Phosphatidylcholines from Pieris brassicae eggs activate an immune response in Arabidopsis
Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We perf...
Saved in:
Published in | eLife Vol. 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
28.09.2020
eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly
Pieris brassicae
. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H
2
O
2
accumulation, defense gene expression and cell death in
Arabidopsis
, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. |
---|---|
AbstractList | Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly
Pieris brassicae
. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H
2
O
2
accumulation, defense gene expression and cell death in
Arabidopsis
, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs.Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H.sub.2O.sub.2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly . Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H O accumulation, defense gene expression and cell death in , all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs. |
Audience | Academic |
Author | Reymond, Philippe Wolfender, Jean-Luc Riezman, Howard Brillatz, Théo Riezman, Isabelle Stahl, Elia Marcourt, Laurence Schmiesing, André Hilfiker, Olivier Ferreira Queiroz, Emerson |
Author_xml | – sequence: 1 givenname: Elia surname: Stahl fullname: Stahl, Elia organization: Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland – sequence: 2 givenname: Théo surname: Brillatz fullname: Brillatz, Théo organization: School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland, Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland – sequence: 3 givenname: Emerson orcidid: 0000-0001-9567-1664 surname: Ferreira Queiroz fullname: Ferreira Queiroz, Emerson organization: School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland, Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland – sequence: 4 givenname: Laurence surname: Marcourt fullname: Marcourt, Laurence organization: School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland, Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland – sequence: 5 givenname: André surname: Schmiesing fullname: Schmiesing, André organization: Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland – sequence: 6 givenname: Olivier surname: Hilfiker fullname: Hilfiker, Olivier organization: Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland – sequence: 7 givenname: Isabelle surname: Riezman fullname: Riezman, Isabelle organization: NCCR Chemical Biology, University of Geneva, Geneva, Switzerland – sequence: 8 givenname: Howard orcidid: 0000-0003-4680-9422 surname: Riezman fullname: Riezman, Howard organization: NCCR Chemical Biology, University of Geneva, Geneva, Switzerland – sequence: 9 givenname: Jean-Luc orcidid: 0000-0002-0125-952X surname: Wolfender fullname: Wolfender, Jean-Luc organization: School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland, Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland – sequence: 10 givenname: Philippe orcidid: 0000-0002-3341-6200 surname: Reymond fullname: Reymond, Philippe organization: Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32985977$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1r3DAQhk1JadI0p96LoZeWsqlkyZZ0KSyhHwsLDf2A0ouQpbF3gi1tJG9o_n21u2nIlkgHidEzr2aG93lx5IOHonhJybmoa_4eltjBeUMqxZ4UJxWpyYxI_uvowf24OEvpiuQluJRUPSuOWaVkrYQ4KX5frkJar8yE7nawqzCgh1R2MYzlJULEVLbRpITWQAl9n0pjJ7wxE5TGlziOGw9lhLQOPkGJvpxH06IL64TpRfG0M0OCs7vztPj56eOPiy-z5dfPi4v5cmYbyqcZBeGcVdCoWtS04la0XCqpGKcgOy4MbRljpM3tEGV5W7Oa1NQa7hh31AE7LRZ7XRfMlV5HHE281cGg3gVC7LWJE9oBtKRt_sYR1bGKU5ZHIBkVddVwZyA_Za0Pe631ph3BWfBTNMOB6OGLx5Xuw43OIlRVTRZ4cycQw_UG0qRHTBaGwXgIm6QrzhslpapoRl_v0d7k0tB3ISvaLa7nDWtELpCKTJ0_QuXtYESbzdBhjh8kvD1IyMwEf6bebFLSi-_fDtlXD9u97_OfPzLwbg_YGFKK0N0jlOitAfXOgHpnwEzT_2iLU7ZW2M4Kh0dz_gJLctxN |
CitedBy_id | crossref_primary_10_1093_jxb_erac199 crossref_primary_10_1111_nph_17145 crossref_primary_10_3389_fevo_2022_1070859 crossref_primary_10_1038_s41598_021_97245_z crossref_primary_10_1093_jxb_erae359 crossref_primary_10_1093_plphys_kiac242 crossref_primary_10_3390_cells10092219 crossref_primary_10_1007_s44297_024_00027_y crossref_primary_10_1111_nph_18791 crossref_primary_10_3389_fevo_2023_1119472 crossref_primary_10_1042_BCJ20220372 crossref_primary_10_1371_journal_ppat_1011072 crossref_primary_10_1111_1744_7917_13303 crossref_primary_10_1007_s12600_023_01117_3 crossref_primary_10_1111_pce_15445 crossref_primary_10_1007_s11101_024_09928_w crossref_primary_10_1111_pce_14211 crossref_primary_10_3389_fpls_2022_1075783 crossref_primary_10_1093_plcell_koac009 crossref_primary_10_1093_plphys_kiaa022 crossref_primary_10_1111_jipb_13852 crossref_primary_10_1002_ps_7698 crossref_primary_10_1002_ps_8521 crossref_primary_10_1007_s11829_023_10029_2 crossref_primary_10_3389_fpls_2022_852808 crossref_primary_10_1002_advs_202407826 crossref_primary_10_1016_j_copbio_2021_06_012 crossref_primary_10_1093_plphys_kiac350 crossref_primary_10_1111_nph_17732 crossref_primary_10_1016_j_copbio_2021_04_004 crossref_primary_10_1186_s12870_022_03522_y crossref_primary_10_3389_fpls_2021_661141 crossref_primary_10_1093_jxb_erac501 crossref_primary_10_1093_pcp_pcae059 crossref_primary_10_7554_eLife_98992_3 crossref_primary_10_7554_eLife_98992 crossref_primary_10_1111_nph_19570 crossref_primary_10_1111_pce_14765 crossref_primary_10_1007_s00425_024_04541_9 crossref_primary_10_3389_fpls_2021_772492 crossref_primary_10_1042_EBC20210095 crossref_primary_10_1042_EBC20210092 crossref_primary_10_3390_ijms24032060 |
Cites_doi | 10.1016/S0065-2806(08)60275-1 10.1073/pnas.110054697 10.1104/pp.106.090837 10.1146/annurev-phyto-080614-120106 10.1093/jxb/ers362 10.1146/annurev-genet-102209-163500 10.1093/mp/ssn013 10.1038/s41598-017-06704-z 10.1105/tpc.104.026120 10.3389/fpls.2019.00623 10.1023/A:1005453830961 10.1094/MPMI-11-19-0329-R 10.1146/annurev-cellbio-092910-154055 10.7554/eLife.25474 10.1016/j.ejcb.2010.06.013 10.1093/bioinformatics/bts635 10.1105/tpc.11.8.1393 10.1146/annurev-ento-010715-023851 10.1146/annurev-phyto-080516-035406 10.1016/j.pbi.2017.04.011 10.1111/j.1365-313X.2006.02758.x 10.2307/3870321 10.1038/nature05286 10.1073/pnas.0707809105 10.1146/annurev.phyto.44.070505.143425 10.1073/pnas.0602328103 10.4161/psb.2.3.3690 10.1007/s10886-009-9714-5 10.1111/j.1365-313X.2010.04200.x 10.1111/tpj.13773 10.1126/science.aau1279 10.1021/ac981422i 10.1007/s10886-012-0132-8 10.1126/science.276.5314.945 10.1016/j.ab.2016.09.014 10.3390/ijms18061164 10.1016/0022-2364(92)90122-N 10.1007/s00425-013-1908-y 10.1016/j.tplants.2017.07.005 10.1242/jeb.01578 10.1016/0022-1910(90)90071-M 10.1186/s12870-017-1074-7 10.1146/annurev.arplant.57.032905.105346 10.1101/gad.218202 10.1016/S1044-0305(99)00041-0 10.1111/j.1462-5822.2005.00821.x 10.1002/ejlt.201500145 10.1021/acs.analchem.5b03798 10.1016/0022-1910(74)90231-5 10.1016/0020-1790(91)90069-Q 10.1146/annurev-ento-010814-020620 10.21769/BioProtoc.263 10.1303/aez.31.467 10.1186/1746-4811-4-28 10.1146/annurev-arplant-050718-095910 10.1080/09168451.2014.917266 10.1098/rspb.2014.1254 |
ContentType | Journal Article |
Copyright | 2020, Stahl et al. COPYRIGHT 2020 eLife Science Publications, Ltd. 2020, Stahl et al 2020 Stahl et al |
Copyright_xml | – notice: 2020, Stahl et al. – notice: COPYRIGHT 2020 eLife Science Publications, Ltd. – notice: 2020, Stahl et al 2020 Stahl et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.7554/eLife.60293 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_81b695d09f3241359783175264daeb69 PMC7521926 A636741317 32985977 10_7554_eLife_60293 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 31003A_169278 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 166686 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 316030_164095 – fundername: ; grantid: 316030_164095 – fundername: ; grantid: 31003A_169278 – fundername: ; grantid: 166686 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c614t-1e7ddc9e69575124c7b48989341e8f47a1b3330b05009c4b535051ca4d34d1de3 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Tue Aug 26 23:55:22 EDT 2025 Thu Aug 21 18:04:09 EDT 2025 Thu Jul 10 19:27:14 EDT 2025 Tue Jun 17 20:55:31 EDT 2025 Tue Jun 10 20:22:31 EDT 2025 Fri Jun 27 03:54:54 EDT 2025 Thu Apr 03 07:08:53 EDT 2025 Tue Jul 01 04:12:56 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pieris brassicae plant defense innate immunity A. thaliana phosphatidylcholines plant biology insect eggs |
Language | English |
License | 2020, Stahl et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c614t-1e7ddc9e69575124c7b48989341e8f47a1b3330b05009c4b535051ca4d34d1de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3341-6200 0000-0003-4680-9422 0000-0001-9567-1664 0000-0002-0125-952X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.60293 |
PMID | 32985977 |
PQID | 2446988921 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81b695d09f3241359783175264daeb69 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7521926 proquest_miscellaneous_2446988921 gale_infotracmisc_A636741317 gale_infotracacademiconefile_A636741317 gale_incontextgauss_ISR_A636741317 pubmed_primary_32985977 crossref_primary_10_7554_eLife_60293 crossref_citationtrail_10_7554_eLife_60293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-28 |
PublicationDateYYYYMMDD | 2020-09-28 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2020 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
References | Nawrath (bib42) 1999; 11 Huang (bib33) 2006; 46 Akoka (bib1) 1999; 71 Seino (bib49) 1996; 31 Kellogg (bib35) 1992; 98 Blenn (bib6) 2012; 38 Fatouros (bib23) 2014; 281 Gust (bib27) 2017; 22 Erb (bib20) 2019; 70 Little (bib39) 2007; 143 Balsgart (bib4) 2016; 88 Gouhier-Darimont (bib24) 2013; 64 Lim (bib38) 2017; 55 Aktas (bib2) 2010; 89 Hilker (bib29) 2005; 208 Bruessow (bib14) 2007; 2 Wu (bib56) 2010; 44 Blomquist (bib7) 1991; 21 Dobin (bib18) 2013; 29 Reymond (bib45) 2004; 16 van Loon (bib54) 2006; 44 Bridges (bib11) 1972 Pieterse (bib43) 2012; 28 Jones (bib34) 2006; 444 Turunen (bib52) 1974; 20 Yang (bib57) 2014; 78 McConn (bib40) 1996; 8 Bruessow (bib13) 2010; 62 Brodersen (bib12) 2002; 16 Stahl (bib50) 2018; 93 Daudi (bib15) 2012; 2 Doss (bib19) 2000; 97 Kutschera (bib36) 2019; 364 Li (bib37) 2008; 1 Fatouros (bib22) 2009; 35 Schmelz (bib47) 2006; 103 Bonnet (bib9) 2017; 17 Surma (bib51) 2015; 117 Hancock (bib28) 2017; 524 Hsu (bib31) 1999; 10 Fatouros (bib21) 2008; 105 Gouhier-Darimont (bib25) 2019; 10 Boutrot (bib10) 2017; 55 Schuman (bib48) 2016; 61 Boller (bib8) 2009; 60 Dhar (bib17) 2020; 33 Griese (bib26) 2017; 7 Reymond (bib46) 2013; 238 Huang (bib32) 2005; 7 Alborn (bib3) 1997; 276 Wang (bib55) 2017; 6 Hilker (bib30) 2015; 60 Bellande (bib5) 2017; 18 Defraia (bib16) 2008; 4 Meiners (bib41) 2000; 26 Ranf (bib44) 2017; 38 Turunen (bib53) 1990; 36 |
References_xml | – start-page: 51 volume-title: Advances in Insect Physiology year: 1972 ident: bib11 doi: 10.1016/S0065-2806(08)60275-1 – volume: 97 start-page: 6218 year: 2000 ident: bib19 article-title: Bruchins: Insect-derived plant regulators that stimulate neoplasm formation publication-title: PNAS doi: 10.1073/pnas.110054697 – volume: 143 start-page: 784 year: 2007 ident: bib39 article-title: Oviposition by pierid butterflies triggers defense responses in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.106.090837 – volume: 55 start-page: 257 year: 2017 ident: bib10 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for Broad-Spectrum disease resistance publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-080614-120106 – volume: 64 start-page: 665 year: 2013 ident: bib24 article-title: Signalling of Arabidopsis thaliana response to pieris brassicae eggs shares similarities with PAMP-triggered immunity publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ers362 – volume: 44 start-page: 1 year: 2010 ident: bib56 article-title: New insights into plant responses to the attack from insect herbivores publication-title: Annual Review of Genetics doi: 10.1146/annurev-genet-102209-163500 – volume: 1 start-page: 482 year: 2008 ident: bib37 article-title: Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis publication-title: Molecular Plant doi: 10.1093/mp/ssn013 – volume: 7 year: 2017 ident: bib26 article-title: Plant response to butterfly eggs: inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering publication-title: Scientific Reports doi: 10.1038/s41598-017-06704-z – volume: 16 start-page: 3132 year: 2004 ident: bib45 article-title: A conserved transcript pattern in response to a specialist and a generalist herbivore publication-title: The Plant Cell doi: 10.1105/tpc.104.026120 – volume: 10 year: 2019 ident: bib25 article-title: The Arabidopsis lectin receptor kinase LecRK-I.8 Is Involved in Insect Egg Perception publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00623 – volume: 26 start-page: 221 year: 2000 ident: bib41 article-title: Induction of plant synomones by oviposition of a phytophagous insect publication-title: Journal of Chemical Ecology doi: 10.1023/A:1005453830961 – volume: 33 start-page: 754 year: 2020 ident: bib17 article-title: The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 Regulates Dark-Induced Senescence and Plays Contrasting Roles in Defense Against Bacterial and Fungal Pathogens publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-11-19-0329-R – volume: 28 start-page: 489 year: 2012 ident: bib43 article-title: Hormonal modulation of plant immunity publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-092910-154055 – volume: 6 year: 2017 ident: bib55 article-title: A lectin receptor kinase as a potential sensor for extracellular nicotinamide Adenine dinucleotide in Arabidopsis thaliana publication-title: eLife doi: 10.7554/eLife.25474 – volume: 89 start-page: 888 year: 2010 ident: bib2 article-title: Phosphatidylcholine biosynthesis and its significance in Bacteria interacting with eukaryotic cells publication-title: European Journal of Cell Biology doi: 10.1016/j.ejcb.2010.06.013 – volume: 29 start-page: 15 year: 2013 ident: bib18 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 11 start-page: 1393 year: 1999 ident: bib42 article-title: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation publication-title: The Plant Cell doi: 10.1105/tpc.11.8.1393 – volume: 61 start-page: 373 year: 2016 ident: bib48 article-title: The layers of plant responses to insect herbivores publication-title: Annual Review of Entomology doi: 10.1146/annurev-ento-010715-023851 – volume: 55 start-page: 505 year: 2017 ident: bib38 article-title: Fatty acid- and Lipid-Mediated signaling in plant defense publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-080516-035406 – volume: 38 start-page: 68 year: 2017 ident: bib44 article-title: Sensing of molecular patterns through cell surface immune receptors publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2017.04.011 – volume: 46 start-page: 1073 year: 2006 ident: bib33 article-title: Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1 publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.02758.x – volume: 8 start-page: 403 year: 1996 ident: bib40 article-title: The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant publication-title: The Plant Cell doi: 10.2307/3870321 – volume: 444 start-page: 323 year: 2006 ident: bib34 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 105 start-page: 10033 year: 2008 ident: bib21 article-title: Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense publication-title: PNAS doi: 10.1073/pnas.0707809105 – volume: 44 start-page: 135 year: 2006 ident: bib54 article-title: Significance of inducible defense-related proteins in infected plants publication-title: Annual Review of Phytopathology doi: 10.1146/annurev.phyto.44.070505.143425 – volume: 103 start-page: 8894 year: 2006 ident: bib47 article-title: Fragments of ATP synthase mediate plant perception of insect attack publication-title: PNAS doi: 10.1073/pnas.0602328103 – volume: 2 start-page: 165 year: 2007 ident: bib14 article-title: Oviposition-induced changes in Arabidopsis genome expression: anticipating your enemy? publication-title: Plant Signaling & Behavior doi: 10.4161/psb.2.3.3690 – volume: 35 start-page: 1373 year: 2009 ident: bib22 article-title: Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production publication-title: Journal of Chemical Ecology doi: 10.1007/s10886-009-9714-5 – volume: 62 start-page: 876 year: 2010 ident: bib13 article-title: Insect eggs suppress plant defence against chewing herbivores publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2010.04200.x – volume: 93 start-page: 703 year: 2018 ident: bib50 article-title: Plant-arthropod interactions: who is the winner? publication-title: The Plant Journal doi: 10.1111/tpj.13773 – volume: 364 start-page: 178 year: 2019 ident: bib36 article-title: Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants publication-title: Science doi: 10.1126/science.aau1279 – volume: 71 start-page: 2554 year: 1999 ident: bib1 article-title: Concentration measurement by proton NMR using the ERETIC method publication-title: Analytical Chemistry doi: 10.1021/ac981422i – volume: 38 start-page: 882 year: 2012 ident: bib6 article-title: Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana publication-title: Journal of Chemical Ecology doi: 10.1007/s10886-012-0132-8 – volume: 276 start-page: 945 year: 1997 ident: bib3 article-title: An elicitor of plant volatiles from beet armyworm oral secretion publication-title: Science doi: 10.1126/science.276.5314.945 – volume: 524 start-page: 45 year: 2017 ident: bib28 article-title: Advances and unresolved challenges in the structural characterization of isomeric lipids publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2016.09.014 – volume: 18 year: 2017 ident: bib5 article-title: Plant lectins and lectin Receptor-Like kinases: how do they sense the outside? publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms18061164 – volume: 98 start-page: 176 year: 1992 ident: bib35 article-title: Proton-detected hetero-TOCSY experiments with application to nucleic acids publication-title: Journal of Magnetic Resonance doi: 10.1016/0022-2364(92)90122-N – volume: 238 start-page: 247 year: 2013 ident: bib46 article-title: Perception, signaling and molecular basis of oviposition-mediated plant responses publication-title: Planta doi: 10.1007/s00425-013-1908-y – volume: 22 start-page: 779 year: 2017 ident: bib27 article-title: Sensing danger: key to activating plant immunity publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2017.07.005 – volume: 208 start-page: 1849 year: 2005 ident: bib29 article-title: Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor publication-title: Journal of Experimental Biology doi: 10.1242/jeb.01578 – volume: 36 start-page: 665 year: 1990 ident: bib53 article-title: Plant leaf lipids as fatty acid sources in two species of lepidoptera publication-title: Journal of Insect Physiology doi: 10.1016/0022-1910(90)90071-M – volume: 17 year: 2017 ident: bib9 article-title: Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra publication-title: BMC Plant Biology doi: 10.1186/s12870-017-1074-7 – volume: 60 start-page: 379 year: 2009 ident: bib8 article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.57.032905.105346 – volume: 16 start-page: 490 year: 2002 ident: bib12 article-title: Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense publication-title: Genes & Development doi: 10.1101/gad.218202 – volume: 10 start-page: 600 year: 1999 ident: bib31 article-title: Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument publication-title: Journal of the American Society for Mass Spectrometry doi: 10.1016/S1044-0305(99)00041-0 – volume: 7 start-page: 1339 year: 2005 ident: bib32 article-title: Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate publication-title: Environmental Microbiology doi: 10.1111/j.1462-5822.2005.00821.x – volume: 117 start-page: 1540 year: 2015 ident: bib51 article-title: An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids publication-title: European Journal of Lipid Science and Technology doi: 10.1002/ejlt.201500145 – volume: 88 start-page: 2170 year: 2016 ident: bib4 article-title: High throughput identification and quantification of phospholipids in complex mixtures publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.5b03798 – volume: 20 start-page: 1257 year: 1974 ident: bib52 article-title: Lipid utilization in adult pieris brassicae with special reference to the rôle of linolenic acid publication-title: Journal of Insect Physiology doi: 10.1016/0022-1910(74)90231-5 – volume: 21 start-page: 99 year: 1991 ident: bib7 article-title: Polyunsaturated fatty acids and eicosanoids in insects publication-title: Insect Biochemistry doi: 10.1016/0020-1790(91)90069-Q – volume: 60 start-page: 493 year: 2015 ident: bib30 article-title: Plant Responses to Insect Egg Deposition publication-title: Annual Review of Entomology doi: 10.1146/annurev-ento-010814-020620 – volume: 2 year: 2012 ident: bib15 article-title: Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves publication-title: Bio-Protocol doi: 10.21769/BioProtoc.263 – volume: 31 start-page: 467 year: 1996 ident: bib49 article-title: An ovicidal substance produced by rice plants in response to oviposition by the whitebacked planthopper, Sogatella furcifera (HORVATH) (Homoptera: delphacidae) publication-title: Applied Entomology and Zoology doi: 10.1303/aez.31.467 – volume: 4 year: 2008 ident: bib16 article-title: A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid publication-title: Plant Methods doi: 10.1186/1746-4811-4-28 – volume: 70 start-page: 527 year: 2019 ident: bib20 article-title: Molecular Interactions Between Plants and Insect Herbivores publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-050718-095910 – volume: 78 start-page: 937 year: 2014 ident: bib57 article-title: Structural determination of elicitors in Sogatella furcifera (Horváth) that induce Japonica rice plant varieties (Oryza sativa L.) to produce an ovicidal substance against S. furcifera eggs publication-title: Bioscience, Biotechnology, and Biochemistry doi: 10.1080/09168451.2014.917266 – volume: 281 year: 2014 ident: bib23 article-title: Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2014.1254 |
SSID | ssj0000748819 |
Score | 2.4555318 |
Snippet | Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Arabidopsis - drug effects Arabidopsis - immunology Arabidopsis thaliana Butterflies - metabolism Cell death Gene expression Immune response innate immunity insect eggs Larva - chemistry Mass spectrometry Nuclear magnetic resonance spectroscopy Ovum - chemistry phosphatidylcholines Phosphatidylcholines - immunology Phosphatidylcholines - metabolism Phosphatidylcholines - pharmacology Pieris brassicae Plant Biology plant defense Plants (Organisms) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF9EKPSl1NqPqC1rEQqF1Es22c0-2qJosUW0gvRl2Y_JXUCSw9wV_O87k8TjQoW--JqdkOzsZH6z2ZnfMHaAzrB0Qnvcm1gRZ6BUbEWZxHTihfc4rbtehz9-ytPr7PtNfrPW6otywnp64F5xhxhWSZ2HiS4FHQHl9KsCIQ9xPFjAIfK-iHlrm6nOBys0zET3BXkKIfMQzqsSvshJqsUIgjqm_n_98RogjZMl19Dn5CV7MYSN_Kh_3S22AfUr9qxvJHm_zX5fzJp2PkMth_tbcmiUzM6pdIRfVETGzHFT3NKCAIfptOVUzvAHw0xua15RiQjwuz5bFnhV43Osq0Izb6v2Nbs-Of717TQeuibEHqF2ESegQvAaUGsK0TzzymXUIxLhCooyUzZxQoiJm-QYXvnM5QKDoMTbLIgsJAHEG7ZZNzW8YzxxhRK6tGmJgZZNpU0V4HKmIEXIXVFE7PODIo0fKMWps8Wtwa0Fad10Wjed1iN2sBKe90waj4t9pRVZiRD9dXcBjcIMRmH-ZxQR-0jraYjgoqYMmqldtq05u7o0R1JIjKJQPGKfBqGywbf2dihIwLkTJ9ZIcm8kiV-gHw3vP5iNoSFKW6uhWbYGYyepi0KnScTe9ma0mphIdUHkfxFTIwMbzXw8UlezjgAcZ4qBudx5ClXtsucp_UKgg7Zij20u7pbwHuOshfvQfVJ_Aa4EJDQ priority: 102 providerName: Directory of Open Access Journals |
Title | Phosphatidylcholines from Pieris brassicae eggs activate an immune response in Arabidopsis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32985977 https://www.proquest.com/docview/2446988921 https://pubmed.ncbi.nlm.nih.gov/PMC7521926 https://doaj.org/article/81b695d09f3241359783175264daeb69 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvo_v22gVtFAYDZ7ZlW9bTaEdLN9YSugXCXoRsy4kh2FmcjOW_353shHrrw16tM_Z9SPeTdB8Ap7gYFimXGe5NNHdDI4SreeG7dOOF76RS2l6H1zfx1Tj8Mokme7BtxtkJsLl3a0f9pMbL-fD3z81HnPCIX4cCveEH87UszDD20HPtwyG6JEGtDK47nG-XZIF2apt8BF5ka5lO2ly9v9_veSdbxP_fpfqOr-rHUd5xTJdH8KhDlOysNYHHsGeqJ_Cg7TG5eQo_RrO6WcxQAflmTuxSnDujrBI2KqlOM8P9ckO6MsxMpw2jTIdfiECZrlhJ2SOGLdtAWsPKCr-j0zKvF03ZPIPx5cX3T1du11DBzdALr1zfiDzPpIkl3bYEYSbSkNpHoiczSREK7aeccy9FGXkyC9OIIz7yMx3mPMz93PDncFDVlXkJzE8TwWWhgwIxmA5iHQiDmg5MzPMoTRIH3m8FqbKu2jg1vZgr3HWQ1JWVurJSd-B0R7xoi2zcT3ZOGtmRUGVs-6BeTlU30RTCcGQv92TB6cowoqMthEiI-3JtcMiBt6RPRbUvKgqumep106jP327VWcxjBFhI7sC7jqio8a8z3eUqIO9ULqtHedKjxMmZ9YbfbM1G0RBFtFWmXjcKYVUsk0QGvgMvWjPaMcYDmVBdQAdEz8B6nPdHqnJma4Mjp4jZ41f_J9FjeBjQ-QHdsiUncLBars1rBFmrdAD7YiIGcHh-cTO6HdijioGdVH8A0AAn9A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatidylcholines+from+Pieris+brassicae+eggs+activate+an+immune+response+in+Arabidopsis&rft.jtitle=eLife&rft.au=Stahl%2C+Elia&rft.au=Brillatz%2C+Th%C3%A9o&rft.au=Ferreira+Queiroz%2C+Emerson&rft.au=Marcourt%2C+Laurence&rft.date=2020-09-28&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=9&rft_id=info:doi/10.7554%2FeLife.60293&rft.externalDBID=n%2Fa&rft.externalDocID=10_7554_eLife_60293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |