Screening for prostate cancer using multivariate mixed-effects models

Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone inde...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 39; no. 6; pp. 1151 - 1175
Main Authors Morrell, Christopher H., Brant, Larry J., Sheng, Shan, Metter, E. Jeffrey
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.06.2012
Taylor and Francis Journals
Taylor & Francis Ltd
SeriesJournal of Applied Statistics
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
DOI10.1080/02664763.2011.644523

Cover

Abstract Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process.
AbstractList Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process.
Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate-specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process. [PUBLICATION ABSTRACT]
Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process.Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns of change in these three variables are allowed to vary depending on whether the subject develops prostate cancer or not and the severity of the prostate cancer at diagnosis. An application of Bayes' theorem provides posterior probabilities that we use to predict whether an individual will develop prostate cancer and, if so, whether it is a high-risk or a low-risk cancer. The classification rule is applied sequentially one multivariate observation at a time until the subject is classified as a cancer case or until the last observation has been used. We perform the analyses using each of the three variables individually, combined together in pairs, and all three variables together in one analysis. We compare the classification results among the various analyses and a simulation study demonstrates how the sensitivity of prediction changes with respect to the number and type of variables used in the prediction process.
Author Brant, Larry J.
Sheng, Shan
Morrell, Christopher H.
Metter, E. Jeffrey
AuthorAffiliation a Mathematics and Statistics Department, Loyola University Maryland, 4501 North Charles St., Baltimore, MD 21210-2699 USA
c National Institute on Aging, 3001 S. Hanover Street, Baltimore, MD 21225 USA
b National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224 USA
AuthorAffiliation_xml – name: a Mathematics and Statistics Department, Loyola University Maryland, 4501 North Charles St., Baltimore, MD 21210-2699 USA
– name: b National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224 USA
– name: c National Institute on Aging, 3001 S. Hanover Street, Baltimore, MD 21225 USA
Author_xml – sequence: 1
  givenname: Christopher H.
  surname: Morrell
  fullname: Morrell, Christopher H.
  email: chm@loyola.edu, morrellc@mail.nih.gov
  organization: National Institute on Aging
– sequence: 2
  givenname: Larry J.
  surname: Brant
  fullname: Brant, Larry J.
  organization: National Institute on Aging
– sequence: 3
  givenname: Shan
  surname: Sheng
  fullname: Sheng, Shan
  organization: National Institute on Aging
– sequence: 4
  givenname: E. Jeffrey
  surname: Metter
  fullname: Metter, E. Jeffrey
  organization: National Institute on Aging
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22679342$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/tafjapsta/v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151-1175.htm$$DView record in RePEc
BookMark eNqFkk1v1DAQhiNURLeFf4DQSly4ZPG3Ew5UqCof0kocgLPlOOPWqyQOdlLov2ei7VbQA3sY-zDPvJqP96w4GeIARfGSkg0lFXlLmFJCK75hhNKNEkIy_qRYUa5ISSRnJ8VqQcqFOS3Oct4RQioq-bPilDGlay7Yqrj65hLAEIbrtY9pPaaYJzvB2tnBQVrPecn0czeFW5vCkunDb2hL8B7clNd9bKHLz4un3nYZXtz_58WPj1ffLz-X26-fvlx-2JZOUTGVLaG198JJq4F63kLTcAWVUJa1nNWsVpIIKTyBWraioayubKOEEiAaW2vLz4v3e91xbnpoHQxTsp0ZU-htujPRBvNvZgg35jreGs6V1pqgwJt7gRR_zpAn04fsoOvsAHHOhlZMSak0k8dRLblEthbHUVZxTYkgGtHXj9BdnNOASzOUkHphqkVwu6cSjOAe5pus39kRD2RwIstrfO4w0AAMv4ChMEYMSiU1FFs0N1OPcq_-XtuD3sEGCLzbAw7vnxN44wLaIMRli6HD1sziOXPwnFk8Z_aew2LxqPigf6TsYl8WBnReb3_F1LU44l0Xk09ov5AN_6_CH0Oy6tA
CitedBy_id crossref_primary_10_1177_0962280215608213
crossref_primary_10_1111_insr_12532
crossref_primary_10_1080_02664763_2014_999032
crossref_primary_10_4236_ojapps_2013_32025
crossref_primary_10_1002_bimj_201700013
crossref_primary_10_1177_09622802211032705
crossref_primary_10_1177_0962280216674496
crossref_primary_10_1002_sim_7397
crossref_primary_10_1080_10543406_2015_1052487
crossref_primary_10_1186_s12885_021_08226_4
crossref_primary_10_1177_1471082X231202341
crossref_primary_10_1515_ijb_2019_0159
crossref_primary_10_1186_s12874_021_01296_9
crossref_primary_10_3390_jimaging7060092
Cites_doi 10.1198/016214502753479220
10.1093/jnci/87.5.354
10.3102/10769986026004443
10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M
10.1002/sim.4780130520
10.1198/106186002760180608
10.1007/978-1-4612-2290-3_14
10.1001/jama.267.16.2215
10.1056/NEJM199104253241702
10.1198/016214501753168145
10.1198/016214502753479211
10.1198/016214507000000356
10.1002/sim.1392
10.1016/S0022-5347(05)65531-0
10.1111/1467-985X.00258
10.1016/S0378-3758(01)00235-X
10.1002/pros.2990160105
10.1373/clinchem.2007.096529
10.1080/01621459.1995.10476487
10.1093/jnci/djg009
10.1111/j.0006-341X.2000.01157.x
10.1111/j.1541-0420.2006.00507.x
10.1097/01.ju.0000152408.25738.23
10.1161/CIRCULATIONAHA.106.672402
10.1093/oso/9780198522065.001.0001
10.2307/1165239
10.1080/00031305.1997.10474409
10.1093/biostatistics/kxm041
10.1016/S1470-2045(08)70104-9
10.1158/1055-9965.EPI-04-0715
10.1002/sim.995
10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R
10.1093/biostatistics/4.1.27
10.1111/j.0006-341X.2000.01047.x
10.1002/sim.1179
10.1080/01621459.1996.10476679
10.1016/0090-4295(93)90362-E
10.1002/ijc.11572
10.1080/01621459.1997.10474030
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
DBID AAYXX
CITATION
NPM
DKI
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02664763.2011.644523
DatabaseName CrossRef
PubMed
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

Aerospace Database
MEDLINE - Academic

PubMed

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1175
ExternalDocumentID PMC3367770
2642124301
tafjapsta_v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151_1175_htm
22679342
10_1080_02664763_2011_644523
644523
Genre Journal Article
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 AG000638
– fundername: National Institute on Aging : NIA
  grantid: Z01 AG000638-18 || AG
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07G
1TA
8C1
8FE
8FG
8G5
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADYSH
AEUMN
AFKRA
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
CITATION
COF
CRFIH
DMQIW
DWIFK
DWQXO
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K6V
K7-
L6V
LJTGL
M0C
M2O
M7S
NHB
NUSFT
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TFMCV
TOXWX
UB9
UKHRP
UU8
V3K
V4Q
VH1
NPM
TASJS
0R
3V.
3YN
7F
AAAVI
ABJVF
ABQHQ
ADIYS
AEGYZ
AFOLD
AHDLD
AIRXU
BBAFP
COQAR
DKI
FUNRP
FVPDL
HZ
K6
M0N
NY
PADUT
PQEST
PQUKI
PRINS
QJ
S
V1K
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c614t-d019ff4c5a7e1f3debb36e846a2d32929650454f0e95d4b1298ab6464e4ba97a3
ISSN 0266-4763
IngestDate Thu Aug 21 14:10:32 EDT 2025
Fri Sep 05 03:41:32 EDT 2025
Fri Sep 05 09:51:46 EDT 2025
Thu Sep 04 17:29:13 EDT 2025
Wed Aug 13 07:04:55 EDT 2025
Thu Dec 16 09:11:52 EST 2021
Mon Jul 21 05:20:51 EDT 2025
Tue Jul 01 02:25:06 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Wed Dec 25 09:03:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c614t-d019ff4c5a7e1f3debb36e846a2d32929650454f0e95d4b1298ab6464e4ba97a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 22679342
PQID 1009040784
PQPubID 23500
PageCount 25
ParticipantIDs crossref_citationtrail_10_1080_02664763_2011_644523
proquest_miscellaneous_1753555694
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367770
proquest_miscellaneous_1826556725
proquest_miscellaneous_1283710407
repec_primary_tafjapsta_v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151_1175_htm
pubmed_primary_22679342
crossref_primary_10_1080_02664763_2011_644523
proquest_journals_1009040784
informaworld_taylorfrancis_310_1080_02664763_2011_644523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-00
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationSeriesTitle Journal of Applied Statistics
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2012
Publisher Taylor & Francis
Taylor and Francis Journals
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor and Francis Journals
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0034
CIT0011
CIT0033
Carter H. B. (CIT0004) 1994; 21
Diggle P. J. (CIT0012) 1990
Thum Y. M. (CIT0041) 1997; 22
CIT0036
CIT0013
CIT0016
CIT0038
CIT0015
CIT0018
CIT0039
CIT0019
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
CIT0044
Green D. M. (CIT0017) 1988
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
Slate E. H. (CIT0037) 1999
CIT0008
References_xml – ident: CIT0021
  doi: 10.1198/016214502753479220
– ident: CIT0044
  doi: 10.1093/jnci/87.5.354
– ident: CIT0042
  doi: 10.3102/10769986026004443
– ident: CIT0030
  doi: 10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M
– start-page: 511
  volume-title: Case Studies in Bayesian Statistics IV
  year: 1999
  ident: CIT0037
– ident: CIT0029
  doi: 10.1002/sim.4780130520
– ident: CIT0033
  doi: 10.1198/106186002760180608
– ident: CIT0038
  doi: 10.1007/978-1-4612-2290-3_14
– ident: CIT0005
  doi: 10.1001/jama.267.16.2215
– ident: CIT0006
  doi: 10.1056/NEJM199104253241702
– ident: CIT0036
  doi: 10.1198/016214501753168145
– ident: CIT0032
  doi: 10.1198/016214502753479211
– ident: CIT0018
  doi: 10.1198/016214507000000356
– ident: CIT0027
  doi: 10.1002/sim.1392
– ident: CIT0011
  doi: 10.1016/S0022-5347(05)65531-0
– ident: CIT0001
  doi: 10.1111/1467-985X.00258
– ident: CIT0007
  doi: 10.1016/S0378-3758(01)00235-X
– volume-title: Signal Detection Theory and Psychophysics
  year: 1988
  ident: CIT0017
– ident: CIT0003
  doi: 10.1002/pros.2990160105
– ident: CIT0010
  doi: 10.1373/clinchem.2007.096529
– ident: CIT0025
  doi: 10.1080/01621459.1995.10476487
– ident: CIT0016
  doi: 10.1093/jnci/djg009
– ident: CIT0022
  doi: 10.1111/j.0006-341X.2000.01157.x
– ident: CIT0013
  doi: 10.1111/j.1541-0420.2006.00507.x
– ident: CIT0019
  doi: 10.1097/01.ju.0000152408.25738.23
– ident: CIT0009
  doi: 10.1161/CIRCULATIONAHA.106.672402
– volume-title: Time Series: A Biostatistical Introduction
  year: 1990
  ident: CIT0012
  doi: 10.1093/oso/9780198522065.001.0001
– volume: 21
  start-page: 554
  issue: 5
  year: 1994
  ident: CIT0004
  publication-title: Semin. Oncol
– volume: 22
  start-page: 77
  year: 1997
  ident: CIT0041
  publication-title: J. Educ. Behav. Stat.
  doi: 10.2307/1165239
– ident: CIT0024
  doi: 10.1080/00031305.1997.10474409
– ident: CIT0015
  doi: 10.1093/biostatistics/kxm041
– ident: CIT0008
  doi: 10.1016/S1470-2045(08)70104-9
– ident: CIT0026
  doi: 10.1158/1055-9965.EPI-04-0715
– ident: CIT0028
  doi: 10.1002/sim.995
– ident: CIT0039
  doi: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R
– ident: CIT0023
  doi: 10.1093/biostatistics/4.1.27
– ident: CIT0031
  doi: 10.1111/j.0006-341X.2000.01047.x
– ident: CIT0020
  doi: 10.1002/sim.1179
– ident: CIT0043
  doi: 10.1080/01621459.1996.10476679
– ident: CIT0002
  doi: 10.1016/0090-4295(93)90362-E
– ident: CIT0040
  doi: 10.1002/ijc.11572
– ident: CIT0034
  doi: 10.1080/01621459.1997.10474030
SSID ssj0008153
Score 2.0029175
Snippet Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate...
SourceID pubmedcentral
proquest
repec
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1151
SubjectTerms Antigens
Applied statistics
Bayesian analysis
Bismaleimides
Body size (biology)
Cancer
Classification
disease screening
longitudinal data
Mathematical models
Medical screening
Multivariate analysis
Prostate
Prostate cancer
sensitivity
Simulation
specificity
Studies
Title Screening for prostate cancer using multivariate mixed-effects models
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2011.644523
https://www.ncbi.nlm.nih.gov/pubmed/22679342
http://econpapers.repec.org/article/tafjapsta/v_3a39_3ay_3a2012_3ai_3a6_3ap_3a1151-1175.htm
https://www.proquest.com/docview/1009040784
https://www.proquest.com/docview/1283710407
https://www.proquest.com/docview/1753555694
https://www.proquest.com/docview/1826556725
https://pubmed.ncbi.nlm.nih.gov/PMC3367770
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq9WU8IBhfgTEFiTcU1MSO3TwW1qljbEJqJyZeIiex1SLWVW2KgD-Dv5g7O3ETrZSPB6dV7LhJ75fznX33MyEve4xqGoVFwDUV4KAkRZDFMg-ElpnSYCJoQ1Z9fsFHl-zdVXzV6fxsRC2ty-x1_mNrXsn_SBXOgVwxS_YfJOs6hRPwHeQLR5AwHP9KxuMco2bqWMgFJnCA6YiBXLlavlqbaQATMfgVPGKsuZ59U0VQx3CYXXBWvzFPZWWeYpeWzNnJBjf0sKsVDWqCTZbDGxj-rL8vlxiS5yZxpqqam55uIHlu0omMRq6zypoTERjRwZsTEZNbe4I0ApNWhuKVB6xWZ8qqW8pxKZ629LElN6pw11SuYLyGW7V-FSYJP4D9W15WsPPiiG5GuXplfzQYpx-OT9L3pxdn7VozqEeY-BsxiimB3UgIXPrvDkbHnz668b0fWm7T-nnqhExkbN9yCy2Dp0WHu82puR2b212qhcobRs_kHrlbwcEfWOjdJx01PyB3zh3V7-qA7I8dQB6QoUOkDzfg14j0LSJ9g0i_iUi_hUjfIvIhuTwZTt6OgmqjjiAH664MCvATtGZ5LIUKNS1UllGuwLKVUUEjMMDBDWAx0z2VxAXLwMTsy4wzzhTLZCIkfUT25jdz9YT4koP_gV4yzyXrZeC9yFxLcAMZEhEWhUdo_W-mecVij5upfEnDmuy2kkGKMkitDDwSuKsWlsXlD-37TUGlpcG2trBO6e5LD2uhppWqWCExeNLDFXPmkReuGhQ5rs7JubpZQxvkoQqx1Y42Igb_IObJrn76EYcmIoo98thiyT0z-FowHrPII6KFMtcAyebbNfPZ1JDOU8qFED2PDA0e3RWl1J_lAsCUQhtJEzh8h4IKAj5mUDiUBRR8fXFvgTidltdPd_9Nz8j-RsUckr1yuVbPwfovs6PqdTwC__fs9Bd79gEw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5Be6AceJSXoYCRuLrY3ofjI0KpAjS50ErcVrvrXRqgbpQ4CPj1zHhtq-ERJDhsctgZRzuZnfnGHn8L8DzlzLM8qxLpWYEFSlklRmibFF4b5xEi-JasejqTk1P-5r3ouwlXXVsl1dA-EEW0sZo2N92M7lviXmDdIDlujMDAiRkdq6mrsCsQupOTs3Q2BONRFogoUSMhlf7tuT9cZSM7bXCX_g6B_tpIubt0C2cvZaijm2D6tYXGlE-H68Yc2u8_0T7-1-JvwY0Ov8Yvg8Pdhiuu3ofr04H8dbUPewRgA__zHRi_s9TZgwkyxlXGC3rJBOFtbMnbljG13X-I267GL1i108z5_Kurkq7PJG5P6lndhdOj8cmrSdId3ZBYzPdNUiFy9J5boQuXeVY5Y5h0iHV0XrEcIRkCQy64T10pKm4QdIy0kVxyx40uC83uwU59UbsHEGuJiJTqJmk1Tw3iWW29xsKAEzVdVUXA-r9M2Y7XnI7X-Kyynv60s5gii6lgsQiSQWsReD3-Ij-67A2qae-n-HD4iWLbVQ96z1FdgFgRVXSZ0jNUHsGzYRq3Nj2v0bW7WKMMMRNlJLVFBstNIYQst10HS0gUKXIRwf3gsMOaEX1jhOZ5BMWGKw8CRD--OVPPz1oacsZkURRpBOPW6QeNRvuPeoHOpFBGsxI_vuFAi-T4NcchcSxwYDWSEdu8UGfN-cN_t_BTuDY5mR6r49ezt49gj34pdPMdwE6zXLvHiBsb86SNDD8A1H5eZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BK6H2wKNACRQIEteUJH5kc0Swq_LoCgkq9WY5jt0u0DTazSLg1zMTJ9Euj0WCg5ODZxJ5djz-ZjP-DPA05syxNCkj6ViGCUpeRoXQJsqcLqxDiOBasurjqTw64a9PxenKLn4qq6Qc2nmiiDZW0-SuS9dXxD3DtEFynBeegBMXdEymrsK2RHRCRX0sng6xeJR4HkrUiEil3zz3h6esLU5r1KW_A6C_1lFuz21tzcoCNbkBuh-ar0v5dLhsikPz_SfWx_8Z-0243qHX8Ll3t1twxVZ7sHs8UL8u9mCH4Ktnf74N4_eG6npweQxxkGFNW0wQ3IaGfG0eUtH9WdjWNH7BnJ16LmZfbRl1VSZhe07P4g6cTMYfXhxF3cENkcHVvolKxI3OcSN0ZhPHSlsUTFpEOjotWYqADGEhF9zFNhclLxByjHQhueSWFzrPNLsLW9VlZe9BqCXiUcqapNE8LhDNauM0pgWciOnKMgDW_2LKdKzmdLjGZ5X05KedxRRZTHmLBRANWrVn9fiL_GjVGVTT_pvi_NEnim1WPegdR3XhYUFE0XlMX1B5AE-GbpzY9LVGV_ZyiTLES5SQ1AYZTDaFEDLf9BxMIFEkS0UA-95fhzEj9sb4zNMAsjVPHgSIfHy9p5qdtyTkjMksy-IAxq3PDxqNdh91jc6kUEazHC_fsKFFUrzNsElsNTbMRRLimhfqvLm4_-8WfgzX3r2cqLevpm8ewA69yJfyHcBWM1_ahwgam-JRGxd-AC3pXQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+for+prostate+cancer+using+multivariate+mixed-effects+models&rft.jtitle=Journal+of+applied+statistics&rft.au=Morrell%2C+Christopher+H&rft.au=Brant%2C+Larry+J&rft.au=Sheng%2C+Shan&rft.au=Metter%2C+E+Jeffrey&rft.date=2012-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=39&rft.issue=6&rft.spage=1151&rft_id=info:doi/10.1080%2F02664763.2011.644523&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2642124301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon