New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb

Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes kary...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 25; no. 1; p. 78
Main Authors Zhang, Yue, Zhou, Shujun, Chen, Yu, Zhang, Pengchong, Zhang, Yongchun, Cai, Junhuo, Nie, Zixuan, Zhang, Lu
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.01.2025
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
AbstractList Abstract Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. Results The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. Conclusion The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
BACKGROUND: Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. RESULTS: The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. CONCLUSION: The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
BackgroundFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.ResultsThe findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.ConclusionThe study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. Results The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. Conclusion The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris. Keywords: Lycoris, Karyotype, Genome size, FISH, Interspecific relationships, Basic chromosome number
Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level. The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids. The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.BACKGROUNDFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant challenges to the identification and classification of hybrids, thereby impacting the application and development of Lycoris. This study utilizes karyotype structure, genome size, and fluorescent in situ hybridization (FISH) technology to explore the chromosomal evolution and hybrid identification of Lycoris employing three approaches at the cytogenetic level.The findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.RESULTSThe findings indicate that species with a smaller basic chromosome number exhibit less asymmetry than those with a larger basic chromosome number, suggesting that species with different basic chromosome numbers may have followed different evolutionary pathways. Lycoris aurea has a more symmetrical karyotype, which may be the plesiomorphic state, reflecting an evolutionary transition from symmetry to asymmetry in Lycoris chromosomes. Systematic clustering of 18 Lycoris species is consistent with chromosomal karyotype classification, primarily dividing into two groups: species with M + T + A type an M + T type as one group, and A type as another group. The average nuclear genome size (C-value) of the Lycoris genus is 22.99 Gb, with the smallest genome being that of L. wulingensis (17.10 Gb) and the largest being L. squamigera (33.06 Gb). Chromosome length is positively correlated with the C-value, and the haploid genome size (Cx-value) decreases with an increase in basic chromosome number (x). The FISH technique can quickly identify and authenticate artificial hybrids, thus inferring the parentage of natural hybrids.The study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.CONCLUSIONThe study reveals the genetic background and interspecific relationships of 18 Lycoris species, identifies the authenticity of artificial Lycoris hybrids, and infers the possible parentage of natural hybrids, offering technical insights for the identification, classification, and genomic projects of Lycoris.
ArticleNumber 78
Audience Academic
Author Zhang, Pengchong
Zhou, Shujun
Zhang, Lu
Zhang, Yue
Cai, Junhuo
Zhang, Yongchun
Nie, Zixuan
Chen, Yu
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
– sequence: 2
  givenname: Shujun
  surname: Zhou
  fullname: Zhou, Shujun
– sequence: 3
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 4
  givenname: Pengchong
  surname: Zhang
  fullname: Zhang, Pengchong
– sequence: 5
  givenname: Yongchun
  surname: Zhang
  fullname: Zhang, Yongchun
– sequence: 6
  givenname: Junhuo
  surname: Cai
  fullname: Cai, Junhuo
– sequence: 7
  givenname: Zixuan
  surname: Nie
  fullname: Nie, Zixuan
– sequence: 8
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39833710$$D View this record in MEDLINE/PubMed
BookMark eNqNk0tr3DAQgE1JaR7tH-ihGHppIE4lWc9TCaFtFpYW-jgLWR6vtdjWVrKz3X8f7W6aZksPQWAJ6ZsPZjxzmh0NfoAse43RJcaSv4-YSIEKRFiBOMakWD_LTjAVuCCEqKNH5-PsNMYlQlhIql5kx6WSZSkwOsnCF1jnbohu0Y4xHUa__UCIK7AOYh6gM6PzQ2zdKl7ktg2-99H3psvh1nfT9u0iN0Odt5squDp3NQyja5zdhSVZPraQzzfWBxfzGwjVy-x5Y7oIr-73s-znp48_rm-K-dfPs-ureWE5ZmPBVMMZM4bIuqotodhUFFRdNY0kVVUihTjFQCylDWVWKmC1KgUnxMpKSVuWZ9ls7629WepVcL0JG-2N07sLHxbahNHZDrQBwWmKx4hhyhitKsVqgxtrRcMFiOT6sHetpqqH2qYcg-kOpIcvg2v1wt9qjAVVpdoa3t0bgv81QRx176KFrjMD-CnqkiBOEBXoCSjmTHIm6FNQJlI-HNGEvv0HXfopDOkP7ISM4NQQf6mFSXVxQ-NTOnYr1VeS0JJyKVSiLv9DpVVD72zq0sal-4OA84OAxIzwe1yYKUY9-_7tkH3zuNYPRf7TtAkge8AGH2OA5gHBSG8nQ-8nQ6fJ0LvJ0OvyDhTH_yw
Cites_doi 10.1002/ece3.5252
10.1038/nprot.2007.310
10.1016/j.pbi.2005.01.014
10.21273/JASHS.134.5.567
10.1270/jsbbs.56.209
10.1016/j.bse.2015.08.006
10.1111/j.1442-1984.1989.tb00047.x
10.15281/jplantres1887.46.426
10.1093/oxfordjournals.aob.a087847
10.3199/iscb.1.1
10.1002/cyto.a.24499
10.1007/s00606-013-0785-y
10.1016/S0168-9525(00)02157-0
10.1016/j.scienta.2018.06.055
10.1508/cytologia.51.803
10.1016/j.scienta.2019.03.035
10.1007/s00412-009-0205-9
10.1186/1471-2148-12-225
10.1007/s00606-012-0652-2
10.1016/j.scienta.2020.109359
10.1590/S0006-87052010000200003
10.1508/cytologia.52.19
10.1007/s00299-015-1828-3
10.1007/s10681-007-9538-8
10.1159/000121083
10.1111/j.1420-9101.2007.01416.x
10.1508/cytologia.86.29
10.1093/aob/mci019
10.1266/ggs.81.243
10.1111/j.1759-6831.2012.00235.x
10.1007/s00606-008-0015-1
10.1016/j.plantsci.2007.03.002
10.1007/s10528-006-9023-4
10.1508/cytologia.52.137
10.1007/s13580-014-0066-x
10.1360/aps050108
10.1007/s00122-018-3148-9
10.1038/1971229b0
10.1038/s41477-022-01129-7
10.1093/oxfordjournals.jhered.a023072
10.21273/HORTSCI.46.4.558
10.1016/j.pbi.2007.01.001
10.1007/s00412-012-0368-7
10.1111/j.1601-5223.1964.tb01953.x
10.1508/cytologia.53.323
10.1007/s00606-012-0657-x
10.1126/science.220.4601.1049
10.11110/kjpt.1995.25.4.237
10.2307/1221906
ContentType Journal Article
Copyright 2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-025-06112-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
AGRICOLA
Agricultural Science Database



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 78
ExternalDocumentID oai_doaj_org_article_ae7645d910514554bb95da1fcc7f67e7
PMC11749397
A824346879
39833710
10_1186_s12870_025_06112_w
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31960327
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c615t-59f655aa28dbdc241ab4e9dbff82bb3090641e2c44f45c89e5d937622c8b98c33
IEDL.DBID M48
ISSN 1471-2229
IngestDate Wed Aug 27 01:30:12 EDT 2025
Thu Aug 21 18:41:04 EDT 2025
Fri Jul 11 17:30:21 EDT 2025
Fri Jul 11 07:17:41 EDT 2025
Fri Jul 11 09:55:02 EDT 2025
Fri Jul 25 19:15:40 EDT 2025
Tue Jun 17 22:00:02 EDT 2025
Tue Jun 10 20:54:23 EDT 2025
Fri Jun 27 05:15:09 EDT 2025
Mon Jul 21 05:33:57 EDT 2025
Tue Jul 01 03:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genome size
Lycoris
FISH
Basic chromosome number
Interspecific relationships
Karyotype
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c615t-59f655aa28dbdc241ab4e9dbff82bb3090641e2c44f45c89e5d937622c8b98c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12870-025-06112-w
PMID 39833710
PQID 3165521710
PQPubID 24069
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ae7645d910514554bb95da1fcc7f67e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11749397
proquest_miscellaneous_3206204707
proquest_miscellaneous_3165865747
proquest_miscellaneous_3157554604
proquest_journals_3165521710
gale_infotracmisc_A824346879
gale_infotracacademiconefile_A824346879
gale_incontextgauss_ISR_A824346879
pubmed_primary_39833710
crossref_primary_10_1186_s12870_025_06112_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-21
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC plant biology
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2025
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References Y Chang (6112_CR29) 2009; 134
T Ogawa (6112_CR32) 2006; 56
S Zhou (6112_CR11) 2007; 45
S Castro (6112_CR25) 2007; 172
K Oginuma (6112_CR50) 2021; 86
A Levan (6112_CR65) 1964; 52
MC Acosta (6112_CR38) 2012; 298
S Kurita (6112_CR16) 1987; 52
LW Nie (6112_CR54) 2000; 17
D Briggs (6112_CR67) 1984
PC Zhang (6112_CR3) 2015; 44
I Schubert (6112_CR46) 2007; 10
L Cui (6112_CR30) 2002; 19
Y Chang (6112_CR42) 2013; 299
K Liu (6112_CR19) 2012; 298
E Sliwinska (6112_CR71) 2022; 101
E Martel (6112_CR44) 1997; 88
K Liu (6112_CR7) 2019; 9
CD Darlington (6112_CR21) 1963
S Kurita (6112_CR15) 1987; 52
CT Shii (6112_CR20) 1996; 430
KH Tae (6112_CR2) 1995; 25
J Zeng (6112_CR37) 2020; 267
T Schwarzacher (6112_CR34) 1989; 64
S Kurita (6112_CR40) 1986; 51
MS Roh (6112_CR53) 2002; 43
MH Abd El-Twab (6112_CR31) 2006; 1
F Lin (6112_CR26) 2018; 4
M Li (6112_CR64) 1985; 3
J Doyle (6112_CR72) 1990; 12
Y Lan (6112_CR60) 2018; 240
M Guerra (6112_CR23) 2008; 120
A Younis (6112_CR35) 2015; 34
S Bose (6112_CR18) 1963; 197
IJ Leitch (6112_CR47) 2007; 20
CR Zarco (6112_CR48) 1986; 35
M Said (6112_CR36) 2018; 131
S Kurita (6112_CR14) 1989; 4
M Li (6112_CR49) 1988; 7
S Inariyama (6112_CR12) 1932; 46
BS Lee (6112_CR10) 2004; 26
DA Petrov (6112_CR24) 2001; 17
BJM Zonneveld (6112_CR27) 2008; 275
DW Galbraith (6112_CR69) 1983; 220
J Greilhuber (6112_CR74) 2009; 118
Y Liu (6112_CR17) 1989; 27
J Greilhuber (6112_CR73) 2005; 95
6112_CR55
S Shi (6112_CR8) 2006; 44
TA Hori (6112_CR5) 2006; 81
X Qi (6112_CR57) 2015; 62
S Shi (6112_CR9) 2014; 176
L Wei (6112_CR52) 2013; 21
S Zhou (6112_CR62) 2008; 160
VH Techio (6112_CR43) 2010; 69
Y Liu (6112_CR68) 2022; 8
PS Hsu (6112_CR4) 1994; 16
JM Jiang (6112_CR28) 2017; 49
F Roa (6112_CR33) 2012; 12
G Stebbins (6112_CR51) 1971
S Inariyama (6112_CR6) 1951; 7
HM Elamein (6112_CR45) 2007; 10
PC Hsu (6112_CR56) 1984; 22
J Doležel (6112_CR70) 2007; 2
Y Zhang (6112_CR66) 2013; 51
6112_CR61
S Inariyama (6112_CR13) 1951; 7
HI Lee (6112_CR39) 2014; 55
S Kurita (6112_CR41) 1988; 53
L Zhang (6112_CR1) 2002; 29
S Zhou (6112_CR63) 2011; 46
Q Cao (6112_CR59) 2019; 252
S Garcia (6112_CR58) 2012; 121
A Kato (6112_CR22) 2005; 8
References_xml – volume: 9
  start-page: 6849
  year: 2019
  ident: 6112_CR7
  publication-title: Ecol Evol
  doi: 10.1002/ece3.5252
– volume-title: Chromosomal evolution in higher plants
  year: 1971
  ident: 6112_CR51
– volume: 2
  start-page: 2233
  year: 2007
  ident: 6112_CR70
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.310
– volume: 7
  start-page: 75
  year: 1951
  ident: 6112_CR13
  publication-title: Sci Rep Tokyo Bunrika Daig
– volume: 8
  start-page: 148
  year: 2005
  ident: 6112_CR22
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2005.01.014
– volume: 134
  start-page: 567
  year: 2009
  ident: 6112_CR29
  publication-title: J Am Soc Hort Sci
  doi: 10.21273/JASHS.134.5.567
– volume: 56
  start-page: 209
  year: 2006
  ident: 6112_CR32
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.56.209
– volume: 62
  start-page: 164
  year: 2015
  ident: 6112_CR57
  publication-title: Biochem Syst Ecol
  doi: 10.1016/j.bse.2015.08.006
– volume: 4
  start-page: 47
  year: 1989
  ident: 6112_CR14
  publication-title: Plant Species Biol
  doi: 10.1111/j.1442-1984.1989.tb00047.x
– volume: 46
  start-page: 426
  year: 1932
  ident: 6112_CR12
  publication-title: Bot Mag Tokyo
  doi: 10.15281/jplantres1887.46.426
– volume: 27
  start-page: 257
  year: 1989
  ident: 6112_CR17
  publication-title: J Syst Evol
– volume: 64
  start-page: 315
  year: 1989
  ident: 6112_CR34
  publication-title: Ann Bot
  doi: 10.1093/oxfordjournals.aob.a087847
– volume: 1
  start-page: 1
  year: 2006
  ident: 6112_CR31
  publication-title: Chromosome Bot
  doi: 10.3199/iscb.1.1
– volume: 101
  start-page: 749
  year: 2022
  ident: 6112_CR71
  publication-title: Cytom
  doi: 10.1002/cyto.a.24499
– volume-title: Chromosome Bot and the origins of cultivated plants
  year: 1963
  ident: 6112_CR21
– volume: 299
  start-page: 1141
  year: 2013
  ident: 6112_CR42
  publication-title: Plant Syst Evol
  doi: 10.1007/s00606-013-0785-y
– volume: 7
  start-page: 7
  year: 1988
  ident: 6112_CR49
  publication-title: Biol Bull
– volume: 17
  start-page: 23
  year: 2001
  ident: 6112_CR24
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(00)02157-0
– volume: 26
  start-page: 83
  year: 2004
  ident: 6112_CR10
  publication-title: Korean J Genet
– volume: 7
  start-page: 103
  year: 1951
  ident: 6112_CR6
  publication-title: Sci Rep Tokyo Bunrika Daig
– volume: 16
  start-page: 301
  year: 1994
  ident: 6112_CR4
  publication-title: Sida
– volume: 49
  start-page: 2197
  year: 2017
  ident: 6112_CR28
  publication-title: Pak J Bot
– volume: 240
  start-page: 638
  year: 2018
  ident: 6112_CR60
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.06.055
– volume: 51
  start-page: 803
  year: 1986
  ident: 6112_CR40
  publication-title: Cytologia
  doi: 10.1508/cytologia.51.803
– volume: 252
  start-page: 48
  year: 2019
  ident: 6112_CR59
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2019.03.035
– volume: 4
  start-page: 985
  year: 2018
  ident: 6112_CR26
  publication-title: Acta Agrestia Sin
– volume: 118
  start-page: 391
  year: 2009
  ident: 6112_CR74
  publication-title: Chromosoma
  doi: 10.1007/s00412-009-0205-9
– volume: 12
  start-page: 1
  year: 2012
  ident: 6112_CR33
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-12-225
– volume: 298
  start-page: 1493
  year: 2012
  ident: 6112_CR19
  publication-title: Plant Syst Evol
  doi: 10.1007/s00606-012-0652-2
– volume: 3
  start-page: 297
  year: 1985
  ident: 6112_CR64
  publication-title: J Wuhan Bot Res
– volume: 430
  start-page: 521
  year: 1996
  ident: 6112_CR20
  publication-title: Acta Hort
– volume: 43
  start-page: 120
  year: 2002
  ident: 6112_CR53
  publication-title: Hortic Environ Biotechnol
– volume: 267
  start-page: 109359
  year: 2020
  ident: 6112_CR37
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2020.109359
– volume: 69
  start-page: 273
  year: 2010
  ident: 6112_CR43
  publication-title: Bragantia
  doi: 10.1590/S0006-87052010000200003
– volume: 52
  start-page: 19
  year: 1987
  ident: 6112_CR15
  publication-title: Cytologia
  doi: 10.1508/cytologia.52.19
– volume: 34
  start-page: 1477
  year: 2015
  ident: 6112_CR35
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-015-1828-3
– volume: 160
  start-page: 207
  year: 2008
  ident: 6112_CR62
  publication-title: Euphytica
  doi: 10.1007/s10681-007-9538-8
– volume: 120
  start-page: 339
  year: 2008
  ident: 6112_CR23
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000121083
– volume: 20
  start-page: 2296
  year: 2007
  ident: 6112_CR47
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2007.01416.x
– volume: 86
  start-page: 29
  year: 2021
  ident: 6112_CR50
  publication-title: Cytologia
  doi: 10.1508/cytologia.86.29
– volume: 176
  start-page: 115
  year: 2014
  ident: 6112_CR9
  publication-title: Bot J Linn Soc
– volume: 95
  start-page: 255
  year: 2005
  ident: 6112_CR73
  publication-title: Ann Bot
  doi: 10.1093/aob/mci019
– volume: 22
  start-page: 46
  year: 1984
  ident: 6112_CR56
  publication-title: Acta Phytotaxonomica Sinica
– volume: 81
  start-page: 243
  year: 2006
  ident: 6112_CR5
  publication-title: Genes Genet Syst
  doi: 10.1266/ggs.81.243
– volume: 12
  start-page: 13
  year: 1990
  ident: 6112_CR72
  publication-title: Focus
– volume: 51
  start-page: 335
  year: 2013
  ident: 6112_CR66
  publication-title: J Syst Evol
  doi: 10.1111/j.1759-6831.2012.00235.x
– volume-title: Plant variation and evolution
  year: 1984
  ident: 6112_CR67
– volume: 44
  start-page: 168
  year: 2015
  ident: 6112_CR3
  publication-title: Subtropical Plant Sci
– ident: 6112_CR55
– volume: 275
  start-page: 109
  year: 2008
  ident: 6112_CR27
  publication-title: Plant Syst Evol
  doi: 10.1007/s00606-008-0015-1
– volume: 172
  start-page: 1131
  year: 2007
  ident: 6112_CR25
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2007.03.002
– volume: 44
  start-page: 198
  year: 2006
  ident: 6112_CR8
  publication-title: Biochem Genet
  doi: 10.1007/s10528-006-9023-4
– ident: 6112_CR61
– volume: 52
  start-page: 137
  year: 1987
  ident: 6112_CR16
  publication-title: Cytologia
  doi: 10.1508/cytologia.52.137
– volume: 55
  start-page: 514
  year: 2014
  ident: 6112_CR39
  publication-title: Hortic Environ Biotechnol
  doi: 10.1007/s13580-014-0066-x
– volume: 45
  start-page: 513
  year: 2007
  ident: 6112_CR11
  publication-title: Acta Phytotaxon Sin
  doi: 10.1360/aps050108
– volume: 131
  start-page: 2213
  year: 2018
  ident: 6112_CR36
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-018-3148-9
– volume: 197
  start-page: 1229
  year: 1963
  ident: 6112_CR18
  publication-title: Nature
  doi: 10.1038/1971229b0
– volume: 8
  start-page: 389
  year: 2022
  ident: 6112_CR68
  publication-title: Nat Plants
  doi: 10.1038/s41477-022-01129-7
– volume: 88
  start-page: 139
  year: 1997
  ident: 6112_CR44
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a023072
– volume: 46
  start-page: 558
  year: 2011
  ident: 6112_CR63
  publication-title: HortScience
  doi: 10.21273/HORTSCI.46.4.558
– volume: 29
  start-page: 915
  year: 2002
  ident: 6112_CR1
  publication-title: J Genet Genomics
– volume: 10
  start-page: 109
  year: 2007
  ident: 6112_CR46
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2007.01.001
– volume: 121
  start-page: 389
  year: 2012
  ident: 6112_CR58
  publication-title: Chromosoma
  doi: 10.1007/s00412-012-0368-7
– volume: 52
  start-page: 201
  year: 1964
  ident: 6112_CR65
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1964.tb01953.x
– volume: 17
  start-page: 19
  year: 2000
  ident: 6112_CR54
  publication-title: J Biol
– volume: 10
  start-page: 55
  year: 2007
  ident: 6112_CR45
  publication-title: Chromosome Sci
– volume: 53
  start-page: 323
  year: 1988
  ident: 6112_CR41
  publication-title: Cytologia
  doi: 10.1508/cytologia.53.323
– volume: 21
  start-page: 109
  year: 2013
  ident: 6112_CR52
  publication-title: J Trop Subtrop Bot
– volume: 19
  start-page: 11406
  year: 2002
  ident: 6112_CR30
  publication-title: Int J Mol Sci
– volume: 298
  start-page: 1547
  year: 2012
  ident: 6112_CR38
  publication-title: Plant Syst Evol
  doi: 10.1007/s00606-012-0657-x
– volume: 220
  start-page: 1049
  year: 1983
  ident: 6112_CR69
  publication-title: Science
  doi: 10.1126/science.220.4601.1049
– volume: 25
  start-page: 237
  year: 1995
  ident: 6112_CR2
  publication-title: Kor J Plant Tax
  doi: 10.11110/kjpt.1995.25.4.237
– volume: 35
  start-page: 526
  year: 1986
  ident: 6112_CR48
  publication-title: Taxon
  doi: 10.2307/1221906
SSID ssj0017849
Score 2.4217477
Snippet Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant...
Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose...
BackgroundFrequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose significant...
BACKGROUND: Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose...
Abstract Background Frequent interspecific hybridization, unclear genetic backgrounds, and ambiguous evolutionary relationships within the genus Lycoris pose...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 78
SubjectTerms Asymmetry
Basic chromosome number
Chromosome number
Chromosomes
Chromosomes, Plant - genetics
Classification
Clustering
Correlation analysis
Cytogenetics
Evolution
Evolution & development
Evolution, Molecular
FISH
Flow cytometry
Flowers & plants
Fluorescence
Fluorescence in situ hybridization
genetic background
Genetic diversity
Genome Size
Genome, Plant - genetics
Genomes
genomics
genus
haploidy
Hybridization
Hybridization, Genetic
Hybrids
In Situ Hybridization, Fluorescence
Interspecific hybridization
Interspecific relationships
Karyotype
Karyotypes
Karyotyping
Lycoris
Lycoris - classification
Lycoris - genetics
Lycoris aurea
nuclear genome
parentage
Phylogeny
Species
Species classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gIIOQONCoefh5bBHVgoADUKk3y082hybVZpdq_33HTrLaCKlcuERRPImceXi-kWfGCL2TghWOljWsftrnxOuQG2J87quCGU6YcyYWJ3_7zhbn5MsFvdg76ivmhA3tgQfGHWvPGaEOvBqNPbWJMZI6XQZreWDcpzpy8HlTMDXuH3BB5FQiI9hxX8b9vDwe3Qr-K57lMXNDqVv_32vynlOaJ0zueaCzB-j-CB3xyTDlh-iObx-hu6cdwLvtY7SC5Qo3bR-D7R5u1l28DKWUEA3j1ZT1tmyu-iNslzEPr-8u4Yv-z6h_R1i3Di-3sYoLN25MJEqvwccwYEX8dQvhatPjBYjjCTo_-_Tr4yIfD1TILQCXdU5lYJRqXQlnnAXfrQ3x0pkQRGVMXUjAJ6WvLCGBUCukB77DAlRVVhgpbF0_RQdt1_rnCAutLeXOGGYo4ZTroEEexskQSNzMzNCHib_qauiboVK8IZgapKFAGipJQ11n6DSKYEcZe16nB6AJatQE9S9NyNDbKEAVu1q0MW3mt970vfr884c6ERWpCRNcZuj9SBQ6EKXVYxUC_FVshDWjPJxRgtnZ-fCkJ2o0-17VJfAXgryyyNCb3XB8M6aytb7bRBpAyJSwgtxGA8CQUQj1bqEBa6oKwgugeTao545_tRR1nWYhZoo7Y_B8pG2Wqbl4CSGqBJD64n-I5CW6VyWjK_OqPEQH69XGvwIQtzavk73eAMpuRr0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5B4cAF8W5KQQtC4kCt-rHPE2oRVUDAAaiU22qfTQ7YaZyA8u-ZcZxQCykXK_KOHXtnZucb7zwIeaOVyAMvKlj9bMxYtClzzMUslrlwkokQHCYnf_0mxpfs84RP-g9ubR9WuV0Tu4U6NB6_kZ9WheBgasAgvp9fZ9g1CndX-xYat8kdLF2GIV1ysnO4CqmY3ibKKHHaFrirl2EDV7Bi2NFjYIy6mv3_r8w3TNMwbPKGHbp4QO73AJKebTj-kNyK9SNy97wBkLd-TBawaNFZ3aLL3cKPZYOHTUIl-MR0sY19m87m7Qn1U4zGa5tfcMf4u5fCE2rrQKdrzOWis9CHE3WXwc0oIEb6ZQ1O66ylY2DKE3J58fHnh3HWt1XIPMCXZcZ1gqm0tlTBBQ8W3DoWdXApqdK5KteAUopYesYS417pyANgGFGWXjmtfFU9JQd1U8dDQpW1nsvgnHCcSS5tsjIJF3RKDLc0R-Tddn7NfFM9w3RehxJmww0D3DAdN8yfETlHFuwosfJ1d6JZXJlekYyNUjB4ogILtwMWck7zYIvkPfyzjHJEXiMDDda2qDF45squ2tZ8-vHdnKmSVUwoqUfkbU-UGmClt30uArwVlsMaUB4PKEH5_HB4KyemV_7W_BPVEXm1G8YrMaCtjs0KaQAncyZyto8G4KHg4PDtoQGdKnMmc6B5thHP3fxVWlVV9xRqILiDCR6O1LNpV2K8AEdVA1Q92v9-z8m9slOnIiuLY3KwXKziCwBpS_ey08S_SAI9_g
  priority: 102
  providerName: ProQuest
Title New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb
URI https://www.ncbi.nlm.nih.gov/pubmed/39833710
https://www.proquest.com/docview/3165521710
https://www.proquest.com/docview/3157554604
https://www.proquest.com/docview/3165865747
https://www.proquest.com/docview/3206204707
https://pubmed.ncbi.nlm.nih.gov/PMC11749397
https://doaj.org/article/ae7645d910514554bb95da1fcc7f67e7
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF714IEXxE1KiQxC4oEafOzlB4Qa1CogWqFApIiX1Z5NJGqXOAHy75nd2KEWVV6sKDve2HPsfJOdnUHoZcFpYkiaw-onbYytdLHCysY2S6himBqj_OHks3M6HONPEzLZQW27o4aB9Y2hne8nNZ7_ePPn5-o9GPy7YPCcvq1Tv1sX-8as4J18p45dtA-eiXlDPcP_dhUYD3A4hQU59n2s20M0N87RcVShnv__q_Y1t9VNqbzmo07vojsNuIyO19pwD-3Y8j66NagAAK4eoDksaNGsrH04XsOHReUv68OWEC9H8zYvbjq7qo8iPfWZenV1CTPaX42GHkWyNNF05c95RTPTpBqF22CyCNBk9HkFAe2sjoYgsIdofHry7cMwblouxBqgzSImhaOESJlxo4wGHkqFbWGUczxTKk8KQDCpzTTGDhPNC0sM4BuaZZqrgus8f4T2yqq0T1DEpdSEGaWoIpgRJp1kjipTOIf9dmcPvW75K67WlTVEiEg4FWtpCJCGCNIQv3to4EWwofRVscMX1fxCNEYmpGUUwxOlvqg74CSlCmJk6rSGX2aW9dALL0Dh616UPrHmQi7rWnz8OhLHPMM5ppwVPfSqIXIViFLL5pwCvJUvldWhPOxQgmHq7nCrJ6LVa5GnwF8IA9Okh55vhv2dPtmttNXS0wCGJpgmeBsNQEdKIBjcQgP2liWYJUDzeK2eG_7lBc_z8BS8o7gdBndHytk0lB9PIYgtAMYebH_9p-h2FswJbC09RHuL-dI-AwC3UH20yyasj_YHJ-dfRv3wN0g_WCpcR4PvfwHVeEeZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqFgkuiDeBAgaBONBV92F77QNCDbRKaBqh0kq9Gb-2yYHdkE2o8qf4jYz3EbpCyq2XKIpnnV3PeL6Z9TwQeis4Cy2NEtB-ygXEqSzQRLvAxSHTKWHWap-cfDJmg3Py9YJebKE_bS6MD6tsdWKlqG1h_Dvy_SRiFKAGAPHT7Ffgu0b509W2hUYtFsdudQUuW_lx-AX4-y6Ojw7PPg-CpqtAYAC9FwEVGcykVMyttgYATGnihNVZxmOtk1AASEcuNoRkhBouHLUA4SyODdeCG_8CFFT-DknAldlGO_3D8bfT9blFyoloU3M42y8jf44Y-JaxgJu-h0gH_qouAf9jwTUw7AZqXkO-o3vobmOy4oNaxu6jLZc_QLf6BZiVq4doDmoST_PSO_klfFkU_qNO4QQvHM_baLvJdFbuYTPx8X9l8RNmdL8bud_DKrd4svLZY3hqmwCm6jKYDIONikcrcJOnJR6AGDxC5zey5I_Rdl7k7inCXClDU6s105SkNFWZSjOmrcgy4g9Re-hDu75yVtfrkJWfw5msuSGBG7Lihrzqob5nwZrS19qufijml7LZulK5lBG4o8iXigfrS2tBrYoyY-CfU5f20BvPQOmraeQ-XOdSLctSDr-fygMek4Qwnooeet8QZQWw0qgm-wGeyhfg6lDudihhu5vucCsnslE3pfy3OXro9XrYX-lD6HJXLD0NWOaUsJBsogGDlFFwMTfQwC6OQ5KGQPOkFs_1-iWCJ0l1F7wjuJ0F7o7k00lV1DwC11iAcfxs8_O9QrcHZycjORqOj5-jO3G1taIgjnbR9mK-dC_ARFzol82-xOjHTauCv4CffIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+interspecies+relationships%2C+chromosomal+evolution%2C+and+hybrid+identification+in+the+Lycoris+Herb&rft.jtitle=BMC+plant+biology&rft.au=Zhang%2C+Yue&rft.au=Zhou%2C+Shujun&rft.au=Chen%2C+Yu&rft.au=Zhang%2C+Pengchong&rft.date=2025-01-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12870-025-06112-w&rft.externalDocID=A824346879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon