Are treelines advancing? A global meta-analysis of treeline response to climate warming

Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 12; no. 10; pp. 1040 - 1049
Main Authors Harsch, Melanie A, Hulme, Philip E, McGlone, Matt S, Duncan, Richard P
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.
AbstractList Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.
Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.
AbstractTreelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and-or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.
Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints. [PUBLICATION ABSTRACT]
Author Hulme, Philip E.
Duncan, Richard P.
Harsch, Melanie A.
McGlone, Matt S.
Author_xml – sequence: 1
  fullname: Harsch, Melanie A
– sequence: 2
  fullname: Hulme, Philip E
– sequence: 3
  fullname: McGlone, Matt S
– sequence: 4
  fullname: Duncan, Richard P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21956246$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19682007$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAYhS00xLbCX4AICe4S_J34gqFq6jqkChBjGneWl9iVixsXO93af49DSi52U3xjS37O0dF73nNw0vpWA5AhWKB0PqwKRDnKIaZVgSEUBUSEsWL3DJyNHyfjm_w8BecxriBEWJToBThFgldJV56Bu2nQWRe0drbVMVPNg2pr2y4_ZdNs6fy9ctladypXrXL7aGPmzYhnQceNb2My8Fnt7Fp1OntUYZ30L8Fzo1zUrw73BNxezX5cXueLr_PPl9NFXnNEWU4FFqyiuELcpLQQi6ZS1AjIIaMUc95UDaZGQ2hKAo3hpWgIR4SgBtVcKDIB7wffTfC_tzp2cm1jrZ1TrfbbKHnJaUkwPgpSTirGKngUxDDlhYwk8O0TcOW3Ic2pZwhnJeY0Qa8P0PZ-rRu5CWlMYS__NZCAdwdAxVo5E_r5x5HDSDCOU7gJuBi4OvgYgzaytp3qrG-7oKyTCMp-NeRK9q3LfgNkvxry72rIXTKonhiMWY5LPw7SR-v0_r91craY9a-kzwe9jZ3ejXoVfqV-SMnk3Ze5JOQ7vplfL-S3xL8ZeKO8VMuQ5nF7g5MrRLxMhTLyB90_5GU
CitedBy_id crossref_primary_10_3354_cr01431
crossref_primary_10_1007_s11783_025_1950_6
crossref_primary_10_1016_j_palaeo_2016_01_024
crossref_primary_10_1002_rse2_260
crossref_primary_10_1111_j_1365_2745_2012_01955_x
crossref_primary_10_1007_s10584_011_0209_3
crossref_primary_10_1007_s11258_022_01242_9
crossref_primary_10_1007_s10342_014_0779_5
crossref_primary_10_5194_hess_17_619_2013
crossref_primary_10_1007_s11427_016_0072_6
crossref_primary_10_1111_jbi_13580
crossref_primary_10_15184_aqy_2022_91
crossref_primary_10_1016_j_agrformet_2024_110126
crossref_primary_10_1111_j_1472_4642_2010_00642_x
crossref_primary_10_1371_journal_pone_0077527
crossref_primary_10_1007_s42965_023_00317_6
crossref_primary_10_1111_gcb_12456
crossref_primary_10_1111_gcb_13545
crossref_primary_10_1111_gcb_15728
crossref_primary_10_1016_j_scitotenv_2020_141344
crossref_primary_10_3390_biology12020316
crossref_primary_10_1016_j_tree_2021_06_011
crossref_primary_10_1111_j_1365_2486_2012_02769_x
crossref_primary_10_1016_j_geomorph_2019_106857
crossref_primary_10_1007_s42965_024_00336_x
crossref_primary_10_1093_aob_mcaa042
crossref_primary_10_3354_cr01452
crossref_primary_10_1111_gcb_14428
crossref_primary_10_1002_hyp_9849
crossref_primary_10_1111_gcb_13577
crossref_primary_10_3390_f14020434
crossref_primary_10_3389_fpls_2022_860439
crossref_primary_10_1111_jvs_13054
crossref_primary_10_1111_ecog_03733
crossref_primary_10_3390_f15081280
crossref_primary_10_1186_s12870_018_1552_6
crossref_primary_10_1111_gcb_12483
crossref_primary_10_1890_11_0384_1
crossref_primary_10_1080_11956860_2019_1698258
crossref_primary_10_5194_cp_10_1277_2014
crossref_primary_10_1080_17550874_2011_570797
crossref_primary_10_1111_ecog_07092
crossref_primary_10_1371_journal_pone_0077982
crossref_primary_10_3354_cr01465
crossref_primary_10_18384_2712_7621_2024_3_26_46
crossref_primary_10_1098_rspb_2024_1427
crossref_primary_10_1111_nph_17674
crossref_primary_10_1890_14_1992_1
crossref_primary_10_1002_lno_12062
crossref_primary_10_1016_j_quascirev_2020_106712
crossref_primary_10_1177_0309133310384642
crossref_primary_10_1016_j_foreco_2020_118244
crossref_primary_10_31857_S0367059724030021
crossref_primary_10_3390_f13121994
crossref_primary_10_1016_j_earscirev_2018_05_006
crossref_primary_10_1111_gcb_13561
crossref_primary_10_1111_j_1365_2699_2010_02448_x
crossref_primary_10_1016_j_dendro_2016_03_001
crossref_primary_10_1139_cjfr_2015_0239
crossref_primary_10_1038_s41558_021_01011_y
crossref_primary_10_1111_gcb_12663
crossref_primary_10_1002_eap_2158
crossref_primary_10_1007_s10021_016_0046_3
crossref_primary_10_1038_s43247_024_01791_z
crossref_primary_10_1111_jbi_13779
crossref_primary_10_1016_j_earscirev_2018_06_010
crossref_primary_10_1080_15230430_2024_2429864
crossref_primary_10_1002_ecs2_2091
crossref_primary_10_1134_S1067413610060056
crossref_primary_10_1088_1748_9326_ad6619
crossref_primary_10_1007_s00442_016_3619_0
crossref_primary_10_1007_s10021_020_00512_9
crossref_primary_10_1016_j_jag_2019_101918
crossref_primary_10_1016_j_scitotenv_2024_178326
crossref_primary_10_1111_bor_12161
crossref_primary_10_1016_j_agrformet_2022_108917
crossref_primary_10_31857_S0367059724040032
crossref_primary_10_1016_j_ecolmodel_2016_08_003
crossref_primary_10_1007_s11368_023_03627_3
crossref_primary_10_1111_oik_10114
crossref_primary_10_1139_cjfas_2020_0421
crossref_primary_10_1016_j_foreco_2021_119402
crossref_primary_10_1134_S1067413616030085
crossref_primary_10_1007_s11258_016_0649_y
crossref_primary_10_1088_2515_7620_ad7705
crossref_primary_10_1007_s11629_021_6952_7
crossref_primary_10_31857_S0367059723060082
crossref_primary_10_1134_S1067413621050118
crossref_primary_10_1186_s40663_018_0141_3
crossref_primary_10_1890_11_2136_1
crossref_primary_10_1177_0959683617702227
crossref_primary_10_1016_j_scitotenv_2016_06_036
crossref_primary_10_1038_s41598_020_67602_5
crossref_primary_10_1007_s11258_024_01454_1
crossref_primary_10_1007_s11629_016_4257_z
crossref_primary_10_1139_X10_086
crossref_primary_10_3390_rs6032296
crossref_primary_10_1643_h2021059
crossref_primary_10_1002_ecs2_4016
crossref_primary_10_1111_gcb_12683
crossref_primary_10_1016_j_dendro_2022_125936
crossref_primary_10_1080_02827581_2017_1338354
crossref_primary_10_1016_j_scitotenv_2024_177695
crossref_primary_10_1111_gcb_14618
crossref_primary_10_1111_nph_15290
crossref_primary_10_3389_fpls_2018_01871
crossref_primary_10_1038_nclimate2697
crossref_primary_10_3955_046_089_0304
crossref_primary_10_1659_MRD_JOURNAL_D_18_00049_1
crossref_primary_10_1134_S106741362360146X
crossref_primary_10_1002_2016EF000514
crossref_primary_10_1134_S1067413623060085
crossref_primary_10_3732_ajb_1200489
crossref_primary_10_1016_j_gloplacha_2022_104027
crossref_primary_10_1038_nclimate3329
crossref_primary_10_3390_plants13010123
crossref_primary_10_1080_15230430_2024_2419690
crossref_primary_10_1007_s10113_016_1070_8
crossref_primary_10_1016_j_quaint_2019_12_006
crossref_primary_10_1038_s41586_018_0411_9
crossref_primary_10_3390_cli9050087
crossref_primary_10_1080_00063657_2018_1561646
crossref_primary_10_1098_rstb_2012_0239
crossref_primary_10_1007_s11258_010_9816_8
crossref_primary_10_1016_j_scitotenv_2019_03_232
crossref_primary_10_1016_j_earscirev_2019_02_024
crossref_primary_10_1007_s11104_020_04732_9
crossref_primary_10_4236_wjet_2016_43039
crossref_primary_10_1038_s41558_019_0688_1
crossref_primary_10_3390_land8060086
crossref_primary_10_1111_ecog_05285
crossref_primary_10_1890_14_1558_1
crossref_primary_10_1007_s00334_021_00859_6
crossref_primary_10_1007_s00442_018_4142_2
crossref_primary_10_1111_j_1365_2486_2010_02368_x
crossref_primary_10_1080_11263504_2013_878410
crossref_primary_10_1007_s10336_016_1335_5
crossref_primary_10_1016_j_quaint_2016_07_032
crossref_primary_10_3389_fpls_2022_855003
crossref_primary_10_1002_ece3_9
crossref_primary_10_3732_ajb_1200469
crossref_primary_10_1139_as_2017_0028
crossref_primary_10_1111_ecog_05075
crossref_primary_10_1029_2021JG006768
crossref_primary_10_1016_j_ecolmodel_2014_07_024
crossref_primary_10_1111_gcb_15113
crossref_primary_10_1038_s41586_021_03761_3
crossref_primary_10_1080_02827581_2010_509329
crossref_primary_10_1007_s10336_016_1324_8
crossref_primary_10_1038_s43247_025_02087_6
crossref_primary_10_5026_jgeography_128_105
crossref_primary_10_1002_ecs2_3108
crossref_primary_10_3390_f13020174
crossref_primary_10_1134_S1067413620040074
crossref_primary_10_1371_journal_pone_0106114
crossref_primary_10_1371_journal_pone_0231339
crossref_primary_10_1111_ddi_12238
crossref_primary_10_1016_j_fecs_2024_100166
crossref_primary_10_1111_jbi_13951
crossref_primary_10_1111_jbi_13952
crossref_primary_10_1007_s10584_021_02996_3
crossref_primary_10_1111_csp2_50
crossref_primary_10_1111_cobi_12302
crossref_primary_10_1111_gcb_16675
crossref_primary_10_1139_cjfr_2019_0358
crossref_primary_10_1016_j_rse_2019_111312
crossref_primary_10_1111_icad_12570
crossref_primary_10_2139_ssrn_3035217
crossref_primary_10_1007_s10661_016_5582_y
crossref_primary_10_3390_f13060857
crossref_primary_10_1080_15230430_2023_2220208
crossref_primary_10_1139_cjfr_2015_0073
crossref_primary_10_1111_gcb_15530
crossref_primary_10_1093_aesa_sav036
crossref_primary_10_1111_gcb_12023
crossref_primary_10_1016_j_foreco_2018_12_039
crossref_primary_10_1016_j_tplants_2020_02_007
crossref_primary_10_1007_s10980_015_0306_1
crossref_primary_10_1088_1748_9326_ad97d2
crossref_primary_10_1177_0309133319843873
crossref_primary_10_3390_f10070557
crossref_primary_10_5194_gmd_11_4451_2018
crossref_primary_10_1111_gcb_15767
crossref_primary_10_3390_f11010063
crossref_primary_10_3389_ffgc_2021_773223
crossref_primary_10_1007_s00382_013_1882_x
crossref_primary_10_1016_j_quaint_2019_04_029
crossref_primary_10_3390_f12091137
crossref_primary_10_1080_13416979_2023_2289267
crossref_primary_10_1007_s10533_022_00996_8
crossref_primary_10_1139_cjes_2016_0004
crossref_primary_10_1186_s40663_020_0216_9
crossref_primary_10_1007_s10021_021_00716_7
crossref_primary_10_5194_essd_15_133_2023
crossref_primary_10_1007_s00442_022_05125_8
crossref_primary_10_1111_geb_12407
crossref_primary_10_1007_s11756_023_01530_3
crossref_primary_10_1007_s00468_019_01841_6
crossref_primary_10_1111_ele_13416
crossref_primary_10_1080_00045608_2015_1015096
crossref_primary_10_1016_j_agrformet_2024_109996
crossref_primary_10_1007_s11295_018_1235_3
crossref_primary_10_1002_ecm_1296
crossref_primary_10_5194_bg_18_6329_2021
crossref_primary_10_1051_bioconf_20191600025
crossref_primary_10_3390_f10110998
crossref_primary_10_1002_ecs2_3568
crossref_primary_10_1016_j_rse_2020_111672
crossref_primary_10_1007_s00468_014_1008_z
crossref_primary_10_1111_gcb_13366
crossref_primary_10_1016_j_agrformet_2023_109688
crossref_primary_10_1093_biolinnean_blae094
crossref_primary_10_1139_er_2017_0009
crossref_primary_10_1016_j_soilbio_2016_04_002
crossref_primary_10_1038_s41598_019_47072_0
crossref_primary_10_1016_j_scitotenv_2023_167512
crossref_primary_10_1016_j_funeco_2013_01_009
crossref_primary_10_1038_s41598_022_17409_3
crossref_primary_10_1111_gcb_13365
crossref_primary_10_1657_1938_4246_45_2_219
crossref_primary_10_3390_rs12101569
crossref_primary_10_1007_s10584_020_02743_0
crossref_primary_10_1111_1365_2745_12817
crossref_primary_10_1111_1365_2745_12818
crossref_primary_10_1007_s00035_013_0117_4
crossref_primary_10_1007_s10531_018_1641_8
crossref_primary_10_1111_ecog_05334
crossref_primary_10_1080_11263504_2022_2098866
crossref_primary_10_1016_j_foreco_2011_01_017
crossref_primary_10_1007_s00442_016_3637_y
crossref_primary_10_1016_j_foreco_2015_01_018
crossref_primary_10_1007_s11258_013_0176_z
crossref_primary_10_1016_j_gloplacha_2023_104263
crossref_primary_10_1111_nph_13422
crossref_primary_10_1175_JCLI_D_18_0135_1
crossref_primary_10_3390_insects13010043
crossref_primary_10_1016_j_quascirev_2018_02_016
crossref_primary_10_1139_as_2023_0030
crossref_primary_10_1016_j_envexpbot_2023_105603
crossref_primary_10_3390_rs12162651
crossref_primary_10_1111_j_1365_2486_2010_02266_x
crossref_primary_10_1890_14_0595_1
crossref_primary_10_1111_j_1365_2486_2012_02708_x
crossref_primary_10_1016_j_agrformet_2022_109004
crossref_primary_10_1016_j_agrformet_2023_109543
crossref_primary_10_1111_een_12195
crossref_primary_10_1111_jvs_12752
crossref_primary_10_1111_ecog_06893
crossref_primary_10_3389_fevo_2024_1347837
crossref_primary_10_1111_j_1466_8238_2011_00731_x
crossref_primary_10_1007_s11258_023_01345_x
crossref_primary_10_34220_issn_2222_7962_2023_4_21
crossref_primary_10_3390_f11010038
crossref_primary_10_1002_ecs2_4845
crossref_primary_10_1111_j_1365_2699_2012_02697_x
crossref_primary_10_1080_17550874_2020_1762134
crossref_primary_10_1111_1365_2745_12837
crossref_primary_10_1007_s11629_020_6147_7
crossref_primary_10_1002_esp_5538
crossref_primary_10_1038_s41598_022_16462_2
crossref_primary_10_1111_jvs_12521
crossref_primary_10_1111_ecog_05597
crossref_primary_10_1038_srep14248
crossref_primary_10_3390_d14040240
crossref_primary_10_1080_00291951_2014_904402
crossref_primary_10_1016_j_catena_2021_105892
crossref_primary_10_1073_pnas_1319316111
crossref_primary_10_1007_s11629_013_2565_0
crossref_primary_10_1002_ajb2_1006
crossref_primary_10_1016_j_foreco_2013_05_041
crossref_primary_10_3390_f12111605
crossref_primary_10_1016_j_fecs_2024_100209
crossref_primary_10_1016_j_jenvman_2019_02_127
crossref_primary_10_1111_nph_16904
crossref_primary_10_1007_s10584_016_1806_y
crossref_primary_10_3390_f9110688
crossref_primary_10_1080_15230430_2018_1524191
crossref_primary_10_1007_s11629_020_6221_1
crossref_primary_10_1007_s11629_019_5386_y
crossref_primary_10_3390_atmos11020176
crossref_primary_10_1093_jofore_fvy019
crossref_primary_10_1002_ecs2_2651
crossref_primary_10_1080_15481603_2021_1894832
crossref_primary_10_3390_plants11233270
crossref_primary_10_1177_0959683611430339
crossref_primary_10_1111_j_1365_2745_2012_01983_x
crossref_primary_10_1134_S1067413619050084
crossref_primary_10_1088_1748_9326_abfac0
crossref_primary_10_1016_j_ecoinf_2017_12_002
crossref_primary_10_1659_MRD_JOURNAL_D_17_00071_1
crossref_primary_10_1080_17550874_2013_811306
crossref_primary_10_1371_journal_pone_0097601
crossref_primary_10_1039_b923773a
crossref_primary_10_1371_journal_pone_0093241
crossref_primary_10_1016_j_scitotenv_2019_134618
crossref_primary_10_1093_jpe_rtu035
crossref_primary_10_1111_j_1749_8198_2011_00428_x
crossref_primary_10_2747_0272_3646_33_2_129
crossref_primary_10_1134_S1067413624601982
crossref_primary_10_1016_j_agrformet_2023_109710
crossref_primary_10_1657_1938_4246_45_4_584
crossref_primary_10_1071_WF16025
crossref_primary_10_1016_j_catena_2023_107394
crossref_primary_10_1111_ibi_13380
crossref_primary_10_1657_AAAR0017_001
crossref_primary_10_1088_1748_9326_7_4_044038
crossref_primary_10_1016_j_dendro_2024_126256
crossref_primary_10_1659_MRD_JOURNAL_D_14_00104_1
crossref_primary_10_1093_jpe_rtu038
crossref_primary_10_3389_fevo_2022_781882
crossref_primary_10_1016_j_fecs_2023_100106
crossref_primary_10_3390_f13020254
crossref_primary_10_3732_ajb_1200279
crossref_primary_10_1002_ecy_2660
crossref_primary_10_1073_pnas_2412162121
crossref_primary_10_1002_hyp_14416
crossref_primary_10_1016_j_foreco_2015_07_032
crossref_primary_10_1890_09_2300_1
crossref_primary_10_1016_j_biocon_2013_07_036
crossref_primary_10_1007_s10113_015_0812_3
crossref_primary_10_1016_j_dendro_2024_126267
crossref_primary_10_1111_nph_16704
crossref_primary_10_1016_j_scitotenv_2020_137746
crossref_primary_10_1111_gcb_15143
crossref_primary_10_1111_j_1365_2745_2010_01723_x
crossref_primary_10_1111_j_1526_100X_2011_00777_x
crossref_primary_10_1002_eap_2119
crossref_primary_10_1111_1365_2745_12898
crossref_primary_10_1007_s43538_021_00034_5
crossref_primary_10_1016_j_agrformet_2013_12_004
crossref_primary_10_1134_S1067413619040076
crossref_primary_10_1139_X10_221
crossref_primary_10_3390_f6010116
crossref_primary_10_1111_jvs_12347
crossref_primary_10_1111_ecog_00280
crossref_primary_10_1016_j_soilbio_2019_107545
crossref_primary_10_1016_j_palaeo_2024_112130
crossref_primary_10_1029_2022EF002897
crossref_primary_10_1016_j_scitotenv_2018_04_324
crossref_primary_10_3390_rs11212527
crossref_primary_10_3390_f13030454
crossref_primary_10_1002_ecs2_1761
crossref_primary_10_3389_feart_2018_00057
crossref_primary_10_1002_esp_4072
crossref_primary_10_1111_j_1600_0587_2011_07057_x
crossref_primary_10_1111_j_1600_0889_2010_00490_x
crossref_primary_10_1890_15_1264_1
crossref_primary_10_1007_s11629_019_5925_6
crossref_primary_10_1016_j_ecolind_2015_10_057
crossref_primary_10_1007_s00468_015_1340_y
crossref_primary_10_3390_f11030254
crossref_primary_10_1007_s13280_019_01308_5
crossref_primary_10_1007_s00704_013_0902_4
crossref_primary_10_1111_j_1472_4642_2011_00819_x
crossref_primary_10_1134_S0001433815090042
crossref_primary_10_1038_s41598_025_87478_7
crossref_primary_10_1080_24694452_2019_1616530
crossref_primary_10_1111_geb_12057
crossref_primary_10_1016_j_ympev_2024_108240
crossref_primary_10_3390_rs15092341
crossref_primary_10_1016_j_agrformet_2020_108105
crossref_primary_10_1002_esp_4046
crossref_primary_10_1111_j_1600_0706_2011_20008_x
crossref_primary_10_1080_15230430_2018_1495445
crossref_primary_10_1111_jvs_12366
crossref_primary_10_5558_tfc86312_3
crossref_primary_10_5194_cp_10_1605_2014
crossref_primary_10_1016_j_scitotenv_2019_135718
crossref_primary_10_1659_MRD_JOURNAL_D_16_00024R_1
crossref_primary_10_1002_ece3_3290
crossref_primary_10_1016_j_foreco_2023_121190
crossref_primary_10_1111_gcb_13840
crossref_primary_10_1016_j_gecco_2020_e01113
crossref_primary_10_1080_07038992_2020_1865792
crossref_primary_10_1016_j_dendro_2016_01_006
crossref_primary_10_1007_s10342_020_01293_5
crossref_primary_10_1111_ecog_04899
crossref_primary_10_1016_j_fecs_2022_100002
crossref_primary_10_1111_1365_2745_13993
crossref_primary_10_1007_s10021_012_9614_3
crossref_primary_10_1016_j_funeco_2025_101412
crossref_primary_10_1007_s10021_012_9580_9
crossref_primary_10_1111_1365_2656_13936
crossref_primary_10_1080_17550874_2015_1126368
crossref_primary_10_1007_s11258_016_0624_7
crossref_primary_10_1111_nph_16573
crossref_primary_10_1657_1938_4246_45_4_526
crossref_primary_10_1002_eap_2313
crossref_primary_10_3390_f14020412
crossref_primary_10_1002_ece3_5007
crossref_primary_10_1080_02723646_2018_1434926
crossref_primary_10_1007_s10531_016_1071_4
crossref_primary_10_1007_s11430_020_9757_1
crossref_primary_10_1016_j_agrformet_2021_108403
crossref_primary_10_1111_j_1474_919X_2011_01196_x
crossref_primary_10_1016_j_ecolmodel_2023_110481
crossref_primary_10_1111_jbi_14593
crossref_primary_10_1002_ecm_1634
crossref_primary_10_1016_j_rse_2022_113423
crossref_primary_10_1088_1748_9326_8_3_034023
crossref_primary_10_3354_cr01122
crossref_primary_10_1111_1365_2664_12917
crossref_primary_10_4267_climatologie_1325
crossref_primary_10_1007_s10682_024_10317_0
crossref_primary_10_1111_1365_2745_12688
crossref_primary_10_3390_f13122106
crossref_primary_10_1002_2016GL070710
crossref_primary_10_1016_j_rse_2014_10_029
crossref_primary_10_3390_f13122107
crossref_primary_10_1016_j_jenvman_2012_07_028
crossref_primary_10_1016_j_tree_2011_04_003
crossref_primary_10_3390_rs61010070
crossref_primary_10_1007_s11258_010_9724_y
crossref_primary_10_1016_j_dendro_2024_126202
crossref_primary_10_1016_j_envpol_2021_116425
crossref_primary_10_1016_j_dendro_2023_126144
crossref_primary_10_1016_j_geomorph_2024_109201
crossref_primary_10_1007_s00442_021_04970_3
crossref_primary_10_1111_nph_16790
crossref_primary_10_1007_s11284_014_1129_2
crossref_primary_10_1111_j_1600_0587_2013_00436_x
crossref_primary_10_1657_AAAR0015_001
crossref_primary_10_1111_ecog_03378
crossref_primary_10_1111_jvs_12561
crossref_primary_10_1007_s11356_017_9301_1
crossref_primary_10_1093_aob_mcs043
crossref_primary_10_1029_2018EF000935
crossref_primary_10_1111_j_1469_8137_2010_03455_x
crossref_primary_10_1111_gcb_12710
crossref_primary_10_1111_fwb_12847
crossref_primary_10_1007_s13595_020_00964_y
crossref_primary_10_1126_science_aax4737
crossref_primary_10_1080_15230430_2017_1415625
crossref_primary_10_1111_1365_2745_13315
crossref_primary_10_1080_23766808_2021_1953895
crossref_primary_10_1007_s10336_020_01778_5
crossref_primary_10_1111_1365_2745_13312
crossref_primary_10_1111_jvs_12575
crossref_primary_10_1111_jbi_14562
crossref_primary_10_1093_biosci_biu234
crossref_primary_10_1016_j_catena_2020_104870
crossref_primary_10_1038_srep07994
crossref_primary_10_1080_04353676_2020_1751446
crossref_primary_10_1080_15230430_2020_1794098
crossref_primary_10_1111_1365_2745_70022
crossref_primary_10_1016_j_nbsj_2023_100064
crossref_primary_10_3390_d3010008
crossref_primary_10_1002_ece3_5968
crossref_primary_10_1016_j_ejrh_2020_100759
crossref_primary_10_3390_f8110423
crossref_primary_10_1080_13416979_2023_2289731
crossref_primary_10_1111_jbi_13465
crossref_primary_10_5194_hess_25_1849_2021
crossref_primary_10_1371_journal_pone_0119128
crossref_primary_10_1016_j_dendro_2017_05_005
crossref_primary_10_1111_j_1469_8137_2010_03623_x
crossref_primary_10_1007_s10980_019_00838_3
crossref_primary_10_1177_0309133315615802
crossref_primary_10_1146_annurev_ecolsys_110512_135750
crossref_primary_10_1080_11263504_2021_1918780
crossref_primary_10_1111_jbi_14302
crossref_primary_10_1111_1365_2745_12363
crossref_primary_10_1002_wlb3_01197
crossref_primary_10_1016_j_rse_2019_111251
crossref_primary_10_1029_2018JG004978
crossref_primary_10_1111_1365_2745_12361
crossref_primary_10_1016_j_agrformet_2024_110237
crossref_primary_10_11648_j_ajbes_20241003_12
crossref_primary_10_1111_cobi_13583
crossref_primary_10_1038_s41396_019_0574_x
crossref_primary_10_1007_s00468_022_02337_6
crossref_primary_10_3732_ajb_1200503
crossref_primary_10_3390_f11090985
crossref_primary_10_1007_s13595_012_0207_2
crossref_primary_10_1002_ecs2_4175
crossref_primary_10_1080_15230430_2018_1487657
crossref_primary_10_1659_MRD_JOURNAL_D_20_00002_1
crossref_primary_10_1088_1748_9326_ac3694
crossref_primary_10_1080_11956860_2023_2231262
crossref_primary_10_1111_gcb_13207
crossref_primary_10_1016_j_scitotenv_2021_149267
crossref_primary_10_1016_j_scitotenv_2024_176202
crossref_primary_10_1038_s41477_024_01855_0
crossref_primary_10_1080_15230430_2022_2121245
crossref_primary_10_1080_01431161_2020_1734254
crossref_primary_10_1016_j_gloplacha_2019_04_001
crossref_primary_10_1016_j_agrformet_2022_108811
crossref_primary_10_1038_s41598_018_28808_w
crossref_primary_10_1111_j_1600_0706_2013_00698_x
crossref_primary_10_1016_j_revpalbo_2020_104223
crossref_primary_10_1007_s11258_017_0782_2
crossref_primary_10_1186_s40663_020_0217_8
crossref_primary_10_3390_rs12244150
crossref_primary_10_1088_1748_9326_7_3_035501
crossref_primary_10_1111_gcb_15813
crossref_primary_10_7717_peerj_2605
crossref_primary_10_1111_gcb_13636
crossref_primary_10_1016_j_gecco_2017_04_003
crossref_primary_10_1371_journal_pone_0292682
crossref_primary_10_3390_rs15102679
crossref_primary_10_1007_s10265_018_1065_2
crossref_primary_10_5586_asbp_918
crossref_primary_10_1080_01431161_2020_1826062
crossref_primary_10_1139_cjz_2014_0058
crossref_primary_10_1111_jvs_12269
crossref_primary_10_1002_eap_2274
crossref_primary_10_1007_s11258_017_0716_z
crossref_primary_10_1016_j_foreco_2011_04_030
crossref_primary_10_1016_j_oneear_2021_05_005
crossref_primary_10_19047_0136_1694_2017_87_3_21
crossref_primary_10_3354_cr01525
crossref_primary_10_1111_jbi_13408
crossref_primary_10_1111_1365_2435_12082
crossref_primary_10_1111_gcb_13627
crossref_primary_10_1007_s13280_012_0306_1
crossref_primary_10_1038_nclimate1465
crossref_primary_10_1007_s10344_014_0864_6
crossref_primary_10_1086_659623
crossref_primary_10_1016_j_scitotenv_2022_159778
crossref_primary_10_1007_s11258_021_01211_8
crossref_primary_10_1071_BT23002
crossref_primary_10_1016_j_scitotenv_2024_170953
crossref_primary_10_1007_s00248_021_01834_4
crossref_primary_10_1111_gcb_13417
crossref_primary_10_1038_hdy_2016_14
crossref_primary_10_1007_s11629_016_4003_6
crossref_primary_10_1016_j_earscirev_2024_104865
crossref_primary_10_1111_1365_2435_13182
crossref_primary_10_1017_age_2018_15
crossref_primary_10_1007_s00035_015_0148_0
crossref_primary_10_1371_journal_pone_0258558
crossref_primary_10_1016_j_foreco_2021_119536
crossref_primary_10_1111_mam_12210
crossref_primary_10_1111_pce_12431
crossref_primary_10_1111_jbi_12796
crossref_primary_10_1002_2016JD024969
crossref_primary_10_1073_pnas_1010270107
crossref_primary_10_1007_s00442_022_05293_7
crossref_primary_10_3390_f13050788
crossref_primary_10_3390_microorganisms9112280
crossref_primary_10_3389_fmicb_2021_533121
crossref_primary_10_1657_1938_4246_43_4_593
crossref_primary_10_1093_jpe_rtab035
crossref_primary_10_1016_j_dendro_2012_02_004
crossref_primary_10_1111_gcb_13649
crossref_primary_10_1111_jbi_13867
crossref_primary_10_1111_nph_14081
crossref_primary_10_1007_s10750_011_0888_9
crossref_primary_10_1016_j_ecolmodel_2024_110813
crossref_primary_10_1111_gcb_13881
crossref_primary_10_1186_1999_3110_54_15
crossref_primary_10_1007_s10533_016_0229_1
crossref_primary_10_1080_17550874_2012_704647
crossref_primary_10_1007_s10021_012_9565_8
crossref_primary_10_1007_s11258_011_9993_0
crossref_primary_10_5141_ecoenv_2015_001
crossref_primary_10_1016_j_quascirev_2018_12_029
crossref_primary_10_1016_j_foreco_2021_119316
crossref_primary_10_1111_jbi_12776
crossref_primary_10_1016_j_rse_2018_08_002
crossref_primary_10_1080_17550874_2018_1487475
crossref_primary_10_1002_ecs2_2176
crossref_primary_10_5194_bg_16_1211_2019
crossref_primary_10_1016_j_gene_2018_12_082
crossref_primary_10_1038_s41612_022_00292_0
crossref_primary_10_1111_j_1365_2699_2011_02642_x
crossref_primary_10_1016_j_dendro_2014_05_002
crossref_primary_10_1111_1365_2435_13137
crossref_primary_10_3390_f9060329
crossref_primary_10_1111_ddi_12572
crossref_primary_10_1111_avsc_12401
crossref_primary_10_1111_nph_17172
crossref_primary_10_3390_f10080677
crossref_primary_10_1016_j_jhydrol_2022_127967
crossref_primary_10_1111_gcb_14111
crossref_primary_10_1111_jvs_12911
crossref_primary_10_1111_1365_2745_13291
crossref_primary_10_1111_j_1600_0706_2010_18966_x
crossref_primary_10_1016_j_biocon_2012_04_033
crossref_primary_10_3097_LO_201017
crossref_primary_10_1098_rsbl_2011_0269
crossref_primary_10_1002_ece3_9028
crossref_primary_10_1111_jbi_13840
crossref_primary_10_1890_ES11_00110_1
crossref_primary_10_1016_j_quaint_2012_02_011
crossref_primary_10_1111_jbi_12996
crossref_primary_10_1016_j_foreco_2021_119339
crossref_primary_10_1111_jvs_12921
crossref_primary_10_1111_ele_13587
crossref_primary_10_1007_s11629_017_4435_7
crossref_primary_10_1111_btp_12942
crossref_primary_10_1111_ele_12017
crossref_primary_10_1111_njb_03470
crossref_primary_10_1139_cjfr_2020_0466
crossref_primary_10_5194_bg_13_3847_2016
crossref_primary_10_1111_jbi_13822
crossref_primary_10_1016_j_rse_2014_01_027
crossref_primary_10_1038_s41559_022_01774_3
crossref_primary_10_1007_s00704_016_1987_3
crossref_primary_10_1111_brv_12639
crossref_primary_10_1111_j_1466_8238_2010_00588_x
crossref_primary_10_1016_j_rse_2011_11_023
crossref_primary_10_1080_15230430_2020_1845919
crossref_primary_10_1111_ele_14403
crossref_primary_10_1080_14888386_2012_700560
crossref_primary_10_1111_biom_13832
crossref_primary_10_7554_eLife_75163
crossref_primary_10_1073_pnas_1520582113
crossref_primary_10_1134_S1995425515040137
crossref_primary_10_1016_j_fecs_2024_100218
crossref_primary_10_1139_as_2020_0050
crossref_primary_10_1016_j_jenvman_2023_119401
crossref_primary_10_1016_j_rse_2017_04_024
crossref_primary_10_2980_20_3_3581
crossref_primary_10_1016_j_foreco_2017_10_025
crossref_primary_10_1016_j_foreco_2012_11_047
crossref_primary_10_1016_j_chnaes_2016_05_003
crossref_primary_10_1214_12_AOAS540
crossref_primary_10_1371_journal_pone_0159184
crossref_primary_10_47371_mycosci_2022_05_002
crossref_primary_10_1134_S1067413621050076
crossref_primary_10_1002_ppp3_10160
crossref_primary_10_1126_science_aaf7671
crossref_primary_10_1007_s00300_018_2355_9
crossref_primary_10_1007_s10980_012_9774_8
crossref_primary_10_1111_j_1502_3885_2011_00214_x
crossref_primary_10_1007_s10980_020_00972_3
crossref_primary_10_1890_14_0626_1
crossref_primary_10_3390_f15010167
crossref_primary_10_18822_edgcc629471
crossref_primary_10_1111_ppl_13654
crossref_primary_10_1038_s41598_020_66277_2
crossref_primary_10_1016_j_jhydrol_2021_126790
crossref_primary_10_1111_gcb_14338
crossref_primary_10_1111_j_1600_0706_2010_18726_x
crossref_primary_10_1080_24694452_2020_1805292
crossref_primary_10_1890_ES14_00225_1
crossref_primary_10_1038_s41598_020_58111_6
crossref_primary_10_1111_j_1502_3885_2011_00238_x
crossref_primary_10_3389_fpls_2018_01597
crossref_primary_10_1080_15230430_2024_2393443
crossref_primary_10_1093_biosci_biab139
crossref_primary_10_1007_s11258_023_01305_5
crossref_primary_10_1002_ecs2_2328
crossref_primary_10_5194_esurf_10_1303_2022
crossref_primary_10_1016_j_scitotenv_2022_153697
crossref_primary_10_1016_j_funeco_2016_08_010
crossref_primary_10_1016_j_rse_2019_01_027
crossref_primary_10_3390_land11122227
crossref_primary_10_1080_15230430_2019_1585173
crossref_primary_10_1111_ibi_13043
crossref_primary_10_1071_BT16179
crossref_primary_10_1016_j_baae_2024_10_005
crossref_primary_10_1080_13416979_2023_2294510
crossref_primary_10_1111_jvs_12865
crossref_primary_10_1080_15230430_2020_1722397
crossref_primary_10_1038_s41559_024_02333_8
crossref_primary_10_1093_aobpla_plw053
crossref_primary_10_3389_fpls_2019_00932
crossref_primary_10_1016_j_pld_2020_06_011
crossref_primary_10_1088_1755_1315_275_1_012017
crossref_primary_10_1016_j_foreco_2020_117926
crossref_primary_10_1002_eap_1538
crossref_primary_10_1007_s00442_010_1822_y
crossref_primary_10_1016_j_quaint_2020_10_013
crossref_primary_10_5194_esd_6_245_2015
crossref_primary_10_1007_s11104_017_3235_8
crossref_primary_10_1007_s10021_013_9707_7
crossref_primary_10_1016_j_foreco_2022_120536
crossref_primary_10_1016_j_quascirev_2015_12_020
crossref_primary_10_1007_s10342_016_0999_y
crossref_primary_10_5558_tfc2019_027
crossref_primary_10_1016_j_ejsobi_2023_103477
crossref_primary_10_1111_jvs_12637
crossref_primary_10_1002_ecm_1543
crossref_primary_10_1111_cobi_12847
crossref_primary_10_1111_j_1749_8198_2011_00447_x
crossref_primary_10_3390_biology12040604
crossref_primary_10_1007_s00248_024_02443_7
crossref_primary_10_1134_S1067413624700024
crossref_primary_10_1007_s00035_013_0118_3
crossref_primary_10_1080_17550874_2017_1400126
crossref_primary_10_1111_jbi_12904
crossref_primary_10_1007_s10980_018_0670_8
crossref_primary_10_1007_s10342_024_01725_6
crossref_primary_10_1659_MRD_JOURNAL_D_10_00096_1
crossref_primary_10_1111_jvs_12887
crossref_primary_10_1659_MRD_JOURNAL_D_12_00079_1
crossref_primary_10_1080_15230430_2024_2447631
crossref_primary_10_1016_j_ecolind_2016_01_041
crossref_primary_10_1002_ecs2_3887
crossref_primary_10_1080_02723646_2015_1137723
crossref_primary_10_1111_afe_12589
crossref_primary_10_1007_s10021_020_00499_3
crossref_primary_10_1007_s10144_014_0452_3
crossref_primary_10_1657_1938_4246_43_2_167
crossref_primary_10_3390_f13060820
crossref_primary_10_3390_f9050267
crossref_primary_10_1002_ece3_10072
crossref_primary_10_1111_1365_2745_12942
crossref_primary_10_1016_j_heliyon_2024_e40797
crossref_primary_10_1111_j_1600_0587_2012_07514_x
crossref_primary_10_1111_j_1469_8137_2009_03112_x
crossref_primary_10_3389_ffgc_2024_1434773
crossref_primary_10_1038_s41467_023_39092_2
crossref_primary_10_1038_s41561_024_01577_0
crossref_primary_10_1007_s10336_018_1549_9
crossref_primary_10_1007_s10113_018_1401_z
crossref_primary_10_3390_f11111188
crossref_primary_10_1177_0959683613518588
crossref_primary_10_1080_17550874_2013_810311
crossref_primary_10_3119_16_07
crossref_primary_10_1007_s00468_019_01844_3
crossref_primary_10_1002_ecy_2557
crossref_primary_10_1111_ecog_05015
crossref_primary_10_1111_j_1600_0587_2013_00368_x
crossref_primary_10_1093_treephys_tpac070
crossref_primary_10_1007_s00468_021_02135_6
crossref_primary_10_1111_gcb_15256
crossref_primary_10_1111_j_1365_2699_2010_02453_x
crossref_primary_10_3390_s23135976
crossref_primary_10_1890_11_1220_1
crossref_primary_10_1080_02827581_2012_689005
crossref_primary_10_1016_j_gloplacha_2015_06_007
crossref_primary_10_1890_10_1639_1
crossref_primary_10_1155_2022_4517515
crossref_primary_10_1111_j_1365_2699_2012_02763_x
crossref_primary_10_3390_atmos14071115
crossref_primary_10_2989_10220119_2019_1667437
crossref_primary_10_3390_f16010084
crossref_primary_10_1016_j_scitotenv_2020_143043
crossref_primary_10_1111_gcb_15246
crossref_primary_10_1007_s00468_011_0595_1
crossref_primary_10_1007_s11629_015_3665_9
crossref_primary_10_1073_pnas_1305505110
crossref_primary_10_1016_j_scitotenv_2024_172797
crossref_primary_10_1088_1748_9326_ac9635
crossref_primary_10_1111_geb_13214
crossref_primary_10_1890_ES14_00111_1
crossref_primary_10_1111_1365_2745_12750
crossref_primary_10_1080_11956860_2018_1532868
crossref_primary_10_1139_cjfas_2022_0256
crossref_primary_10_1088_1748_9326_10_12_125009
crossref_primary_10_1111_jvs_12849
crossref_primary_10_1890_13_0910_1
crossref_primary_10_1111_geb_13689
crossref_primary_10_1111_j_1365_2486_2010_02263_x
crossref_primary_10_1657_1938_4246_45_4_455
crossref_primary_10_1007_s00468_015_1176_5
crossref_primary_10_1007_s10584_020_02868_2
crossref_primary_10_1002_ecs2_1649
crossref_primary_10_1111_j_1365_2486_2011_02491_x
crossref_primary_10_1186_s41610_020_00171_w
crossref_primary_10_1080_15230430_2018_1504492
crossref_primary_10_1088_1748_9326_ac417d
crossref_primary_10_1111_oik_04377
crossref_primary_10_1111_jbi_14045
crossref_primary_10_1016_j_quaint_2017_03_012
crossref_primary_10_1111_jbi_13191
crossref_primary_10_1007_s10113_023_02153_9
crossref_primary_10_1093_ornithapp_duac025
crossref_primary_10_3390_f14071462
crossref_primary_10_3390_plants13081109
crossref_primary_10_1002_ecs2_1410
crossref_primary_10_1016_j_gloplacha_2020_103264
crossref_primary_10_2747_1548_1603_49_6_933
crossref_primary_10_3390_f13122088
crossref_primary_10_1111_gcb_13710
crossref_primary_10_1016_j_ejsobi_2018_05_004
crossref_primary_10_1111_ecog_06700
crossref_primary_10_1007_s10661_020_08575_w
crossref_primary_10_1016_j_tree_2015_03_005
crossref_primary_10_1657_1938_4246_45_3_404
crossref_primary_10_3390_rs10081305
crossref_primary_10_1080_08120099_2023_2212026
crossref_primary_10_3389_fpls_2022_861231
crossref_primary_10_1111_gcb_12613
crossref_primary_10_1093_aobpla_plac014
crossref_primary_10_1002_ece3_6660
crossref_primary_10_1111_1365_2745_12527
crossref_primary_10_1016_j_scitotenv_2019_133684
crossref_primary_10_1139_B11_002
crossref_primary_10_1007_s00484_016_1231_y
crossref_primary_10_1111_j_1600_0587_2011_06984_x
crossref_primary_10_5194_nhess_21_3539_2021
crossref_primary_10_1139_cjfr_2014_0385
crossref_primary_10_1016_j_crsust_2021_100121
crossref_primary_10_3389_ffgc_2023_1250651
crossref_primary_10_1111_ibi_12585
crossref_primary_10_1080_17550874_2013_770933
crossref_primary_10_1002_ecy_1887
crossref_primary_10_1007_s11629_015_3454_5
crossref_primary_10_1111_j_1365_2435_2011_01877_x
crossref_primary_10_1002_ece3_10222
crossref_primary_10_1111_gcb_12406
crossref_primary_10_1016_j_ecoinf_2024_102910
crossref_primary_10_1111_j_1466_8238_2010_00622_x
crossref_primary_10_1016_j_quascirev_2024_108732
crossref_primary_10_1016_j_catena_2024_107950
crossref_primary_10_1016_j_gecco_2015_08_006
crossref_primary_10_1007_s10531_019_01777_w
crossref_primary_10_1016_j_foreco_2020_118886
crossref_primary_10_5194_bg_12_1615_2015
crossref_primary_10_1007_s00468_015_1156_9
crossref_primary_10_1177_0309133315569338
crossref_primary_10_1007_s40725_023_00180_7
crossref_primary_10_1111_j_1365_2486_2012_02660_x
crossref_primary_10_1111_gcb_13963
crossref_primary_10_1038_s41598_020_75470_2
crossref_primary_10_1088_1748_9326_abbf15
crossref_primary_10_12688_f1000research_7914_1
crossref_primary_10_1657_AAAR0013_108
crossref_primary_10_3390_f8100356
crossref_primary_10_1111_1365_2745_12308
crossref_primary_10_3390_plants10030480
crossref_primary_10_1038_nature21027
crossref_primary_10_1111_1365_2745_12780
crossref_primary_10_1111_1365_2435_12986
crossref_primary_10_1002_hyp_10371
crossref_primary_10_3354_cr01474
crossref_primary_10_1093_jpe_rtx009
crossref_primary_10_1134_S1995425518010031
crossref_primary_10_1016_j_dendro_2020_125744
crossref_primary_10_1016_j_quascirev_2020_106409
crossref_primary_10_1111_j_1365_2699_2010_02460_x
crossref_primary_10_3389_fevo_2022_869130
crossref_primary_10_1111_nyas_12182
crossref_primary_10_1111_geb_13072
crossref_primary_10_1007_s13280_012_0313_2
crossref_primary_10_3390_f11080838
crossref_primary_10_1371_journal_pone_0083163
crossref_primary_10_1016_j_foreco_2020_118666
crossref_primary_10_1111_ecog_01050
crossref_primary_10_1073_pnas_1221278110
crossref_primary_10_1139_er_2021_0110
crossref_primary_10_3390_su9050808
crossref_primary_10_3390_su13042089
crossref_primary_10_3390_f15071261
crossref_primary_10_1007_s00334_013_0411_5
crossref_primary_10_1111_jbi_12053
crossref_primary_10_1088_1748_9326_ac4362
crossref_primary_10_1029_2019GB006200
crossref_primary_10_1007_s10342_012_0625_6
crossref_primary_10_1080_15230430_2020_1773033
crossref_primary_10_3390_f13071062
crossref_primary_10_1088_2515_7620_ac43fb
crossref_primary_10_1016_j_jenvman_2024_122653
crossref_primary_10_36953_ECJ_2021_22320
crossref_primary_10_1007_s10021_016_9996_8
crossref_primary_10_1111_gcb_12819
crossref_primary_10_1080_24694452_2016_1235479
crossref_primary_10_1139_cjb_2013_0314
crossref_primary_10_3897_natureconservation_21_13614
crossref_primary_10_1111_jbi_12287
crossref_primary_10_17660_ActaHortic_2016_1108_11
crossref_primary_10_1111_rec_14265
crossref_primary_10_5194_esd_14_223_2023
crossref_primary_10_1088_1748_9326_ab5429
crossref_primary_10_1007_s00382_023_07026_9
crossref_primary_10_1177_0959683615609746
crossref_primary_10_1139_facets_2022_0163
crossref_primary_10_1016_j_quascirev_2024_108531
crossref_primary_10_1016_j_agrformet_2022_108863
crossref_primary_10_3390_atmos13030465
crossref_primary_10_1111_1365_2745_12599
crossref_primary_10_1080_17550874_2015_1010189
crossref_primary_10_1111_1365_2745_12354
crossref_primary_10_1088_1748_9326_abf28b
crossref_primary_10_1186_s12898_016_0075_y
crossref_primary_10_1080_15659801_2013_929276
crossref_primary_10_1111_jvs_12448
crossref_primary_10_1016_j_foreco_2010_12_040
crossref_primary_10_1016_j_ecoinf_2022_101691
crossref_primary_10_3996_062012_JFWM_055
crossref_primary_10_1007_s10113_014_0693_x
crossref_primary_10_1016_j_foreco_2023_121494
crossref_primary_10_1657_1938_4246_46_4_829
crossref_primary_10_1002_joc_5854
crossref_primary_10_1007_s10021_024_00959_0
crossref_primary_10_3390_f16030530
crossref_primary_10_1007_s10113_022_02016_9
crossref_primary_10_1111_jvs_12691
crossref_primary_10_1088_1748_9326_9_10_104021
crossref_primary_10_3390_f15101780
crossref_primary_10_1007_s00704_015_1717_2
crossref_primary_10_1111_1365_2664_14199
crossref_primary_10_1111_jvs_12215
crossref_primary_10_1007_s00442_016_3785_0
crossref_primary_10_1139_X10_116
crossref_primary_10_1038_s41598_020_61085_0
crossref_primary_10_1016_j_foreco_2019_03_058
crossref_primary_10_1088_1748_9326_aad5d2
Cites_doi 10.1098/rstb.1989.0046
10.1111/j.1420-9101.2006.01190.x
10.1579/0044-7447-30.2.72
10.1016/j.tree.2007.09.006
10.1111/j.1365-2486.2006.01302.x
10.1890/0012-9658(1997)078[1199:HDOTFI]2.0.CO;2
10.1111/j.1365-2699.2006.01563.x
10.1046/j.0022-0477.2001.00636.x
10.1111/j.1654-1103.2003.tb02205.x
10.1023/A:1010738502596
10.2307/1550945
10.1023/A:1020385320738
10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2
10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2
10.14214/sf.307
10.1016/S0168-1923(97)00021-X
10.1111/j.1466-822X.2006.00233.x
10.1657/1523-0430(2005)037[0097:PFBTEA]2.0.CO;2
10.1111/j.1365-2699.2003.01043.x
10.2307/2261175
10.1890/0012-9658(2006)87[1124:ROMCVI]2.0.CO;2
10.1023/A:1020367918521
10.1111/j.1365-2745.2006.01135.x
10.1038/371052a0
10.1093/treephys/23.16.1101
10.1016/j.ecolmodel.2008.01.003
10.1111/j.0435-3676.2001.00151.x
10.1177/030913339602000301
10.1080/11956860.2001.11682679
10.1134/S1067413607040017
10.3097/LO.200701
10.1007/s11258-006-9212-6
10.1657/1523-0430(06-010)[VITTOZ]2.0.CO;2
10.1007/978-3-540-48514-8_7
10.2307/1938498
10.1111/j.1466-822X.2005.00168.x
10.1111/j.1365-2745.2001.00628.x
10.1111/j.1365-2745.2006.01190.x
10.1016/j.foreco.2007.04.030
10.1111/j.1365-2699.2004.01182.x
10.1098/rstb.2007.2200
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd/CNRS
2009 INIST-CNRS
Journal compilation © 2009 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2009 Blackwell Publishing Ltd/CNRS
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2009 Blackwell Publishing Ltd/CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
SOI
7S9
L.6
7X8
DOI 10.1111/j.1461-0248.2009.01355.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Ecology Abstracts
Entomology Abstracts
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Geography
EISSN 1461-0248
EndPage 1049
ExternalDocumentID 1858654571
19682007
21956246
10_1111_j_1461_0248_2009_01355_x
ELE1355
ark_67375_WNG_33R2SGHL_P
US201301677645
Genre letter
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7ST
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-c6145-49295842816f146029d8a4f9060544266d8d24fe00f730ff679d361331d1c69a3
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 11:51:57 EDT 2025
Fri Jul 11 16:18:18 EDT 2025
Fri Jul 11 08:34:51 EDT 2025
Fri Jul 25 10:57:09 EDT 2025
Mon Jul 21 05:56:17 EDT 2025
Mon Jul 21 09:17:49 EDT 2025
Tue Jul 01 02:29:36 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 16:29:57 EST 2025
Wed Oct 30 09:54:43 EDT 2024
Wed Dec 27 19:19:14 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Warming
Temperature
global meta-analysis
krummholz
forest dynamics
Vegetation dynamics
diffuse
Abrupt
Metaanalysis
advance
Dynamical climatology
Climate change
Treeline
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6145-49295842816f146029d8a4f9060544266d8d24fe00f730ff679d361331d1c69a3
Notes http://dx.doi.org/10.1111/j.1461-0248.2009.01355.x
ArticleID:ELE1355
ark:/67375/WNG-33R2SGHL-P
istex:19E3451ACD792FBB4150608F47755AE911C71983
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19682007
PQID 203657264
PQPubID 32390
PageCount 10
ParticipantIDs proquest_miscellaneous_67647322
proquest_miscellaneous_46385580
proquest_miscellaneous_20842053
proquest_journals_203657264
pubmed_primary_19682007
pascalfrancis_primary_21956246
crossref_citationtrail_10_1111_j_1461_0248_2009_01355_x
crossref_primary_10_1111_j_1461_0248_2009_01355_x
wiley_primary_10_1111_j_1461_0248_2009_01355_x_ELE1355
istex_primary_ark_67375_WNG_33R2SGHL_P
fao_agris_US201301677645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Körner, C. (2007). The use of 'altitude' in ecological research. Trends Ecol. Evol., 22, 569-574.
Smith, W.K., Germino, M.J., Hancock, T.E. & Johnson, D.M. (2003). Another perspective on altitudinal limits of alpine timberlines. Tree Physiol., 23, 1101-1112.
Caccianiga, M. & Payette, S. (2006). Recent advance of White spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Quebec, Canada). J. Biogeogr., 33, 2120-2135.
Thomas, A., O'Hara, B., Ligges, U. & Sturtz, S. (2006). Making BUGS Open. R News, 6, 12-17.
Grace, J. (1989). Tree lines. Philos. Trans. R. Soc. Lond., 324, 233-245.
Truong, C., Palme, A.E. & Felber, F. (2006). Recent invasion of the mountain birch Betula pubescens spp tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J. Evol. Biol., 20, 369-380.
Vittoz, P., Rulence, B., Largey, T. & Frelechoux, F. (2008). Effects of climate and land-use change on the establishment and growth of Cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arct. Antarct. Alp. Res., 40, 225-232.
Bolli, J.C., Rigling, A. & Bugmann, H. (2007). The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva. Fenn., 41, 55-70.
Gehrig-Fasel, J., Guisan, A. & Zimmerman, N.E. (2008). Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol. Model., 213, 345-355.
Danby, R.K. & Hik, D.S. (2007). Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol., 13, 437-451.
Holtmeier, F. & Broll, G. (2007). Treeline advance-driving processes and adverse factors. Landsc. Online, 1, 1-33.
Kupfer, J.A. & Cairns, D.M. (1996). The suitability of montane ecotones as indicators of global climatic change. Prog. Phys. Geogr., 20, 253-272.
Rupp, T.S., Chapin, F.S. III & Starfield, A.M. (2001). Modeling the influence of topographic barriers on treeline at the forest-tundra ecotone in Northwestern Alaska. Clim. Change, 48, 399-416.
Szeicz, J.M. & MacDonald, G.M. (1995). Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. J. Ecol., 83, 873-885.
Peterson, T.C. & Vose, R.S. (1997). An overview of the global historical climatology network temperature database. Bulletin of the American Meteorological Society, 78, 2837-2849.
Wiegand, T., Camarero, J.J., Ruger, N. & Gutierrez, E. (2006). Abrupt population changes in treeline ecotones along smooth gradients. J. Ecol., 94, 880-892.
Hadley, J.L. & Smith, W.K. (1986). Wind effects on needles of timberline conifers - seasonal influence on mortality. Ecology, 67, 12-19.
Cullen, L.E., Stewart, G.H., Duncan, R.P. & Palmer, J.G. (2001). Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J. Ecol., 89, 1061-1071.
Bader, M.Y., Van Geloof, I. & Rietkerk, M. (2007). High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol., 191, 33-45.
Gray, S.T., Betancourt, J.L., Jackson, S.T. & Eddy, R.G. (2006). Role of multidecadal climate variability in a range extension of Pinyon pine. Ecology, 87, 1124-1130.
Lindkvist, L. & Lindqvist, S. (1997). Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agric. For. Meteorol., 87, 139-153.
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Lescop-Sinclair, K. & Payette, S. (1995). Recent advance of the arctic treeline along the eastern coast of Hudson Bay. J. Ecol., 83, 929-936.
Bekker, M.F. (2005). Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arct. Antarct. Alp. Res., 37, 97-107.
Cairns, D.M. (2001). Patterns of winter desiccation in krummholz forms of abies lasiocarpa at treeline sites in Glacier National Park, Montana, USA. Geogr. Ann., 83A, 157-168.
Foley, J.A., Kutzbach, J.E., Coe, M.T. & Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371, 52-54.
Shiyatov, S.G., Terent'ev, M.M., Fomin, V.V. & Zimmermann, N.E. (2007). Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russ. J. Ecol., 38, 223-227.
Ellenberg, H. (1988). Vegetation Ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge.
Kullman, L. (2001). 20th century climate warming and the tree-limit rise in the Southern Scandes of Sweden. Ambio, 30, 72-80.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds.) (2007). Climate change 2007: The physical science basis. Cambridge University Press, Cambridge.
Gelman, A. & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York.
Kitzberger, T., Steinaker, D.F. & Veblen, T.T. (2000). Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology, 81, 1914-1924.
Wang, T., Zhang, Q. & Ma, K. (2006). Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Glob. Ecol. Biogeogr., 15, 406-415.
Gamache, I. & Payette, S. (2005). Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J. Biogeogr., 32, 849-862.
Laberge, M.J., Payette, S. & Pitre, N. (2001). Development of stunted black spruce (Picea mariana) clones in the subarctic environment: a dendro-architectural analysis. Ecoscience, 8, 489-498.
Suarez, F., Binkley, D. & Kaye, M.W. (1999). Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience, 6, 465-470.
Grace, J. (1977). Plant Responses to Wind. Academic Press, London.
Holtmeier, F. & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr., 14, 395-410.
Lloyd, A.H., Rupp, T.S., Fastie, C.L. & Starfield, A.M. (2003). Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. J. Geophys. Res., 108, 2-1.
Kullman, L. (2007). Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. J. Ecology, 95, 41-52.
Daniels, L.D. & Veblen, T.T. (2003). Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. J. Veg. Sci., 14, 733-742.
Lloyd, A.H. & Graumlich, L.J. (1997). Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 78, 1199-1210.
MacDonald, G.M., Kremenetski, K.V. & Beilman, D.W. (2008). Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B, 363, 2285-2299.
Rickebusch, S., Lischke, H., Bugmann, H., Guisan, A. & Zimmermann, N.E. (2007). Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. For. Ecol. Manage., 246, 251-263.
Körner, C. & Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. J. Biogeogr., 31, 713-732.
Germino, M.J., Smith, W.K. & Resor, A.C. (2002). Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol., 162, 157-168.
Norton, D.A. & Schoenberger, W. (1984). The growth forms and ecology of Nothofagus solandri at the alpine timberline, Craigieburn Range, New Zealand. Arctic Alpine Res., 16, 361-370.
Camarero, J.J. & Gutierrez, E. (2002). Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees. Plant Ecol., 162, 247-257.
2007; 246
2006; 94
1997; 87
2006; 33
2001; 83A
1994; 371
2006; 15
2003; 14
2008
2007
2006; 6
2001; 48
2007; 191
2007; 95
2001; 89
2008; 363
1999; 6
2007; 13
1977
2007; 38
2004; 31
1995; 83
2003; 108
2006; 20
2002; 162
2006; 87
1984; 16
1989; 324
1986; 67
2001; 8
1997; 78
2000; 81
2005; 32
1962
2008; 213
2007; 41
2005; 37
2007; 1
2008; 40
2007; 22
2001; 30
1996; 20
1988
2005; 14
2003; 23
e_1_2_6_51_1
Gelman A. (e_1_2_6_16_1) 2007
e_1_2_6_32_1
e_1_2_6_30_1
R Development Core Team (e_1_2_6_39_1) 2008
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Lloyd A.H. (e_1_2_6_34_1) 2003; 108
e_1_2_6_9_1
Ellenberg H. (e_1_2_6_12_1) 1988
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
Mikola P. (e_1_2_6_36_1) 1962
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Grace J. (e_1_2_6_18_1) 1977
e_1_2_6_28_1
e_1_2_6_45_1
Thomas A. (e_1_2_6_47_1) 2006; 6
e_1_2_6_26_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Solomon S. (e_1_2_6_42_1) 2007
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Foley, J.A., Kutzbach, J.E., Coe, M.T. & Levis, S. (1994). Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371, 52-54.
– reference: Hadley, J.L. & Smith, W.K. (1986). Wind effects on needles of timberline conifers - seasonal influence on mortality. Ecology, 67, 12-19.
– reference: Cairns, D.M. (2001). Patterns of winter desiccation in krummholz forms of abies lasiocarpa at treeline sites in Glacier National Park, Montana, USA. Geogr. Ann., 83A, 157-168.
– reference: Holtmeier, F. & Broll, G. (2007). Treeline advance-driving processes and adverse factors. Landsc. Online, 1, 1-33.
– reference: Holtmeier, F. & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr., 14, 395-410.
– reference: Gehrig-Fasel, J., Guisan, A. & Zimmerman, N.E. (2008). Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol. Model., 213, 345-355.
– reference: Smith, W.K., Germino, M.J., Hancock, T.E. & Johnson, D.M. (2003). Another perspective on altitudinal limits of alpine timberlines. Tree Physiol., 23, 1101-1112.
– reference: Szeicz, J.M. & MacDonald, G.M. (1995). Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. J. Ecol., 83, 873-885.
– reference: Grace, J. (1977). Plant Responses to Wind. Academic Press, London.
– reference: Grace, J. (1989). Tree lines. Philos. Trans. R. Soc. Lond., 324, 233-245.
– reference: Lescop-Sinclair, K. & Payette, S. (1995). Recent advance of the arctic treeline along the eastern coast of Hudson Bay. J. Ecol., 83, 929-936.
– reference: Bader, M.Y., Van Geloof, I. & Rietkerk, M. (2007). High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol., 191, 33-45.
– reference: Caccianiga, M. & Payette, S. (2006). Recent advance of White spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Quebec, Canada). J. Biogeogr., 33, 2120-2135.
– reference: R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
– reference: Vittoz, P., Rulence, B., Largey, T. & Frelechoux, F. (2008). Effects of climate and land-use change on the establishment and growth of Cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arct. Antarct. Alp. Res., 40, 225-232.
– reference: Daniels, L.D. & Veblen, T.T. (2003). Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. J. Veg. Sci., 14, 733-742.
– reference: Gamache, I. & Payette, S. (2005). Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J. Biogeogr., 32, 849-862.
– reference: Lloyd, A.H. & Graumlich, L.J. (1997). Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 78, 1199-1210.
– reference: Kullman, L. (2001). 20th century climate warming and the tree-limit rise in the Southern Scandes of Sweden. Ambio, 30, 72-80.
– reference: Cullen, L.E., Stewart, G.H., Duncan, R.P. & Palmer, J.G. (2001). Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J. Ecol., 89, 1061-1071.
– reference: Peterson, T.C. & Vose, R.S. (1997). An overview of the global historical climatology network temperature database. Bulletin of the American Meteorological Society, 78, 2837-2849.
– reference: Danby, R.K. & Hik, D.S. (2007). Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol., 13, 437-451.
– reference: Gray, S.T., Betancourt, J.L., Jackson, S.T. & Eddy, R.G. (2006). Role of multidecadal climate variability in a range extension of Pinyon pine. Ecology, 87, 1124-1130.
– reference: MacDonald, G.M., Kremenetski, K.V. & Beilman, D.W. (2008). Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B, 363, 2285-2299.
– reference: Wang, T., Zhang, Q. & Ma, K. (2006). Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Glob. Ecol. Biogeogr., 15, 406-415.
– reference: Truong, C., Palme, A.E. & Felber, F. (2006). Recent invasion of the mountain birch Betula pubescens spp tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J. Evol. Biol., 20, 369-380.
– reference: Germino, M.J., Smith, W.K. & Resor, A.C. (2002). Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol., 162, 157-168.
– reference: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds.) (2007). Climate change 2007: The physical science basis. Cambridge University Press, Cambridge.
– reference: Körner, C. (2007). The use of 'altitude' in ecological research. Trends Ecol. Evol., 22, 569-574.
– reference: Körner, C. & Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. J. Biogeogr., 31, 713-732.
– reference: Kullman, L. (2007). Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. J. Ecology, 95, 41-52.
– reference: Laberge, M.J., Payette, S. & Pitre, N. (2001). Development of stunted black spruce (Picea mariana) clones in the subarctic environment: a dendro-architectural analysis. Ecoscience, 8, 489-498.
– reference: Thomas, A., O'Hara, B., Ligges, U. & Sturtz, S. (2006). Making BUGS Open. R News, 6, 12-17.
– reference: Bekker, M.F. (2005). Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA. Arct. Antarct. Alp. Res., 37, 97-107.
– reference: Suarez, F., Binkley, D. & Kaye, M.W. (1999). Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Ecoscience, 6, 465-470.
– reference: Shiyatov, S.G., Terent'ev, M.M., Fomin, V.V. & Zimmermann, N.E. (2007). Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russ. J. Ecol., 38, 223-227.
– reference: Lindkvist, L. & Lindqvist, S. (1997). Spatial and temporal variability of nocturnal summer frost in elevated complex terrain. Agric. For. Meteorol., 87, 139-153.
– reference: Norton, D.A. & Schoenberger, W. (1984). The growth forms and ecology of Nothofagus solandri at the alpine timberline, Craigieburn Range, New Zealand. Arctic Alpine Res., 16, 361-370.
– reference: Lloyd, A.H., Rupp, T.S., Fastie, C.L. & Starfield, A.M. (2003). Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. J. Geophys. Res., 108, 2-1.
– reference: Bolli, J.C., Rigling, A. & Bugmann, H. (2007). The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva. Fenn., 41, 55-70.
– reference: Ellenberg, H. (1988). Vegetation Ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge.
– reference: Kupfer, J.A. & Cairns, D.M. (1996). The suitability of montane ecotones as indicators of global climatic change. Prog. Phys. Geogr., 20, 253-272.
– reference: Rickebusch, S., Lischke, H., Bugmann, H., Guisan, A. & Zimmermann, N.E. (2007). Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. For. Ecol. Manage., 246, 251-263.
– reference: Rupp, T.S., Chapin, F.S. III & Starfield, A.M. (2001). Modeling the influence of topographic barriers on treeline at the forest-tundra ecotone in Northwestern Alaska. Clim. Change, 48, 399-416.
– reference: Gelman, A. & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York.
– reference: Kitzberger, T., Steinaker, D.F. & Veblen, T.T. (2000). Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology, 81, 1914-1924.
– reference: Camarero, J.J. & Gutierrez, E. (2002). Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees. Plant Ecol., 162, 247-257.
– reference: Wiegand, T., Camarero, J.J., Ruger, N. & Gutierrez, E. (2006). Abrupt population changes in treeline ecotones along smooth gradients. J. Ecol., 94, 880-892.
– volume: 83A
  start-page: 157
  year: 2001
  end-page: 168
  article-title: Patterns of winter desiccation in krummholz forms of abies lasiocarpa at treeline sites in Glacier National Park, Montana, USA
  publication-title: Geogr. Ann.
– volume: 81
  start-page: 1914
  year: 2000
  end-page: 1924
  article-title: Effects of climatic variability on facilitation of tree establishment in northern Patagonia
  publication-title: Ecology
– volume: 89
  start-page: 1061
  year: 2001
  end-page: 1071
  article-title: Disturbance and climate warming influences on New Zealand tree‐line population dynamics
  publication-title: J. Ecol.
– volume: 48
  start-page: 399
  year: 2001
  end-page: 416
  article-title: Modeling the influence of topographic barriers on treeline at the forest‐tundra ecotone in Northwestern Alaska
  publication-title: Clim. Change
– volume: 246
  start-page: 251
  year: 2007
  end-page: 263
  article-title: Understanding the low‐temperature limitations to forest growth through calibration of a forest dynamics model with tree‐ring data
  publication-title: For. Ecol. Manage.
– volume: 23
  start-page: 1101
  year: 2003
  end-page: 1112
  article-title: Another perspective on altitudinal limits of alpine timberlines
  publication-title: Tree Physiol.
– volume: 32
  start-page: 849
  year: 2005
  end-page: 862
  article-title: Latitudinal response of subarctic tree lines to recent climate change in eastern Canada
  publication-title: J. Biogeogr.
– volume: 14
  start-page: 395
  year: 2005
  end-page: 410
  article-title: Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales
  publication-title: Glob. Ecol. Biogeogr.
– volume: 8
  start-page: 489
  year: 2001
  end-page: 498
  article-title: Development of stunted black spruce ( ) clones in the subarctic environment: a dendro‐architectural analysis
  publication-title: Ecoscience
– year: 2008
– volume: 13
  start-page: 437
  year: 2007
  end-page: 451
  article-title: Responses of white spruce ( ) to experimental warming at a subarctic alpine treeline
  publication-title: Glob. Chang. Biol.
– volume: 41
  start-page: 55
  year: 2007
  end-page: 70
  article-title: The influence of changes in climate and land‐use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps
  publication-title: Silva. Fenn.
– volume: 16
  start-page: 361
  year: 1984
  end-page: 370
  article-title: The growth forms and ecology of at the alpine timberline, Craigieburn Range, New Zealand
  publication-title: Arctic Alpine Res.
– volume: 20
  start-page: 369
  year: 2006
  end-page: 380
  article-title: Recent invasion of the mountain birch spp above the treeline due to climate change: genetic and ecological study in northern Sweden
  publication-title: J. Evol. Biol.
– volume: 33
  start-page: 2120
  year: 2006
  end-page: 2135
  article-title: Recent advance of White spruce ( ) in the coastal tundra of the eastern shore of Hudson Bay (Quebec, Canada)
  publication-title: J. Biogeogr.
– volume: 213
  start-page: 345
  year: 2008
  end-page: 355
  article-title: Evaluating thermal treeline indicators based on air and soil temperature using an air‐to‐soil temperature transfer model
  publication-title: Ecol. Model.
– volume: 40
  start-page: 225
  year: 2008
  end-page: 232
  article-title: Effects of climate and land‐use change on the establishment and growth of Cembran pine ( L.) over the altitudinal treeline ecotone in the Central Swiss Alps
  publication-title: Arct. Antarct. Alp. Res.
– volume: 162
  start-page: 247
  year: 2002
  end-page: 257
  article-title: Plant species distribution across two contrasting treeline ecotones in the Spanish Pyrenees
  publication-title: Plant Ecol.
– volume: 191
  start-page: 33
  year: 2007
  end-page: 45
  article-title: High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador
  publication-title: Plant Ecol.
– volume: 371
  start-page: 52
  year: 1994
  end-page: 54
  article-title: Feedbacks between climate and boreal forests during the Holocene epoch
  publication-title: Nature
– volume: 87
  start-page: 1124
  year: 2006
  end-page: 1130
  article-title: Role of multidecadal climate variability in a range extension of Pinyon pine
  publication-title: Ecology
– volume: 363
  start-page: 2285
  year: 2008
  end-page: 2299
  article-title: Climate change and the northern Russian treeline zone
  publication-title: Philos. Trans. R. Soc. B
– volume: 324
  start-page: 233
  year: 1989
  end-page: 245
  article-title: Tree lines
  publication-title: Philos. Trans. R. Soc. Lond.
– volume: 22
  start-page: 569
  year: 2007
  end-page: 574
  article-title: The use of ‘altitude’ in ecological research
  publication-title: Trends Ecol. Evol.
– volume: 37
  start-page: 97
  year: 2005
  end-page: 107
  article-title: Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, USA
  publication-title: Arct. Antarct. Alp. Res.
– volume: 14
  start-page: 733
  year: 2003
  end-page: 742
  article-title: Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia
  publication-title: J. Veg. Sci.
– year: 2007
– volume: 108
  start-page: 2
  year: 2003
  end-page: 1
  article-title: Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska
  publication-title: J. Geophys. Res.
– volume: 94
  start-page: 880
  year: 2006
  end-page: 892
  article-title: Abrupt population changes in treeline ecotones along smooth gradients
  publication-title: J. Ecol.
– year: 1977
– volume: 95
  start-page: 41
  year: 2007
  end-page: 52
  article-title: Tree line population monitoring of in the Swedish Scandes, 1973‐2005: implications for tree line theory and climate change ecology
  publication-title: J. Ecology
– volume: 20
  start-page: 253
  year: 1996
  end-page: 272
  article-title: The suitability of montane ecotones as indicators of global climatic change
  publication-title: Prog. Phys. Geogr.
– volume: 83
  start-page: 929
  year: 1995
  end-page: 936
  article-title: Recent advance of the arctic treeline along the eastern coast of Hudson Bay
  publication-title: J. Ecol.
– volume: 38
  start-page: 223
  year: 2007
  end-page: 227
  article-title: Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century
  publication-title: Russ. J. Ecol.
– volume: 83
  start-page: 873
  year: 1995
  end-page: 885
  article-title: Recent white spruce dynamics at the subarctic alpine treeline of north‐western Canada
  publication-title: J. Ecol.
– volume: 15
  start-page: 406
  year: 2006
  end-page: 415
  article-title: Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China
  publication-title: Glob. Ecol. Biogeogr.
– volume: 162
  start-page: 157
  year: 2002
  end-page: 168
  article-title: Conifer seedling distribution and survival in an alpine‐treeline ecotone
  publication-title: Plant Ecol.
– volume: 1
  start-page: 1
  year: 2007
  end-page: 33
  article-title: Treeline advance‐driving processes and adverse factors
  publication-title: Landsc. Online
– volume: 6
  start-page: 12
  year: 2006
  end-page: 17
  article-title: Making BUGS Open
  publication-title: R News
– year: 1988
– volume: 87
  start-page: 139
  year: 1997
  end-page: 153
  article-title: Spatial and temporal variability of nocturnal summer frost in elevated complex terrain
  publication-title: Agric. For. Meteorol.
– start-page: 265
  year: 1962
  end-page: 274
– volume: 67
  start-page: 12
  year: 1986
  end-page: 19
  article-title: Wind effects on needles of timberline conifers – seasonal influence on mortality
  publication-title: Ecology
– volume: 31
  start-page: 713
  year: 2004
  end-page: 732
  article-title: A world‐wide study of high altitude treeline temperatures
  publication-title: J. Biogeogr.
– volume: 78
  start-page: 1199
  year: 1997
  end-page: 1210
  article-title: Holocene dynamics of treeline forests in the Sierra Nevada
  publication-title: Ecology
– volume: 78
  start-page: 2837
  year: 1997
  end-page: 2849
  article-title: An overview of the global historical climatology network temperature database
  publication-title: Bulletin of the American Meteorological Society
– volume: 6
  start-page: 465
  year: 1999
  end-page: 470
  article-title: Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska
  publication-title: Ecoscience
– volume: 30
  start-page: 72
  year: 2001
  end-page: 80
  article-title: 20th century climate warming and the tree‐limit rise in the Southern Scandes of Sweden
  publication-title: Ambio
– start-page: 105
  year: 2007
  end-page: 121
– ident: e_1_2_6_19_1
  doi: 10.1098/rstb.1989.0046
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1420-9101.2006.01190.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2008
  ident: e_1_2_6_39_1
– ident: e_1_2_6_27_1
  doi: 10.1579/0044-7447-30.2.72
– ident: e_1_2_6_25_1
  doi: 10.1016/j.tree.2007.09.006
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2486.2006.01302.x
– ident: e_1_2_6_33_1
  doi: 10.1890/0012-9658(1997)078[1199:HDOTFI]2.0.CO;2
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2699.2006.01563.x
– ident: e_1_2_6_45_1
  doi: 10.1046/j.0022-0477.2001.00636.x
– volume-title: Data Analysis Using Regression and Multilevel/Hierarchical Models
  year: 2007
  ident: e_1_2_6_16_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1654-1103.2003.tb02205.x
– ident: e_1_2_6_41_1
  doi: 10.1023/A:1010738502596
– ident: e_1_2_6_37_1
  doi: 10.2307/1550945
– ident: e_1_2_6_17_1
  doi: 10.1023/A:1020385320738
– ident: e_1_2_6_38_1
  doi: 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2
– ident: e_1_2_6_24_1
  doi: 10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2
– start-page: 265
  volume-title: Tree Growth
  year: 1962
  ident: e_1_2_6_36_1
– ident: e_1_2_6_5_1
  doi: 10.14214/sf.307
– ident: e_1_2_6_32_1
  doi: 10.1016/S0168-1923(97)00021-X
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1466-822X.2006.00233.x
– ident: e_1_2_6_4_1
  doi: 10.1657/1523-0430(2005)037[0097:PFBTEA]2.0.CO;2
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-2699.2003.01043.x
– ident: e_1_2_6_31_1
  doi: 10.2307/2261175
– ident: e_1_2_6_20_1
  doi: 10.1890/0012-9658(2006)87[1124:ROMCVI]2.0.CO;2
– volume: 108
  start-page: 2
  year: 2003
  ident: e_1_2_6_34_1
  article-title: Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska
  publication-title: J. Geophys. Res.
– ident: e_1_2_6_8_1
  doi: 10.1023/A:1020367918521
– volume: 6
  start-page: 12
  year: 2006
  ident: e_1_2_6_47_1
  article-title: Making BUGS Open
  publication-title: R News
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1365-2745.2006.01135.x
– ident: e_1_2_6_13_1
  doi: 10.1038/371052a0
– volume-title: Vegetation Ecology of Central Europe
  year: 1988
  ident: e_1_2_6_12_1
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2486.2006.01302.x
– ident: e_1_2_6_44_1
  doi: 10.1093/treephys/23.16.1101
– volume-title: Climate change 2007: The physical science basis
  year: 2007
  ident: e_1_2_6_42_1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ecolmodel.2008.01.003
– ident: e_1_2_6_7_1
  doi: 10.1111/j.0435-3676.2001.00151.x
– ident: e_1_2_6_29_1
  doi: 10.1177/030913339602000301
– ident: e_1_2_6_30_1
  doi: 10.1080/11956860.2001.11682679
– ident: e_1_2_6_43_1
  doi: 10.1134/S1067413607040017
– ident: e_1_2_6_23_1
  doi: 10.3097/LO.200701
– ident: e_1_2_6_3_1
  doi: 10.1007/s11258-006-9212-6
– ident: e_1_2_6_49_1
  doi: 10.1657/1523-0430(06-010)[VITTOZ]2.0.CO;2
– ident: e_1_2_6_2_1
  doi: 10.1007/978-3-540-48514-8_7
– volume-title: Plant Responses to Wind
  year: 1977
  ident: e_1_2_6_18_1
– ident: e_1_2_6_21_1
  doi: 10.2307/1938498
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1466-822X.2005.00168.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2745.2001.00628.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2745.2006.01190.x
– ident: e_1_2_6_40_1
  doi: 10.1016/j.foreco.2007.04.030
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1365-2699.2004.01182.x
– ident: e_1_2_6_35_1
  doi: 10.1098/rstb.2007.2200
SSID ssj0012971
Score 2.5431151
SecondaryResourceType review_article
Snippet Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to...
AbstractTreelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position....
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1040
SubjectTerms Abrupt
advance
altitude
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Climate
Climate change
Climatology. Bioclimatology. Climate change
data collection
Databases, Factual
diffuse
Earth, ocean, space
Ecosystems
Exact sciences and technology
External geophysics
forest dynamics
Fundamental and applied biological sciences. Psychology
General aspects
Geography
global meta-analysis
Global warming
Greenhouse Effect
growth & development
krummholz
Latitude
Meta-analysis
Meteorology
physiology
Plant growth
Plant populations
Population Density
Population Dynamics
Temperature
Transition zone
Treeline
Trees
Trees - growth & development
Trees - physiology
Title Are treelines advancing? A global meta-analysis of treeline response to climate warming
URI https://api.istex.fr/ark:/67375/WNG-33R2SGHL-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2009.01355.x
https://www.ncbi.nlm.nih.gov/pubmed/19682007
https://www.proquest.com/docview/203657264
https://www.proquest.com/docview/20842053
https://www.proquest.com/docview/46385580
https://www.proquest.com/docview/67647322
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQuvKGhUHxA3LJKYsdOTmiFtl2hUqGWFcvJch6uqi0btA_RcuIn8Bv5JczY2aBUrVQhbpHW493Mjmc-x1--AXhtBIZRbqpQxUUaYoTw0KTKhpHlJFeVcenU9j8cyvFEvJ-m05b_RO_CeH2I7oEbrQyXr2mBm2J5eZHjVjhxDC2SnYyxdg4ITxJ1i_DRUackhVXN7728CZ_2ST1XTtSrVLetaRC_kuvPiT9pluhC63tfXAVO-1jXFau9-zDb3KbnqMwG61UxKH9cUoD8P354APdaTMuGPggfwq16_gju-C6XF3g1csrYF4_hy3BRMzoGp29dMs8_wNr5lg2ZVyZhX-uV-f3zl2m1UlhjOwO28HxenKJh5dkpYu2afTdE5jl5ApO90ad347Dt7RCWCAgwKhCWIfZJslha_P1RkleZETaPcHslCDVUWZUIW0eRxRxkrVR5xRF68LiKS5kb_hS25s283gZWSGVtYnOby5KEVw0150OcUqiqUpkoA1Cb_1GXrfA59d84070NUKzJhdSWM9fOhfo8gLiz_ObFP25gs42hos0J5mg9OU7oZDiWSkmRBvDGxU83l1nMiFenUv35cF9zfpQc748P9McAdnsB1hkk9HZnImQAO5uI023OWWo6Uk4VAtwAXnWfYrKgEyAzr5s1DUGXY9q9foTAfJymWXT9CIm3orAMBPDMh_pf1-Qyo0ffAUgXsDf2mR4djOjq-b8a7sBdd8rnSJYvYGu1WNcvESyuil2XBv4AKjxTUw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEYILb6hpafeAuDnyc9c-oQilDZBGqG1EOK3Wj61Q07jKQ7Sc-An9jf0lndl1jFy1UoW4WcrO2p7MznyzO_4G4L2K0IxSVbjCz2IXLSR0VSy06-mQ6KqSkBu2_b0h74-iL-N4XLcDom9hLD9Es-FGK8P4a1rgtCF9fZVjLhyYEi3infQxeHYQUD6gBt8mv9pvuKQwrtnsy8qE43ZZz40ztWLVfa0qRLCk_DOqoFRzVKK23S9ugqdttGvC1c5TmKxe1FapHHeWi6yT_77GAfmfNPEMntSwlnWtHT6He-X0BTy0jS7P8apnyLHPX8KP7qxkdBJOt50zW4KA4fMj6zJLTsJOyoW6_HOharoUVulGgM1sSS9OUbF88hPhdsl-KarnOXoFo53e4ae-W7d3cHPEBGgYiMwQ_gSJzzU-vxekRaIinXqYYUUEHIqkCCJdep5GN6Q1F2kRIvoI_cLPearC17A2rablOrCMC60DneqU58S9qqg_H0KVTBSFSKLcAbH6I2Vec59TC46JbOVAviQVUmfOVBoVyjMH_Eby1PJ_3EFmHW1FqiN003J0ENDhsM-F4FHswAdjQM1canZMpXUilt-HuzIM94OD3f5AfnNgq2VhjUBAH3gGEXdgY2VysnY7c0mnyrFAjOvAdvMr-gs6BFLTslrSEFQ5et7bR0TokuM48W4fwfFVBEYCB95YW_-rmpQntPvtADcWe2edyd6gR1dv_1VwGx71D_cGcvB5-HUDHptDP1NzuQlri9myfIfYcZFtGZ9wBV69V24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEYhLeVNTaPeAuDnyc9c-oYgmDRCiqiUinFbrx1YobVzlIVpO_AR-I7-EmV3HyFUrVYibpexs4sm3M996x98AvFYRwihVhSv8LHYRIaGrYqFdT4ckV5WE3KjtfxrxwTj6MIkndf0TvQtj9SGaB260Mky8pgV-VujLixy3woGp0CLZSR9zZwf55J2IewkhfO-wkZLCtGY3X9YmnLSreq6cqZWqbmtVIYEl359TAaVaoA-1bX5xFTttk12TrfoPYLq-T1ukMu2sllkn_3FJAvL_OOIhbNaklnUtCh_BrXL2GO7aNpcXeNUz0tgXT-Brd14yOgenb10wW4CAyfMt6zIrTcJOy6X6_fOXqsVSWKUbAza3Bb04RcXyk29Itkv2XVE1z_FTGPd7n98N3Lq5g5sjI0BYIC9D8hMkPtf4-70gLRIV6dTD_VVEtKFIiiDSpedpDEJac5EWIXKP0C_8nKcqfAYbs2pWbgHLuNA60KlOeU7Kq4q68yFRyURRiCTKHRDr_1HmtfI5NeA4ka0dkC_JhdSXM5XGhfLcAb-xPLPqHzew2UKoSHWMQVqOjwI6Gva5EDyKHXhj8NPMpeZTKqwTsfwy2pdheBgc7Q-G8sCBnRbAGoOAXu8MIu7A9hpxsg46C0lnyrFAhuvAbvMpRgs6AlKzslrREHQ5xt3rR0QYkOM48a4fwfFWBOYBB55bqP91TcoTevbtADeAvbHPZG_Yo6sX_2q4C_cO9vpy-H70cRvumxM_U3D5EjaW81X5ConjMtsxEeEPE4hWJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Are+treelines+advancing%3F+A+global+meta-analysis+of+treeline+response+to+climate+warming&rft.jtitle=Ecology+letters&rft.au=Harsch%2C+Melanie+A&rft.au=Hulme%2C+Philip+E&rft.au=McGlone%2C+Matt+S&rft.au=Duncan%2C+Richard+P&rft.date=2009-10-01&rft.eissn=1461-0248&rft.volume=12&rft.issue=10&rft.spage=1040&rft_id=info:doi/10.1111%2Fj.1461-0248.2009.01355.x&rft_id=info%3Apmid%2F19682007&rft.externalDocID=19682007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon