Influence of sampling scheme on the inference of sex-biased gene flow in the American badger (Taxidea taxus)

Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of zoology Vol. 90; no. 10; pp. 1231 - 1242
Main Authors Kierepka, E.M., Latch, E.K., Swanson, B.J.
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.10.2012
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN1480-3283
0008-4301
1480-3283
0008-4301
DOI10.1139/z2012-094

Cover

Abstract Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality.
AbstractList Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. Key words: Taxidea taxus, American badger, sex-biased dispersal, sampling, spatial autocorrelation. La genetique des populations a entrame une augmentation marquee des etudes sur la dispersion, un caractere du cycle biologique qui offre d'importantes applications en ecologie et en science de l'evolution. Les mammiferes presentent typiquement un flux genetique biaise vers les males, cette situation servant donc souvent d'hypothese nulle dans les etudes empiriques. L'estimation de la dispersion a l'aide de la genetique des populations n'est pas sans biais. C'est pourquoi nous avons utilise une combinaison de methodes de genetique des populations et de simulations pour evaluer le flux genetique chez le blaireau d'Amerique (Taxidea taxus (Schreber, 1777)), un mustelide tres discret et meconnu. Un total de 132 blaireaux captures de 2001 a 2002 ont ete genotypes sur neuf sites microsatellites afin d'etudier la structure genetique fine associee a la philopatrie chez les femelles et a la dispersion chez les males. Les patrons genetiques en decoulant concordaient globalement avec une population panmictique, mais tres peu avec une dispersion biaisee selon le sexe. Des simulations ont en outre confirme que notre schema d'echantillonnage n'avait pas une incidence importante sur les statistiques obtenues. Un deficit global d' heterozygotes a ete observe a l' echelle de la peninsule inferieure du Michigan, ce qui indique soit un effet Wahlund, soit le melange de populations distinctes, soit de la consanguinite. Notre etude souligne l'importance de distinguer les mecanismes comportementaux reels des effets d'echantillonnage au moment d'interpreter des donnees genetiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densite de population et la territorialite. Mots-cles: Taxidea taxus, blaireau d'Amerique, dispersion biaisee selon le sexe, echantillonnage, autocorrelation spatiale. [Traduit par la Redaction]
Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality.Original Abstract: La genetique des populations a entraine une augmentation marquee des etudes sur la dispersion, un caractere du cycle biologique qui offre d'importantes applications en ecologie et en science de l'evolution. Les mammiferes presentent typiquement un flux genetique biaise vers les males, cette situation servant donc souvent d'hypothese nulle dans les etudes empiriques. L'estimation de la dispersion a l'aide de la genetique des populations n'est pas sans biais. C'est pourquoi nous avons utilise une combinaison de methodes de genetique des populations et de simulations pour evaluer le flux genetique chez le blaireau d'Amerique (Taxidea taxus (Schreber, 1777)), un mustelide tres discret et meconnu. Un total de 132 blaireaux captures de 2001 a 2002 ont ete genotypes sur neuf sites microsatellites afin d'etudier la structure genetique fine associee a la philopatrie chez les femelles et a la dispersion chez les males. Les patrons genetiques en decoulant concordaient globalement avec une population panmictique, mais tres peu avec une dispersion biaisee selon le sexe. Des simulations ont en outre confirme que notre schema d'echantillonnage n'avait pas une incidence importante sur les statistiques obtenues. Un deficit global d'heterozygotes a ete observe a l'echelle de la peninsule inferieure du Michigan, ce qui indique soit un effet Wahlund, soit le melange de populations distinctes, soit de la consanguinite. Notre etude souligne l'importance de distinguer les mecanismes comportementaux reels des effets d'echantillonnage au moment d'interpreter des donnees genetiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densite de population et la territorialite.
Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger ( Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality.
Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality.
Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. [PUBLICATION ABSTRACT]
Abstract_FL La génétique des populations a entraîné une augmentation marquée des études sur la dispersion, un caractère du cycle biologique qui offre d’importantes applications en écologie et en science de l’évolution. Les mammifères présentent typiquement un flux génétique biaisé vers les mâles, cette situation servant donc souvent d’hypothèse nulle dans les études empiriques. L’estimation de la dispersion à l’aide de la génétique des populations n’est pas sans biais. C’est pourquoi nous avons utilisé une combinaison de méthodes de génétique des populations et de simulations pour évaluer le flux génétique chez le blaireau d’Amérique ( Taxidea taxus (Schreber, 1777)), un mustélidé très discret et méconnu. Un total de 132 blaireaux capturés de 2001 à 2002 ont été génotypés sur neuf sites microsatellites afin d’étudier la structure génétique fine associée à la philopatrie chez les femelles et à la dispersion chez les mâles. Les patrons génétiques en découlant concordaient globalement avec une population panmictique, mais très peu avec une dispersion biaisée selon le sexe. Des simulations ont en outre confirmé que notre schéma d’échantillonnage n’avait pas une incidence importante sur les statistiques obtenues. Un déficit global d’hétérozygotes a été observé à l’échelle de la péninsule inférieure du Michigan, ce qui indique soit un effet Wahlund, soit le mélange de populations distinctes, soit de la consanguinité. Notre étude souligne l’importance de distinguer les mécanismes comportementaux réels des effets d’échantillonnage au moment d’interpréter des données génétiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densité de population et la territorialité.
Audience Academic
Author Kierepka, E.M.
Swanson, B.J.
Latch, E.K.
Author_xml – sequence: 1
  givenname: E.M.
  surname: Kierepka
  fullname: Kierepka, E.M.
  organization: Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
– sequence: 2
  givenname: E.K.
  surname: Latch
  fullname: Latch, E.K.
  organization: Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA
– sequence: 3
  givenname: B.J.
  surname: Swanson
  fullname: Swanson, B.J.
  organization: Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26584349$$DView record in Pascal Francis
BookMark eNqV0l9r2zAQAHAzOljb7WGfYGaj0MLcSpYs24-h7E-gbLC2z-IsnxwVWU4lm2X79FOa0jYlbAxhZKTfneXTHSR7bnCYJG8pOaWU1We_c0LzjNT8RbJPeUUyllds78n7q-QghBtCiCgp2U_s3Gk7oVOYDjoN0C-tcV0a1AL7uOTScYGpcRr9g8FV1hgI2KYdOky1HX5GcQdnPXqjwKUNtB369PgKVqZFSEdYTeHkdfJSgw345n4-TK4_f7o6_5pdfP8yP59dZEpQPmatagRVtCW8Rd7UWuicKi0awYtKAUPCdFtWRNO6ZW0OVaMFAquKRmEVIxt2mBxv8i79cDthGGVvgkJrweEwBUkrSginlSj_TfOcUs4oW9MPz-jNMHkXf0RSUoq6oCQvHlUHFmWs3DB6UOukcsZIUXIheBVVtkOt6-nBxhvVJi5v-fc7vFqaW_kUne5AcbTYG7Uz68lWQDQjrsYOphDk_PLHf9hv2_bovlIQFFjtwSkT5NKbHvwvmYui4ozXjzmVH0LwqB8IJXLdzvKunWVs52jPnlllRhhNPIYHY3dGfNxEOK88BgSvFn_9wLsN1zBI6Hw88PVl3BWE0HL9sD_XEgoZ
CODEN CJZOAG
CitedBy_id crossref_primary_10_1038_hdy_2015_67
crossref_primary_10_1111_mec_13915
crossref_primary_10_1016_j_biocon_2015_04_023
crossref_primary_10_1111_mec_13527
crossref_primary_10_1002_ece3_1498
crossref_primary_10_1007_s10592_014_0583_2
Cites_doi 10.1139/Z09-072
10.1093/oso/9780198540663.001.0001
10.1098/rspb.1997.0019
10.1007/s10592-005-9056-y
10.1046/j.1365-294X.2001.01184.x
10.1007/s10592-005-9098-1
10.1111/j.1471-8286.2005.01031.x
10.1016/S0003-3472(80)80103-5
10.1139/Z10-024
10.1111/j.1365-294X.1995.tb00214.x
10.2307/2409206
10.1046/j.1365-294x.1999.00740.x
10.1214/aos/1013699998
10.1007/s00442-006-0384-5
10.1111/j.1461-0248.2008.01267.x
10.1146/annurev.ecolsys.110308.120324
10.1644/05-MAMM-A-427R1.1
10.1093/jhered/92.3.301
10.1111/j.1365-294X.2009.04386.x
10.1046/j.1365-2052.1998.00221.x
10.1016/0169-5347(96)10028-8
10.1093/oso/9780198506607.001.0001
10.1111/j.1471-8286.2005.01155.x
10.1111/j.1365-294X.2010.04678.x
10.1086/303296
10.1111/j.1365-294X.2005.02553.x
10.1086/284267
10.1111/j.1365-294X.2008.03950.x
10.2307/5959
10.1111/j.1365-294X.2005.02598.x
10.1111/j.1471-8286.2004.00796.x
10.1111/j.1365-294X.2004.02101.x
10.1007/BF00317511
10.2307/2420060
10.2193/2006-406
10.1644/BRB-129
10.1093/oxfordjournals.jhered.a111573
10.1046/j.1471-8286.2002.00305.x
10.1038/hdy.2009.136
10.1046/j.1365-294X.2002.01496.x
10.1111/j.1365-294X.2006.03152.x
10.1111/j.1365-294X.2010.04656.x
10.1046/j.1365-294X.2004.02076.x
10.1007/s10592-008-9622-1
10.18637/jss.v007.i10
10.1111/j.1365-294X.2008.03930.x
10.1007/BF00031693
10.1111/j.1601-5223.1928.tb02483.x
10.1093/genetics/28.2.114
10.2307/1382852
10.1111/j.1469-1795.2006.00037.x
10.1038/sj.hdy.6800545
10.1111/j.1365-294X.2011.05042.x
10.1046/j.1365-294X.1999.00701_2.x
10.1111/j.1365-2664.2008.01606.x
10.1038/sj.hdy.6885180
10.1046/j.1365-294x.1998.00515.x
10.1093/beheco/arg097
10.1093/genetics/155.2.945
10.1111/j.0014-3820.2003.tb00327.x
10.1007/s10592-006-9126-9
10.2307/2445869
10.1007/s10592-004-1976-4
10.1038/sj.hdy.6800060
10.1007/s10980-005-0148-3
ContentType Journal Article
Copyright 2014 INIST-CNRS
COPYRIGHT 2012 NRC Research Press
Copyright National Research Council of Canada Oct 2012
Copyright_xml – notice: 2014 INIST-CNRS
– notice: COPYRIGHT 2012 NRC Research Press
– notice: Copyright National Research Council of Canada Oct 2012
DBID FBQ
AAYXX
CITATION
IQODW
ISN
ISR
7QG
7QP
7QR
7SN
7SS
7TK
8FD
C1K
FR3
K9.
P64
RC3
7S9
L.6
DOI 10.1139/z2012-094
DatabaseName AGRIS
CrossRef
Pascal-Francis
Gale In Context: Canada
Gale In Context: Science
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Genetics Abstracts


AGRICOLA
CrossRef
Entomology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Statistics
EISSN 1480-3283
0008-4301
EndPage 1242
ExternalDocumentID 2771034471
A305746648
26584349
10_1139_z2012_094
z2012-094
US201600170017
Genre Génétique
Genetics
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -DZ
-~X
00T
0R~
186
29B
2XV
3V.
4.4
42X
53G
5GY
5RE
5RP
6J9
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FQ
8G5
9M8
AAYJJ
ABDBF
ABJNI
ABPPZ
ABPTK
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AEGXH
AENEX
AFKRA
AFMIJ
AFRAH
AGCDD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKSAR
BLC
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D1J
D8U
DATHI
DWQXO
EAD
EAP
EAS
EBD
EBS
ECC
EDH
EJD
EMK
EPL
ESX
F5P
FA8
FBQ
FYUFA
G8K
GNUQQ
GUQSH
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
ICQ
IEA
IEP
IOF
IPNFZ
ISE
ISN
ISR
ITC
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M3C
M3G
M7P
MV1
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
PCBAR
PEA
PQQKQ
PRG
PROAC
PSQYO
PV9
QF4
QM4
QM9
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
S10
SJFOW
TEORI
TN5
TWZ
U5U
UHB
UKHRP
VQG
VQP
WH7
XJT
ZCA
ZCG
ZY4
~02
~KM
02
08R
0R
1AW
ABFLS
ADKZR
B4K
BBAFP
DZ
HZ
KM
MBDVC
MYA
OHM
PADUT
PQEST
PQUKI
PRINS
X
XHC
AAHBH
AAYXX
ABDPE
ACUHS
ADXHL
AEUYN
ALIPV
CITATION
PHGZM
PHGZT
IQODW
7QG
7QP
7QR
7SN
7SS
7TK
8FD
C1K
FR3
K9.
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c614t-dcb61c1d04de4b9f6f21cf6b6458ca3e03fd780f19d3d2a8bf6ea385bce8b61b3
ISSN 1480-3283
0008-4301
IngestDate Thu Sep 04 17:46:01 EDT 2025
Thu Sep 04 19:26:51 EDT 2025
Fri Aug 15 22:53:34 EDT 2025
Tue Mar 18 19:56:11 EDT 2025
Fri Mar 14 03:00:33 EDT 2025
Tue Jun 10 15:32:09 EDT 2025
Sat Mar 08 18:22:24 EST 2025
Wed Mar 05 04:46:35 EST 2025
Wed Mar 05 05:05:09 EST 2025
Wed Apr 02 07:15:12 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 02:44:55 EDT 2025
Wed Nov 11 00:33:59 EST 2020
Wed Dec 27 19:18:06 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Carnivora
Vertebrata
Gene flow
Mammalia
Methodological bias
Sexual dimorphism
Method
Sampling
Dispersion
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c614t-dcb61c1d04de4b9f6f21cf6b6458ca3e03fd780f19d3d2a8bf6ea385bce8b61b3
Notes http://dx.doi.org/10.1139/z2012-094
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1076951025
PQPubID 15719
PageCount 12
ParticipantIDs proquest_journals_1076951025
gale_infotracgeneralonefile_A305746648
crossref_primary_10_1139_z2012_094
gale_incontextgauss_ISR_A305746648
proquest_miscellaneous_1810041867
nrcresearch_primary_10_1139_z2012_094
fao_agris_US201600170017
gale_infotraccpiq_305746648
proquest_miscellaneous_1221143137
crossref_citationtrail_10_1139_z2012_094
gale_infotracmisc_A305746648
gale_infotracacademiconefile_A305746648
pascalfrancis_primary_26584349
gale_incontextgauss_ISN_A305746648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationTitle Canadian journal of zoology
PublicationYear 2012
Publisher NRC Research Press
National Research Council of Canada
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
– name: Canadian Science Publishing NRC Research Press
References refg40/ref40
refg65/ref65
refg22/ref22
refg36/ref36
refg51/ref51
Bonnet E. (refg5/ref5) 2002; 7
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg14/ref14
refg54/ref54
refg57/ref57
refg37/ref37
refg19/ref19
refg21/ref21
refg7/ref7
refg46/ref46
refg48/ref48
refg10/ref10
refg1/ref1
refg32/ref32
Davis C.S. (refg18/ref18) 1998; 7
refg35/ref35
refg61/ref61
refg53/ref53
refg42/ref42
refg24/ref24
Benjamini Y. (refg3/ref3) 2001; 29
refg16/ref16
refg50/ref50
refg64/ref64
refg67/ref67
refg13/ref13
refg27/ref27
refg56/ref56
refg38/ref38
Raymond M. (refg59/ref59) 1995; 86
Wahlund S. (refg300/ref300) 1928; 11
refg45/ref45
refg49/ref49
refg31/ref31
refg9/ref9
refg34/ref34
Messick J.P. (refg47/ref47) 1981; 76
refg52/ref52
refg8/ref8
Pritchard J.K. (refg55/ref55) 2000; 155
refg60/ref60
refg63/ref63
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg66/ref66
Wright S. (refg68/ref68) 1943; 28
refg12/ref12
refg28/ref28
refg41/ref41
refg39/ref39
Duffy A.J. (refg20/ref20) 1998; 29
refg62/ref62
refg44/ref44
refg58/ref58
refg33/ref33
References_xml – ident: refg19/ref19
  doi: 10.1139/Z09-072
– ident: refg35/ref35
  doi: 10.1093/oso/9780198540663.001.0001
– ident: refg21/ref21
– ident: refg24/ref24
  doi: 10.1098/rspb.1997.0019
– ident: refg49/ref49
  doi: 10.1007/s10592-005-9056-y
– ident: refg65/ref65
  doi: 10.1046/j.1365-294X.2001.01184.x
– ident: refg43/ref43
  doi: 10.1007/s10592-005-9098-1
– ident: refg34/ref34
  doi: 10.1111/j.1471-8286.2005.01031.x
– ident: refg33/ref33
  doi: 10.1016/S0003-3472(80)80103-5
– ident: refg14/ref14
  doi: 10.1139/Z10-024
– ident: refg52/ref52
  doi: 10.1111/j.1365-294X.1995.tb00214.x
– ident: refg58/ref58
  doi: 10.2307/2409206
– ident: refg39/ref39
  doi: 10.1046/j.1365-294x.1999.00740.x
– volume: 29
  start-page: 1165
  year: 2001
  ident: refg3/ref3
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013699998
– ident: refg63/ref63
  doi: 10.1007/s00442-006-0384-5
– ident: refg12/ref12
  doi: 10.1111/j.1461-0248.2008.01267.x
– ident: refg7/ref7
  doi: 10.1146/annurev.ecolsys.110308.120324
– ident: refg17/ref17
  doi: 10.1644/05-MAMM-A-427R1.1
– ident: refg1/ref1
  doi: 10.1093/jhered/92.3.301
– ident: refg53/ref53
  doi: 10.1111/j.1365-294X.2009.04386.x
– volume: 29
  start-page: 63
  issue: 1
  year: 1998
  ident: refg20/ref20
  publication-title: Anim. Genet.
  doi: 10.1046/j.1365-2052.1998.00221.x
– ident: refg57/ref57
  doi: 10.1016/0169-5347(96)10028-8
– ident: refg11/ref11
  doi: 10.1093/oso/9780198506607.001.0001
– ident: refg50/ref50
  doi: 10.1111/j.1471-8286.2005.01155.x
– ident: refg22/ref22
  doi: 10.1111/j.1365-294X.2010.04678.x
– ident: refg54/ref54
  doi: 10.1086/303296
– ident: refg23/ref23
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: refg8/ref8
  doi: 10.1086/284267
– ident: refg30/ref30
  doi: 10.1111/j.1365-294X.2008.03950.x
– ident: refg67/ref67
  doi: 10.2307/5959
– ident: refg6/ref6
  doi: 10.1111/j.1365-294X.2005.02598.x
– ident: refg40/ref40
  doi: 10.1111/j.1471-8286.2004.00796.x
– ident: refg2/ref2
  doi: 10.1111/j.1365-294X.2004.02101.x
– ident: refg48/ref48
  doi: 10.1007/BF00317511
– ident: refg46/ref46
  doi: 10.2307/2420060
– ident: refg38/ref38
  doi: 10.2193/2006-406
– ident: refg41/ref41
  doi: 10.1644/BRB-129
– volume: 86
  start-page: 248
  issue: 3
  year: 1995
  ident: refg59/ref59
  publication-title: J. Hered.
  doi: 10.1093/oxfordjournals.jhered.a111573
– ident: refg36/ref36
  doi: 10.1046/j.1471-8286.2002.00305.x
– ident: refg29/ref29
  doi: 10.1038/hdy.2009.136
– ident: refg32/ref32
  doi: 10.1046/j.1365-294X.2002.01496.x
– ident: refg44/ref44
  doi: 10.1111/j.1365-294X.2006.03152.x
– ident: refg15/ref15
  doi: 10.1111/j.1365-294X.2010.04656.x
– ident: refg64/ref64
  doi: 10.1046/j.1365-294X.2004.02076.x
– ident: refg60/ref60
  doi: 10.1007/s10592-008-9622-1
– volume: 7
  start-page: 1
  issue: 10
  year: 2002
  ident: refg5/ref5
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v007.i10
– ident: refg13/ref13
  doi: 10.1111/j.1365-294X.2008.03930.x
– ident: refg27/ref27
  doi: 10.1007/BF00031693
– volume: 11
  start-page: 65
  year: 1928
  ident: refg300/ref300
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1928.tb02483.x
– volume: 28
  start-page: 114
  issue: 2
  year: 1943
  ident: refg68/ref68
  publication-title: Genetics
  doi: 10.1093/genetics/28.2.114
– ident: refg31/ref31
  doi: 10.2307/1382852
– ident: refg42/ref42
  doi: 10.1111/j.1469-1795.2006.00037.x
– ident: refg66/ref66
– volume: 76
  start-page: 3
  year: 1981
  ident: refg47/ref47
  publication-title: Wildl. Monogr.
– ident: refg16/ref16
  doi: 10.1038/sj.hdy.6800545
– ident: refg62/ref62
  doi: 10.1111/j.1365-294X.2011.05042.x
– ident: refg26/ref26
  doi: 10.1046/j.1365-294X.1999.00701_2.x
– ident: refg28/ref28
  doi: 10.1111/j.1365-2664.2008.01606.x
– ident: refg61/ref61
  doi: 10.1038/sj.hdy.6885180
– volume: 7
  start-page: 1776
  issue: 12
  year: 1998
  ident: refg18/ref18
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294x.1998.00515.x
– ident: refg25/ref25
  doi: 10.1093/beheco/arg097
– volume: 155
  start-page: 945
  issue: 2
  year: 2000
  ident: refg55/ref55
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– ident: refg51/ref51
  doi: 10.1111/j.0014-3820.2003.tb00327.x
– ident: refg9/ref9
  doi: 10.1007/s10592-006-9126-9
– ident: refg45/ref45
  doi: 10.2307/2445869
– ident: refg10/ref10
  doi: 10.1007/s10592-004-1976-4
– ident: refg56/ref56
  doi: 10.1038/sj.hdy.6800060
– ident: refg37/ref37
  doi: 10.1007/s10980-005-0148-3
SSID ssj0006710
Score 2.0368333
Snippet Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution....
SourceID proquest
gale
pascalfrancis
crossref
nrcresearch
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1231
SubjectTerms American badger
Animals
autocorrélation spatiale
badgers
Biological and medical sciences
blaireau d’Amérique
Dispersal
dispersion biaisée selon le sexe
evolution
females
Fundamental and applied biological sciences. Psychology
Gene flow
Genetic research
Genetic structure
Genetics
Genetics of eukaryotes. Biological and molecular evolution
genotyping
heterozygosity
Inbreeding
Life history
males
Mammals
Methods
microsatellite repeats
philopatry
Population density
Population genetics
Population genetics, reproduction patterns
sampling
sex-biased dispersal
Simulation
spatial autocorrelation
Statistical sampling
statistics
Taxidea taxus
territoriality
Vertebrata
Zoology
échantillonnage
Title Influence of sampling scheme on the inference of sex-biased gene flow in the American badger (Taxidea taxus)
URI http://www.nrcresearchpress.com/doi/abs/10.1139/z2012-094
https://www.proquest.com/docview/1076951025
https://www.proquest.com/docview/1221143137
https://www.proquest.com/docview/1810041867
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKyR4QJxqaakM4iiqtiRxzsftpV6sUA-p4sWyHadUlKR0d9Wqf4a_ykziuDEsFfCw0W48iZOdLzP2ZPwNIa_DOJehkrqncwzdMKZ7mUpFL0qk9FWsvMjD9c4fB_HWUbhzHB1PTf3oZC2NR3JFXU9cV_I_WoV9oFdcJfsPmrUnhR3wHfQLW9AwbP9Kx9tthREc8g0FJodjdAD08E2btwB1ttWFldFXMBUGx5Vj6WS9XJxVl22mo313I0WOS4Fh6Hkork5zLZZH4mo8bGMGv9IadLgnrisnSL8LLleffxVuhGcPjH8dy9m4ibBeinYN2upONw7hBzajzaQDtb22NqkTRhvsr9lEQie1BC1umIIjCJpqNiu6NdOIG3N2Y6abqqItHL2O0QXn60_2BgzJVK_rq_WaWsou4_ZW_4B_Wt_ke9uDXbe19vBBAuMvpESE6fUM_gATOtNfXV_dtM4-ThrCi_YuDHkV9PzB9usMee4UorLu_355oQyp0xfMyhVDeDCLpqLKb4ODesRz-JA8MFMV2m9w94hM6fIxufu50fETcmbRR6uCtuijDfpoVVIAFbXoq2Us-iiijyL6QKIWbNFHG_TRJYM9WmPv_VNytLlxuLbVM7U7egoGfKNermTsKz_3wlyHMiviIvBVEcs4jFIlmPZYkSepV_hZzvJApLKItWBpJJVO4UjJnpHpsir1LKFZrBOWFsrLwKywREgNxkVlRcrCKFSRnCNL7d_LlSG2x_oqZ7ye4LKM15rgoIk58sqKnjdsLpOEZkFHXJyAl-VHBwFyMCLLFHzgeFQcR-KUEjOzTsR4OOTbBwPeB8eZYK2G9I9C-47QOyNUVHCxSpjVMHDLSMjmSM47kur89DvvtL51Wk8asvpJp1lwBMGLKKf5TQeLt_05iw5KrWSAUxkWZtBPC1tuDNAQTpPEOJULojny0jbjJWCKZ6mrMcgEgQ-TN58lt8ikSHCJHJzPb-9mnty7sVELZHp0MdYvYPYwkovmCf4JFZ8X5A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+sampling+scheme+on+the+inference+of+sex-biased+gene+flow+in+the+American+badger+%28Taxidea+taxus%29&rft.jtitle=Canadian+journal+of+zoology&rft.au=Kierepka%2C+EM&rft.au=Latch%2C+EK&rft.au=Swanson%2C+BJ&rft.date=2012-10-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=1480-3283&rft.eissn=0008-4301&rft.volume=90&rft.issue=10&rft.spage=1231&rft_id=info:doi/10.1139%2Fz2012-094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2771034471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1480-3283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1480-3283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1480-3283&client=summon