New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb
Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes kary...
Saved in:
Published in | BMC plant biology Vol. 25; no. 1; p. 78 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.01.2025
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.
The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.
The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. |
---|---|
AbstractList | Abstract Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. Results The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. Conclusion The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. BACKGROUND: Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. RESULTS: The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. CONCLUSION: The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. BackgroundFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.ResultsThe findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.ConclusionThe study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. Results The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. Conclusion The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. Keywords: Lycoris, Karyotype, Genome size, FISH, Interspecific relationships, Basic chromosome number Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.BACKGROUNDFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.RESULTSThe findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.CONCLUSIONThe study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. |
ArticleNumber | 78 |
Audience | Academic |
Author | Zhang, Pengchong Zhou, Shujun Zhang, Lu Zhang, Yue Cai, Junhuo Zhang, Yongchun Nie, Zixuan Chen, Yu |
Author_xml | – sequence: 1 givenname: Yue surname: Zhang fullname: Zhang, Yue – sequence: 2 givenname: Shujun surname: Zhou fullname: Zhou, Shujun – sequence: 3 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 4 givenname: Pengchong surname: Zhang fullname: Zhang, Pengchong – sequence: 5 givenname: Yongchun surname: Zhang fullname: Zhang, Yongchun – sequence: 6 givenname: Junhuo surname: Cai fullname: Cai, Junhuo – sequence: 7 givenname: Zixuan surname: Nie fullname: Nie, Zixuan – sequence: 8 givenname: Lu surname: Zhang fullname: Zhang, Lu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39833710$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk0tr3DAQgE1JaR7tH-ihGHppIE4lWc9TCaFtFpYW-jgLWR6vtdjWVrKz3X8f7W6aZksPQWAJ6ZsPZjxzmh0NfoAse43RJcaSv4-YSIEKRFiBOMakWD_LTjAVuCCEqKNH5-PsNMYlQlhIql5kx6WSZSkwOsnCF1jnbohu0Y4xHUa__UCIK7AOYh6gM6PzQ2zdKl7ktg2-99H3psvh1nfT9u0iN0Odt5squDp3NQyja5zdhSVZPraQzzfWBxfzGwjVy-x5Y7oIr-73s-znp48_rm-K-dfPs-ureWE5ZmPBVMMZM4bIuqotodhUFFRdNY0kVVUihTjFQCylDWVWKmC1KgUnxMpKSVuWZ9ls7629WepVcL0JG-2N07sLHxbahNHZDrQBwWmKx4hhyhitKsVqgxtrRcMFiOT6sHetpqqH2qYcg-kOpIcvg2v1wt9qjAVVpdoa3t0bgv81QRx176KFrjMD-CnqkiBOEBXoCSjmTHIm6FNQJlI-HNGEvv0HXfopDOkP7ISM4NQQf6mFSXVxQ-NTOnYr1VeS0JJyKVSiLv9DpVVD72zq0sal-4OA84OAxIzwe1yYKUY9-_7tkH3zuNYPRf7TtAkge8AGH2OA5gHBSG8nQ-8nQ6fJ0LvJ0OvyDhTH_yw |
Cites_doi | 10.1002/ece3.5252 10.1038/nprot.2007.310 10.1016/j.pbi.2005.01.014 10.21273/JASHS.134.5.567 10.1270/jsbbs.56.209 10.1016/j.bse.2015.08.006 10.1111/j.1442-1984.1989.tb00047.x 10.15281/jplantres1887.46.426 10.1093/oxfordjournals.aob.a087847 10.3199/iscb.1.1 10.1002/cyto.a.24499 10.1007/s00606-013-0785-y 10.1016/S0168-9525(00)02157-0 10.1016/j.scienta.2018.06.055 10.1508/cytologia.51.803 10.1016/j.scienta.2019.03.035 10.1007/s00412-009-0205-9 10.1186/1471-2148-12-225 10.1007/s00606-012-0652-2 10.1016/j.scienta.2020.109359 10.1590/S0006-87052010000200003 10.1508/cytologia.52.19 10.1007/s00299-015-1828-3 10.1007/s10681-007-9538-8 10.1159/000121083 10.1111/j.1420-9101.2007.01416.x 10.1508/cytologia.86.29 10.1093/aob/mci019 10.1266/ggs.81.243 10.1111/j.1759-6831.2012.00235.x 10.1007/s00606-008-0015-1 10.1016/j.plantsci.2007.03.002 10.1007/s10528-006-9023-4 10.1508/cytologia.52.137 10.1007/s13580-014-0066-x 10.1360/aps050108 10.1007/s00122-018-3148-9 10.1038/1971229b0 10.1038/s41477-022-01129-7 10.1093/oxfordjournals.jhered.a023072 10.21273/HORTSCI.46.4.558 10.1016/j.pbi.2007.01.001 10.1007/s00412-012-0368-7 10.1111/j.1601-5223.1964.tb01953.x 10.1508/cytologia.53.323 10.1007/s00606-012-0657-x 10.1126/science.220.4601.1049 10.11110/kjpt.1995.25.4.237 10.2307/1221906 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X2 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7N M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s12870-025-06112-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA AGRICOLA Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1471-2229 |
EndPage | 78 |
ExternalDocumentID | oai_doaj_org_article_ae7645d910514554bb95da1fcc7f67e7 PMC11749397 A824346879 39833710 10_1186_s12870_025_06112_w |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31960327 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M7N PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c615t-59f655aa28dbdc241ab4e9dbff82bb3090641e2c44f45c89e5d937622c8b98c33 |
IEDL.DBID | M48 |
ISSN | 1471-2229 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Thu Aug 21 18:41:04 EDT 2025 Fri Jul 11 17:30:21 EDT 2025 Fri Jul 11 07:17:41 EDT 2025 Fri Jul 11 09:55:02 EDT 2025 Fri Jul 25 19:15:40 EDT 2025 Tue Jun 17 22:00:02 EDT 2025 Tue Jun 10 20:54:23 EDT 2025 Fri Jun 27 05:15:09 EDT 2025 Mon Jul 21 05:33:57 EDT 2025 Tue Jul 01 03:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genome size Lycoris FISH Basic chromosome number Interspecific relationships Karyotype |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c615t-59f655aa28dbdc241ab4e9dbff82bb3090641e2c44f45c89e5d937622c8b98c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12870-025-06112-w |
PMID | 39833710 |
PQID | 3165521710 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae7645d910514554bb95da1fcc7f67e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11749397 proquest_miscellaneous_3206204707 proquest_miscellaneous_3165865747 proquest_miscellaneous_3157554604 proquest_journals_3165521710 gale_infotracmisc_A824346879 gale_infotracacademiconefile_A824346879 gale_incontextgauss_ISR_A824346879 pubmed_primary_39833710 crossref_primary_10_1186_s12870_025_06112_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-21 |
PublicationDateYYYYMMDD | 2025-01-21 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC plant biology |
PublicationTitleAlternate | BMC Plant Biol |
PublicationYear | 2025 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Y Chang (6112_CR29) 2009; 134 T Ogawa (6112_CR32) 2006; 56 S Zhou (6112_CR11) 2007; 45 S Castro (6112_CR25) 2007; 172 K Oginuma (6112_CR50) 2021; 86 A Levan (6112_CR65) 1964; 52 MC Acosta (6112_CR38) 2012; 298 S Kurita (6112_CR16) 1987; 52 LW Nie (6112_CR54) 2000; 17 D Briggs (6112_CR67) 1984 PC Zhang (6112_CR3) 2015; 44 I Schubert (6112_CR46) 2007; 10 L Cui (6112_CR30) 2002; 19 Y Chang (6112_CR42) 2013; 299 K Liu (6112_CR19) 2012; 298 E Sliwinska (6112_CR71) 2022; 101 E Martel (6112_CR44) 1997; 88 K Liu (6112_CR7) 2019; 9 CD Darlington (6112_CR21) 1963 S Kurita (6112_CR15) 1987; 52 CT Shii (6112_CR20) 1996; 430 KH Tae (6112_CR2) 1995; 25 J Zeng (6112_CR37) 2020; 267 T Schwarzacher (6112_CR34) 1989; 64 S Kurita (6112_CR40) 1986; 51 MS Roh (6112_CR53) 2002; 43 MH Abd El-Twab (6112_CR31) 2006; 1 F Lin (6112_CR26) 2018; 4 M Li (6112_CR64) 1985; 3 J Doyle (6112_CR72) 1990; 12 Y Lan (6112_CR60) 2018; 240 M Guerra (6112_CR23) 2008; 120 A Younis (6112_CR35) 2015; 34 S Bose (6112_CR18) 1963; 197 IJ Leitch (6112_CR47) 2007; 20 CR Zarco (6112_CR48) 1986; 35 M Said (6112_CR36) 2018; 131 S Kurita (6112_CR14) 1989; 4 M Li (6112_CR49) 1988; 7 S Inariyama (6112_CR12) 1932; 46 BS Lee (6112_CR10) 2004; 26 DA Petrov (6112_CR24) 2001; 17 BJM Zonneveld (6112_CR27) 2008; 275 DW Galbraith (6112_CR69) 1983; 220 J Greilhuber (6112_CR74) 2009; 118 Y Liu (6112_CR17) 1989; 27 J Greilhuber (6112_CR73) 2005; 95 6112_CR55 S Shi (6112_CR8) 2006; 44 TA Hori (6112_CR5) 2006; 81 X Qi (6112_CR57) 2015; 62 S Shi (6112_CR9) 2014; 176 L Wei (6112_CR52) 2013; 21 S Zhou (6112_CR62) 2008; 160 VH Techio (6112_CR43) 2010; 69 Y Liu (6112_CR68) 2022; 8 PS Hsu (6112_CR4) 1994; 16 JM Jiang (6112_CR28) 2017; 49 F Roa (6112_CR33) 2012; 12 G Stebbins (6112_CR51) 1971 S Inariyama (6112_CR6) 1951; 7 HM Elamein (6112_CR45) 2007; 10 PC Hsu (6112_CR56) 1984; 22 J Doležel (6112_CR70) 2007; 2 Y Zhang (6112_CR66) 2013; 51 6112_CR61 S Inariyama (6112_CR13) 1951; 7 HI Lee (6112_CR39) 2014; 55 S Kurita (6112_CR41) 1988; 53 L Zhang (6112_CR1) 2002; 29 S Zhou (6112_CR63) 2011; 46 Q Cao (6112_CR59) 2019; 252 S Garcia (6112_CR58) 2012; 121 A Kato (6112_CR22) 2005; 8 |
References_xml | – volume: 9 start-page: 6849 year: 2019 ident: 6112_CR7 publication-title: Ecol Evol doi: 10.1002/ece3.5252 – volume-title: Chromosomal evolution in higher plants year: 1971 ident: 6112_CR51 – volume: 2 start-page: 2233 year: 2007 ident: 6112_CR70 publication-title: Nat Protoc doi: 10.1038/nprot.2007.310 – volume: 7 start-page: 75 year: 1951 ident: 6112_CR13 publication-title: Sci Rep Tokyo Bunrika Daig – volume: 8 start-page: 148 year: 2005 ident: 6112_CR22 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2005.01.014 – volume: 134 start-page: 567 year: 2009 ident: 6112_CR29 publication-title: J Am Soc Hort Sci doi: 10.21273/JASHS.134.5.567 – volume: 56 start-page: 209 year: 2006 ident: 6112_CR32 publication-title: Breed Sci doi: 10.1270/jsbbs.56.209 – volume: 62 start-page: 164 year: 2015 ident: 6112_CR57 publication-title: Biochem Syst Ecol doi: 10.1016/j.bse.2015.08.006 – volume: 4 start-page: 47 year: 1989 ident: 6112_CR14 publication-title: Plant Species Biol doi: 10.1111/j.1442-1984.1989.tb00047.x – volume: 46 start-page: 426 year: 1932 ident: 6112_CR12 publication-title: Bot Mag Tokyo doi: 10.15281/jplantres1887.46.426 – volume: 27 start-page: 257 year: 1989 ident: 6112_CR17 publication-title: J Syst Evol – volume: 64 start-page: 315 year: 1989 ident: 6112_CR34 publication-title: Ann Bot doi: 10.1093/oxfordjournals.aob.a087847 – volume: 1 start-page: 1 year: 2006 ident: 6112_CR31 publication-title: Chromosome Bot doi: 10.3199/iscb.1.1 – volume: 101 start-page: 749 year: 2022 ident: 6112_CR71 publication-title: Cytom doi: 10.1002/cyto.a.24499 – volume-title: Chromosome Bot and the origins of cultivated plants year: 1963 ident: 6112_CR21 – volume: 299 start-page: 1141 year: 2013 ident: 6112_CR42 publication-title: Plant Syst Evol doi: 10.1007/s00606-013-0785-y – volume: 7 start-page: 7 year: 1988 ident: 6112_CR49 publication-title: Biol Bull – volume: 17 start-page: 23 year: 2001 ident: 6112_CR24 publication-title: Trends Genet doi: 10.1016/S0168-9525(00)02157-0 – volume: 26 start-page: 83 year: 2004 ident: 6112_CR10 publication-title: Korean J Genet – volume: 7 start-page: 103 year: 1951 ident: 6112_CR6 publication-title: Sci Rep Tokyo Bunrika Daig – volume: 16 start-page: 301 year: 1994 ident: 6112_CR4 publication-title: Sida – volume: 49 start-page: 2197 year: 2017 ident: 6112_CR28 publication-title: Pak J Bot – volume: 240 start-page: 638 year: 2018 ident: 6112_CR60 publication-title: Sci Hortic doi: 10.1016/j.scienta.2018.06.055 – volume: 51 start-page: 803 year: 1986 ident: 6112_CR40 publication-title: Cytologia doi: 10.1508/cytologia.51.803 – volume: 252 start-page: 48 year: 2019 ident: 6112_CR59 publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.03.035 – volume: 4 start-page: 985 year: 2018 ident: 6112_CR26 publication-title: Acta Agrestia Sin – volume: 118 start-page: 391 year: 2009 ident: 6112_CR74 publication-title: Chromosoma doi: 10.1007/s00412-009-0205-9 – volume: 12 start-page: 1 year: 2012 ident: 6112_CR33 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-12-225 – volume: 298 start-page: 1493 year: 2012 ident: 6112_CR19 publication-title: Plant Syst Evol doi: 10.1007/s00606-012-0652-2 – volume: 3 start-page: 297 year: 1985 ident: 6112_CR64 publication-title: J Wuhan Bot Res – volume: 430 start-page: 521 year: 1996 ident: 6112_CR20 publication-title: Acta Hort – volume: 43 start-page: 120 year: 2002 ident: 6112_CR53 publication-title: Hortic Environ Biotechnol – volume: 267 start-page: 109359 year: 2020 ident: 6112_CR37 publication-title: Sci Hortic doi: 10.1016/j.scienta.2020.109359 – volume: 69 start-page: 273 year: 2010 ident: 6112_CR43 publication-title: Bragantia doi: 10.1590/S0006-87052010000200003 – volume: 52 start-page: 19 year: 1987 ident: 6112_CR15 publication-title: Cytologia doi: 10.1508/cytologia.52.19 – volume: 34 start-page: 1477 year: 2015 ident: 6112_CR35 publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1828-3 – volume: 160 start-page: 207 year: 2008 ident: 6112_CR62 publication-title: Euphytica doi: 10.1007/s10681-007-9538-8 – volume: 120 start-page: 339 year: 2008 ident: 6112_CR23 publication-title: Cytogenet Genome Res doi: 10.1159/000121083 – volume: 20 start-page: 2296 year: 2007 ident: 6112_CR47 publication-title: J Evol Biol doi: 10.1111/j.1420-9101.2007.01416.x – volume: 86 start-page: 29 year: 2021 ident: 6112_CR50 publication-title: Cytologia doi: 10.1508/cytologia.86.29 – volume: 176 start-page: 115 year: 2014 ident: 6112_CR9 publication-title: Bot J Linn Soc – volume: 95 start-page: 255 year: 2005 ident: 6112_CR73 publication-title: Ann Bot doi: 10.1093/aob/mci019 – volume: 22 start-page: 46 year: 1984 ident: 6112_CR56 publication-title: Acta Phytotaxonomica Sinica – volume: 81 start-page: 243 year: 2006 ident: 6112_CR5 publication-title: Genes Genet Syst doi: 10.1266/ggs.81.243 – volume: 12 start-page: 13 year: 1990 ident: 6112_CR72 publication-title: Focus – volume: 51 start-page: 335 year: 2013 ident: 6112_CR66 publication-title: J Syst Evol doi: 10.1111/j.1759-6831.2012.00235.x – volume-title: Plant variation and evolution year: 1984 ident: 6112_CR67 – volume: 44 start-page: 168 year: 2015 ident: 6112_CR3 publication-title: Subtropical Plant Sci – ident: 6112_CR55 – volume: 275 start-page: 109 year: 2008 ident: 6112_CR27 publication-title: Plant Syst Evol doi: 10.1007/s00606-008-0015-1 – volume: 172 start-page: 1131 year: 2007 ident: 6112_CR25 publication-title: Plant Sci doi: 10.1016/j.plantsci.2007.03.002 – volume: 44 start-page: 198 year: 2006 ident: 6112_CR8 publication-title: Biochem Genet doi: 10.1007/s10528-006-9023-4 – ident: 6112_CR61 – volume: 52 start-page: 137 year: 1987 ident: 6112_CR16 publication-title: Cytologia doi: 10.1508/cytologia.52.137 – volume: 55 start-page: 514 year: 2014 ident: 6112_CR39 publication-title: Hortic Environ Biotechnol doi: 10.1007/s13580-014-0066-x – volume: 45 start-page: 513 year: 2007 ident: 6112_CR11 publication-title: Acta Phytotaxon Sin doi: 10.1360/aps050108 – volume: 131 start-page: 2213 year: 2018 ident: 6112_CR36 publication-title: Theor Appl Genet doi: 10.1007/s00122-018-3148-9 – volume: 197 start-page: 1229 year: 1963 ident: 6112_CR18 publication-title: Nature doi: 10.1038/1971229b0 – volume: 8 start-page: 389 year: 2022 ident: 6112_CR68 publication-title: Nat Plants doi: 10.1038/s41477-022-01129-7 – volume: 88 start-page: 139 year: 1997 ident: 6112_CR44 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a023072 – volume: 46 start-page: 558 year: 2011 ident: 6112_CR63 publication-title: HortScience doi: 10.21273/HORTSCI.46.4.558 – volume: 29 start-page: 915 year: 2002 ident: 6112_CR1 publication-title: J Genet Genomics – volume: 10 start-page: 109 year: 2007 ident: 6112_CR46 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2007.01.001 – volume: 121 start-page: 389 year: 2012 ident: 6112_CR58 publication-title: Chromosoma doi: 10.1007/s00412-012-0368-7 – volume: 52 start-page: 201 year: 1964 ident: 6112_CR65 publication-title: Hereditas doi: 10.1111/j.1601-5223.1964.tb01953.x – volume: 17 start-page: 19 year: 2000 ident: 6112_CR54 publication-title: J Biol – volume: 10 start-page: 55 year: 2007 ident: 6112_CR45 publication-title: Chromosome Sci – volume: 53 start-page: 323 year: 1988 ident: 6112_CR41 publication-title: Cytologia doi: 10.1508/cytologia.53.323 – volume: 21 start-page: 109 year: 2013 ident: 6112_CR52 publication-title: J Trop Subtrop Bot – volume: 19 start-page: 11406 year: 2002 ident: 6112_CR30 publication-title: Int J Mol Sci – volume: 298 start-page: 1547 year: 2012 ident: 6112_CR38 publication-title: Plant Syst Evol doi: 10.1007/s00606-012-0657-x – volume: 220 start-page: 1049 year: 1983 ident: 6112_CR69 publication-title: Science doi: 10.1126/science.220.4601.1049 – volume: 25 start-page: 237 year: 1995 ident: 6112_CR2 publication-title: Kor J Plant Tax doi: 10.11110/kjpt.1995.25.4.237 – volume: 35 start-page: 526 year: 1986 ident: 6112_CR48 publication-title: Taxon doi: 10.2307/1221906 |
SSID | ssj0017849 |
Score | 2.4217477 |
Snippet | Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant... Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose... BackgroundFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant... BACKGROUND: Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose... Abstract Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 78 |
SubjectTerms | Asymmetry Basic chromosome number Chromosome number Chromosomes Chromosomes, Plant - genetics Classification Clustering Correlation analysis Cytogenetics Evolution Evolution & development Evolution, Molecular FISH Flow cytometry Flowers & plants Fluorescence Fluorescence in situ hybridization genetic background Genetic diversity Genome Size Genome, Plant - genetics Genomes genomics genus haploidy Hybridization Hybridization, Genetic Hybrids In Situ Hybridization, Fluorescence Interspecific hybridization Interspecific relationships Karyotype Karyotypes Karyotyping Lycoris Lycoris - classification Lycoris - genetics Lycoris aurea nuclear genome parentage Phylogeny Species Species classification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gIIOQONCoefh5bBHVgoADUKk3y082hybVZpdq_33HTrLaCKlcuERRPImceXi-kWfGCL2TghWOljWsftrnxOuQG2J87quCGU6YcyYWJ3_7zhbn5MsFvdg76ivmhA3tgQfGHWvPGaEOvBqNPbWJMZI6XQZreWDcpzpy8HlTMDXuH3BB5FQiI9hxX8b9vDwe3Qr-K57lMXNDqVv_32vynlOaJ0zueaCzB-j-CB3xyTDlh-iObx-hu6cdwLvtY7SC5Qo3bR-D7R5u1l28DKWUEA3j1ZT1tmyu-iNslzEPr-8u4Yv-z6h_R1i3Di-3sYoLN25MJEqvwccwYEX8dQvhatPjBYjjCTo_-_Tr4yIfD1TILQCXdU5lYJRqXQlnnAXfrQ3x0pkQRGVMXUjAJ6WvLCGBUCukB77DAlRVVhgpbF0_RQdt1_rnCAutLeXOGGYo4ZTroEEexskQSNzMzNCHib_qauiboVK8IZgapKFAGipJQ11n6DSKYEcZe16nB6AJatQE9S9NyNDbKEAVu1q0MW3mt970vfr884c6ERWpCRNcZuj9SBQ6EKXVYxUC_FVshDWjPJxRgtnZ-fCkJ2o0-17VJfAXgryyyNCb3XB8M6aytb7bRBpAyJSwgtxGA8CQUQj1bqEBa6oKwgugeTao545_tRR1nWYhZoo7Y_B8pG2Wqbl4CSGqBJD64n-I5CW6VyWjK_OqPEQH69XGvwIQtzavk73eAMpuRr0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5B4cAF8W5KQQtC4kCt-rHPE2oRVUDAAaiU22qfTQ7YaZyA8u-ZcZxQCykXK_KOHXtnZucb7zwIeaOVyAMvKlj9bMxYtClzzMUslrlwkokQHCYnf_0mxpfs84RP-g9ubR9WuV0Tu4U6NB6_kZ9WheBgasAgvp9fZ9g1CndX-xYat8kdLF2GIV1ysnO4CqmY3ibKKHHaFrirl2EDV7Bi2NFjYIy6mv3_r8w3TNMwbPKGHbp4QO73AJKebTj-kNyK9SNy97wBkLd-TBawaNFZ3aLL3cKPZYOHTUIl-MR0sY19m87m7Qn1U4zGa5tfcMf4u5fCE2rrQKdrzOWis9CHE3WXwc0oIEb6ZQ1O66ylY2DKE3J58fHnh3HWt1XIPMCXZcZ1gqm0tlTBBQ8W3DoWdXApqdK5KteAUopYesYS417pyANgGFGWXjmtfFU9JQd1U8dDQpW1nsvgnHCcSS5tsjIJF3RKDLc0R-Tddn7NfFM9w3RehxJmww0D3DAdN8yfETlHFuwosfJ1d6JZXJlekYyNUjB4ogILtwMWck7zYIvkPfyzjHJEXiMDDda2qDF45squ2tZ8-vHdnKmSVUwoqUfkbU-UGmClt30uArwVlsMaUB4PKEH5_HB4KyemV_7W_BPVEXm1G8YrMaCtjs0KaQAncyZyto8G4KHg4PDtoQGdKnMmc6B5thHP3fxVWlVV9xRqILiDCR6O1LNpV2K8AEdVA1Q92v9-z8m9slOnIiuLY3KwXKziCwBpS_ey08S_SAI9_g priority: 102 providerName: ProQuest |
Title | New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39833710 https://www.proquest.com/docview/3165521710 https://www.proquest.com/docview/3157554604 https://www.proquest.com/docview/3165865747 https://www.proquest.com/docview/3206204707 https://pubmed.ncbi.nlm.nih.gov/PMC11749397 https://doaj.org/article/ae7645d910514554bb95da1fcc7f67e7 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF714IEXxE1KiQxC4oEafOzlB4Qa1CogWqFApIiX1Z5NJGqXOAHy75nd2KEWVV6sKDve2HPsfJOdnUHoZcFpYkiaw-onbYytdLHCysY2S6himBqj_OHks3M6HONPEzLZQW27o4aB9Y2hne8nNZ7_ePPn5-o9GPy7YPCcvq1Tv1sX-8as4J18p45dtA-eiXlDPcP_dhUYD3A4hQU59n2s20M0N87RcVShnv__q_Y1t9VNqbzmo07vojsNuIyO19pwD-3Y8j66NagAAK4eoDksaNGsrH04XsOHReUv68OWEC9H8zYvbjq7qo8iPfWZenV1CTPaX42GHkWyNNF05c95RTPTpBqF22CyCNBk9HkFAe2sjoYgsIdofHry7cMwblouxBqgzSImhaOESJlxo4wGHkqFbWGUczxTKk8KQDCpzTTGDhPNC0sM4BuaZZqrgus8f4T2yqq0T1DEpdSEGaWoIpgRJp1kjipTOIf9dmcPvW75K67WlTVEiEg4FWtpCJCGCNIQv3to4EWwofRVscMX1fxCNEYmpGUUwxOlvqg74CSlCmJk6rSGX2aW9dALL0Dh616UPrHmQi7rWnz8OhLHPMM5ppwVPfSqIXIViFLL5pwCvJUvldWhPOxQgmHq7nCrJ6LVa5GnwF8IA9Okh55vhv2dPtmttNXS0wCGJpgmeBsNQEdKIBjcQgP2liWYJUDzeK2eG_7lBc_z8BS8o7gdBndHytk0lB9PIYgtAMYebH_9p-h2FswJbC09RHuL-dI-AwC3UH20yyasj_YHJ-dfRv3wN0g_WCpcR4PvfwHVeEeZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqFgkuiDeBAgaBONBV92F77QNCDbRKaBqh0kq9Gb-2yYHdkE2o8qf4jYz3EbpCyq2XKIpnnV3PeL6Z9TwQeis4Cy2NEtB-ygXEqSzQRLvAxSHTKWHWap-cfDJmg3Py9YJebKE_bS6MD6tsdWKlqG1h_Dvy_SRiFKAGAPHT7Ffgu0b509W2hUYtFsdudQUuW_lx-AX4-y6Ojw7PPg-CpqtAYAC9FwEVGcykVMyttgYATGnihNVZxmOtk1AASEcuNoRkhBouHLUA4SyODdeCG_8CFFT-DknAldlGO_3D8bfT9blFyoloU3M42y8jf44Y-JaxgJu-h0gH_qouAf9jwTUw7AZqXkO-o3vobmOy4oNaxu6jLZc_QLf6BZiVq4doDmoST_PSO_klfFkU_qNO4QQvHM_baLvJdFbuYTPx8X9l8RNmdL8bud_DKrd4svLZY3hqmwCm6jKYDIONikcrcJOnJR6AGDxC5zey5I_Rdl7k7inCXClDU6s105SkNFWZSjOmrcgy4g9Re-hDu75yVtfrkJWfw5msuSGBG7Lihrzqob5nwZrS19qufijml7LZulK5lBG4o8iXigfrS2tBrYoyY-CfU5f20BvPQOmraeQ-XOdSLctSDr-fygMek4Qwnooeet8QZQWw0qgm-wGeyhfg6lDudihhu5vucCsnslE3pfy3OXro9XrYX-lD6HJXLD0NWOaUsJBsogGDlFFwMTfQwC6OQ5KGQPOkFs_1-iWCJ0l1F7wjuJ0F7o7k00lV1DwC11iAcfxs8_O9QrcHZycjORqOj5-jO3G1taIgjnbR9mK-dC_ARFzol82-xOjHTauCv4CffIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+interspecies+relationships%2C+chromosomal+evolution%2C+and+hybrid+identification+in+the+Lycoris+Herb&rft.jtitle=BMC+plant+biology&rft.au=Zhang%2C+Yue&rft.au=Zhou%2C+Shujun&rft.au=Chen%2C+Yu&rft.au=Zhang%2C+Pengchong&rft.date=2025-01-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12870-025-06112-w&rft.externalDocID=A824346879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |