基于重要性采样的最大似然时延估计算法

针对多径环境中的时延估计,提出了一种基于重要性采样概念的算法。该算法利用蒙特卡罗算法(MC)对未知参数的分布函数抽样,获得简化似然函数的全局最优解,进而通过计算样本均值直接得到参数估计结果。该方法避免了耗时较长的多维网格搜索和对初值较为敏感的迭代算法,且能够无条件收敛至全局最优值。仿真结果表明,在相同样本条件下,该算法相比于EM、MUSIC算法,不仅消除了对初值的依赖性,也获得了更接近克拉美罗界(CRLB)的仿真结果。将该算法与其他多种算法进行计算复杂度分析后发现,IS-based算法较其他算法更为简单,计算量更低,具有较为重要的工程应用价值。...

Full description

Saved in:
Bibliographic Details
Published in实验室研究与探索 Vol. 34; no. 12; pp. 16 - 20
Main Author 陈健 田丽芳
Format Journal Article
LanguageChinese
Published 山东服装职业学院,山东泰安,271000%黄淮学院信息工程学院,河南驻马店,463000 2015
Subjects
Online AccessGet full text
ISSN1006-7167

Cover

Abstract 针对多径环境中的时延估计,提出了一种基于重要性采样概念的算法。该算法利用蒙特卡罗算法(MC)对未知参数的分布函数抽样,获得简化似然函数的全局最优解,进而通过计算样本均值直接得到参数估计结果。该方法避免了耗时较长的多维网格搜索和对初值较为敏感的迭代算法,且能够无条件收敛至全局最优值。仿真结果表明,在相同样本条件下,该算法相比于EM、MUSIC算法,不仅消除了对初值的依赖性,也获得了更接近克拉美罗界(CRLB)的仿真结果。将该算法与其他多种算法进行计算复杂度分析后发现,IS-based算法较其他算法更为简单,计算量更低,具有较为重要的工程应用价值。
AbstractList 针对多径环境中的时延估计,提出了一种基于重要性采样概念的算法。该算法利用蒙特卡罗算法(MC)对未知参数的分布函数抽样,获得简化似然函数的全局最优解,进而通过计算样本均值直接得到参数估计结果。该方法避免了耗时较长的多维网格搜索和对初值较为敏感的迭代算法,且能够无条件收敛至全局最优值。仿真结果表明,在相同样本条件下,该算法相比于EM、MUSIC算法,不仅消除了对初值的依赖性,也获得了更接近克拉美罗界(CRLB)的仿真结果。将该算法与其他多种算法进行计算复杂度分析后发现,IS-based算法较其他算法更为简单,计算量更低,具有较为重要的工程应用价值。
TN911.7; 针对多径环境中的时延估计,提出了一种基于重要性采样概念的算法.该算法利用蒙特卡罗算法(MC)对未知参数的分布函数抽样,获得简化似然函数的全局最优解,进而通过计算样本均值直接得到参数估计结果.该方法避免了耗时较长的多维网格搜索和对初值较为敏感的迭代算法,且能够无条件收敛至全局最优值.仿真结果表明,在相同样本条件下,该算法相比于EM、MUSIC算法,不仅消除了对初值的依赖性,也获得了更接近克拉美罗界(CRLB)的仿真结果.将该算法与其他多种算法进行计算复杂度分析后发现,IS-based算法较其他算法更为简单,计算量更低,具有较为重要的工程应用价值.
Author 陈健 田丽芳
AuthorAffiliation 山东服装职业学院,山东泰安271000 黄淮学院信息工程学院,河南驻马店463000
AuthorAffiliation_xml – name: 山东服装职业学院,山东泰安,271000%黄淮学院信息工程学院,河南驻马店,463000
Author_FL TIAN Li-fang
CHEN Jian
Author_FL_xml – sequence: 1
  fullname: CHEN Jian
– sequence: 2
  fullname: TIAN Li-fang
Author_xml – sequence: 1
  fullname: 陈健 田丽芳
BookMark eNotzT1Lw0AAxvEbKlhrv4SbQ-Becpe7UYpvUHDpHi6XpKboRXOKZKtQ6KSbFERQQexWBCFCzcfJS_stDNTpWX48_x3Q0rEOWqCNIGSWg5izDbrGRB6EUDDhOLQNWPm6LJaP6-nD6vO-Gs_X02n19lM_T6qXcfkxL_K8nmTVLCt_syL_Wi3e68Ws-n7aBVuhvDBB9387YHB0OOidWP2z49PeQd9SDFGL-gx73BOQC6UUFwFRSHhKcsqJUrb0fBzajhP6SEps25Aw35ehIiFHmDeMdMD-5vZO6lDqoTuKbxPdBF2TmnSU3hgMEUUYQtrYvY1V57EeXkeNvkqiS5mkLmMcQiKwTf4AMGtkNA
ClassificationCodes TN911.7
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Research on an Importance-Sampling Based Maximum Likelihood Time Delay Estimator
DocumentTitle_FL Research on an Importance-Sampling Based Maximum Likelihood Time Delay Estimator
EndPage 20
ExternalDocumentID sysyjyts201512005
668003924
GrantInformation_xml – fundername: 河南省科技厅发展计划; 河南省科技攻关项目
  funderid: (142102110088); (122102210430,142102110088)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c615-5d62b8b9089ccc89e3c19bca8583cc4abd2f477fd1aa244036ddafc3f8128ca83
ISSN 1006-7167
IngestDate Thu May 29 04:11:36 EDT 2025
Wed Feb 14 10:22:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords maximum likelihood (ML)
importance sampling (IS)
时延估计
重要性采样
time-delay estimation
multipath environments
最大似然
多径环境
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c615-5d62b8b9089ccc89e3c19bca8583cc4abd2f477fd1aa244036ddafc3f8128ca83
Notes CHEN Jian , TIAN Li-fang ( 1. Shandong Vocational Institute of Clothing Technology, Taian 271000, China; 2. School of Information Engineering, Huanghuai University, Zhumadian 463000, China)
time-delay estimation; maximum likelihood(ML); multipath environments; importance sampling(IS)
To estimate the time delay in multipath environments,a new algorithm was proposed based on importance sampling( IS). This algorithm applied Monte Carlo method into the sampling of unknown parameters. The global maximum of the compressed likelihood function could be found,thus,the parameters were approximated by the average of samples. Therefore,the estimator proposed avoided the complex multidimensional grid search and iterative methods which depended seriously on the initial guess. The algorithm guaranteed convergence to the global maximum. Results of simulation showed that,this algorithm held better performance than EM and MUSIC algorithms,under the conditions of the same samples. In addition,the algorithm also showed superiority
PageCount 5
ParticipantIDs wanfang_journals_sysyjyts201512005
chongqing_primary_668003924
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 实验室研究与探索
PublicationTitleAlternate Laboratory Research and Exploration
PublicationTitle_FL Research and Exploration in Laboratory
PublicationYear 2015
Publisher 山东服装职业学院,山东泰安,271000%黄淮学院信息工程学院,河南驻马店,463000
Publisher_xml – name: 山东服装职业学院,山东泰安,271000%黄淮学院信息工程学院,河南驻马店,463000
SSID ssib000969775
ssib006568229
ssib025702337
ssib036434175
ssib000862244
ssib051371591
ssib002264093
Score 1.98212
Snippet ...
TN911.7;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 16
SubjectTerms 多径环境
时延估计
最大似然
重要性采样
Title 基于重要性采样的最大似然时延估计算法
URI http://lib.cqvip.com/qk/96941X/201512/668003924.html
https://d.wanfangdata.com.cn/periodical/sysyjyts201512005
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1XryIomKtShFzXJmvTJJjsjtLEfRUobdlJjPT4mH92O2hPVUo9KQXkYIIKoi9FUGoUPvntNv2v_C9JNtOaYUqLOFt8vLyPnYmv5edZAh5CHOqwYm9lZqywtUquOYky1sszjk3NczpAvc7P3mazj5LHs-z-YlL7xtPLS0Ni0dm5dx9Jf8TVaiDuOIu2X-I7LFQqAAa4gslRBjKC8WYZozKLtWKZgmWIqOZpJDeiw7NBFUp4ESapfg0g-LjJo41KqAaCE4l9EqwRraRDQSqxDKDwDZ-gAcYdGp5uCUY1doSjiewY2VUhcgMhLRD6Ji6F1uOsa8VDq1WSQXjtn0NjIgdAyodIcfChbUoxVJF2KRBt-PHoVGMBJsEigFDFTtp4SgLNbNStHWHUKBTc5XD7fC0v0hrVIgf1wO84X3iPBlTwayM0KrteJTVv4N-dqqAklH7fFHgDR14e4UEtggPPApoxLAv-NNFQVsHnhWLorrWwzamqmtHAWZmPQaK6b8oAzIjHB191LGhkdbD2hPKKaywKWoneDZa0JipcCkIkl3enMr8urC_ZKPGxBSmDYjj593T54wPlgfLz5eHA_R-6M8FBvQqJsllpTu6eyoJboJCSIIhiWiAbsDYQeOuDxkDvlVg_B1fmxjFJ6A4BkycNEAsC2MOGNuulIxtxINPFl_0F14BnLO76_p13l9oAMG5a-Sqz-BmlLscr5OJlcUbJN3_vLO38-5o_e3h9zej1c2j9fXRl18HH9dGn1b3v23u7e4erG2PNrb3f2_v7f443Pp6sLUx-vnhJpnrZnPt2ZZ_JUnLAPRvsTKNClHgf-XGGCGr2ISyMLlgIjYmyYsyqhPO6zLMc3AR2FaWeW3iGmC0ALb4Fpnsv-hXt8lMEueAeXiQJHWVFFVZQO5esTKShrO4KPMpMn1scu-lO3mml6YCN9NHyRR54J3Q8_ejQe9MAO9chGmaXEHarSreJZPD10vVPcDZw-K-D_wf5r6aaQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%87%8D%E8%A6%81%E6%80%A7%E9%87%87%E6%A0%B7%E7%9A%84%E6%9C%80%E5%A4%A7%E4%BC%BC%E7%84%B6%E6%97%B6%E5%BB%B6%E4%BC%B0%E8%AE%A1%E7%AE%97%E6%B3%95&rft.jtitle=%E5%AE%9E%E9%AA%8C%E5%AE%A4%E7%A0%94%E7%A9%B6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E9%99%88%E5%81%A5&rft.au=%E7%94%B0%E4%B8%BD%E8%8A%B3&rft.date=2015&rft.pub=%E5%B1%B1%E4%B8%9C%E6%9C%8D%E8%A3%85%E8%81%8C%E4%B8%9A%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E6%B3%B0%E5%AE%89%2C271000%25%E9%BB%84%E6%B7%AE%E5%AD%A6%E9%99%A2%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%A9%BB%E9%A9%AC%E5%BA%97%2C463000&rft.issn=1006-7167&rft.volume=34&rft.issue=12&rft.spage=16&rft.epage=31&rft.externalDocID=sysyjyts201512005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F96941X%2F96941X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsysyjyts%2Fsysyjyts.jpg