Application of the chronic constriction injury of the partial sciatic nerve model to assess acupuncture analgesia

To validate and explore the application of a rat model of chronic constriction injury to the partial sciatic nerve in investigation of acupuncture analgesia. Chronic constriction injury of the sciatic nerve (CCI) and chronic constriction injury of the partial sciatic nerve (CCIp) models were generat...

Full description

Saved in:
Bibliographic Details
Published inJournal of pain research Vol. 10; pp. 2271 - 2280
Main Authors Zhi, Mu-Jun, Liu, Kun, Zheng, Zhou-Li, He, Xun, Li, Tie, Sun, Guang, Zhang, Meng, Wang, Fu-Chun, Gao, Xin-Yan, Zhu, Bing
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2017
Taylor & Francis Ltd
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To validate and explore the application of a rat model of chronic constriction injury to the partial sciatic nerve in investigation of acupuncture analgesia. Chronic constriction injury of the sciatic nerve (CCI) and chronic constriction injury of the partial sciatic nerve (CCIp) models were generated by ligating either the sciatic nerve trunk or its branches in rats. Both models were evaluated via paw mechanical withdrawal latency (PMWL), paw mechanical withdrawal threshold (PMWT), nociceptive reflex-induced electromyogram (C-fiber reflex EMG), and dorsal root ganglion immunohistochemistry. Electroacupuncture (EA) was performed at GB30 to study the analgesic effects on neuropathic pain and the underlying mechanisms. Following ligation of the common peroneal and tibial nerves, CCIp rats exhibited hindlimb dysfunction, hind paw shrinkage and lameness, mirroring those of CCI rats (generated by ligating the sciatic nerve trunk). Compared to presurgery measurements, CCIp and CCI modeling significantly decreased the PMWL and PMWT. EA at GB30 increased the PMWL and PMWT in both CCI and CCIp rats. Calcitonin gene-related polypeptide and substance P expressions were apparently increased in both CCI and CCIp groups, but were not different from each other. The C-fiber reflex EMG of the biceps femoris was preserved in CCIp rats, but it could not be recorded in CCI rats on the 5th day after nerve ligation. The C-fiber reflex EMG was reduced at 0, 1, and 2 minutes after EA in CCIp rats, but only at 0 and 1 minute after EA in normal rats. The CCIp model is better than the CCI model for studying acupuncture analgesia on chronic neuropathic pain and the underlying mechanisms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ISSN:1178-7090
1178-7090
DOI:10.2147/JPR.S139324