threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation

The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for lig...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 1; pp. 129 - 134
Main Authors Brylinski, Michal, Skolnick, Jeffrey
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.01.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model.
AbstractList The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model.
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8–10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. pocket detection protein structure prediction ligand screening
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Aa as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Aa. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Aa. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model.
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 A as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 A. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 A. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model.
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 A as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (&lt;35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 A. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site &lt;2 A. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model.
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 ... as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 ... This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 ... Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. (ProQuest: ... denotes formulae/symbols omitted.)
Author Brylinski, Michal
Skolnick, Jeffrey
Author_xml – sequence: 1
  fullname: Brylinski, Michal
– sequence: 2
  fullname: Skolnick, Jeffrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18165317$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxSNURLeFMycg4oDgkHbGieP4goRKP1aq4ND2iuXEzq5XWXtrOwj-exx21S0c4DQavd88zcw7yg6sszrLXiKcILDydGNlOAEGrG4qBPokmyFwLOqKw0E2AyCsaCpSHWZHIawAgNMGnmWH2GBNS2Sz7Ftcei2VsYuilUGrfK3j0qn8_cX8y-eb-e35h7x3Ph_MQlpVtMZOaB5M1PnGa2W6aJzNk5b3o_3dyCG11kU5Nc-zp70cgn6xq8fZ3cX57dlVcf31cn726broaqxiQQggdly2Le-QMdbXtKlr1ZcSsWZlyVvVyFqlI6nWqm8Ih6qliLrSPSqqyuPs49Z3M7ZrrTpto5eD2Hizlv6ncNKIPxVrlmLhvgtCSIWMJIN3OwPv7kcdolib0OlhkFa7MQgGyBlQ_C9IgJYEyjKBb_8CV2706T0TgyVvat4k6HQLdd6F4HX_sDKCmBIWU8Jin3CaeP340j2_i_TRgtPk3o4KFEi46MdhiPpHTOCrf4F7fRWi8w8AoRVFqCb9zVbvpRNy4U0QdzfTaQApp_Sq8heGe82Y
CitedBy_id crossref_primary_10_1371_journal_pcbi_1006718
crossref_primary_10_1093_nar_gkq406
crossref_primary_10_1093_bioinformatics_bts182
crossref_primary_10_1021_jm5009902
crossref_primary_10_1021_acs_jcim_8b00777
crossref_primary_10_3390_ijms150915122
crossref_primary_10_1109_TCBB_2023_3265640
crossref_primary_10_1016_j_ejcb_2011_06_003
crossref_primary_10_1371_journal_pcbi_1000727
crossref_primary_10_1111_j_1747_0285_2012_01408_x
crossref_primary_10_4236_jbise_2013_612145
crossref_primary_10_1021_acs_jcim_3c01698
crossref_primary_10_1021_mp1002976
crossref_primary_10_1002_pro_540
crossref_primary_10_1186_1471_2105_13_S4_S17
crossref_primary_10_1016_j_crstbi_2024_100144
crossref_primary_10_3390_md18030167
crossref_primary_10_1093_bioinformatics_btv597
crossref_primary_10_1038_s41401_019_0228_6
crossref_primary_10_1016_j_abb_2016_01_007
crossref_primary_10_1002_prot_22557
crossref_primary_10_1093_nar_gkt457
crossref_primary_10_1093_bib_bbac365
crossref_primary_10_1371_journal_pone_0004473
crossref_primary_10_3390_ijms161226202
crossref_primary_10_1186_s13321_018_0285_8
crossref_primary_10_1007_s41348_017_0083_y
crossref_primary_10_1016_j_sbi_2011_02_001
crossref_primary_10_1111_brv_12905
crossref_primary_10_1124_mol_111_077040
crossref_primary_10_1021_mp3000716
crossref_primary_10_1186_s13321_024_00865_6
crossref_primary_10_1016_j_str_2012_03_009
crossref_primary_10_1093_nar_gkac250
crossref_primary_10_3390_molecules27207103
crossref_primary_10_1002_prot_22566
crossref_primary_10_1002_prot_22443
crossref_primary_10_1038_srep11090
crossref_primary_10_1016_j_bmcl_2017_07_035
crossref_primary_10_1007_s10969_011_9109_z
crossref_primary_10_1093_nar_gks372
crossref_primary_10_1021_acs_jcim_8b00309
crossref_primary_10_1002_prot_22572
crossref_primary_10_1128_spectrum_05228_22
crossref_primary_10_1371_journal_pone_0031437
crossref_primary_10_2174_1574893616666210806091922
crossref_primary_10_1371_journal_pone_0161894
crossref_primary_10_1021_mp900131p
crossref_primary_10_1093_bib_bbv027
crossref_primary_10_1016_j_str_2011_02_015
crossref_primary_10_1051_ro_2015040
crossref_primary_10_1039_C8CP03661F
crossref_primary_10_1093_bioinformatics_btq006
crossref_primary_10_1186_1471_2105_11_47
crossref_primary_10_1016_j_ces_2022_117962
crossref_primary_10_1021_ci200193z
crossref_primary_10_1021_acs_jcim_1c00799
crossref_primary_10_1021_acs_jpcb_6b09517
crossref_primary_10_1093_nar_gkp368
crossref_primary_10_1007_s11831_021_09661_z
crossref_primary_10_1021_jm4014357
crossref_primary_10_1038_s41598_020_72906_7
crossref_primary_10_1371_journal_pone_0160315
crossref_primary_10_1007_s00894_011_0998_3
crossref_primary_10_1089_cmb_2016_0135
crossref_primary_10_1016_j_sbi_2013_01_009
crossref_primary_10_1186_1477_5956_11_47
crossref_primary_10_1093_nargab_lqac078
crossref_primary_10_1002_pro_618
crossref_primary_10_1177_11769351211065979
crossref_primary_10_1016_j_antiviral_2023_105548
crossref_primary_10_1007_s10822_013_9663_5
crossref_primary_10_1002_jcc_21395
crossref_primary_10_1016_j_jsb_2010_09_009
crossref_primary_10_1093_nar_gkv342
crossref_primary_10_1186_1758_2946_6_16
crossref_primary_10_1002_minf_201700021
crossref_primary_10_1002_prot_23165
crossref_primary_10_1002_prot_24495
crossref_primary_10_1093_bioinformatics_btz609
crossref_primary_10_1039_C9RA02928A
crossref_primary_10_1093_bioinformatics_btw367
crossref_primary_10_1136_svn_2019_000323
crossref_primary_10_1002_prot_22513
crossref_primary_10_1093_nar_gks966
crossref_primary_10_3390_ijms20092301
crossref_primary_10_1093_bib_bbab476
crossref_primary_10_1186_s13321_015_0059_5
crossref_primary_10_1007_s10969_009_9073_z
crossref_primary_10_1093_nar_gkt498
crossref_primary_10_1142_S0219633608004155
crossref_primary_10_1007_s42485_021_00079_6
crossref_primary_10_1038_nprot_2015_043
crossref_primary_10_1093_bioinformatics_btu746
crossref_primary_10_1002_prot_23174
crossref_primary_10_1080_07391102_2021_1968500
crossref_primary_10_1002_pro_394
crossref_primary_10_1016_j_jsps_2020_10_005
crossref_primary_10_1093_bib_bby078
crossref_primary_10_1109_TCBB_2020_3002776
crossref_primary_10_1186_s12864_020_07199_1
crossref_primary_10_1093_bioinformatics_bts310
crossref_primary_10_1093_bib_bbp017
crossref_primary_10_1016_j_sbi_2011_03_013
crossref_primary_10_1016_j_str_2012_09_011
crossref_primary_10_1021_acs_jcim_1c00561
crossref_primary_10_1016_j_ejphar_2021_174276
crossref_primary_10_1038_nprot_2010_5
crossref_primary_10_1016_j_drudis_2015_12_007
crossref_primary_10_1093_aob_mcw259
crossref_primary_10_1093_bioinformatics_btn543
crossref_primary_10_4049_jimmunol_1203231
crossref_primary_10_5936_csbj_201308005
crossref_primary_10_1016_j_bmc_2016_08_019
crossref_primary_10_1002_prot_26573
crossref_primary_10_1016_j_ymeth_2014_10_019
crossref_primary_10_1371_journal_pone_0062535
crossref_primary_10_1093_bioinformatics_btaa110
crossref_primary_10_1186_s12859_019_2672_1
crossref_primary_10_1021_acs_jctc_2c01306
crossref_primary_10_1128_IAI_01770_14
crossref_primary_10_1016_j_sbi_2009_02_005
crossref_primary_10_1093_bioinformatics_btw829
crossref_primary_10_1021_acs_jpcb_2c04525
crossref_primary_10_1016_j_tplants_2013_10_006
crossref_primary_10_1093_nar_gkp842
crossref_primary_10_1002_prot_24327
crossref_primary_10_1093_bib_bbac290
crossref_primary_10_1021_acs_jcim_3c01298
crossref_primary_10_1002_pro_2225
crossref_primary_10_1371_journal_pcbi_1000567
crossref_primary_10_3390_ijms24119334
crossref_primary_10_1002_0471250953_bi0508s52
crossref_primary_10_1186_s13321_024_00871_8
crossref_primary_10_1093_bioinformatics_btaa805
crossref_primary_10_1016_j_jbc_2022_102440
crossref_primary_10_1186_1471_2105_11_265
crossref_primary_10_1093_nar_gkac323
crossref_primary_10_1002_prot_24330
crossref_primary_10_1007_s12013_017_0836_z
crossref_primary_10_1109_TCBB_2023_3239983
crossref_primary_10_1021_ci100235n
crossref_primary_10_1016_j_ijbiomac_2023_125733
crossref_primary_10_3390_microorganisms10061090
crossref_primary_10_1021_acs_jcim_7b00397
crossref_primary_10_3390_cells11010037
crossref_primary_10_1016_j_drudis_2010_05_015
crossref_primary_10_1093_glycob_cwr095
crossref_primary_10_1109_TNB_2015_2403776
crossref_primary_10_1002_prot_22715
crossref_primary_10_1016_j_jocs_2024_102368
crossref_primary_10_1186_1471_2105_15_197
crossref_primary_10_1002_jmr_984
crossref_primary_10_1002_pro_4869
crossref_primary_10_1016_j_csbj_2022_11_042
crossref_primary_10_1186_s13321_016_0149_z
crossref_primary_10_1371_journal_pone_0050200
crossref_primary_10_3390_molecules27144623
crossref_primary_10_1016_j_bbapap_2010_04_008
crossref_primary_10_1371_journal_pone_0038219
crossref_primary_10_1186_1471_2105_12_160
crossref_primary_10_1371_journal_pcbi_1000585
crossref_primary_10_1038_srep01448
crossref_primary_10_1186_1472_6807_11_34
crossref_primary_10_1093_bioinformatics_btw396
crossref_primary_10_1155_2018_5486403
crossref_primary_10_1016_j_jtbi_2011_01_047
crossref_primary_10_1021_jm301829h
crossref_primary_10_2174_1386207322666190925125524
crossref_primary_10_1073_pnas_0907683106
crossref_primary_10_1093_bioinformatics_btt447
crossref_primary_10_1186_1471_2105_11_365
crossref_primary_10_3389_fphar_2022_939555
crossref_primary_10_1073_pnas_1705381114
crossref_primary_10_1093_bioinformatics_btab009
crossref_primary_10_1186_s13321_020_00440_9
crossref_primary_10_1016_j_jmb_2017_12_001
crossref_primary_10_1080_07391102_2010_10507359
crossref_primary_10_1002_bit_26602
crossref_primary_10_1016_j_jbiotec_2011_12_005
crossref_primary_10_1063_1_4937428
crossref_primary_10_1007_s10930_017_9736_8
crossref_primary_10_1371_journal_pone_0032011
crossref_primary_10_1021_acs_chemrev_5b00631
crossref_primary_10_1016_j_sbi_2011_01_004
crossref_primary_10_1016_j_tiv_2023_105740
crossref_primary_10_1371_journal_pcbi_1000405
crossref_primary_10_1038_s41598_021_03431_4
crossref_primary_10_1016_j_jsb_2012_09_010
crossref_primary_10_1073_pnas_1005894107
crossref_primary_10_1002_jcc_24380
crossref_primary_10_21926_obm_genet_2402227
crossref_primary_10_1002_minf_201300082
crossref_primary_10_1002_cpps_75
crossref_primary_10_1021_acs_jpcb_4c01875
crossref_primary_10_1093_nar_gkx366
crossref_primary_10_1021_acs_jcim_1c01114
crossref_primary_10_1109_TCBB_2015_2505286
crossref_primary_10_1016_j_jtbi_2013_03_018
crossref_primary_10_1007_s00253_018_9068_4
crossref_primary_10_1021_acs_jcim_1c00944
crossref_primary_10_1002_prot_22352
crossref_primary_10_1002_prot_24098
crossref_primary_10_1016_j_eswa_2023_122334
crossref_primary_10_1016_j_csbj_2020_02_008
crossref_primary_10_1016_j_ab_2018_11_009
crossref_primary_10_1371_journal_pcbi_1003829
crossref_primary_10_1073_pnas_0907971106
crossref_primary_10_1016_j_imu_2020_100503
crossref_primary_10_1093_nar_gkq383
crossref_primary_10_1093_nar_gkx337
crossref_primary_10_1021_ci400510e
crossref_primary_10_1002_prot_22913
crossref_primary_10_1093_bioinformatics_btu581
crossref_primary_10_1007_s10522_016_9660_x
crossref_primary_10_1021_acs_jcim_0c01160
crossref_primary_10_1073_pnas_1305162110
crossref_primary_10_1016_j_ab_2020_113799
crossref_primary_10_1080_1062936X_2016_1217271
crossref_primary_10_1007_s11756_021_00727_8
crossref_primary_10_1016_j_compbiolchem_2016_10_010
crossref_primary_10_1016_j_future_2019_04_011
crossref_primary_10_1007_s10822_019_00235_7
crossref_primary_10_1021_acs_jcim_1c00972
crossref_primary_10_1186_s13015_020_00168_z
crossref_primary_10_1002_jcc_20917
crossref_primary_10_1021_ci300178e
crossref_primary_10_1371_journal_pone_0137279
crossref_primary_10_1016_j_jmb_2020_07_003
crossref_primary_10_1093_bioinformatics_btp561
crossref_primary_10_1093_nar_gky439
crossref_primary_10_1093_nar_gkt300
crossref_primary_10_1021_ci300510n
crossref_primary_10_1002_jcc_25813
crossref_primary_10_1021_ci4003602
Cites_doi 10.6026/97320630001127
10.1093/nar/gki524
10.1006/jmbi.2001.5009
10.1006/jmbi.1998.2043
10.1107/S0021889883010985
10.1002/prot.20106
10.1186/1472-6807-6-19
10.1126/science.1065659
10.1006/jmbi.2000.3550
10.1126/science.1058040
10.1002/pro.5560070905
10.1007/BF00124402
10.1093/nar/28.1.235
10.2174/138920306778559386
10.1002/prot.20724
10.1093/nar/gkj063
10.1006/jmbi.2001.4513
10.1038/75556
10.1002/prot.10237
10.1006/jmbi.1998.1993
10.1016/S0959-440X(03)00075-7
10.1529/biophysj.104.045385
10.1093/nar/gkh406
10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A
10.1093/bioinformatics/15.4.327
10.1093/protein/12.2.85
10.1146/annurev.biophys.29.1.291
10.1093/nar/gkg555
10.1073/pnas.211436698
10.1073/pnas.0305695101
10.1016/j.febslet.2006.01.074
10.1093/nar/gkj161
10.1016/S1093-3263(98)00002-3
10.1021/jm050090o
10.1002/prot.20769
10.1126/science.287.5461.2185
10.1093/nar/gkl124
10.1093/nar/28.1.27
10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S
10.1038/80776
10.1093/bioinformatics/btg262
10.1006/jmbi.1993.1626
10.1016/S0022-2836(05)80134-2
10.1074/mcp.M300082-MCP200
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 8, 2008
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 8, 2008
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
DOI 10.1073/pnas.0707684105
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database

CrossRef
MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 134
ExternalDocumentID 1411206441
10_1073_pnas_0707684105
18165317
105_1_129
25451049
US201300845513
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-48835
– fundername: NIGMS NIH HHS
  grantid: R01 GM048835
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
ID FETCH-LOGICAL-c614t-22011c9abb9c1777f65866df3a1167339bd8a6d6845eedf82904b511e4ef1d5d3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:29 EDT 2024
Fri Oct 25 07:31:14 EDT 2024
Fri Oct 25 03:57:45 EDT 2024
Thu Oct 10 17:10:09 EDT 2024
Fri Aug 23 01:51:10 EDT 2024
Sat Sep 28 07:52:39 EDT 2024
Wed Nov 11 00:29:14 EST 2020
Thu May 30 08:49:34 EDT 2019
Fri Feb 02 07:05:52 EST 2024
Wed Dec 27 18:57:11 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-22011c9abb9c1777f65866df3a1167339bd8a6d6845eedf82904b511e4ef1d5d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved November 19, 2007
Author contributions: J.S. designed research; M.B. performed research; M.B. analyzed data; and M.B. and J.S. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc2224172?pdf=render
PMID 18165317
PQID 201398698
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224172
proquest_journals_201398698
proquest_miscellaneous_20532033
pnas_primary_105_1_129_fulltext
fao_agris_US201300845513
proquest_miscellaneous_70197051
pubmed_primary_18165317
pnas_primary_105_1_129
crossref_primary_10_1073_pnas_0707684105
jstor_primary_25451049
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2008-01-08
PublicationDateYYYYMMDD 2008-01-08
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-08
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 9704298 - J Mol Graph Model. 1997 Dec;15(6):359-63, 389
9761470 - Protein Sci. 1998 Sep;7(9):1884-97
9743635 - J Mol Biol. 1998 Oct 2;282(4):903-18
10704319 - J Mol Biol. 2000 Mar 17;297(1):233-49
15229883 - Proteins. 2004 Aug 15;56(3):502-18
10944397 - Proteins. 2000 Oct 1;41(1):98-107
17597871 - Bioinformation. 2006 Apr 11;1(4):127-9
16187349 - Proteins. 2005;61 Suppl 7:91-8
16995956 - BMC Struct Biol. 2006;6:19
12471595 - Proteins. 2003 Jan 1;50(1):5-25
11588250 - Science. 2001 Oct 5;294(5540):93-6
12831892 - Curr Opin Struct Biol. 2003 Jun;13(3):389-95
16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91
10320401 - Bioinformatics. 1999 Apr;15(4):327-32
14555633 - Bioinformatics. 2003 Oct 12;19(15):1985-96
11286560 - J Mol Biol. 2001 Apr 6;307(4):1113-43
15849316 - Nucleic Acids Res. 2005;33(7):2302-9
7608743 - J Comput Aided Mol Des. 1995 Apr;9(2):113-30
16107144 - J Med Chem. 2005 Aug 25;48(17):5448-65
10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
12824422 - Nucleic Acids Res. 2003 Jul 1;31(13):3799-803
16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30
16304646 - Proteins. 2006 Feb 1;62(2):479-88
15215401 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W313-7
17073692 - Curr Protein Pept Sci. 2006 Oct;7(5):395-406
11104007 - Nat Struct Biol. 2000 Nov;7 Suppl:986-90
10195279 - Protein Eng. 1999 Feb;12(2):85-94
11606719 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12473-8
16460734 - FEBS Lett. 2006 Feb 20;580(5):1447-50
10940251 - Annu Rev Biophys Biomol Struct. 2000;29:291-325
11181995 - Science. 2001 Feb 16;291(5507):1304-51
7723011 - J Mol Biol. 1995 Apr 7;247(4):536-40
10731132 - Science. 2000 Mar 24;287(5461):2185-95
9719646 - J Mol Biol. 1998 Sep 4;281(5):949-68
10802651 - Nat Genet. 2000 May;25(1):25-9
14645503 - Mol Cell Proteomics. 2004 Mar;3(3):209-25
17905848 - Biophys J. 2008 Feb 1;94(3):918-28
11575940 - J Mol Biol. 2001 Sep 28;312(4):885-96
15454459 - Biophys J. 2004 Oct;87(4):2647-55
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
11151004 - Proteins. 2001 Feb 15;42(3):319-31
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
16845026 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5
15126668 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9
Jones DT (e_1_3_3_23_2) 2000
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
Chen H (e_1_3_3_45_2) 2007
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Anonymous (e_1_3_3_47_2) 2007
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_20_2
  doi: 10.6026/97320630001127
– ident: e_1_3_3_26_2
  doi: 10.1093/nar/gki524
– ident: e_1_3_3_19_2
  doi: 10.1006/jmbi.2001.5009
– ident: e_1_3_3_11_2
  doi: 10.1006/jmbi.1998.2043
– ident: e_1_3_3_21_2
  doi: 10.1107/S0021889883010985
– ident: e_1_3_3_25_2
  doi: 10.1002/prot.20106
– year: 2007
  ident: e_1_3_3_45_2
  publication-title: Biophys J
  contributor:
    fullname: Chen H
– ident: e_1_3_3_14_2
  doi: 10.1186/1472-6807-6-19
– start-page: 1
  volume-title: Bioinformatics: Sequence, Structure and Databanks
  year: 2000
  ident: e_1_3_3_23_2
  contributor:
    fullname: Jones DT
– volume-title: Daylight Theory Manual
  year: 2007
  ident: e_1_3_3_47_2
  contributor:
    fullname: Anonymous
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1065659
– ident: e_1_3_3_9_2
  doi: 10.1006/jmbi.2000.3550
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1058040
– ident: e_1_3_3_15_2
  doi: 10.1002/pro.5560070905
– ident: e_1_3_3_17_2
  doi: 10.1007/BF00124402
– ident: e_1_3_3_44_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_3_3_6_2
  doi: 10.2174/138920306778559386
– ident: e_1_3_3_27_2
  doi: 10.1002/prot.20724
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/gkj063
– ident: e_1_3_3_10_2
  doi: 10.1006/jmbi.2001.4513
– ident: e_1_3_3_36_2
  doi: 10.1038/75556
– ident: e_1_3_3_38_2
  doi: 10.1002/prot.10237
– ident: e_1_3_3_42_2
  doi: 10.1006/jmbi.1998.1993
– ident: e_1_3_3_7_2
  doi: 10.1016/S0959-440X(03)00075-7
– ident: e_1_3_3_28_2
  doi: 10.1529/biophysj.104.045385
– ident: e_1_3_3_40_2
  doi: 10.1093/nar/gkh406
– ident: e_1_3_3_24_2
  doi: 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A
– ident: e_1_3_3_46_2
  doi: 10.1093/bioinformatics/15.4.327
– ident: e_1_3_3_32_2
  doi: 10.1093/protein/12.2.85
– ident: e_1_3_3_30_2
  doi: 10.1146/annurev.biophys.29.1.291
– ident: e_1_3_3_41_2
  doi: 10.1093/nar/gkg555
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.211436698
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0305695101
– ident: e_1_3_3_16_2
  doi: 10.1016/j.febslet.2006.01.074
– ident: e_1_3_3_37_2
  doi: 10.1093/nar/gkj161
– ident: e_1_3_3_13_2
  doi: 10.1016/S1093-3263(98)00002-3
– ident: e_1_3_3_39_2
  doi: 10.1021/jm050090o
– ident: e_1_3_3_12_2
  doi: 10.1002/prot.20769
– ident: e_1_3_3_1_2
  doi: 10.1126/science.287.5461.2185
– ident: e_1_3_3_33_2
  doi: 10.1093/nar/gkl124
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/28.1.27
– ident: e_1_3_3_8_2
  doi: 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S
– ident: e_1_3_3_4_2
  doi: 10.1038/80776
– ident: e_1_3_3_5_2
  doi: 10.1093/bioinformatics/btg262
– ident: e_1_3_3_31_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_3_3_22_2
  doi: 10.1016/S0022-2836(05)80134-2
– ident: e_1_3_3_43_2
  doi: 10.1074/mcp.M300082-MCP200
SSID ssj0009580
Score 2.4517257
Snippet The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms Accuracy
Algorithms
Binding Sites
Biological Sciences
Biophysics - methods
Center of mass
Chemical properties
Computational Biology - methods
Crystal structure
Crystallography, X-Ray - methods
Datasets
Libraries
Ligands
Modeling
Models, Molecular
Models, Statistical
Molecular Conformation
Molecules
Nucleic acids
Predictions
Protein Binding
Protein Conformation
Protein Interaction Mapping
Proteins
Proteins - chemistry
Reproducibility of Results
Software
Title threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation
URI https://www.jstor.org/stable/25451049
http://www.pnas.org/content/105/1/129.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18165317
https://www.proquest.com/docview/201398698
https://search.proquest.com/docview/20532033
https://search.proquest.com/docview/70197051
https://pubmed.ncbi.nlm.nih.gov/PMC2224172
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB41PXFBFChdCsUHDulhk6y9Xq-PVWlUkFohlUi9GXvtLZFaJ2rS_8_MPhKCyoVjNLZjed47488Anx26SJdR2V05meaqUqnzkqdZ4IEj0zFlodvIV9fF5Sz_ditv90D2d2Gapv3KzUfx_mEU57-a3srlQzXu-8TG36_OOfkdxccDGKCA9in6Bmm3bO-dcDS_Oc97PB8lxstoVyPCtylK6m4kwNAyK1AK1Y5XGtR20bcnEuYpznou_vy7jfIPvzR9BS-7gJKdtRs_gL0QX8NBp7IrNuxwpU_fwM8ztkbONU3zKXkvz9r3o9lw-vX6yw0asVOGMSy7n9_Z6ClnpqGM6sts-UgVHeIiQxojd9h-RcSfcdHW89_CbHrx4_wy7R5YSCv0yuuUk_evtHVOV5lSqsZwpCh8LSxVZ4TQzpe28HhaEl1pTTXX3GGEFvJQZ156cQj7cRHDEbDc60LaECZOYM6ly9JJLayXmZ8UZVb7BIb9AZtli6Nhmvq3EoYO2GzZksARMsDYO7RyZnbDqbY6wS3ITCRw2HBlswSmt2hUco2EZpXt0tJkBmOZBD49TzB111yTwHHPWtPp78rQn-qy0CXN76moeFRNsTEsnmgIvakhxL9HENK9QqOXwLtWULa76MQuAbUjQpsBBPq9S0FdaMC_O9l__98zj-FF2_NCn8Y_wP768Sl8xMBq7U4aRfoN_P8dXg
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwEN5pywEulAKlboHqwCE9OIktS7KPnUImhSbDTBumN2FZcsnQOpnGufDr2fUjIZ1ygGNmJcWeXe3D--kTwAeDIdIE1HZXRviRypRvrAj9wIUuRKVjyUKnkUdjOZxEn6_F9RaI9ixMBdrPzLRb3N51i-mPCls5v8t6LU6s93V0FlLcUWFvG57gfu3Ltkhfce3G9cmTEB1wFEYto4_ivXmRLrrEcCNjwjcSZWgcSLRDtRGXtvN01gIUifUUZz2WgT4EUv4RmQa78K19pxqQ8rO7LE03-_WA7vGfX_oFPG9yVXZai_dgyxUvYa_xBgvWaSirT17B91NWolFUeHyfAqNl9dXUrDM4H3-8RP94wjA9ZrfTm7SwVI7TUEataza_p2YRGQhDGaNIW3-gxJ_FrIYKvIbJ4NPV2dBv7m7wMwz4pR9SYpElqTFJFiilcsx0pLQ5T6nxw3libJxKi2oQGKVzaudGBpM_F7k8sMLyfdgpZoU7ABbZRIrUub7hWM4lcWxEwlMrAtuXcZBbDzqt5vS8pujQVWtdcU2a02t9e3CAmtXpDTpQPbkMqW3bx0cQAfdgv1L3agmsnNFfRQkKqlXWSwsdaEyTPDh-XKDzBrfjwVFrM7pxDQtNf5rEMolpfivFPU2NmrRwsyUNoes6OP_7CCLRV-hPPXhTW-D6KRp79kBt2OZqAPGJb0rQ4ipe8cbCDv975jE8HV6NLvTF-fjLETyroTX0Bf4t7JT3S_cO87fSvK92629Edz9K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKlW9lNKWEmiLDz0shySbOI6TI4KuoC0rJLoS6sW144SuCtmIzV766zuTj10W0QvHaMZOohnPjDMvzwCfDaZIE1DbXRrhRjKTrrEidIM8zEM0Om5Z6G_k83F8Oom-Xomre0d9NaD9zEy98ubWK6e_G2xldZv5PU7Mvzg_DinvyNCvbOFvwHNcs8Ok36gv-XaT9u-TEINwFEY9q4_kflXquUcsN3FCGEeiDU2CGH1RruWmjULPepAiMZ_iqMeq0IdgynvZabQFP_v3akEpf7xFbbzs7wPKxye9-Gt41dWs7KhV2YZnefkGtruoMGeDjrr68C38OmI1OkeDy3cpQVrWHlHNBqOz8cklxslDhmUyu5le69LStpxUGbWwWXVHTSNyFIYyRhm3_VCJl-WshQy8g8noy4_jU7c7w8HNMPHXbkgFRpZqY9IskFIWWPHEsS24pgYQ56mxiY4tmkJgti6orRsZLALzKC8CKyzfgc1yVua7wCKbxkLn-dBw3NalSWJEyrUVgR3GSVBYBwa99VTVUnWopsUuuSLrqZXNHdhF6yp9jYFUTS5Dat8O8RFEwB3YaUy-nAJ30Bi3ohQFzSyrqYUKFJZLDhw8LlBFh99xYL_3G9WFiLmim6ZJnCY0vpfi2qaGjS7z2YJU6NgOzv-vQWT6EuOqA-9bL1w9RefTDsg1_1wqEK_4ugS9ruEX77xs78kjD-DFxclIfT8bf9uHly3Chj7Ef4DN-m6Rf8QyrjafmgX7D1Q4Qco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Threading-Based+Method+%28FINDSITE%29+for+Ligand-Binding+Site+Prediction+and+Functional+Annotation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brylinski%2C+Michal&rft.au=Skolnick%2C+Jeffrey&rft.date=2008-01-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=1&rft.spage=129&rft.epage=134&rft_id=info:doi/10.1073%2Fpnas.0707684105&rft.externalDocID=25451049
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif