019 – reference: TogoAObaFTanakaIFirst-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressuresPhys. Rev. B2008781341061341142008PhRvB..78m4106T10.1103/PhysRevB.78.134106 – reference: Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169–11186 http://cms.mpi.univie.ac.at/vasp/ (1996). – reference: MinBIOguchiTFreemanAJStructural, electronic, and magnetic properties of Co: Evidence for magnetism-stabilizinging structurePhys. Rev. B19863378521986PhRvB..33.7852M1:CAS:528:DyaL28XktlCiur4%3D10.1103/PhysRevB.33.7852 – reference: Grimvall, G. Thermophyisical Properties of Materials (Elsevier, The Netherlands, 1999). – reference: MatarSFHouariABelkhirMAAb initio studies of magnetic properties of cobalt and tetracobalt nitride Co4NPhys. Rev. B2007752451092007PhRvB..75x5109M10.1103/PhysRevB.75.245109 – reference: UhlMKüblerJExchange-Coupled Spin-Fluctuation Theory: Application to Fe, Co, and NiPhys. Rev. Lett.1996773343371996PhRvL..77..334U1:CAS:528:DyaK28XktVahsLo%3D10.1103/PhysRevLett.77.33410062425 – reference: TogoATanakaIFirst principles phonon calculations in materials scienceScr. Mater2015108151:CAS:528:DC%2BC2MXht1GltLbE10.1016/j.scriptamat.2015.07.021 – reference: EbertHKödderitzschDMinarJCalculating condensed matter properties using the KKR-Green’s function method-recent developments and applicationsRep. Prog. Phys.2011740965012011RPPh...74i6501E10.1088/0034-4885/74/9/096501 – reference: SkriverHCrystal structure from one-electron theoryPhys. Rev. B19853119091985PhRvB..31.1909S1:CAS:528:DyaL2MXhsVWgsr0%3D10.1103/PhysRevB.31.1909 – reference: Moruzzi, V. L. Calculated Electronic Properties of Metals (Pergamon, New York, 1978). – reference: Kübler, J. Theory of Itinerant Electron Magnetism (Oxford University Press, Oxford, 2000). – reference: Dove, M. T. Introduction to Lattice Dynamics (Cambridge University Press, New York, 1993). – reference: KresseGFurthmüllerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475581993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: EbertHMankovskySAnisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theoryPhys. Rev. B2009790452092009PhRvB..79d5209E10.1103/PhysRevB.79.045209 – reference: Ebert, H. (The Munich SPR-KKR package, version 6.3 and 7.2). http://ebert.cup.uni-muenchen.de/SPRKKR. – reference: SvenssonECPowellBMWoodsADBTenchertWDPhonon dispersion in Co0.92Fe0.08Can. J. Phys.1979572531979CaJPh..57..253S1:CAS:528:DyaE1MXks1Kmtr0%3D10.1139/p79-032 – volume: 10 start-page: L311 year: 1998 ident: 3877_CR11 publication-title: J. Phys.: Condens. Matter – volume: 73 start-page: 515 year: 2001 ident: 3877_CR26 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.515 – volume: 64 start-page: 144104 year: 2001 ident: 3877_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.144104 – volume: 156 start-page: 809 year: 1967 ident: 3877_CR41 publication-title: Phys. Rev doi: 10.1103/PhysRev.156.809 – ident: 3877_CR48 – volume: 85 start-page: 125104 year: 2012 ident: 3877_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.125104 – ident: 3877_CR25 – volume: 35 start-page: 1 year: 1981 ident: 3877_CR44 publication-title: Sol. State Phys. doi: 10.1016/S0081-1947(08)60503-2 – volume: 77 start-page: 334 year: 1996 ident: 3877_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.334 – volume: 108 start-page: 1 year: 2015 ident: 3877_CR28 publication-title: Scr. Mater doi: 10.1016/j.scriptamat.2015.07.021 – volume: 25 start-page: 5122 year: 1982 ident: 3877_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.25.5122 – volume: 74 start-page: 012103 year: 2006 ident: 3877_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.012103 – volume: 92 start-page: 224420 year: 2015 ident: 3877_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.224420 – ident: 3877_CR16 – volume: 34 start-page: 1784 year: 1986 ident: 3877_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.1784 – volume: 25 start-page: 136001 year: 2013 ident: 3877_CR31 publication-title: J. Phys.: Condens. Matter – volume: 25 start-page: 53 year: 1978 ident: 3877_CR17 publication-title: Sol. State Commun doi: 10.1016/0038-1098(78)90354-X – volume: 106 start-page: 15560 year: 2009 ident: 3877_CR35 publication-title: PNAS doi: 10.1073/pnas.0904859106 – ident: 3877_CR12 – volume: 12 start-page: 2267 year: 1982 ident: 3877_CR18 publication-title: J. Phys. F doi: 10.1088/0305-4608/12/10/019 – volume: 31 start-page: 1909 year: 1985 ident: 3877_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.31.1909 – ident: 3877_CR33 – volume: 33 start-page: 7852 year: 1986 ident: 3877_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.7852 – ident: 3877_CR7 – volume: 50 start-page: 5918 year: 1994 ident: 3877_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.5918 – volume: 50 start-page: 17953 year: 1994 ident: 3877_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 15 start-page: 1337 year: 1985 ident: 3877_CR42 publication-title: J. Phys. F doi: 10.1088/0305-4608/15/6/018 – volume: 55 start-page: 971 year: 1985 ident: 3877_CR20 publication-title: Sol. State Commun doi: 10.1016/0038-1098(85)90569-1 – ident: 3877_CR29 doi: 10.1103/PhysRevB.54.11169 – volume: 47 start-page: 558 year: 1993 ident: 3877_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – ident: 3877_CR1 doi: 10.1017/CBO9780511805769 – ident: 3877_CR45 doi: 10.1016/0304-8853(87)90721-9 – volume: 77 start-page: 3865 year: 1996 ident: 3877_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 387 year: 1983 ident: 3877_CR3 publication-title: Bulletin of Alloy Phase Diagrams doi: 10.1007/BF02868089 – volume: 78 start-page: 134106 year: 2008 ident: 3877_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.134106 – volume: 75 start-page: 245109 year: 2007 ident: 3877_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.245109 – volume: 27 start-page: 7046 year: 1983 ident: 3877_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.27.7046 – volume: 87 start-page: 156401 year: 2001 ident: 3877_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.156401 – ident: 3877_CR37 doi: 10.1017/CBO9780511619885 – ident: 3877_CR38 – volume: 79 start-page: 045209 year: 2009 ident: 3877_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.045209 – volume: 15 start-page: 2726 year: 1977 ident: 3877_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.15.2726 – ident: 3877_CR36 – volume: 57 start-page: 253 year: 1979 ident: 3877_CR30 publication-title: Can. J. Phys. doi: 10.1139/p79-032 – ident: 3877_CR2 – ident: 3877_CR32 doi: 10.1142/5060 – volume: 74 start-page: 096501 year: 2011 ident: 3877_CR47 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/9/096501 – ident: 3877_CR13 |
SSID | ssj0000529419 |
Score | 2.5214722 |
Snippet | Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully... Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at similar to 700 K has not yet... Abstract Identifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3778 |
SubjectTerms | 119/118 639/301/119/2795 639/301/119/995 Cobalt Free energy High temperature Humanities and Social Sciences Magnetism multidisciplinary Phase transitions Science Science (multidisciplinary) Transition temperatures |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQJCReEDB-ZAxkJOAFrMV2bMePZayakEB7YGhvVuzYagVKpzV92H-_s51GDaDywmtzad0vd767nO87hN7yVjJlQXkh-ChJxWUgtrWKOIhefRkUk21sTv76TZ5fVl-uxNXOqK94JizTA2fgTqogS2W9kK6OdUhbi0ZT1jpw5LzllY-7L_i8nWQqs3ozXVE9dMmUvD5Zg6eK3WSwKceKrSJi4okSYf_fosw_D0uOFdPf2EWTR5o_Qg-HUBLP8l94jO757gm6n4dL3h6i2XwJkR2-2L5NX-Pch49XAUPUhxfumgTn8MUCHBlOPisd38LLDp9GlpD-Kbqcn30_PSfDwATiIDDpiedeBV1X1qvaQh7UWqeDp-AHwaurxnnexJRI2oZ5awFY3wKskMDwRrWy4fwZOuhWnX-BcAhg7C23zIITD5HPlLLGUlVr5bgufYHoFjzjBjbxONTil0lVbV6bDLgBwE0C3IgCfRjvuc5cGnulP8VnMkpGHuz0AWiHGbTD_Es7CnS8faJmMM61oVoIqRjntEBvxstgVrFW0nR-tYkycSRPbGIq0POsAONKWC1jsVIWSE1UY7LU6ZVuuUjU3QJuE_E7P26VaGdZe6B4nxVt8guflz9mCYyf_cJAHs81CL7bJ7jZGJ729KP_ge1L9IAlc5KE6mN00N9s_CuI0Hr7OhnjHQwqNMw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgowEXMDaJE7s5ITKQrVCAu2BRb1Z8YtWoKRs0wP_nhnHCQRQr80kdSYzns8ezzeEPOdW5FKD8QL4SFnBhWfaaskMoFeXepkLi8XJHz-Js4viw6pcxQ23XTxWOc6JYaK2ncE98pOsLkshc86zN9sfDLtGYXY1ttC4Sq4hdRke6ZIrOe2xYBaryOpYK5Py6mQH8QprymBqxrytZOUsHgXa_v9hzX-PTE550784RkNcWt4iNyOgpIvBAm6TK669Q64PLSZ_3iWL5QbwHT0f99R3dKjGp52ngP3o2myZN4aeryGc0RC5wiEuumnpKXKF9PfIxfL959MzFtsmMAPwpGeOO-nrqtBOVhpWQ1ab2rsMoiHEdtkYxxtcGAnd5E5rL1JnhalgGcMbaUXD-X1y1Hate0io9-DylutcQyj3yGqa5Y3OZFVLw-vUJSQbladM5BTH1hbfVcht80oNClegcBUUrsqEvJru2Q6MGgel3-I3mSSRDTv80F1-VdG5VAEvIbUr4TUwV62rsqmz3BoAe9zyAoZ5PH5RFV10p34bVEKeTZfBuTBj0rSu26MMNubBUqaEPBgMYBpJXglMWYqEyJlpzIY6v9Ju1oHAu4TbSnzm69GI_hjWAVW8HAxt9g_vNl8WQRnf-rWC1TyvQfDFIcH9XvEwsz86rJbH5EYeHEWwrD4mR_3l3j0BBNbrp8HNfgE5iyz9 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJuUgowEXCBibcd2fFwWVhUSqAeKerNix-6uQNmqmz303zPjPESgWonrZryZTGY8nzOez4S8FrXi2oHzAviY5YVQMXe107kH9BpmUXNVY3Py12_q5Kz4ci7PDwgfemHSpv1EaZmm6WF32IctJBpsBoM5FQuuOpe3yG2kbkevXqjF-F0FK1cFM31_DMjeMHSSgxJV_0348t9tkmOt9C9e0ZSLlvfJvR5E0nmn9gNyEJqH5E53rOT1IzJfrgHT0dPhO_qWdh34dBMp4D268pd59J6eriCF0ZSt0sYtum7oAvlB2sfkbPn5--Ik749KyD1AkjYPIuhoysIFXTpYAdXOmxgYZEDI57ryQVS4GFKu4sG5qGahVr6EpYuodK0qIZ6Qw2bThGeExghhXgvHHaTviEymjFeO6dJoL8wsZIQNxrO-5xHH4yx-2VTPFqXtDG7B4DYZ3MqMvBvHXHYsGnulP-I7GSWRATv9sLm6sL1H2AIeQrsg4TGwPu1KWRnGaw8AT9SiADWPhzdq-7DcWmakVJoLwTLyarwMAYVVkqoJmx3K4GE82L6UkaedA4ya8FJhmVJlRE9cY6Lq9EqzXiXSbgnDJP7n-8GJ_lBrjynedo42ucOn9Y95MsbPdmVhBS8MCL7ZJ7jbWZFm86P_u_9zcpenwFE5M8fksL3ahReAwlr3MoXdb13qKt8 priority: 102 providerName: Springer Nature |
Title | First Principles Theory of the hcp-fcc Phase Transition in Cobalt |
URI | https://link.springer.com/article/10.1038/s41598-017-03877-5 https://www.ncbi.nlm.nih.gov/pubmed/28630476 https://www.proquest.com/docview/1955672331 https://www.proquest.com/docview/1911700670 https://pubmed.ncbi.nlm.nih.gov/PMC5476570 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211395 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330730 https://doaj.org/article/4f607be56c81440b85a912dc2643d34e |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiDeBpTIScAFDYyd2ckAoW7ZaVdpVBRT1ZsWOTStW6dKmEvvvGTsPEagqcaqUOKkznvF8k8l8g9BLVnAqFCgvgI8hiRi3RBVKEA3o1QytoLxwxckXl_x8Fk3m8fwAte2OGgFudoZ2rp_UbH317tfPm49g8B_qkvHk_QackCsUg_3WJWMFiQ_RMXgm4Qz1ooH7Ndc3TSPf68ORsBMAE7Spo9l9m56v8pT-u3Dov59TdjnVv_hHvc8a30V3GrCJs1o77qEDU95Ht-r2kzcPUDZeAvbD0_Z9-wbXlfp4ZTHgQrzQ18RqjacLcHXYezX_gRdelnjkeESqh2g2Pvs6OidNSwWiAbpUxDAjbJpEyohEQaRUKJ1aE4KnBL8vcm1Y7oImrnJqlLJ8aAquEwhxWC4KnjP2CB2Vq9I8Qdha2A4KpqgCN28d42lIcxWKJBWapUMToLAVntQN37hre3Elfd6bJbIWuASBSy9wGQfoTXfNdc22sXf0qVuTbqRjyvYHVuvvsjE8GcFDCGVieAyXx1ZJnKchLTQAQVawCKZ50q6obLVPhmkcc0EZCwP0ojsNhueyKXlpVls3xjXtcWVOAXpcK0A3E5pwl87kARI91ehNtX-mXC48uXcMl8Xunm9bJfpjWntE8bpWtN4_fFp-y7wwflQLCZE-S2Hgq30Dt1vJ_K7_9L9W4hm6Tb3dcBKmJ-ioWm_NcwBrlRqgQzEXA3ScZZMvE_g9PbucfoajIz4a-BcgA2-jvwHZsTu- |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTQheEN8EBhiJ8QLREjuxkweEuo-qY1tVoQ3tzcSOQytQUtZWaP8UfyN3zgcEUN_22lxS-3x3v7PPd0fIK54LJjUILzgfgR9xUfg619I34L3aoJBM5JicfDoWo_Pow0V8sUF-trkweK2ytYnOUOeVwTPy3TCNYyEZ5-H7-Xcfu0ZhdLVtoVGLxbG9-gFbtsW7owNY3x3Ghodn-yO_6SrgG0DvpW-5lUWaRNrKRMNmIdcmLWwIYAHQJzNjeYb7BqEzZrUuRGBzYRLw8nkmc5HhASiY_C2YVgCGYGvvcDz52J3qYNwsCtMmOyfgye4CEBKz2AAMMFIs_biHgK5RwP-8238vaXaR2r-qmjokHN4htxsXlg5qmbtLNmx5j9yom1pe3SeD4Qw8SjppT_EXtM7_p1VBwdukUzP3C2PoZAoASh1WumtjdFbSfaxOsnxAzq-FpQ_JZlmV9jGhRQFGJueaaXAeCqyjGrJMhzJJpeFpYD0StsxTpqlijs00vikXTeeJqhmugOHKMVzFHnnTvTOva3ispd7DNekosf62-6G6_KIadVYRTEJqG8M0MDqukzhLQ5YbcC95ziMY5na7oqoxCgv1W4Q98rJ7DOqMMZqstNUKabAVECZPeeRRLQDdSFgiMEgqPCJ7otEbav9JOZu6kuExvBbjN9-2QvTHsNaw4nUtaL1_OJh9GjhmfF1OFQthCwGEO-sIVyvFHZY8Wc-WF-Tm6Oz0RJ0cjY-fklvMKY3ww3SbbC4vV_YZ-H9L_bxROko-X7ee_wLZlG1G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviG8KA4zEeIGotZ3YyQNCZaXaGEx9YKhvXuzYtAKlZU2F9q_x13HnfEAB9W2vySVxzvfxs893R8hzUUiuDAgvgI9BFAvpI1MYFVlAr27gFZcFJid_PJGHp_H7aTLdIT_bXBg8VtnaxGCoi4XFPfI-y5JEKi4E6_vmWMRkNH6z_B5hBymMtLbtNGoROXYXP2D5tnp9NIK53ud8_O7TwWHUdBiILHjyKnLCKZ-lsXEqNbBwKIzNvGPgOMANqtw6keMaQpqcO2O8HLhC2hQQv8hVIXPcDAXzf0WJhKGOqanq9ncwghazrMnTGYi0vwJfifls4BYwZqyiZMMXhpYB_8O5_x7X7GK2f9U3DT5xfJPcaMAsHdbSd4vsuPI2uVq3t7y4Q4bjOWBLOmn381e0rgRAF54C7qQzu4y8tXQyA1dKg9cMB8jovKQHWKekuktOL4Wh98huuSjdA0K9B3NTCMMNwAiPFVUZzw1TaaasyAauR1jLPG2beubYVuObDnF1keqa4RoYrgPDddIjL7tnlnU1j63Ub3FOOkqsxB0uLM6_6EaxdQw_oYxL4DcwTm7SJM8YLywATVGIGIa5186obszDSv8W5h551t0GxcZoTV66xRppsCkQplH1yP1aALqR8FRiuFT2iNoQjY2hbt4p57NQPDyBxxJ856tWiP4Y1hZWvKgFbeMLo_nnYWDG12qmOYPFBBDubyNcr7UIXuXhdrY8JddAu_WHo5PjR-Q6DzojI5btkd3qfO0eAxCszJOgcZScXbaK_wLAFXAW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Principles+Theory+of+the+hcp-fcc+Phase+Transition+in+Cobalt&rft.jtitle=Scientific+reports&rft.au=Liz%C3%A1rraga%2C+Raquel&rft.au=Pan%2C+Fan&rft.au=Bergqvist%2C+Lars&rft.au=Holmstr%C3%B6m%2C+Erik&rft.date=2017-06-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-017-03877-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_017_03877_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |