Influence of sampling scheme on the inference of sex-biased gene flow in the American badger (Taxidea taxus)
Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal...
Saved in:
Published in | Canadian journal of zoology Vol. 90; no. 10; pp. 1231 - 1242 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.10.2012
National Research Council of Canada Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 1480-3283 0008-4301 1480-3283 0008-4301 |
DOI | 10.1139/z2012-094 |
Cover
Abstract | Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. |
---|---|
AbstractList | Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. Key words: Taxidea taxus, American badger, sex-biased dispersal, sampling, spatial autocorrelation. La genetique des populations a entrame une augmentation marquee des etudes sur la dispersion, un caractere du cycle biologique qui offre d'importantes applications en ecologie et en science de l'evolution. Les mammiferes presentent typiquement un flux genetique biaise vers les males, cette situation servant donc souvent d'hypothese nulle dans les etudes empiriques. L'estimation de la dispersion a l'aide de la genetique des populations n'est pas sans biais. C'est pourquoi nous avons utilise une combinaison de methodes de genetique des populations et de simulations pour evaluer le flux genetique chez le blaireau d'Amerique (Taxidea taxus (Schreber, 1777)), un mustelide tres discret et meconnu. Un total de 132 blaireaux captures de 2001 a 2002 ont ete genotypes sur neuf sites microsatellites afin d'etudier la structure genetique fine associee a la philopatrie chez les femelles et a la dispersion chez les males. Les patrons genetiques en decoulant concordaient globalement avec une population panmictique, mais tres peu avec une dispersion biaisee selon le sexe. Des simulations ont en outre confirme que notre schema d'echantillonnage n'avait pas une incidence importante sur les statistiques obtenues. Un deficit global d' heterozygotes a ete observe a l' echelle de la peninsule inferieure du Michigan, ce qui indique soit un effet Wahlund, soit le melange de populations distinctes, soit de la consanguinite. Notre etude souligne l'importance de distinguer les mecanismes comportementaux reels des effets d'echantillonnage au moment d'interpreter des donnees genetiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densite de population et la territorialite. Mots-cles: Taxidea taxus, blaireau d'Amerique, dispersion biaisee selon le sexe, echantillonnage, autocorrelation spatiale. [Traduit par la Redaction] Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality.Original Abstract: La genetique des populations a entraine une augmentation marquee des etudes sur la dispersion, un caractere du cycle biologique qui offre d'importantes applications en ecologie et en science de l'evolution. Les mammiferes presentent typiquement un flux genetique biaise vers les males, cette situation servant donc souvent d'hypothese nulle dans les etudes empiriques. L'estimation de la dispersion a l'aide de la genetique des populations n'est pas sans biais. C'est pourquoi nous avons utilise une combinaison de methodes de genetique des populations et de simulations pour evaluer le flux genetique chez le blaireau d'Amerique (Taxidea taxus (Schreber, 1777)), un mustelide tres discret et meconnu. Un total de 132 blaireaux captures de 2001 a 2002 ont ete genotypes sur neuf sites microsatellites afin d'etudier la structure genetique fine associee a la philopatrie chez les femelles et a la dispersion chez les males. Les patrons genetiques en decoulant concordaient globalement avec une population panmictique, mais tres peu avec une dispersion biaisee selon le sexe. Des simulations ont en outre confirme que notre schema d'echantillonnage n'avait pas une incidence importante sur les statistiques obtenues. Un deficit global d'heterozygotes a ete observe a l'echelle de la peninsule inferieure du Michigan, ce qui indique soit un effet Wahlund, soit le melange de populations distinctes, soit de la consanguinite. Notre etude souligne l'importance de distinguer les mecanismes comportementaux reels des effets d'echantillonnage au moment d'interpreter des donnees genetiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densite de population et la territorialite. Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger ( Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution. Mammals typically exhibit male-biased gene flow, so this pattern often serves as a null hypothesis in empirical studies. Estimation of dispersal using population genetics is not without biases, so we utilized a combination of population genetic methods and simulations to evaluate gene flow within the American badger (Taxidea taxus (Schreber, 1777)), a highly elusive and poorly understood mustelid. A total of 132 badgers captured between 2001 and 2002 were genotyped at nine microsatellite loci to investigate fine-scale genetic structure consistent with philopatry in females and dispersal in males. Resultant genetic patterns were largely consistent with a panmictic population with little evidence for sex-biased dispersal, and simulations confirmed that our sampling scheme did not substantially impact our statistics. An overall deficiency of heterozygotes was observed across the Lower Peninsula, which indicates either a Wahlund effect, mixing of separate populations, or inbreeding. Our study emphasizes the importance in deciphering between actual behavioral mechanisms and sampling effects when interpreting genetic data to understand other factors that influence dispersal like population density and territoriality. [PUBLICATION ABSTRACT] |
Abstract_FL | La génétique des populations a entraîné une augmentation marquée des études sur la dispersion, un caractère du cycle biologique qui offre d’importantes applications en écologie et en science de l’évolution. Les mammifères présentent typiquement un flux génétique biaisé vers les mâles, cette situation servant donc souvent d’hypothèse nulle dans les études empiriques. L’estimation de la dispersion à l’aide de la génétique des populations n’est pas sans biais. C’est pourquoi nous avons utilisé une combinaison de méthodes de génétique des populations et de simulations pour évaluer le flux génétique chez le blaireau d’Amérique (
Taxidea taxus
(Schreber, 1777)), un mustélidé très discret et méconnu. Un total de 132 blaireaux capturés de 2001 à 2002 ont été génotypés sur neuf sites microsatellites afin d’étudier la structure génétique fine associée à la philopatrie chez les femelles et à la dispersion chez les mâles. Les patrons génétiques en découlant concordaient globalement avec une population panmictique, mais très peu avec une dispersion biaisée selon le sexe. Des simulations ont en outre confirmé que notre schéma d’échantillonnage n’avait pas une incidence importante sur les statistiques obtenues. Un déficit global d’hétérozygotes a été observé à l’échelle de la péninsule inférieure du Michigan, ce qui indique soit un effet Wahlund, soit le mélange de populations distinctes, soit de la consanguinité. Notre étude souligne l’importance de distinguer les mécanismes comportementaux réels des effets d’échantillonnage au moment d’interpréter des données génétiques afin de comprendre les autres facteurs qui influencent la dispersion, tels que la densité de population et la territorialité. |
Audience | Academic |
Author | Kierepka, E.M. Swanson, B.J. Latch, E.K. |
Author_xml | – sequence: 1 givenname: E.M. surname: Kierepka fullname: Kierepka, E.M. organization: Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA – sequence: 2 givenname: E.K. surname: Latch fullname: Latch, E.K. organization: Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA – sequence: 3 givenname: B.J. surname: Swanson fullname: Swanson, B.J. organization: Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26584349$$DView record in Pascal Francis |
BookMark | eNqV0l9r2zAQAHAzOljb7WGfYGaj0MLcSpYs24-h7E-gbLC2z-IsnxwVWU4lm2X79FOa0jYlbAxhZKTfneXTHSR7bnCYJG8pOaWU1We_c0LzjNT8RbJPeUUyllds78n7q-QghBtCiCgp2U_s3Gk7oVOYDjoN0C-tcV0a1AL7uOTScYGpcRr9g8FV1hgI2KYdOky1HX5GcQdnPXqjwKUNtB369PgKVqZFSEdYTeHkdfJSgw345n4-TK4_f7o6_5pdfP8yP59dZEpQPmatagRVtCW8Rd7UWuicKi0awYtKAUPCdFtWRNO6ZW0OVaMFAquKRmEVIxt2mBxv8i79cDthGGVvgkJrweEwBUkrSginlSj_TfOcUs4oW9MPz-jNMHkXf0RSUoq6oCQvHlUHFmWs3DB6UOukcsZIUXIheBVVtkOt6-nBxhvVJi5v-fc7vFqaW_kUne5AcbTYG7Uz68lWQDQjrsYOphDk_PLHf9hv2_bovlIQFFjtwSkT5NKbHvwvmYui4ozXjzmVH0LwqB8IJXLdzvKunWVs52jPnlllRhhNPIYHY3dGfNxEOK88BgSvFn_9wLsN1zBI6Hw88PVl3BWE0HL9sD_XEgoZ |
CODEN | CJZOAG |
CitedBy_id | crossref_primary_10_1038_hdy_2015_67 crossref_primary_10_1111_mec_13915 crossref_primary_10_1016_j_biocon_2015_04_023 crossref_primary_10_1111_mec_13527 crossref_primary_10_1002_ece3_1498 crossref_primary_10_1007_s10592_014_0583_2 |
Cites_doi | 10.1139/Z09-072 10.1093/oso/9780198540663.001.0001 10.1098/rspb.1997.0019 10.1007/s10592-005-9056-y 10.1046/j.1365-294X.2001.01184.x 10.1007/s10592-005-9098-1 10.1111/j.1471-8286.2005.01031.x 10.1016/S0003-3472(80)80103-5 10.1139/Z10-024 10.1111/j.1365-294X.1995.tb00214.x 10.2307/2409206 10.1046/j.1365-294x.1999.00740.x 10.1214/aos/1013699998 10.1007/s00442-006-0384-5 10.1111/j.1461-0248.2008.01267.x 10.1146/annurev.ecolsys.110308.120324 10.1644/05-MAMM-A-427R1.1 10.1093/jhered/92.3.301 10.1111/j.1365-294X.2009.04386.x 10.1046/j.1365-2052.1998.00221.x 10.1016/0169-5347(96)10028-8 10.1093/oso/9780198506607.001.0001 10.1111/j.1471-8286.2005.01155.x 10.1111/j.1365-294X.2010.04678.x 10.1086/303296 10.1111/j.1365-294X.2005.02553.x 10.1086/284267 10.1111/j.1365-294X.2008.03950.x 10.2307/5959 10.1111/j.1365-294X.2005.02598.x 10.1111/j.1471-8286.2004.00796.x 10.1111/j.1365-294X.2004.02101.x 10.1007/BF00317511 10.2307/2420060 10.2193/2006-406 10.1644/BRB-129 10.1093/oxfordjournals.jhered.a111573 10.1046/j.1471-8286.2002.00305.x 10.1038/hdy.2009.136 10.1046/j.1365-294X.2002.01496.x 10.1111/j.1365-294X.2006.03152.x 10.1111/j.1365-294X.2010.04656.x 10.1046/j.1365-294X.2004.02076.x 10.1007/s10592-008-9622-1 10.18637/jss.v007.i10 10.1111/j.1365-294X.2008.03930.x 10.1007/BF00031693 10.1111/j.1601-5223.1928.tb02483.x 10.1093/genetics/28.2.114 10.2307/1382852 10.1111/j.1469-1795.2006.00037.x 10.1038/sj.hdy.6800545 10.1111/j.1365-294X.2011.05042.x 10.1046/j.1365-294X.1999.00701_2.x 10.1111/j.1365-2664.2008.01606.x 10.1038/sj.hdy.6885180 10.1046/j.1365-294x.1998.00515.x 10.1093/beheco/arg097 10.1093/genetics/155.2.945 10.1111/j.0014-3820.2003.tb00327.x 10.1007/s10592-006-9126-9 10.2307/2445869 10.1007/s10592-004-1976-4 10.1038/sj.hdy.6800060 10.1007/s10980-005-0148-3 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS COPYRIGHT 2012 NRC Research Press Copyright National Research Council of Canada Oct 2012 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2012 NRC Research Press – notice: Copyright National Research Council of Canada Oct 2012 |
DBID | FBQ AAYXX CITATION IQODW ISN ISR 7QG 7QP 7QR 7SN 7SS 7TK 8FD C1K FR3 K9. P64 RC3 7S9 L.6 |
DOI | 10.1139/z2012-094 |
DatabaseName | AGRIS CrossRef Pascal-Francis Gale In Context: Canada Gale In Context: Science Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Ecology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts AGRICOLA CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Statistics |
EISSN | 1480-3283 0008-4301 |
EndPage | 1242 |
ExternalDocumentID | 2771034471 A305746648 26584349 10_1139_z2012_094 z2012-094 US201600170017 |
Genre | Génétique Genetics Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -DZ -~X 00T 0R~ 186 29B 2XV 3V. 4.4 42X 53G 5GY 5RE 5RP 6J9 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FQ 8G5 9M8 AAYJJ ABDBF ABJNI ABPPZ ABPTK ABTAH ABUWG ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV AEGXH AENEX AFKRA AFMIJ AFRAH AGCDD AIAGR ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BBNVY BCR BCU BEC BENPR BES BHPHI BKSAR BLC BPHCQ BVXVI CAG CCPQU COF CS3 D1J D8U DATHI DWQXO EAD EAP EAS EBD EBS ECC EDH EJD EMK EPL ESX F5P FA8 FBQ FYUFA G8K GNUQQ GUQSH HCIFZ HMCUK HZ~ H~9 IAG IAO ICQ IEA IEP IOF IPNFZ ISE ISN ISR ITC L7B LK8 M0K M0L M1P M2O M2P M2Q M3C M3G M7P MV1 NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P PCBAR PEA PQQKQ PRG PROAC PSQYO PV9 QF4 QM4 QM9 QN7 QO4 QRP RIG RRCRK RRP RZL S10 SJFOW TEORI TN5 TWZ U5U UHB UKHRP VQG VQP WH7 XJT ZCA ZCG ZY4 ~02 ~KM 02 08R 0R 1AW ABFLS ADKZR B4K BBAFP DZ HZ KM MBDVC MYA OHM PADUT PQEST PQUKI PRINS X XHC AAHBH AAYXX ABDPE ACUHS ADXHL AEUYN ALIPV CITATION PHGZM PHGZT IQODW 7QG 7QP 7QR 7SN 7SS 7TK 8FD C1K FR3 K9. P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c614t-dcb61c1d04de4b9f6f21cf6b6458ca3e03fd780f19d3d2a8bf6ea385bce8b61b3 |
ISSN | 1480-3283 0008-4301 |
IngestDate | Thu Sep 04 17:46:01 EDT 2025 Thu Sep 04 19:26:51 EDT 2025 Fri Aug 15 22:53:34 EDT 2025 Tue Mar 18 19:56:11 EDT 2025 Fri Mar 14 03:00:33 EDT 2025 Tue Jun 10 15:32:09 EDT 2025 Sat Mar 08 18:22:24 EST 2025 Wed Mar 05 04:46:35 EST 2025 Wed Mar 05 05:05:09 EST 2025 Wed Apr 02 07:15:12 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 02:44:55 EDT 2025 Wed Nov 11 00:33:59 EST 2020 Wed Dec 27 19:18:06 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Carnivora Vertebrata Gene flow Mammalia Methodological bias Sexual dimorphism Method Sampling Dispersion |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c614t-dcb61c1d04de4b9f6f21cf6b6458ca3e03fd780f19d3d2a8bf6ea385bce8b61b3 |
Notes | http://dx.doi.org/10.1139/z2012-094 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1076951025 |
PQPubID | 15719 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1076951025 gale_infotracgeneralonefile_A305746648 crossref_primary_10_1139_z2012_094 gale_incontextgauss_ISR_A305746648 proquest_miscellaneous_1810041867 nrcresearch_primary_10_1139_z2012_094 fao_agris_US201600170017 gale_infotraccpiq_305746648 proquest_miscellaneous_1221143137 crossref_citationtrail_10_1139_z2012_094 gale_infotracmisc_A305746648 gale_infotracacademiconefile_A305746648 pascalfrancis_primary_26584349 gale_incontextgauss_ISN_A305746648 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian journal of zoology |
PublicationYear | 2012 |
Publisher | NRC Research Press National Research Council of Canada Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada – name: Canadian Science Publishing NRC Research Press |
References | refg40/ref40 refg65/ref65 refg22/ref22 refg36/ref36 refg51/ref51 Bonnet E. (refg5/ref5) 2002; 7 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg14/ref14 refg54/ref54 refg57/ref57 refg37/ref37 refg19/ref19 refg21/ref21 refg7/ref7 refg46/ref46 refg48/ref48 refg10/ref10 refg1/ref1 refg32/ref32 Davis C.S. (refg18/ref18) 1998; 7 refg35/ref35 refg61/ref61 refg53/ref53 refg42/ref42 refg24/ref24 Benjamini Y. (refg3/ref3) 2001; 29 refg16/ref16 refg50/ref50 refg64/ref64 refg67/ref67 refg13/ref13 refg27/ref27 refg56/ref56 refg38/ref38 Raymond M. (refg59/ref59) 1995; 86 Wahlund S. (refg300/ref300) 1928; 11 refg45/ref45 refg49/ref49 refg31/ref31 refg9/ref9 refg34/ref34 Messick J.P. (refg47/ref47) 1981; 76 refg52/ref52 refg8/ref8 Pritchard J.K. (refg55/ref55) 2000; 155 refg60/ref60 refg63/ref63 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg66/ref66 Wright S. (refg68/ref68) 1943; 28 refg12/ref12 refg28/ref28 refg41/ref41 refg39/ref39 Duffy A.J. (refg20/ref20) 1998; 29 refg62/ref62 refg44/ref44 refg58/ref58 refg33/ref33 |
References_xml | – ident: refg19/ref19 doi: 10.1139/Z09-072 – ident: refg35/ref35 doi: 10.1093/oso/9780198540663.001.0001 – ident: refg21/ref21 – ident: refg24/ref24 doi: 10.1098/rspb.1997.0019 – ident: refg49/ref49 doi: 10.1007/s10592-005-9056-y – ident: refg65/ref65 doi: 10.1046/j.1365-294X.2001.01184.x – ident: refg43/ref43 doi: 10.1007/s10592-005-9098-1 – ident: refg34/ref34 doi: 10.1111/j.1471-8286.2005.01031.x – ident: refg33/ref33 doi: 10.1016/S0003-3472(80)80103-5 – ident: refg14/ref14 doi: 10.1139/Z10-024 – ident: refg52/ref52 doi: 10.1111/j.1365-294X.1995.tb00214.x – ident: refg58/ref58 doi: 10.2307/2409206 – ident: refg39/ref39 doi: 10.1046/j.1365-294x.1999.00740.x – volume: 29 start-page: 1165 year: 2001 ident: refg3/ref3 publication-title: Ann. Stat. doi: 10.1214/aos/1013699998 – ident: refg63/ref63 doi: 10.1007/s00442-006-0384-5 – ident: refg12/ref12 doi: 10.1111/j.1461-0248.2008.01267.x – ident: refg7/ref7 doi: 10.1146/annurev.ecolsys.110308.120324 – ident: refg17/ref17 doi: 10.1644/05-MAMM-A-427R1.1 – ident: refg1/ref1 doi: 10.1093/jhered/92.3.301 – ident: refg53/ref53 doi: 10.1111/j.1365-294X.2009.04386.x – volume: 29 start-page: 63 issue: 1 year: 1998 ident: refg20/ref20 publication-title: Anim. Genet. doi: 10.1046/j.1365-2052.1998.00221.x – ident: refg57/ref57 doi: 10.1016/0169-5347(96)10028-8 – ident: refg11/ref11 doi: 10.1093/oso/9780198506607.001.0001 – ident: refg50/ref50 doi: 10.1111/j.1471-8286.2005.01155.x – ident: refg22/ref22 doi: 10.1111/j.1365-294X.2010.04678.x – ident: refg54/ref54 doi: 10.1086/303296 – ident: refg23/ref23 doi: 10.1111/j.1365-294X.2005.02553.x – ident: refg8/ref8 doi: 10.1086/284267 – ident: refg30/ref30 doi: 10.1111/j.1365-294X.2008.03950.x – ident: refg67/ref67 doi: 10.2307/5959 – ident: refg6/ref6 doi: 10.1111/j.1365-294X.2005.02598.x – ident: refg40/ref40 doi: 10.1111/j.1471-8286.2004.00796.x – ident: refg2/ref2 doi: 10.1111/j.1365-294X.2004.02101.x – ident: refg48/ref48 doi: 10.1007/BF00317511 – ident: refg46/ref46 doi: 10.2307/2420060 – ident: refg38/ref38 doi: 10.2193/2006-406 – ident: refg41/ref41 doi: 10.1644/BRB-129 – volume: 86 start-page: 248 issue: 3 year: 1995 ident: refg59/ref59 publication-title: J. Hered. doi: 10.1093/oxfordjournals.jhered.a111573 – ident: refg36/ref36 doi: 10.1046/j.1471-8286.2002.00305.x – ident: refg29/ref29 doi: 10.1038/hdy.2009.136 – ident: refg32/ref32 doi: 10.1046/j.1365-294X.2002.01496.x – ident: refg44/ref44 doi: 10.1111/j.1365-294X.2006.03152.x – ident: refg15/ref15 doi: 10.1111/j.1365-294X.2010.04656.x – ident: refg64/ref64 doi: 10.1046/j.1365-294X.2004.02076.x – ident: refg60/ref60 doi: 10.1007/s10592-008-9622-1 – volume: 7 start-page: 1 issue: 10 year: 2002 ident: refg5/ref5 publication-title: J. Stat. Softw. doi: 10.18637/jss.v007.i10 – ident: refg13/ref13 doi: 10.1111/j.1365-294X.2008.03930.x – ident: refg27/ref27 doi: 10.1007/BF00031693 – volume: 11 start-page: 65 year: 1928 ident: refg300/ref300 publication-title: Hereditas doi: 10.1111/j.1601-5223.1928.tb02483.x – volume: 28 start-page: 114 issue: 2 year: 1943 ident: refg68/ref68 publication-title: Genetics doi: 10.1093/genetics/28.2.114 – ident: refg31/ref31 doi: 10.2307/1382852 – ident: refg42/ref42 doi: 10.1111/j.1469-1795.2006.00037.x – ident: refg66/ref66 – volume: 76 start-page: 3 year: 1981 ident: refg47/ref47 publication-title: Wildl. Monogr. – ident: refg16/ref16 doi: 10.1038/sj.hdy.6800545 – ident: refg62/ref62 doi: 10.1111/j.1365-294X.2011.05042.x – ident: refg26/ref26 doi: 10.1046/j.1365-294X.1999.00701_2.x – ident: refg28/ref28 doi: 10.1111/j.1365-2664.2008.01606.x – ident: refg61/ref61 doi: 10.1038/sj.hdy.6885180 – volume: 7 start-page: 1776 issue: 12 year: 1998 ident: refg18/ref18 publication-title: Mol. Ecol. doi: 10.1046/j.1365-294x.1998.00515.x – ident: refg25/ref25 doi: 10.1093/beheco/arg097 – volume: 155 start-page: 945 issue: 2 year: 2000 ident: refg55/ref55 publication-title: Genetics doi: 10.1093/genetics/155.2.945 – ident: refg51/ref51 doi: 10.1111/j.0014-3820.2003.tb00327.x – ident: refg9/ref9 doi: 10.1007/s10592-006-9126-9 – ident: refg45/ref45 doi: 10.2307/2445869 – ident: refg10/ref10 doi: 10.1007/s10592-004-1976-4 – ident: refg56/ref56 doi: 10.1038/sj.hdy.6800060 – ident: refg37/ref37 doi: 10.1007/s10980-005-0148-3 |
SSID | ssj0006710 |
Score | 2.0368333 |
Snippet | Population genetics has fueled a substantial growth in studies of dispersal, a life-history trait that has important applications in ecology and evolution.... |
SourceID | proquest gale pascalfrancis crossref nrcresearch fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1231 |
SubjectTerms | American badger Animals autocorrélation spatiale badgers Biological and medical sciences blaireau d’Amérique Dispersal dispersion biaisée selon le sexe evolution females Fundamental and applied biological sciences. Psychology Gene flow Genetic research Genetic structure Genetics Genetics of eukaryotes. Biological and molecular evolution genotyping heterozygosity Inbreeding Life history males Mammals Methods microsatellite repeats philopatry Population density Population genetics Population genetics, reproduction patterns sampling sex-biased dispersal Simulation spatial autocorrelation Statistical sampling statistics Taxidea taxus territoriality Vertebrata Zoology échantillonnage |
Title | Influence of sampling scheme on the inference of sex-biased gene flow in the American badger (Taxidea taxus) |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/z2012-094 https://www.proquest.com/docview/1076951025 https://www.proquest.com/docview/1221143137 https://www.proquest.com/docview/1810041867 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKKyR4QJxqaakM4iiqtiRxzsftpV6sUA-p4sWyHadUlKR0d9Wqf4a_ykziuDEsFfCw0W48iZOdLzP2ZPwNIa_DOJehkrqncwzdMKZ7mUpFL0qk9FWsvMjD9c4fB_HWUbhzHB1PTf3oZC2NR3JFXU9cV_I_WoV9oFdcJfsPmrUnhR3wHfQLW9AwbP9Kx9tthREc8g0FJodjdAD08E2btwB1ttWFldFXMBUGx5Vj6WS9XJxVl22mo313I0WOS4Fh6Hkork5zLZZH4mo8bGMGv9IadLgnrisnSL8LLleffxVuhGcPjH8dy9m4ibBeinYN2upONw7hBzajzaQDtb22NqkTRhvsr9lEQie1BC1umIIjCJpqNiu6NdOIG3N2Y6abqqItHL2O0QXn60_2BgzJVK_rq_WaWsou4_ZW_4B_Wt_ke9uDXbe19vBBAuMvpESE6fUM_gATOtNfXV_dtM4-ThrCi_YuDHkV9PzB9usMee4UorLu_355oQyp0xfMyhVDeDCLpqLKb4ODesRz-JA8MFMV2m9w94hM6fIxufu50fETcmbRR6uCtuijDfpoVVIAFbXoq2Us-iiijyL6QKIWbNFHG_TRJYM9WmPv_VNytLlxuLbVM7U7egoGfKNermTsKz_3wlyHMiviIvBVEcs4jFIlmPZYkSepV_hZzvJApLKItWBpJJVO4UjJnpHpsir1LKFZrBOWFsrLwKywREgNxkVlRcrCKFSRnCNL7d_LlSG2x_oqZ7ye4LKM15rgoIk58sqKnjdsLpOEZkFHXJyAl-VHBwFyMCLLFHzgeFQcR-KUEjOzTsR4OOTbBwPeB8eZYK2G9I9C-47QOyNUVHCxSpjVMHDLSMjmSM47kur89DvvtL51Wk8asvpJp1lwBMGLKKf5TQeLt_05iw5KrWSAUxkWZtBPC1tuDNAQTpPEOJULojny0jbjJWCKZ6mrMcgEgQ-TN58lt8ikSHCJHJzPb-9mnty7sVELZHp0MdYvYPYwkovmCf4JFZ8X5A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+sampling+scheme+on+the+inference+of+sex-biased+gene+flow+in+the+American+badger+%28Taxidea+taxus%29&rft.jtitle=Canadian+journal+of+zoology&rft.au=Kierepka%2C+EM&rft.au=Latch%2C+EK&rft.au=Swanson%2C+BJ&rft.date=2012-10-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=1480-3283&rft.eissn=0008-4301&rft.volume=90&rft.issue=10&rft.spage=1231&rft_id=info:doi/10.1139%2Fz2012-094&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2771034471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1480-3283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1480-3283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1480-3283&client=summon |