Screening for prostate cancer using multivariate mixed-effects models
Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone inde...
Saved in:
Published in | Journal of applied statistics Vol. 39; no. 6; pp. 1151 - 1175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.06.2012
Taylor and Francis Journals Taylor & Francis Ltd |
Series | Journal of Applied Statistics |
Subjects | |
Online Access | Get full text |
ISSN | 0266-4763 1360-0532 |
DOI | 10.1080/02664763.2011.644523 |
Cover
Abstract | Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process. |
---|---|
AbstractList | Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process. Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process. [PUBLICATION ABSTRACT] Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process.Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process. |
Author | Brant, Larry J. Sheng, Shan Morrell, Christopher H. Metter, E. Jeffrey |
AuthorAffiliation | a Mathematics and Statistics Department, Loyola University Maryland, 4501 North Charles St., Baltimore, MD 21210-2699 USA c National Institute on Aging, 3001 S. Hanover Street, Baltimore, MD 21225 USA b National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224 USA |
AuthorAffiliation_xml | – name: a Mathematics and Statistics Department, Loyola University Maryland, 4501 North Charles St., Baltimore, MD 21210-2699 USA – name: b National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224 USA – name: c National Institute on Aging, 3001 S. Hanover Street, Baltimore, MD 21225 USA |
Author_xml | – sequence: 1 givenname: Christopher H. surname: Morrell fullname: Morrell, Christopher H. email: chm@loyola.edu, morrellc@mail.nih.gov organization: National Institute on Aging – sequence: 2 givenname: Larry J. surname: Brant fullname: Brant, Larry J. organization: National Institute on Aging – sequence: 3 givenname: Shan surname: Sheng fullname: Sheng, Shan organization: National Institute on Aging – sequence: 4 givenname: E. Jeffrey surname: Metter fullname: Metter, E. Jeffrey organization: National Institute on Aging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22679342$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/tafjapsta/v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151-1175.htm$$DView record in RePEc |
BookMark | eNqFkk1v1DAQhiNURLeFf4DQSly4ZPG3Ew5UqCof0kocgLPlOOPWqyQOdlLov2ei7VbQA3sY-zDPvJqP96w4GeIARfGSkg0lFXlLmFJCK75hhNKNEkIy_qRYUa5ISSRnJ8VqQcqFOS3Oct4RQioq-bPilDGlay7Yqrj65hLAEIbrtY9pPaaYJzvB2tnBQVrPecn0czeFW5vCkunDb2hL8B7clNd9bKHLz4un3nYZXtz_58WPj1ffLz-X26-fvlx-2JZOUTGVLaG198JJq4F63kLTcAWVUJa1nNWsVpIIKTyBWraioayubKOEEiAaW2vLz4v3e91xbnpoHQxTsp0ZU-htujPRBvNvZgg35jreGs6V1pqgwJt7gRR_zpAn04fsoOvsAHHOhlZMSak0k8dRLblEthbHUVZxTYkgGtHXj9BdnNOASzOUkHphqkVwu6cSjOAe5pus39kRD2RwIstrfO4w0AAMv4ChMEYMSiU1FFs0N1OPcq_-XtuD3sEGCLzbAw7vnxN44wLaIMRli6HD1sziOXPwnFk8Z_aew2LxqPigf6TsYl8WBnReb3_F1LU44l0Xk09ov5AN_6_CH0Oy6tA |
CitedBy_id | crossref_primary_10_1177_0962280215608213 crossref_primary_10_1111_insr_12532 crossref_primary_10_1080_02664763_2014_999032 crossref_primary_10_4236_ojapps_2013_32025 crossref_primary_10_1002_bimj_201700013 crossref_primary_10_1177_09622802211032705 crossref_primary_10_1177_0962280216674496 crossref_primary_10_1002_sim_7397 crossref_primary_10_1080_10543406_2015_1052487 crossref_primary_10_1186_s12885_021_08226_4 crossref_primary_10_1177_1471082X231202341 crossref_primary_10_1515_ijb_2019_0159 crossref_primary_10_1186_s12874_021_01296_9 crossref_primary_10_3390_jimaging7060092 |
Cites_doi | 10.1198/016214502753479220 10.1093/jnci/87.5.354 10.3102/10769986026004443 10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M 10.1002/sim.4780130520 10.1198/106186002760180608 10.1007/978-1-4612-2290-3_14 10.1001/jama.267.16.2215 10.1056/NEJM199104253241702 10.1198/016214501753168145 10.1198/016214502753479211 10.1198/016214507000000356 10.1002/sim.1392 10.1016/S0022-5347(05)65531-0 10.1111/1467-985X.00258 10.1016/S0378-3758(01)00235-X 10.1002/pros.2990160105 10.1373/clinchem.2007.096529 10.1080/01621459.1995.10476487 10.1093/jnci/djg009 10.1111/j.0006-341X.2000.01157.x 10.1111/j.1541-0420.2006.00507.x 10.1097/01.ju.0000152408.25738.23 10.1161/CIRCULATIONAHA.106.672402 10.1093/oso/9780198522065.001.0001 10.2307/1165239 10.1080/00031305.1997.10474409 10.1093/biostatistics/kxm041 10.1016/S1470-2045(08)70104-9 10.1158/1055-9965.EPI-04-0715 10.1002/sim.995 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R 10.1093/biostatistics/4.1.27 10.1111/j.0006-341X.2000.01047.x 10.1002/sim.1179 10.1080/01621459.1996.10476679 10.1016/0090-4295(93)90362-E 10.1002/ijc.11572 10.1080/01621459.1997.10474030 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor & Francis Ltd. 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor & Francis Ltd. 2012 |
DBID | AAYXX CITATION NPM DKI X2L 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1080/02664763.2011.644523 |
DatabaseName | CrossRef PubMed RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database Aerospace Database MEDLINE - Academic PubMed Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1360-0532 |
EndPage | 1175 |
ExternalDocumentID | PMC3367770 2642124301 tafjapsta_v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151_1175_htm 22679342 10_1080_02664763_2011_644523 644523 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 AG000638 – fundername: National Institute on Aging : NIA grantid: Z01 AG000638-18 || AG |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EJD EMK EPL E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ 07G 1TA 8C1 8FE 8FG 8G5 AAGDL AAHIA AAIKQ AAKBW AAYXX ABJCF ABUWG ACAGQ ACGEE ADBBV ADYSH AEUMN AFKRA AFRVT AGCQS AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU CITATION COF CRFIH DMQIW DWIFK DWQXO FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K6V K7- L6V LJTGL M0C M2O M7S NHB NUSFT P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PTHSS QCRFL TAQ TFMCV TOXWX UB9 UKHRP UU8 V3K V4Q VH1 NPM TASJS 0R 3V. 3YN 7F AAAVI ABJVF ABQHQ ADIYS AEGYZ AFOLD AHDLD AIRXU BBAFP COQAR DKI FUNRP FVPDL HZ K6 M0N NY PADUT PQEST PQUKI PRINS QJ S V1K X2L 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c614t-d019ff4c5a7e1f3debb36e846a2d32929650454f0e95d4b1298ab6464e4ba97a3 |
ISSN | 0266-4763 |
IngestDate | Thu Aug 21 14:10:32 EDT 2025 Fri Sep 05 03:41:32 EDT 2025 Fri Sep 05 09:51:46 EDT 2025 Thu Sep 04 17:29:13 EDT 2025 Wed Aug 13 07:04:55 EDT 2025 Thu Dec 16 09:11:52 EST 2021 Mon Jul 21 05:20:51 EDT 2025 Tue Jul 01 02:25:06 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Wed Dec 25 09:03:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c614t-d019ff4c5a7e1f3debb36e846a2d32929650454f0e95d4b1298ab6464e4ba97a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 22679342 |
PQID | 1009040784 |
PQPubID | 23500 |
PageCount | 25 |
ParticipantIDs | crossref_citationtrail_10_1080_02664763_2011_644523 proquest_miscellaneous_1753555694 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367770 proquest_miscellaneous_1826556725 proquest_miscellaneous_1283710407 repec_primary_tafjapsta_v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151_1175_htm pubmed_primary_22679342 crossref_primary_10_1080_02664763_2011_644523 proquest_journals_1009040784 informaworld_taylorfrancis_310_1080_02664763_2011_644523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-00 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationSeriesTitle | Journal of Applied Statistics |
PublicationTitle | Journal of applied statistics |
PublicationTitleAlternate | J Appl Stat |
PublicationYear | 2012 |
Publisher | Taylor & Francis Taylor and Francis Journals Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor and Francis Journals – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0034 CIT0011 CIT0033 Carter H. B. (CIT0004) 1994; 21 Diggle P. J. (CIT0012) 1990 Thum Y. M. (CIT0041) 1997; 22 CIT0036 CIT0013 CIT0016 CIT0038 CIT0015 CIT0018 CIT0039 CIT0019 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 CIT0044 Green D. M. (CIT0017) 1988 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 Slate E. H. (CIT0037) 1999 CIT0008 |
References_xml | – ident: CIT0021 doi: 10.1198/016214502753479220 – ident: CIT0044 doi: 10.1093/jnci/87.5.354 – ident: CIT0042 doi: 10.3102/10769986026004443 – ident: CIT0030 doi: 10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M – start-page: 511 volume-title: Case Studies in Bayesian Statistics IV year: 1999 ident: CIT0037 – ident: CIT0029 doi: 10.1002/sim.4780130520 – ident: CIT0033 doi: 10.1198/106186002760180608 – ident: CIT0038 doi: 10.1007/978-1-4612-2290-3_14 – ident: CIT0005 doi: 10.1001/jama.267.16.2215 – ident: CIT0006 doi: 10.1056/NEJM199104253241702 – ident: CIT0036 doi: 10.1198/016214501753168145 – ident: CIT0032 doi: 10.1198/016214502753479211 – ident: CIT0018 doi: 10.1198/016214507000000356 – ident: CIT0027 doi: 10.1002/sim.1392 – ident: CIT0011 doi: 10.1016/S0022-5347(05)65531-0 – ident: CIT0001 doi: 10.1111/1467-985X.00258 – ident: CIT0007 doi: 10.1016/S0378-3758(01)00235-X – volume-title: Signal Detection Theory and Psychophysics year: 1988 ident: CIT0017 – ident: CIT0003 doi: 10.1002/pros.2990160105 – ident: CIT0010 doi: 10.1373/clinchem.2007.096529 – ident: CIT0025 doi: 10.1080/01621459.1995.10476487 – ident: CIT0016 doi: 10.1093/jnci/djg009 – ident: CIT0022 doi: 10.1111/j.0006-341X.2000.01157.x – ident: CIT0013 doi: 10.1111/j.1541-0420.2006.00507.x – ident: CIT0019 doi: 10.1097/01.ju.0000152408.25738.23 – ident: CIT0009 doi: 10.1161/CIRCULATIONAHA.106.672402 – volume-title: Time Series: A Biostatistical Introduction year: 1990 ident: CIT0012 doi: 10.1093/oso/9780198522065.001.0001 – volume: 21 start-page: 554 issue: 5 year: 1994 ident: CIT0004 publication-title: Semin. Oncol – volume: 22 start-page: 77 year: 1997 ident: CIT0041 publication-title: J. Educ. Behav. Stat. doi: 10.2307/1165239 – ident: CIT0024 doi: 10.1080/00031305.1997.10474409 – ident: CIT0015 doi: 10.1093/biostatistics/kxm041 – ident: CIT0008 doi: 10.1016/S1470-2045(08)70104-9 – ident: CIT0026 doi: 10.1158/1055-9965.EPI-04-0715 – ident: CIT0028 doi: 10.1002/sim.995 – ident: CIT0039 doi: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R – ident: CIT0023 doi: 10.1093/biostatistics/4.1.27 – ident: CIT0031 doi: 10.1111/j.0006-341X.2000.01047.x – ident: CIT0020 doi: 10.1002/sim.1179 – ident: CIT0043 doi: 10.1080/01621459.1996.10476679 – ident: CIT0002 doi: 10.1016/0090-4295(93)90362-E – ident: CIT0040 doi: 10.1002/ijc.11572 – ident: CIT0034 doi: 10.1080/01621459.1997.10474030 |
SSID | ssj0008153 |
Score | 2.0029175 |
Snippet | Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate... |
SourceID | pubmedcentral proquest repec pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1151 |
SubjectTerms | Antigens Applied statistics Bayesian analysis Bismaleimides Body size (biology) Cancer Classification disease screening longitudinal data Mathematical models Medical screening Multivariate analysis Prostate Prostate cancer sensitivity Simulation specificity Studies |
Title | Screening for prostate cancer using multivariate mixed-effects models |
URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2011.644523 https://www.ncbi.nlm.nih.gov/pubmed/22679342 http://econpapers.repec.org/article/tafjapsta/v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151-1175.htm https://www.proquest.com/docview/1009040784 https://www.proquest.com/docview/1283710407 https://www.proquest.com/docview/1753555694 https://www.proquest.com/docview/1826556725 https://pubmed.ncbi.nlm.nih.gov/PMC3367770 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq9WU8IBhfgTEFiTcU1MSO3TwW1qljbEJqJyZeIiex1SLWVW2KgD-Dv5g7O3ETrZSPB6dV7LhJ75fznX33MyEve4xqGoVFwDUV4KAkRZDFMg-ElpnSYCJoQ1Z9fsFHl-zdVXzV6fxsRC2ty-x1_mNrXsn_SBXOgVwxS_YfJOs6hRPwHeQLR5AwHP9KxuMco2bqWMgFJnCA6YiBXLlavlqbaQATMfgVPGKsuZ59U0VQx3CYXXBWvzFPZWWeYpeWzNnJBjf0sKsVDWqCTZbDGxj-rL8vlxiS5yZxpqqam55uIHlu0omMRq6zypoTERjRwZsTEZNbe4I0ApNWhuKVB6xWZ8qqW8pxKZ629LElN6pw11SuYLyGW7V-FSYJP4D9W15WsPPiiG5GuXplfzQYpx-OT9L3pxdn7VozqEeY-BsxiimB3UgIXPrvDkbHnz668b0fWm7T-nnqhExkbN9yCy2Dp0WHu82puR2b212qhcobRs_kHrlbwcEfWOjdJx01PyB3zh3V7-qA7I8dQB6QoUOkDzfg14j0LSJ9g0i_iUi_hUjfIvIhuTwZTt6OgmqjjiAH664MCvATtGZ5LIUKNS1UllGuwLKVUUEjMMDBDWAx0z2VxAXLwMTsy4wzzhTLZCIkfUT25jdz9YT4koP_gV4yzyXrZeC9yFxLcAMZEhEWhUdo_W-mecVij5upfEnDmuy2kkGKMkitDDwSuKsWlsXlD-37TUGlpcG2trBO6e5LD2uhppWqWCExeNLDFXPmkReuGhQ5rs7JubpZQxvkoQqx1Y42Igb_IObJrn76EYcmIoo98thiyT0z-FowHrPII6KFMtcAyebbNfPZ1JDOU8qFED2PDA0e3RWl1J_lAsCUQhtJEzh8h4IKAj5mUDiUBRR8fXFvgTidltdPd_9Nz8j-RsUckr1yuVbPwfovs6PqdTwC__fs9Bd79gEw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5Be6AceJSXoYCRuLrY3ofjI0KpAjS50ErcVrvrXRqgbpQ4CPj1zHhtq-ERJDhsctgZRzuZnfnGHn8L8DzlzLM8qxLpWYEFSlklRmibFF4b5xEi-JasejqTk1P-5r3ouwlXXVsl1dA-EEW0sZo2N92M7lviXmDdIDlujMDAiRkdq6mrsCsQupOTs3Q2BONRFogoUSMhlf7tuT9cZSM7bXCX_g6B_tpIubt0C2cvZaijm2D6tYXGlE-H68Yc2u8_0T7-1-JvwY0Ov8Yvg8Pdhiuu3ofr04H8dbUPewRgA__zHRi_s9TZgwkyxlXGC3rJBOFtbMnbljG13X-I267GL1i108z5_Kurkq7PJG5P6lndhdOj8cmrSdId3ZBYzPdNUiFy9J5boQuXeVY5Y5h0iHV0XrEcIRkCQy64T10pKm4QdIy0kVxyx40uC83uwU59UbsHEGuJiJTqJmk1Tw3iWW29xsKAEzVdVUXA-r9M2Y7XnI7X-Kyynv60s5gii6lgsQiSQWsReD3-Ij-67A2qae-n-HD4iWLbVQ96z1FdgFgRVXSZ0jNUHsGzYRq3Nj2v0bW7WKMMMRNlJLVFBstNIYQst10HS0gUKXIRwf3gsMOaEX1jhOZ5BMWGKw8CRD--OVPPz1oacsZkURRpBOPW6QeNRvuPeoHOpFBGsxI_vuFAi-T4NcchcSxwYDWSEdu8UGfN-cN_t_BTuDY5mR6r49ezt49gj34pdPMdwE6zXLvHiBsb86SNDD8A1H5eZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BK6H2wKNACRQIEteUJH5kc0Swq_LoCgkq9WY5jt0u0DTazSLg1zMTJ9Euj0WCg5ODZxJ5djz-ZjP-DPA05syxNCkj6ViGCUpeRoXQJsqcLqxDiOBasurjqTw64a9PxenKLn4qq6Qc2nmiiDZW0-SuS9dXxD3DtEFynBeegBMXdEymrsK2RHRCRX0sng6xeJR4HkrUiEil3zz3h6esLU5r1KW_A6C_1lFuz21tzcoCNbkBuh-ar0v5dLhsikPz_SfWx_8Z-0243qHX8Ll3t1twxVZ7sHs8UL8u9mCH4Ktnf74N4_eG6npweQxxkGFNW0wQ3IaGfG0eUtH9WdjWNH7BnJ16LmZfbRl1VSZhe07P4g6cTMYfXhxF3cENkcHVvolKxI3OcSN0ZhPHSlsUTFpEOjotWYqADGEhF9zFNhclLxByjHQhueSWFzrPNLsLW9VlZe9BqCXiUcqapNE8LhDNauM0pgWciOnKMgDW_2LKdKzmdLjGZ5X05KedxRRZTHmLBRANWrVn9fiL_GjVGVTT_pvi_NEnim1WPegdR3XhYUFE0XlMX1B5AE-GbpzY9LVGV_ZyiTLES5SQ1AYZTDaFEDLf9BxMIFEkS0UA-95fhzEj9sb4zNMAsjVPHgSIfHy9p5qdtyTkjMksy-IAxq3PDxqNdh91jc6kUEazHC_fsKFFUrzNsElsNTbMRRLimhfqvLm4_-8WfgzX3r2cqLevpm8ewA69yJfyHcBWM1_ahwgam-JRGxd-AC3pXQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+for+prostate+cancer+using+multivariate+mixed-effects+models&rft.jtitle=Journal+of+applied+statistics&rft.au=Morrell%2C+Christopher+H&rft.au=Brant%2C+Larry+J&rft.au=Sheng%2C+Shan&rft.au=Metter%2C+E+Jeffrey&rft.date=2012-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=39&rft.issue=6&rft.spage=1151&rft_id=info:doi/10.1080%2F02664763.2011.644523&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2642124301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |