threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation
The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for lig...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 1; pp. 129 - 134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.01.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. |
---|---|
AbstractList | The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Å as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8–10 Å. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Å. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. pocket detection protein structure prediction ligand screening The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 Aa as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 Aa. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 Aa. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 A as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 A. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 A. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 A as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 A. This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 A. Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted protein structures, extant binding pocket-detection methods are limited to experimentally solved structures. Here, FINDSITE, a method for ligand-binding site prediction and functional annotation based on binding-site similarity across groups of weakly homologous template structures identified from threading, is described. For crystal structures, considering a cutoff distance of 4 ... as the hit criterion, the success rate is 70.9% for identifying the best of top five predicted ligand-binding sites with a ranking accuracy of 76.0%. Both high prediction accuracy and ability to correctly rank identified binding sites are sustained when approximate protein models (<35% sequence identity to the closest template structure) are used, showing a 67.3% success rate with 75.5% ranking accuracy. In practice, FINDSITE tolerates structural inaccuracies in protein models up to a rmsd from the crystal structure of 8-10 ... This is because analysis of weakly homologous protein models reveals that about half have a rmsd from the native binding site <2 ... Furthermore, the chemical properties of template-bound ligands can be used to select ligand templates associated with the binding site. In most cases, FINDSITE can accurately assign a molecular function to the protein model. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Brylinski, Michal Skolnick, Jeffrey |
Author_xml | – sequence: 1 fullname: Brylinski, Michal – sequence: 2 fullname: Skolnick, Jeffrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18165317$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxSNURLeFMycg4oDgkHbGieP4goRKP1aq4ND2iuXEzq5XWXtrOwj-exx21S0c4DQavd88zcw7yg6sszrLXiKcILDydGNlOAEGrG4qBPokmyFwLOqKw0E2AyCsaCpSHWZHIawAgNMGnmWH2GBNS2Sz7Ftcei2VsYuilUGrfK3j0qn8_cX8y-eb-e35h7x3Ph_MQlpVtMZOaB5M1PnGa2W6aJzNk5b3o_3dyCG11kU5Nc-zp70cgn6xq8fZ3cX57dlVcf31cn726broaqxiQQggdly2Le-QMdbXtKlr1ZcSsWZlyVvVyFqlI6nWqm8Ih6qliLrSPSqqyuPs49Z3M7ZrrTpto5eD2Hizlv6ncNKIPxVrlmLhvgtCSIWMJIN3OwPv7kcdolib0OlhkFa7MQgGyBlQ_C9IgJYEyjKBb_8CV2706T0TgyVvat4k6HQLdd6F4HX_sDKCmBIWU8Jin3CaeP340j2_i_TRgtPk3o4KFEi46MdhiPpHTOCrf4F7fRWi8w8AoRVFqCb9zVbvpRNy4U0QdzfTaQApp_Sq8heGe82Y |
CitedBy_id | crossref_primary_10_1371_journal_pcbi_1006718 crossref_primary_10_1093_nar_gkq406 crossref_primary_10_1093_bioinformatics_bts182 crossref_primary_10_1021_jm5009902 crossref_primary_10_1021_acs_jcim_8b00777 crossref_primary_10_3390_ijms150915122 crossref_primary_10_1109_TCBB_2023_3265640 crossref_primary_10_1016_j_ejcb_2011_06_003 crossref_primary_10_1371_journal_pcbi_1000727 crossref_primary_10_1111_j_1747_0285_2012_01408_x crossref_primary_10_4236_jbise_2013_612145 crossref_primary_10_1021_acs_jcim_3c01698 crossref_primary_10_1021_mp1002976 crossref_primary_10_1002_pro_540 crossref_primary_10_1186_1471_2105_13_S4_S17 crossref_primary_10_1016_j_crstbi_2024_100144 crossref_primary_10_3390_md18030167 crossref_primary_10_1093_bioinformatics_btv597 crossref_primary_10_1038_s41401_019_0228_6 crossref_primary_10_1016_j_abb_2016_01_007 crossref_primary_10_1002_prot_22557 crossref_primary_10_1093_nar_gkt457 crossref_primary_10_1093_bib_bbac365 crossref_primary_10_1371_journal_pone_0004473 crossref_primary_10_3390_ijms161226202 crossref_primary_10_1186_s13321_018_0285_8 crossref_primary_10_1007_s41348_017_0083_y crossref_primary_10_1016_j_sbi_2011_02_001 crossref_primary_10_1111_brv_12905 crossref_primary_10_1124_mol_111_077040 crossref_primary_10_1021_mp3000716 crossref_primary_10_1186_s13321_024_00865_6 crossref_primary_10_1016_j_str_2012_03_009 crossref_primary_10_1093_nar_gkac250 crossref_primary_10_3390_molecules27207103 crossref_primary_10_1002_prot_22566 crossref_primary_10_1002_prot_22443 crossref_primary_10_1038_srep11090 crossref_primary_10_1016_j_bmcl_2017_07_035 crossref_primary_10_1007_s10969_011_9109_z crossref_primary_10_1093_nar_gks372 crossref_primary_10_1021_acs_jcim_8b00309 crossref_primary_10_1002_prot_22572 crossref_primary_10_1128_spectrum_05228_22 crossref_primary_10_1371_journal_pone_0031437 crossref_primary_10_2174_1574893616666210806091922 crossref_primary_10_1371_journal_pone_0161894 crossref_primary_10_1021_mp900131p crossref_primary_10_1093_bib_bbv027 crossref_primary_10_1016_j_str_2011_02_015 crossref_primary_10_1051_ro_2015040 crossref_primary_10_1039_C8CP03661F crossref_primary_10_1093_bioinformatics_btq006 crossref_primary_10_1186_1471_2105_11_47 crossref_primary_10_1016_j_ces_2022_117962 crossref_primary_10_1021_ci200193z crossref_primary_10_1021_acs_jcim_1c00799 crossref_primary_10_1021_acs_jpcb_6b09517 crossref_primary_10_1093_nar_gkp368 crossref_primary_10_1007_s11831_021_09661_z crossref_primary_10_1021_jm4014357 crossref_primary_10_1038_s41598_020_72906_7 crossref_primary_10_1371_journal_pone_0160315 crossref_primary_10_1007_s00894_011_0998_3 crossref_primary_10_1089_cmb_2016_0135 crossref_primary_10_1016_j_sbi_2013_01_009 crossref_primary_10_1186_1477_5956_11_47 crossref_primary_10_1093_nargab_lqac078 crossref_primary_10_1002_pro_618 crossref_primary_10_1177_11769351211065979 crossref_primary_10_1016_j_antiviral_2023_105548 crossref_primary_10_1007_s10822_013_9663_5 crossref_primary_10_1002_jcc_21395 crossref_primary_10_1016_j_jsb_2010_09_009 crossref_primary_10_1093_nar_gkv342 crossref_primary_10_1186_1758_2946_6_16 crossref_primary_10_1002_minf_201700021 crossref_primary_10_1002_prot_23165 crossref_primary_10_1002_prot_24495 crossref_primary_10_1093_bioinformatics_btz609 crossref_primary_10_1039_C9RA02928A crossref_primary_10_1093_bioinformatics_btw367 crossref_primary_10_1136_svn_2019_000323 crossref_primary_10_1002_prot_22513 crossref_primary_10_1093_nar_gks966 crossref_primary_10_3390_ijms20092301 crossref_primary_10_1093_bib_bbab476 crossref_primary_10_1186_s13321_015_0059_5 crossref_primary_10_1007_s10969_009_9073_z crossref_primary_10_1093_nar_gkt498 crossref_primary_10_1142_S0219633608004155 crossref_primary_10_1007_s42485_021_00079_6 crossref_primary_10_1038_nprot_2015_043 crossref_primary_10_1093_bioinformatics_btu746 crossref_primary_10_1002_prot_23174 crossref_primary_10_1080_07391102_2021_1968500 crossref_primary_10_1002_pro_394 crossref_primary_10_1016_j_jsps_2020_10_005 crossref_primary_10_1093_bib_bby078 crossref_primary_10_1109_TCBB_2020_3002776 crossref_primary_10_1186_s12864_020_07199_1 crossref_primary_10_1093_bioinformatics_bts310 crossref_primary_10_1093_bib_bbp017 crossref_primary_10_1016_j_sbi_2011_03_013 crossref_primary_10_1016_j_str_2012_09_011 crossref_primary_10_1021_acs_jcim_1c00561 crossref_primary_10_1016_j_ejphar_2021_174276 crossref_primary_10_1038_nprot_2010_5 crossref_primary_10_1016_j_drudis_2015_12_007 crossref_primary_10_1093_aob_mcw259 crossref_primary_10_1093_bioinformatics_btn543 crossref_primary_10_4049_jimmunol_1203231 crossref_primary_10_5936_csbj_201308005 crossref_primary_10_1016_j_bmc_2016_08_019 crossref_primary_10_1002_prot_26573 crossref_primary_10_1016_j_ymeth_2014_10_019 crossref_primary_10_1371_journal_pone_0062535 crossref_primary_10_1093_bioinformatics_btaa110 crossref_primary_10_1186_s12859_019_2672_1 crossref_primary_10_1021_acs_jctc_2c01306 crossref_primary_10_1128_IAI_01770_14 crossref_primary_10_1016_j_sbi_2009_02_005 crossref_primary_10_1093_bioinformatics_btw829 crossref_primary_10_1021_acs_jpcb_2c04525 crossref_primary_10_1016_j_tplants_2013_10_006 crossref_primary_10_1093_nar_gkp842 crossref_primary_10_1002_prot_24327 crossref_primary_10_1093_bib_bbac290 crossref_primary_10_1021_acs_jcim_3c01298 crossref_primary_10_1002_pro_2225 crossref_primary_10_1371_journal_pcbi_1000567 crossref_primary_10_3390_ijms24119334 crossref_primary_10_1002_0471250953_bi0508s52 crossref_primary_10_1186_s13321_024_00871_8 crossref_primary_10_1093_bioinformatics_btaa805 crossref_primary_10_1016_j_jbc_2022_102440 crossref_primary_10_1186_1471_2105_11_265 crossref_primary_10_1093_nar_gkac323 crossref_primary_10_1002_prot_24330 crossref_primary_10_1007_s12013_017_0836_z crossref_primary_10_1109_TCBB_2023_3239983 crossref_primary_10_1021_ci100235n crossref_primary_10_1016_j_ijbiomac_2023_125733 crossref_primary_10_3390_microorganisms10061090 crossref_primary_10_1021_acs_jcim_7b00397 crossref_primary_10_3390_cells11010037 crossref_primary_10_1016_j_drudis_2010_05_015 crossref_primary_10_1093_glycob_cwr095 crossref_primary_10_1109_TNB_2015_2403776 crossref_primary_10_1002_prot_22715 crossref_primary_10_1016_j_jocs_2024_102368 crossref_primary_10_1186_1471_2105_15_197 crossref_primary_10_1002_jmr_984 crossref_primary_10_1002_pro_4869 crossref_primary_10_1016_j_csbj_2022_11_042 crossref_primary_10_1186_s13321_016_0149_z crossref_primary_10_1371_journal_pone_0050200 crossref_primary_10_3390_molecules27144623 crossref_primary_10_1016_j_bbapap_2010_04_008 crossref_primary_10_1371_journal_pone_0038219 crossref_primary_10_1186_1471_2105_12_160 crossref_primary_10_1371_journal_pcbi_1000585 crossref_primary_10_1038_srep01448 crossref_primary_10_1186_1472_6807_11_34 crossref_primary_10_1093_bioinformatics_btw396 crossref_primary_10_1155_2018_5486403 crossref_primary_10_1016_j_jtbi_2011_01_047 crossref_primary_10_1021_jm301829h crossref_primary_10_2174_1386207322666190925125524 crossref_primary_10_1073_pnas_0907683106 crossref_primary_10_1093_bioinformatics_btt447 crossref_primary_10_1186_1471_2105_11_365 crossref_primary_10_3389_fphar_2022_939555 crossref_primary_10_1073_pnas_1705381114 crossref_primary_10_1093_bioinformatics_btab009 crossref_primary_10_1186_s13321_020_00440_9 crossref_primary_10_1016_j_jmb_2017_12_001 crossref_primary_10_1080_07391102_2010_10507359 crossref_primary_10_1002_bit_26602 crossref_primary_10_1016_j_jbiotec_2011_12_005 crossref_primary_10_1063_1_4937428 crossref_primary_10_1007_s10930_017_9736_8 crossref_primary_10_1371_journal_pone_0032011 crossref_primary_10_1021_acs_chemrev_5b00631 crossref_primary_10_1016_j_sbi_2011_01_004 crossref_primary_10_1016_j_tiv_2023_105740 crossref_primary_10_1371_journal_pcbi_1000405 crossref_primary_10_1038_s41598_021_03431_4 crossref_primary_10_1016_j_jsb_2012_09_010 crossref_primary_10_1073_pnas_1005894107 crossref_primary_10_1002_jcc_24380 crossref_primary_10_21926_obm_genet_2402227 crossref_primary_10_1002_minf_201300082 crossref_primary_10_1002_cpps_75 crossref_primary_10_1021_acs_jpcb_4c01875 crossref_primary_10_1093_nar_gkx366 crossref_primary_10_1021_acs_jcim_1c01114 crossref_primary_10_1109_TCBB_2015_2505286 crossref_primary_10_1016_j_jtbi_2013_03_018 crossref_primary_10_1007_s00253_018_9068_4 crossref_primary_10_1021_acs_jcim_1c00944 crossref_primary_10_1002_prot_22352 crossref_primary_10_1002_prot_24098 crossref_primary_10_1016_j_eswa_2023_122334 crossref_primary_10_1016_j_csbj_2020_02_008 crossref_primary_10_1016_j_ab_2018_11_009 crossref_primary_10_1371_journal_pcbi_1003829 crossref_primary_10_1073_pnas_0907971106 crossref_primary_10_1016_j_imu_2020_100503 crossref_primary_10_1093_nar_gkq383 crossref_primary_10_1093_nar_gkx337 crossref_primary_10_1021_ci400510e crossref_primary_10_1002_prot_22913 crossref_primary_10_1093_bioinformatics_btu581 crossref_primary_10_1007_s10522_016_9660_x crossref_primary_10_1021_acs_jcim_0c01160 crossref_primary_10_1073_pnas_1305162110 crossref_primary_10_1016_j_ab_2020_113799 crossref_primary_10_1080_1062936X_2016_1217271 crossref_primary_10_1007_s11756_021_00727_8 crossref_primary_10_1016_j_compbiolchem_2016_10_010 crossref_primary_10_1016_j_future_2019_04_011 crossref_primary_10_1007_s10822_019_00235_7 crossref_primary_10_1021_acs_jcim_1c00972 crossref_primary_10_1186_s13015_020_00168_z crossref_primary_10_1002_jcc_20917 crossref_primary_10_1021_ci300178e crossref_primary_10_1371_journal_pone_0137279 crossref_primary_10_1016_j_jmb_2020_07_003 crossref_primary_10_1093_bioinformatics_btp561 crossref_primary_10_1093_nar_gky439 crossref_primary_10_1093_nar_gkt300 crossref_primary_10_1021_ci300510n crossref_primary_10_1002_jcc_25813 crossref_primary_10_1021_ci4003602 |
Cites_doi | 10.6026/97320630001127 10.1093/nar/gki524 10.1006/jmbi.2001.5009 10.1006/jmbi.1998.2043 10.1107/S0021889883010985 10.1002/prot.20106 10.1186/1472-6807-6-19 10.1126/science.1065659 10.1006/jmbi.2000.3550 10.1126/science.1058040 10.1002/pro.5560070905 10.1007/BF00124402 10.1093/nar/28.1.235 10.2174/138920306778559386 10.1002/prot.20724 10.1093/nar/gkj063 10.1006/jmbi.2001.4513 10.1038/75556 10.1002/prot.10237 10.1006/jmbi.1998.1993 10.1016/S0959-440X(03)00075-7 10.1529/biophysj.104.045385 10.1093/nar/gkh406 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A 10.1093/bioinformatics/15.4.327 10.1093/protein/12.2.85 10.1146/annurev.biophys.29.1.291 10.1093/nar/gkg555 10.1073/pnas.211436698 10.1073/pnas.0305695101 10.1016/j.febslet.2006.01.074 10.1093/nar/gkj161 10.1016/S1093-3263(98)00002-3 10.1021/jm050090o 10.1002/prot.20769 10.1126/science.287.5461.2185 10.1093/nar/gkl124 10.1093/nar/28.1.27 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S 10.1038/80776 10.1093/bioinformatics/btg262 10.1006/jmbi.1993.1626 10.1016/S0022-2836(05)80134-2 10.1074/mcp.M300082-MCP200 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 8, 2008 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 8, 2008 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7X8 5PM |
DOI | 10.1073/pnas.0707684105 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 134 |
ExternalDocumentID | 1411206441 10_1073_pnas_0707684105 18165317 105_1_129 25451049 US201300845513 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-48835 – fundername: NIGMS NIH HHS grantid: R01 GM048835 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7X8 5PM |
ID | FETCH-LOGICAL-c614t-22011c9abb9c1777f65866df3a1167339bd8a6d6845eedf82904b511e4ef1d5d3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:25:29 EDT 2024 Fri Oct 25 07:31:14 EDT 2024 Fri Oct 25 03:57:45 EDT 2024 Thu Oct 10 17:10:09 EDT 2024 Fri Aug 23 01:51:10 EDT 2024 Sat Sep 28 07:52:39 EDT 2024 Wed Nov 11 00:29:14 EST 2020 Thu May 30 08:49:34 EDT 2019 Fri Feb 02 07:05:52 EST 2024 Wed Dec 27 18:57:11 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c614t-22011c9abb9c1777f65866df3a1167339bd8a6d6845eedf82904b511e4ef1d5d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Edited by Harold A. Scheraga, Cornell University, Ithaca, NY, and approved November 19, 2007 Author contributions: J.S. designed research; M.B. performed research; M.B. analyzed data; and M.B. and J.S. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc2224172?pdf=render |
PMID | 18165317 |
PQID | 201398698 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224172 proquest_journals_201398698 proquest_miscellaneous_20532033 pnas_primary_105_1_129_fulltext fao_agris_US201300845513 proquest_miscellaneous_70197051 pubmed_primary_18165317 pnas_primary_105_1_129 crossref_primary_10_1073_pnas_0707684105 jstor_primary_25451049 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2008-01-08 |
PublicationDateYYYYMMDD | 2008-01-08 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 9704298 - J Mol Graph Model. 1997 Dec;15(6):359-63, 389 9761470 - Protein Sci. 1998 Sep;7(9):1884-97 9743635 - J Mol Biol. 1998 Oct 2;282(4):903-18 10704319 - J Mol Biol. 2000 Mar 17;297(1):233-49 15229883 - Proteins. 2004 Aug 15;56(3):502-18 10944397 - Proteins. 2000 Oct 1;41(1):98-107 17597871 - Bioinformation. 2006 Apr 11;1(4):127-9 16187349 - Proteins. 2005;61 Suppl 7:91-8 16995956 - BMC Struct Biol. 2006;6:19 12471595 - Proteins. 2003 Jan 1;50(1):5-25 11588250 - Science. 2001 Oct 5;294(5540):93-6 12831892 - Curr Opin Struct Biol. 2003 Jun;13(3):389-95 16381842 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D187-91 10320401 - Bioinformatics. 1999 Apr;15(4):327-32 14555633 - Bioinformatics. 2003 Oct 12;19(15):1985-96 11286560 - J Mol Biol. 2001 Apr 6;307(4):1113-43 15849316 - Nucleic Acids Res. 2005;33(7):2302-9 7608743 - J Comput Aided Mol Des. 1995 Apr;9(2):113-30 16107144 - J Med Chem. 2005 Aug 25;48(17):5448-65 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 12824422 - Nucleic Acids Res. 2003 Jul 1;31(13):3799-803 16381852 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30 16304646 - Proteins. 2006 Feb 1;62(2):479-88 15215401 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W313-7 17073692 - Curr Protein Pept Sci. 2006 Oct;7(5):395-406 11104007 - Nat Struct Biol. 2000 Nov;7 Suppl:986-90 10195279 - Protein Eng. 1999 Feb;12(2):85-94 11606719 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12473-8 16460734 - FEBS Lett. 2006 Feb 20;580(5):1447-50 10940251 - Annu Rev Biophys Biomol Struct. 2000;29:291-325 11181995 - Science. 2001 Feb 16;291(5507):1304-51 7723011 - J Mol Biol. 1995 Apr 7;247(4):536-40 10731132 - Science. 2000 Mar 24;287(5461):2185-95 9719646 - J Mol Biol. 1998 Sep 4;281(5):949-68 10802651 - Nat Genet. 2000 May;25(1):25-9 14645503 - Mol Cell Proteomics. 2004 Mar;3(3):209-25 17905848 - Biophys J. 2008 Feb 1;94(3):918-28 11575940 - J Mol Biol. 2001 Sep 28;312(4):885-96 15454459 - Biophys J. 2004 Oct;87(4):2647-55 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 11151004 - Proteins. 2001 Feb 15;42(3):319-31 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42 16845026 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5 15126668 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9 Jones DT (e_1_3_3_23_2) 2000 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 Chen H (e_1_3_3_45_2) 2007 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Anonymous (e_1_3_3_47_2) 2007 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_20_2 doi: 10.6026/97320630001127 – ident: e_1_3_3_26_2 doi: 10.1093/nar/gki524 – ident: e_1_3_3_19_2 doi: 10.1006/jmbi.2001.5009 – ident: e_1_3_3_11_2 doi: 10.1006/jmbi.1998.2043 – ident: e_1_3_3_21_2 doi: 10.1107/S0021889883010985 – ident: e_1_3_3_25_2 doi: 10.1002/prot.20106 – year: 2007 ident: e_1_3_3_45_2 publication-title: Biophys J contributor: fullname: Chen H – ident: e_1_3_3_14_2 doi: 10.1186/1472-6807-6-19 – start-page: 1 volume-title: Bioinformatics: Sequence, Structure and Databanks year: 2000 ident: e_1_3_3_23_2 contributor: fullname: Jones DT – volume-title: Daylight Theory Manual year: 2007 ident: e_1_3_3_47_2 contributor: fullname: Anonymous – ident: e_1_3_3_3_2 doi: 10.1126/science.1065659 – ident: e_1_3_3_9_2 doi: 10.1006/jmbi.2000.3550 – ident: e_1_3_3_2_2 doi: 10.1126/science.1058040 – ident: e_1_3_3_15_2 doi: 10.1002/pro.5560070905 – ident: e_1_3_3_17_2 doi: 10.1007/BF00124402 – ident: e_1_3_3_44_2 doi: 10.1093/nar/28.1.235 – ident: e_1_3_3_6_2 doi: 10.2174/138920306778559386 – ident: e_1_3_3_27_2 doi: 10.1002/prot.20724 – ident: e_1_3_3_34_2 doi: 10.1093/nar/gkj063 – ident: e_1_3_3_10_2 doi: 10.1006/jmbi.2001.4513 – ident: e_1_3_3_36_2 doi: 10.1038/75556 – ident: e_1_3_3_38_2 doi: 10.1002/prot.10237 – ident: e_1_3_3_42_2 doi: 10.1006/jmbi.1998.1993 – ident: e_1_3_3_7_2 doi: 10.1016/S0959-440X(03)00075-7 – ident: e_1_3_3_28_2 doi: 10.1529/biophysj.104.045385 – ident: e_1_3_3_40_2 doi: 10.1093/nar/gkh406 – ident: e_1_3_3_24_2 doi: 10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A – ident: e_1_3_3_46_2 doi: 10.1093/bioinformatics/15.4.327 – ident: e_1_3_3_32_2 doi: 10.1093/protein/12.2.85 – ident: e_1_3_3_30_2 doi: 10.1146/annurev.biophys.29.1.291 – ident: e_1_3_3_41_2 doi: 10.1093/nar/gkg555 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.211436698 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0305695101 – ident: e_1_3_3_16_2 doi: 10.1016/j.febslet.2006.01.074 – ident: e_1_3_3_37_2 doi: 10.1093/nar/gkj161 – ident: e_1_3_3_13_2 doi: 10.1016/S1093-3263(98)00002-3 – ident: e_1_3_3_39_2 doi: 10.1021/jm050090o – ident: e_1_3_3_12_2 doi: 10.1002/prot.20769 – ident: e_1_3_3_1_2 doi: 10.1126/science.287.5461.2185 – ident: e_1_3_3_33_2 doi: 10.1093/nar/gkl124 – ident: e_1_3_3_35_2 doi: 10.1093/nar/28.1.27 – ident: e_1_3_3_8_2 doi: 10.1002/1097-0134(20001001)41:1<98::AID-PROT120>3.0.CO;2-S – ident: e_1_3_3_4_2 doi: 10.1038/80776 – ident: e_1_3_3_5_2 doi: 10.1093/bioinformatics/btg262 – ident: e_1_3_3_31_2 doi: 10.1006/jmbi.1993.1626 – ident: e_1_3_3_22_2 doi: 10.1016/S0022-2836(05)80134-2 – ident: e_1_3_3_43_2 doi: 10.1074/mcp.M300082-MCP200 |
SSID | ssj0009580 |
Score | 2.4517257 |
Snippet | The detection of ligand-binding sites is often the starting point for protein function identification and drug discovery. Because of inaccuracies in predicted... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | Accuracy Algorithms Binding Sites Biological Sciences Biophysics - methods Center of mass Chemical properties Computational Biology - methods Crystal structure Crystallography, X-Ray - methods Datasets Libraries Ligands Modeling Models, Molecular Models, Statistical Molecular Conformation Molecules Nucleic acids Predictions Protein Binding Protein Conformation Protein Interaction Mapping Proteins Proteins - chemistry Reproducibility of Results Software |
Title | threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation |
URI | https://www.jstor.org/stable/25451049 http://www.pnas.org/content/105/1/129.abstract https://www.ncbi.nlm.nih.gov/pubmed/18165317 https://www.proquest.com/docview/201398698 https://search.proquest.com/docview/20532033 https://search.proquest.com/docview/70197051 https://pubmed.ncbi.nlm.nih.gov/PMC2224172 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB41PXFBFChdCsUHDulhk6y9Xq-PVWlUkFohlUi9GXvtLZFaJ2rS_8_MPhKCyoVjNLZjed47488Anx26SJdR2V05meaqUqnzkqdZ4IEj0zFlodvIV9fF5Sz_ditv90D2d2Gapv3KzUfx_mEU57-a3srlQzXu-8TG36_OOfkdxccDGKCA9in6Bmm3bO-dcDS_Oc97PB8lxstoVyPCtylK6m4kwNAyK1AK1Y5XGtR20bcnEuYpznou_vy7jfIPvzR9BS-7gJKdtRs_gL0QX8NBp7IrNuxwpU_fwM8ztkbONU3zKXkvz9r3o9lw-vX6yw0asVOGMSy7n9_Z6ClnpqGM6sts-UgVHeIiQxojd9h-RcSfcdHW89_CbHrx4_wy7R5YSCv0yuuUk_evtHVOV5lSqsZwpCh8LSxVZ4TQzpe28HhaEl1pTTXX3GGEFvJQZ156cQj7cRHDEbDc60LaECZOYM6ly9JJLayXmZ8UZVb7BIb9AZtli6Nhmvq3EoYO2GzZksARMsDYO7RyZnbDqbY6wS3ITCRw2HBlswSmt2hUco2EZpXt0tJkBmOZBD49TzB111yTwHHPWtPp78rQn-qy0CXN76moeFRNsTEsnmgIvakhxL9HENK9QqOXwLtWULa76MQuAbUjQpsBBPq9S0FdaMC_O9l__98zj-FF2_NCn8Y_wP768Sl8xMBq7U4aRfoN_P8dXg |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwEN5pywEulAKlboHqwCE9OIktS7KPnUImhSbDTBumN2FZcsnQOpnGufDr2fUjIZ1ygGNmJcWeXe3D--kTwAeDIdIE1HZXRviRypRvrAj9wIUuRKVjyUKnkUdjOZxEn6_F9RaI9ixMBdrPzLRb3N51i-mPCls5v8t6LU6s93V0FlLcUWFvG57gfu3Ltkhfce3G9cmTEB1wFEYto4_ivXmRLrrEcCNjwjcSZWgcSLRDtRGXtvN01gIUifUUZz2WgT4EUv4RmQa78K19pxqQ8rO7LE03-_WA7vGfX_oFPG9yVXZai_dgyxUvYa_xBgvWaSirT17B91NWolFUeHyfAqNl9dXUrDM4H3-8RP94wjA9ZrfTm7SwVI7TUEataza_p2YRGQhDGaNIW3-gxJ_FrIYKvIbJ4NPV2dBv7m7wMwz4pR9SYpElqTFJFiilcsx0pLQ5T6nxw3libJxKi2oQGKVzaudGBpM_F7k8sMLyfdgpZoU7ABbZRIrUub7hWM4lcWxEwlMrAtuXcZBbDzqt5vS8pujQVWtdcU2a02t9e3CAmtXpDTpQPbkMqW3bx0cQAfdgv1L3agmsnNFfRQkKqlXWSwsdaEyTPDh-XKDzBrfjwVFrM7pxDQtNf5rEMolpfivFPU2NmrRwsyUNoes6OP_7CCLRV-hPPXhTW-D6KRp79kBt2OZqAPGJb0rQ4ipe8cbCDv975jE8HV6NLvTF-fjLETyroTX0Bf4t7JT3S_cO87fSvK92629Edz9K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VKlW9lNKWEmiLDz0shySbOI6TI4KuoC0rJLoS6sW144SuCtmIzV766zuTj10W0QvHaMZOohnPjDMvzwCfDaZIE1DbXRrhRjKTrrEidIM8zEM0Om5Z6G_k83F8Oom-Xomre0d9NaD9zEy98ubWK6e_G2xldZv5PU7Mvzg_DinvyNCvbOFvwHNcs8Ok36gv-XaT9u-TEINwFEY9q4_kflXquUcsN3FCGEeiDU2CGH1RruWmjULPepAiMZ_iqMeq0IdgynvZabQFP_v3akEpf7xFbbzs7wPKxye9-Gt41dWs7KhV2YZnefkGtruoMGeDjrr68C38OmI1OkeDy3cpQVrWHlHNBqOz8cklxslDhmUyu5le69LStpxUGbWwWXVHTSNyFIYyRhm3_VCJl-WshQy8g8noy4_jU7c7w8HNMPHXbkgFRpZqY9IskFIWWPHEsS24pgYQ56mxiY4tmkJgti6orRsZLALzKC8CKyzfgc1yVua7wCKbxkLn-dBw3NalSWJEyrUVgR3GSVBYBwa99VTVUnWopsUuuSLrqZXNHdhF6yp9jYFUTS5Dat8O8RFEwB3YaUy-nAJ30Bi3ohQFzSyrqYUKFJZLDhw8LlBFh99xYL_3G9WFiLmim6ZJnCY0vpfi2qaGjS7z2YJU6NgOzv-vQWT6EuOqA-9bL1w9RefTDsg1_1wqEK_4ugS9ruEX77xs78kjD-DFxclIfT8bf9uHly3Chj7Ef4DN-m6Rf8QyrjafmgX7D1Q4Qco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Threading-Based+Method+%28FINDSITE%29+for+Ligand-Binding+Site+Prediction+and+Functional+Annotation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brylinski%2C+Michal&rft.au=Skolnick%2C+Jeffrey&rft.date=2008-01-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=1&rft.spage=129&rft.epage=134&rft_id=info:doi/10.1073%2Fpnas.0707684105&rft.externalDocID=25451049 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F1.cover.gif |