soil microbial community predicts the importance of plant traits in plant–soil feedback

Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant‐mediated nutrient cycling (litter‐mediated...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 206; no. 1; pp. 329 - 341
Main Authors Ke, Po‐Ju, Miki, Takeshi, Ding, Tzung‐Su
Format Journal Article
LanguageEnglish
Published England Academic Press 01.04.2015
New Phytologist Trust
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.13215

Cover

Loading…
Abstract Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant‐mediated nutrient cycling (litter‐mediated PSF) or plant–microbe interaction (microbial‐mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter‐ and microbial‐mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root‐associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal‐enhanced litter production to the nutrient‐depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root‐associated microbes. Our results provide new perspectives in plant invasion and trait‐based ecology.
AbstractList Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology.Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology.
Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant‐mediated nutrient cycling (litter‐mediated PSF) or plant–microbe interaction (microbial‐mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms.We developed a model coupling litter‐ and microbial‐mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root‐associated microbes (i.e. pathogens and/or mycorrhizal fungi).Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal‐enhanced litter production to the nutrient‐depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions.We propose that the importance of litter decomposability depends on the composition of root‐associated microbes. Our results provide new perspectives in plant invasion and trait‐based ecology.
Reciprocal interaction between plant and soil (plant–soil feedback, PSF ) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant‐mediated nutrient cycling (litter‐mediated PSF ) or plant–microbe interaction (microbial‐mediated PSF ) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter‐ and microbial‐mediated PSF s to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root‐associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal‐enhanced litter production to the nutrient‐depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root‐associated microbes. Our results provide new perspectives in plant invasion and trait‐based ecology. See also the Commentary by Kardol et al
Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology.
* Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. * We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). * Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. * We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology. See also the Commentary by Kardol et al
Summary Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant‐mediated nutrient cycling (litter‐mediated PSF) or plant–microbe interaction (microbial‐mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter‐ and microbial‐mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root‐associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal‐enhanced litter production to the nutrient‐depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root‐associated microbes. Our results provide new perspectives in plant invasion and trait‐based ecology. See also the Commentary by Kardol et al
Summary Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology. See also the Commentary by Kardol et al
Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant–microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and traitbased ecology.
Author Ding, Tzung‐Su
Ke, Po‐Ju
Miki, Takeshi
Author_xml – sequence: 1
  fullname: Ke, Po‐Ju
– sequence: 2
  fullname: Miki, Takeshi
– sequence: 3
  fullname: Ding, Tzung‐Su
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25521190$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAYhS1URKcDC14AIrGBRVpf4kuWqAKKVAESVIKV5bGdjofETm1H1ex4B96QJ8FtZlhUgOqNZfk7R_59zhE48MFbAJ4ieIzKOvHj-hgRjOgDsEANa2uBCD8ACwixqFnDvh6Co5Q2EMKWMvwIHGJKMUItXIBvKbi-GpyOYeVUX-kwDJN3eVuN0Rqnc6ry2lZuGEPMymtbha4ae-VzlaNy5dr5-fzrx89br85as1L6-2PwsFN9sk92-xJcvH3z5fSsPv_47v3p6_NaM9TQGimtBRFEGdIxiCzrlLGNIpwLjLkmrYDYKkoUNMwQ1Cpk2MoYrTvGrVaCLMHL2XeM4WqyKcvBJW378iYbpiQRaxsKEUX0HigTuGkJg_dAqeCQ0_LTS_DiDroJU_RlZokbKhoEMWv-RxUvzlsmGC_Usx01rQZr5BjdoOJW7gMrwMkMlMBSiraT2mWVXfA3cfQSQXlTCVkqIW8rURSv7ij2pn9jd-7Xrrfbf4Pyw6ezvaKeFZuUQ_yj8PZ6XG9z6MOlK6NiyCSSBLeFfz7znQpSXUaX5MVnXOKBEAlOaEt-AzMS3iU
CitedBy_id crossref_primary_10_1111_nph_17420
crossref_primary_10_3390_f12030276
crossref_primary_10_1126_sciadv_aau4578
crossref_primary_10_1111_nph_16299
crossref_primary_10_1093_jpe_rtab046
crossref_primary_10_1007_s11104_023_05948_1
crossref_primary_10_1016_j_ecolind_2022_109766
crossref_primary_10_1007_s11104_023_05908_9
crossref_primary_10_1007_s11284_016_1333_3
crossref_primary_10_1111_1365_2745_12853
crossref_primary_10_7717_peerj_16488
crossref_primary_10_1016_j_scitotenv_2019_134560
crossref_primary_10_1111_nph_18274
crossref_primary_10_5194_bg_14_733_2017
crossref_primary_10_1002_ecm_1391
crossref_primary_10_1016_j_soilbio_2021_108450
crossref_primary_10_1016_j_tree_2017_11_005
crossref_primary_10_1111_1365_2745_13662
crossref_primary_10_1111_1365_2745_14157
crossref_primary_10_1007_s13593_015_0314_1
crossref_primary_10_1016_j_scitotenv_2018_02_155
crossref_primary_10_1128_AEM_02673_20
crossref_primary_10_3161_15052249PJE2020_68_4_002
crossref_primary_10_5194_soil_2_101_2016
crossref_primary_10_1016_j_funeco_2018_07_004
crossref_primary_10_1002_ecs2_2132
crossref_primary_10_1111_nph_18118
crossref_primary_10_1016_j_baae_2024_02_003
crossref_primary_10_1007_s00442_017_3828_1
crossref_primary_10_1111_nph_15603
crossref_primary_10_1016_j_soilbio_2018_08_006
crossref_primary_10_1111_1365_2435_14548
crossref_primary_10_1007_s11104_023_05896_w
crossref_primary_10_4141_cjps_2015_013
crossref_primary_10_1038_s41559_017_0150
crossref_primary_10_1111_nph_15235
crossref_primary_10_3389_fenvs_2019_00184
crossref_primary_10_1093_jpe_rtab058
crossref_primary_10_3389_fmicb_2019_00895
crossref_primary_10_1371_journal_pone_0293906
crossref_primary_10_1111_1365_2745_13934
crossref_primary_10_1186_s40793_024_00624_y
crossref_primary_10_1111_1365_2745_13731
crossref_primary_10_1111_1365_2745_12643
crossref_primary_10_1002_ece3_3755
crossref_primary_10_1007_s00442_020_04703_y
crossref_primary_10_1111_oik_06653
crossref_primary_10_1111_1365_2745_13299
crossref_primary_10_3389_fevo_2019_00300
crossref_primary_10_1111_1440_1703_12445
crossref_primary_10_1111_oik_08836
crossref_primary_10_1139_cjfr_2022_0261
crossref_primary_10_1128_mSystems_00178_16
crossref_primary_10_1007_s11284_016_1408_1
crossref_primary_10_1007_s11368_020_02719_8
crossref_primary_10_1086_715577
crossref_primary_10_1128_spectrum_03310_22
crossref_primary_10_1111_nph_13283
crossref_primary_10_3390_biology12111374
crossref_primary_10_1007_s11104_016_3054_3
crossref_primary_10_1111_1365_2435_12690
crossref_primary_10_1111_oik_03967
crossref_primary_10_3390_microorganisms10051049
crossref_primary_10_1016_j_agee_2022_107994
crossref_primary_10_1002_ecy_2011
crossref_primary_10_1126_science_aal4549
crossref_primary_10_1016_j_foreco_2019_117817
crossref_primary_10_1007_s11104_024_06585_y
crossref_primary_10_1016_j_mib_2017_03_008
crossref_primary_10_1093_jpe_rtae025
crossref_primary_10_1002_ecy_3142
crossref_primary_10_1111_ele_12805
crossref_primary_10_1007_s11104_024_06922_1
crossref_primary_10_3389_fmicb_2018_00128
crossref_primary_10_1890_ES15_00121_1
crossref_primary_10_1086_692439
crossref_primary_10_1111_1365_2435_13232
crossref_primary_10_3389_fmicb_2015_01066
crossref_primary_10_1007_s11104_018_3667_9
crossref_primary_10_3390_f11030314
crossref_primary_10_1016_j_tplants_2017_01_005
crossref_primary_10_1038_s41467_024_52449_5
crossref_primary_10_1016_j_ecoenv_2020_110563
crossref_primary_10_1016_j_fmre_2024_11_004
crossref_primary_10_1016_j_catena_2023_107240
crossref_primary_10_1016_j_ecoenv_2021_112681
crossref_primary_10_1111_1365_2435_14200
crossref_primary_10_1016_j_jenvman_2022_115919
crossref_primary_10_1111_nph_14007
crossref_primary_10_3390_f13030363
crossref_primary_10_1093_jpe_rtad021
crossref_primary_10_1126_science_aai8212
crossref_primary_10_3389_fenvs_2019_00168
crossref_primary_10_1016_j_funeco_2018_05_004
Cites_doi 10.1016/j.tree.2010.05.004
10.1016/j.soilbio.2011.11.018
10.1111/j.1469-8137.2009.03110.x
10.1007/BF00009968
10.1111/nph.12221
10.1890/07-1352.1
10.1007/s10021-002-0151-3
10.1007/s11104-008-9753-7
10.1007/s00442-008-1104-0
10.1146/annurev.ecolsys.110308.120314
10.1016/j.soilbio.2010.05.035
10.1016/j.soilbio.2010.12.018
10.1046/j.1461-0248.2003.00408.x
10.1111/1365-2745.12054
10.1111/j.1461-0248.2009.01285.x
10.1007/s00374-005-0851-x
10.1016/j.tree.2011.11.014
10.1038/nature01317
10.1111/1365-2745.12032
10.1890/1051-0761(2001)011[1323:AOENDB]2.0.CO;2
10.1111/j.2006.0030-1299.14625.x
10.1007/s11104-007-9306-5
10.1111/j.1744-7429.2007.00390.x
10.1046/j.1469-8137.1997.00729.x
10.1111/j.1469-8137.2006.01715.x
10.1007/BF00328825
10.1111/j.1365-2435.2009.01676.x
10.1016/j.tree.2006.02.002
10.1111/j.0030-1299.2007.15559.x
10.1073/pnas.0711618105
10.1146/annurev.ecolsys.39.110707.173454
10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
10.1111/j.1526-100X.2008.00482.x
10.1046/j.1365-2435.1998.00240.x
10.1073/pnas.1118650109
10.1111/j.1461-0248.2008.01219.x
10.1111/j.1365-2745.2005.01000.x
10.1016/j.ecolmodel.2009.03.028
10.1111/nph.12139
10.1890/07-0207.1
10.1038/nature12798
10.1046/j.1469-8137.2002.00470.x
10.1111/j.1461-0248.2005.00802.x
10.1046/j.1469-8137.2003.00704.x
10.1111/j.1461-0248.2007.01139.x
10.1046/j.1461-0248.2002.00332.x
10.1111/j.1469-8137.2007.02290.x
10.1038/nature09273
10.1890/10-0773.1
10.1007/BF00029334
10.1007/BF00396763
10.1023/A:1005948126251
10.1007/s10530-006-0007-4
10.1046/j.1461-0248.2002.00347.x
10.1016/j.actao.2010.07.006
10.1098/rspb.2002.2162
10.2307/2261398
10.1890/08-0485.1
10.1111/j.1461-0248.2006.00931.x
10.2307/2960528
10.1111/ele.12157
10.1111/j.1461-0248.2010.01547.x
10.1111/j.1475-2743.2010.00285.x
10.1111/j.1365-2745.2011.01835.x
10.1111/j.1461-0248.2010.01520.x
10.1111/j.1365-2745.2010.01695.x
10.1016/S0304-3800(03)00114-5
10.1073/pnas.0914281107
10.1111/j.1365-2435.2010.01727.x
10.1007/s10531-010-9850-9
10.1098/rspb.2010.2730
10.1016/j.tree.2008.07.013
10.1111/j.1365-2435.2010.01811.x
10.1111/j.1461-0248.2011.01611.x
10.1016/j.jtbi.2007.04.008
ContentType Journal Article
Copyright 2015 New Phytologist Trust
2014 The Authors. New Phytologist © 2014 New Phytologist Trust
2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2015 New Phytologist Trust
– notice: 2014 The Authors. New Phytologist © 2014 New Phytologist Trust
– notice: 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.13215
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE
Ecology Abstracts


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Ecology
EISSN 1469-8137
EndPage 341
ExternalDocumentID 3603673721
25521190
10_1111_nph_13215
NPH13215
newphytologist.206.1.329
US201500187359
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  funderid: NSC101‐2621‐B‐002‐004‐MY3
– fundername: National Taiwan University
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABVKB
ABXSQ
ACHIC
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c6145-1acc8383ad3f601e6fade4a3778227c39802ea53a0d6d319a1d6bddccf67eca83
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Sep 05 17:15:01 EDT 2025
Fri Sep 05 14:39:12 EDT 2025
Fri Sep 05 04:33:48 EDT 2025
Fri Jul 25 11:58:54 EDT 2025
Fri Jul 25 12:05:39 EDT 2025
Mon Jul 21 06:00:12 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 03:09:21 EDT 2025
Wed Jan 22 16:24:10 EST 2025
Sun Aug 24 12:10:34 EDT 2025
Wed Dec 27 19:15:30 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords functional trait
exotic plant invasion
plant-soil feedback (PSF)
indirect interaction
mycorrhizal fungi
soil-borne pathogen
trait-based ecology
litter decomposability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6145-1acc8383ad3f601e6fade4a3778227c39802ea53a0d6d319a1d6bddccf67eca83
Notes http://dx.doi.org/10.1111/nph.13215
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13215
PMID 25521190
PQID 1657796867
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_1694501515
proquest_miscellaneous_1668249360
proquest_miscellaneous_1658707581
proquest_journals_2458410264
proquest_journals_1657796867
pubmed_primary_25521190
crossref_citationtrail_10_1111_nph_13215
crossref_primary_10_1111_nph_13215
wiley_primary_10_1111_nph_13215_NPH13215
jstor_primary_newphytologist_206_1_329
fao_agris_US201500187359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2015
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1984; 61
2010; 98
2011; 278
2009; 40
2010; 13
2010; 107
2010; 19
1997; 85
2010; 466
2002; 155
2011; 99
2010; 185
2008; 105
2006; 170
2011; 14
2009; 316
2003; 157
1998; 42
2009; 12
2010; 26
2010; 25
2013; 16
2010; 24
2006; 21
2003; 6
2007; 296
2007; 9
2013; 199
2002; 269
2008; 23
2013; 198
2012; 27
2008; 157
2011; 25
2001; 11
2009; 19
2003; 166
1998; 12
1997; 135
2007; 247
1995; 168–169
2010; 36
2002; 5
2008; 16
2006; 9
2013; 503
2013; 101
2005; 41
2008; 11
2002; 417
1994; 82
2006; 114
2012; 109
1994; 165
2010; 42
2007; 116
2005; 8
2011; 92
1997; 78
2009; 220
2008; 89
2011; 43
1995; 101
2008; 177
2008; 40
2012; 46
2003; 421
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
25711243 - New Phytol. 2015 Apr;206(1):1-4
References_xml – volume: 24
  start-page: 1192
  year: 2010
  end-page: 1201
  article-title: A multi‐trait approach reveals the structure and the relative importance of intra‐ vs. interspecific variability in plant traits
  publication-title: Functional Ecology
– volume: 19
  start-page: 2873
  year: 2010
  end-page: 2893
  article-title: Towards an assessment of multiple ecosystem processes and services via functional traits
  publication-title: Biodiversity and Conservation
– volume: 278
  start-page: 2939
  year: 2011
  end-page: 2945
  article-title: Weak conspecific feedbacks and exotic dominance in a species‐rich savannah
  publication-title: Proceedings of the Royal Society B
– volume: 12
  start-page: 691
  year: 1998
  end-page: 699
  article-title: Effects of simulated N deposition on understory vegetation of a boreal coniferous forest
  publication-title: Functional Ecology
– volume: 198
  start-page: 214
  year: 2013
  end-page: 221
  article-title: Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?
  publication-title: New Phytologist
– volume: 157
  start-page: 475
  year: 2003
  end-page: 492
  article-title: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?
  publication-title: New Phytologist
– volume: 16
  start-page: 713
  year: 2008
  end-page: 729
  article-title: Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems
  publication-title: Restoration Ecology
– volume: 27
  start-page: 244
  year: 2012
  end-page: 252
  article-title: The return of the variance: intraspecific variability in community ecology
  publication-title: Trends in Ecology & Evolution
– volume: 6
  start-page: 147
  year: 2003
  end-page: 155
  article-title: Trophic control of grassland production and biomass by pathogens
  publication-title: Ecology Letters
– volume: 101
  start-page: 375
  year: 1995
  end-page: 382
  article-title: Impacts of invading N ‐fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: evidence from soil incubation studies and N natural abundance values
  publication-title: Oecologia
– volume: 61
  start-page: 211
  year: 1984
  end-page: 217
  article-title: Pathogen mortality of tropical tree seedlings: studies of the effects of dispersal distance, experimental seedling density, and light conditions
  publication-title: Oecologia
– volume: 98
  start-page: 1063
  year: 2010
  end-page: 1073
  article-title: Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations
  publication-title: Journal of Ecology
– volume: 14
  start-page: 36
  year: 2011
  end-page: 41
  article-title: Soil fungal pathogens and the relationship between plant diversity and productivity
  publication-title: Ecology Letters
– volume: 78
  start-page: 1277
  year: 1997
  end-page: 1283
  article-title: Resampling tests for meta‐analysis of ecological data
  publication-title: Ecology
– volume: 85
  start-page: 561
  year: 1997
  end-page: 573
  article-title: Incorporating the soil community into plant population dynamics: the utility of the feedback approach
  publication-title: Journal of Ecology
– volume: 41
  start-page: 310
  year: 2005
  end-page: 319
  article-title: Effects of mixing radiate pine needles and understory litter on decomposition and nutrient release
  publication-title: Biology and Fertility of Soils
– volume: 157
  start-page: 661
  year: 2008
  end-page: 673
  article-title: Nitrogen enrichment modifies plant community structure via changes to plant–soil feedback
  publication-title: Oecologia
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 168–169
  start-page: 243
  year: 1995
  end-page: 248
  article-title: A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply
  publication-title: Plant and Soil
– volume: 199
  start-page: 41
  year: 2013
  end-page: 51
  article-title: The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon‐nutrient couplings in temperate forests
  publication-title: New Phytologist
– volume: 42
  start-page: 89
  year: 1998
  end-page: 106
  article-title: Why do tree species affect soil? The warp and woof of tree–soil interaction
  publication-title: Biogeochemistry
– volume: 421
  start-page: 625
  year: 2003
  end-page: 627
  article-title: Release of invasive plants from fungal and viral pathogens
  publication-title: Nature
– volume: 99
  start-page: 1045
  year: 2011
  end-page: 1054
  article-title: Fates of seedling carpets in an Amazonian floodplain forest: intra‐cohort competition or attack by enemies?
  publication-title: Journal of Ecology
– volume: 40
  start-page: 373
  year: 2009
  end-page: 391
  article-title: Belowground herbivory and plant defenses
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 25
  start-page: 368
  year: 2011
  end-page: 379
  article-title: Predicting root defence against herbivores during succession
  publication-title: Functional Ecology
– volume: 101
  start-page: 265
  year: 2013
  end-page: 276
  article-title: Plant–soil feedbacks: the past, the present and future challenges
  publication-title: Journal of Ecology
– volume: 89
  start-page: 2645
  year: 2008
  end-page: 2656
  article-title: Leaf herbivory and decomposability in a Malaysian tropical rain forest
  publication-title: Ecology
– volume: 23
  start-page: 695
  year: 2008
  end-page: 703
  article-title: Restoration through reassembly: plant traits and invasion resistance
  publication-title: Trends in Ecology and Evolution
– volume: 24
  start-page: 513
  year: 2010
  end-page: 523
  article-title: Plant traits, leaf palatability and litter decomposability for co‐occurring woody species differing in invasion status and nitrogen fixation ability
  publication-title: Functional Ecology
– volume: 11
  start-page: 1323
  year: 2001
  end-page: 1335
  article-title: Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C grasses in Hawaii
  publication-title: Ecological Applications
– volume: 26
  start-page: 340
  year: 2010
  end-page: 345
  article-title: Estimation of net N mineralization from short‐term C evolution in a plant residue‐amended soil: is the accuracy of estimation time‐dependent?
  publication-title: Soil Use and Management
– volume: 220
  start-page: 1522
  year: 2009
  end-page: 1533
  article-title: A multi‐mutualist simulation: applying biological market models to diverse mycorrhizal communities
  publication-title: Ecological Modelling
– volume: 105
  start-page: 1971
  year: 2008
  end-page: 1976
  article-title: Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 296
  start-page: 159
  year: 2007
  end-page: 172
  article-title: Competition for nitrogen between and ectomycorrhizal fungi generates potential for negative feedback under elevated CO
  publication-title: Plant and Soil
– volume: 46
  start-page: 53
  year: 2012
  end-page: 62
  article-title: Arbuscular mycorrhiza and soil nitrogen cycling
  publication-title: Soil Biology & Biochemistry
– volume: 101
  start-page: 287
  year: 2013
  end-page: 297
  article-title: Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding
  publication-title: Journal of Ecology
– volume: 107
  start-page: 14 251
  year: 2010
  end-page: 14 256
  article-title: Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 114
  start-page: 168
  year: 2006
  end-page: 176
  article-title: Accumulation of pathogens: a new hypothesis to explain exotic plant invasion
  publication-title: Oikos
– volume: 109
  start-page: 2666
  year: 2012
  end-page: 2671
  article-title: Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 40
  start-page: 432
  year: 2008
  end-page: 440
  article-title: Weak competition among tropical tree seedlings: implications for species coexistence
  publication-title: Biotropica
– volume: 185
  start-page: 631
  year: 2010
  end-page: 647
  article-title: Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales
  publication-title: New Phytologist
– volume: 135
  start-page: 575
  year: 1997
  end-page: 585
  article-title: Functioning of mycorrhizal associations along the mutualism–parasitism continuum
  publication-title: New Phytologist
– volume: 82
  start-page: 187
  year: 1994
  end-page: 190
  article-title: Litter decomposability – a neglected component of plant fitness
  publication-title: The Journal of Ecology
– volume: 503
  start-page: 517
  year: 2013
  end-page: 520
  article-title: Self‐reinforcing impacts of plant invasions change over time
  publication-title: Nature
– volume: 36
  start-page: 530
  year: 2010
  end-page: 536
  article-title: Canopy gaps decrease microbial densities and disease risk for a shade‐intolerant tree species
  publication-title: Acta Oecologica
– volume: 177
  start-page: 706
  year: 2008
  end-page: 714
  article-title: Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta‐analysis
  publication-title: New Phytologist
– volume: 166
  start-page: 3
  year: 2003
  end-page: 18
  article-title: Decomposition of plant residues of different quality in soil – DAISY model calibration and simulation based on experimental data
  publication-title: Ecological Modelling
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 14
  start-page: 493
  year: 2011
  end-page: 502
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment
  publication-title: Ecology Letters
– volume: 40
  start-page: 699
  year: 2009
  end-page: 715
  article-title: Mycorrhizal symbioses and plant invasions
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 8
  start-page: 976
  year: 2005
  end-page: 985
  article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community
  publication-title: Ecology Letters
– volume: 89
  start-page: 1908
  year: 2008
  end-page: 1920
  article-title: Are functional traits good predictors of demographic rates? Evidence from five neotropical forests
  publication-title: Ecology
– volume: 316
  start-page: 1
  year: 2009
  end-page: 12
  article-title: Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass
  publication-title: Plant and Soil
– volume: 19
  start-page: 398
  year: 2009
  end-page: 412
  article-title: Litter drives ecosystem and plant community changes in cattail invasion
  publication-title: Ecological Applications
– volume: 247
  start-page: 616
  year: 2007
  end-page: 622
  article-title: Evolution of cooperation in spatial public goods games with common resource dynamics
  publication-title: Journal of Theoretical Biology
– volume: 25
  start-page: 468
  year: 2010
  end-page: 478
  article-title: Rooting theories of plant community ecology in microbial interactions
  publication-title: Trends in Ecology & Evolution
– volume: 6
  start-page: 503
  year: 2003
  end-page: 523
  article-title: Effects of exotic plant invasions on soil nutrient cycling processes
  publication-title: Ecosystems
– volume: 12
  start-page: 351
  year: 2009
  end-page: 366
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecology Letters
– volume: 155
  start-page: 507
  year: 2002
  end-page: 515
  article-title: Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test
  publication-title: New Phytologist
– volume: 9
  start-page: 870
  year: 2006
  end-page: 886
  article-title: The influence of biotic interactions on soil biodiversity
  publication-title: Ecology Letters
– volume: 466
  start-page: 752
  year: 2010
  end-page: 755
  article-title: Negative plant–soil feedback predicts tree‐species relative abundance in a tropical forest
  publication-title: Nature
– volume: 9
  start-page: 107
  year: 2007
  end-page: 116
  article-title: Invasion by (barb goatgrass) slows carbon and nutrient cycling in a serpentine grassland
  publication-title: Biological Invasion
– volume: 43
  start-page: 823
  year: 2011
  end-page: 830
  article-title: Long‐term plant growth legacies overwhelm short‐term plant growth effects on soil microbial community structure
  publication-title: Soil Biology and Biochemistry
– volume: 92
  start-page: 296
  year: 2011
  end-page: 303
  article-title: Soil microbes drive the classic plant diversity–productivity pattern
  publication-title: Ecology
– volume: 5
  start-page: 454
  year: 2002
  end-page: 466
  article-title: Mechanisms of plant species impact on ecosystem nitrogen cycling
  publication-title: Ecology Letters
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 269
  start-page: 2595
  year: 2002
  end-page: 2601
  article-title: Negative feedback within a mutualism: host‐specific growth of mycorrhizal fungi reduces plant benefit
  publication-title: Proceedings of the Royal Society B
– volume: 165
  start-page: 115
  year: 1994
  end-page: 127
  article-title: Effects of elevated CO and nitrogen fertilization pretreatments on decomposition on tallgrass prairie leaf litter
  publication-title: Plant and Soil
– volume: 13
  start-page: 1262
  year: 2010
  end-page: 1269
  article-title: Testing the Janzen‐Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree
  publication-title: Ecology Letters
– volume: 16
  start-page: 1294
  year: 2013
  end-page: 1306
  article-title: Trait‐based tests of coexistence mechanisms
  publication-title: Ecology Letters
– volume: 42
  start-page: 1588
  year: 2010
  end-page: 1595
  article-title: Tree species‐mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoil of a tropical montane forest
  publication-title: Soil Biology & Biochemistry
– volume: 417
  start-page: 67
  year: 2002
  end-page: 70
  article-title: Feedback with soil biota contributes to plant rarity and invasiveness in communities
  publication-title: Nature
– volume: 5
  start-page: 624
  year: 2002
  end-page: 633
  article-title: Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion
  publication-title: Ecology Letters
– volume: 170
  start-page: 445
  year: 2006
  end-page: 457
  article-title: Soil biota and invasive plants
  publication-title: New Phytologist
– ident: e_1_2_6_12_1
  doi: 10.1016/j.tree.2010.05.004
– ident: e_1_2_6_70_1
  doi: 10.1016/j.soilbio.2011.11.018
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1469-8137.2009.03110.x
– ident: e_1_2_6_33_1
  doi: 10.1007/BF00009968
– ident: e_1_2_6_57_1
  doi: 10.1111/nph.12221
– ident: e_1_2_6_37_1
  doi: 10.1890/07-1352.1
– ident: e_1_2_6_21_1
  doi: 10.1007/s10021-002-0151-3
– ident: e_1_2_6_48_1
  doi: 10.1007/s11104-008-9753-7
– ident: e_1_2_6_43_1
  doi: 10.1007/s00442-008-1104-0
– ident: e_1_2_6_19_1
  doi: 10.1146/annurev.ecolsys.110308.120314
– ident: e_1_2_6_68_1
  doi: 10.1016/j.soilbio.2010.05.035
– ident: e_1_2_6_36_1
  doi: 10.1016/j.soilbio.2010.12.018
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1461-0248.2003.00408.x
– ident: e_1_2_6_60_1
  doi: 10.1111/1365-2745.12054
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_2_6_27_1
  doi: 10.1007/s00374-005-0851-x
– ident: e_1_2_6_71_1
  doi: 10.1016/j.tree.2011.11.014
– ident: e_1_2_6_50_1
  doi: 10.1038/nature01317
– ident: e_1_2_6_30_1
  doi: 10.1111/1365-2745.12032
– ident: e_1_2_6_41_1
  doi: 10.1890/1051-0761(2001)011[1323:AOENDB]2.0.CO;2
– ident: e_1_2_6_22_1
  doi: 10.1111/j.2006.0030-1299.14625.x
– ident: e_1_2_6_5_1
  doi: 10.1007/s11104-007-9306-5
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1744-7429.2007.00390.x
– ident: e_1_2_6_32_1
  doi: 10.1046/j.1469-8137.1997.00729.x
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1469-8137.2006.01715.x
– ident: e_1_2_6_66_1
  doi: 10.1007/BF00328825
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2435.2009.01676.x
– ident: e_1_2_6_45_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_6_72_1
  doi: 10.1111/j.0030-1299.2007.15559.x
– ident: e_1_2_6_56_1
  doi: 10.1073/pnas.0711618105
– ident: e_1_2_6_59_1
  doi: 10.1146/annurev.ecolsys.39.110707.173454
– ident: e_1_2_6_2_1
  doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1526-100X.2008.00482.x
– ident: e_1_2_6_53_1
  doi: 10.1046/j.1365-2435.1998.00240.x
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1118650109
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1365-2745.2005.01000.x
– ident: e_1_2_6_18_1
  doi: 10.1016/j.ecolmodel.2009.03.028
– ident: e_1_2_6_52_1
  doi: 10.1111/nph.12139
– ident: e_1_2_6_58_1
  doi: 10.1890/07-0207.1
– ident: e_1_2_6_76_1
  doi: 10.1038/nature12798
– ident: e_1_2_6_67_1
  doi: 10.1046/j.1469-8137.2002.00470.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1461-0248.2005.00802.x
– ident: e_1_2_6_62_1
  doi: 10.1046/j.1469-8137.2003.00704.x
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_6_35_1
  doi: 10.1046/j.1461-0248.2002.00332.x
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1469-8137.2007.02290.x
– ident: e_1_2_6_42_1
  doi: 10.1038/nature09273
– ident: e_1_2_6_65_1
  doi: 10.1890/10-0773.1
– ident: e_1_2_6_74_1
  doi: 10.1007/BF00029334
– ident: e_1_2_6_7_1
  doi: 10.1007/BF00396763
– ident: e_1_2_6_14_1
  doi: 10.1023/A:1005948126251
– ident: e_1_2_6_20_1
  doi: 10.1007/s10530-006-0007-4
– ident: e_1_2_6_46_1
  doi: 10.1046/j.1461-0248.2002.00347.x
– ident: e_1_2_6_64_1
  doi: 10.1016/j.actao.2010.07.006
– ident: e_1_2_6_11_1
  doi: 10.1098/rspb.2002.2162
– ident: e_1_2_6_10_1
  doi: 10.2307/2261398
– ident: e_1_2_6_24_1
  doi: 10.1890/08-0485.1
– ident: e_1_2_6_75_1
  doi: 10.1111/j.1461-0248.2006.00931.x
– ident: e_1_2_6_13_1
  doi: 10.2307/2960528
– ident: e_1_2_6_3_1
  doi: 10.1111/ele.12157
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1461-0248.2010.01547.x
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1475-2743.2010.00285.x
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2745.2011.01835.x
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1461-0248.2010.01520.x
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1365-2745.2010.01695.x
– ident: e_1_2_6_51_1
  doi: 10.1016/S0304-3800(03)00114-5
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.0914281107
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2435.2010.01727.x
– ident: e_1_2_6_9_1
  doi: 10.1007/s10531-010-9850-9
– ident: e_1_2_6_40_1
  doi: 10.1098/rspb.2010.2730
– ident: e_1_2_6_26_1
  doi: 10.1016/j.tree.2008.07.013
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-2435.2010.01811.x
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1461-0248.2011.01611.x
– ident: e_1_2_6_73_1
  doi: 10.1016/j.jtbi.2007.04.008
– reference: 25711243 - New Phytol. 2015 Apr;206(1):1-4
SSID ssj0009562
Score 2.473459
Snippet Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control...
Summary Reciprocal interaction between plant and soil (plant–soil feedback, PSF) can determine plant community structure. Understanding which traits control...
Reciprocal interaction between plant and soil (plant–soil feedback, PSF ) can determine plant community structure. Understanding which traits control...
Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control...
Summary Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control...
* Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control...
SourceID proquest
pubmed
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Abundance
biogeochemical cycles
carbon
Carbon - metabolism
Community structure
Composition
Decomposition
Ecological effects
ecological invasion
Ecology
exotic plant invasion
Feedback
functional trait
Fungi
Herbivores
indirect interaction
Interspecific
interspecific variation
Litter
litter decomposability
Litter traits
Microorganisms
Mineral nutrients
Mycorrhizae - physiology
Mycorrhizal fungi
Nitrogen
Nitrogen - metabolism
Nutrient cycles
Pathogens
Phenotype
Plant communities
Plant ecology
Plant interaction
Plant litter
Plant Roots - microbiology
Plants
Plants - microbiology
plant–soil feedback (PSF)
prediction
Relative abundance
Seedlings
Soil
Soil Microbiology
Soil microorganisms
Soil nutrients
Soil plant interactions
Soils
soil‐borne pathogen
trait‐based ecology
Title soil microbial community predicts the importance of plant traits in plant–soil feedback
URI https://www.jstor.org/stable/newphytologist.206.1.329
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13215
https://www.ncbi.nlm.nih.gov/pubmed/25521190
https://www.proquest.com/docview/1657796867
https://www.proquest.com/docview/2458410264
https://www.proquest.com/docview/1658707581
https://www.proquest.com/docview/1668249360
https://www.proquest.com/docview/1694501515
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VigMX_qGBggxCqJesEju2E3ECRLVCokLASnsAWY7twKrbZNXNHsqJd-ANeRLGzo9atFSIWyKPo8Qz4_kmHn8GeGYTadBtdFxhNI0zhOhxYTmP_RJQVnFnGPWbk98dieksezvn8x14MeyF6fghxh9u3jPCfO0dXJfrc05er75NMJUKG8x9rZYHRB_oOcJdQQcGZpGJec8q5Kt4xp4XYtGVSjdDUeI2uHkRvYbwc3gDPg8v3lWdHE82bTkx3__gdPzPL7sJ13tYSl52dnQLdlx9G66-ahA6nt2BL2hMZN0sluRkEYibUNR0O0vaM7I69Ys97ZogliSLkwDo0ZRIU5HVEhVH_DEU2Lyou_tfP36GZ1UYOEttju_C7PDNp9fTuD-XITYYzHmcamNyzGy1Zajh1IlKW5dpJj3akIYVeUKd5kwnVlh0cZ1aUVprTCWkMzpn92C3bmq3B8TqlFJDTVLKKhOO57mWVJd4mVmnqYngYNCQMj1puX_ppRqSFxwsFQYrgqej6Kpj6tgmtIdqVvorzqBq9pH6_z3-WELGiwieB92PnTGtQUsPpwijxymaCJUqRlFwfzAO1Tv8WqWCS1mIXMitzdQvRyOWE1kET8Zm9GS_PKNr12zCI3DyxPwtvUxG5JgwM5FcJlNkPPFANYL7ne2O34QJpKf0w94HwQL_PlLq6P00XDz4d9GHcM2PaFfYtA-77enGPULM1paPg3P-BiVxPHc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYIL5d2UAgYh1EtWiRM7icSFV7VAu0LQlfZSWY7twKrbZNXNHtoT_6H_kF_CjPNQi5YKcUvkcRR75rO_8WOGkJcmSDTARvkFzKZ-DBTdzwznPm4BxQW3OmJ4OXl_JIbj-NOET9bI6-4uTBMfol9wQ2S48RoBjgvSF1Bezn8MwJfCG-bXMaM3wvL9V3Yh5K5gXQxmEYtJG1cIz_H0VS_NRtcKVXXHElcRzsv81U1AuxvksPv15tzJ0WBZ5wN99kdUx_9t2x1yu2Wm9E1jSnfJmi3vkRtvK2CPp_fJIdgTXVTTGT2euthNIKqbyyX1KZ2f4H5PvaBAJ-n02HF6sCZaFXQ-A91RzEQBxdOyef_189x9q4C5M1f66AEZ7344eDf029QMvob5nPuh0joF51aZCJQcWlEoY2MVJUg4Eh1lacCs4pEKjDCAchUakRujdSESq1UaPSTrZVXaTUKNChnTTAd5UsTC8jRVCVM5PMbGKqY9stOpSOo2bjn-9Ex2_gt0lnSd5ZEXvei8CdaxSmgT9CzVdxhE5fgbwyUfzEwY8cwjr5zy-8rg2YCxu0TCADrJAiFDGTEQ3O6sQ7aYX8hQ8CTJRCqSlcUMd6SBzonYI8_7YgAz7tCo0lZL9wkYP8GFC6-SESn4zJEIrpLJYh4gV_XIo8Z4-zaBD4lR_aD2jjPBv_eUHH0Zuoetfxd9Rm4OD_b35N7H0efH5Bb2bnPOaZus1ydL-wQoXJ0_dUj9Db6hQJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYgLb2hoCwYh1EtWiWM7iThBy2p5rSpgpT0UWY7ttKtuk6ibPbQn_gP_kF_C2HmoRUuFuCXyOIo9M55v_PiM0EsdxArcRvo5RFOfAkT3U82Yb5eAaM6Miog9nPx5zEcT-mHKpmvodXcWpuGH6CfcrGe48do6eKXzC05eVEcDSKXsAfPrlAeJzbz2vpALjLucdBTMnPJpSytkt_H0VS8Fo2u5LLtdiavw5mX46uLP8A466P682XZyPFjW2UCd_0Hq-J9Nu4tut7gUv2kM6R5aM8V9dONtCdjx7AH6DtaEF-Vsjk9mjrkJRFVztKQ-w9WpXe2pFxjAJJ6dOEQPtoTLHFdz0By291BA8axo3n_9-Om-lUPkzKQ6fogmw3ffdkd-ezGDryCaMz-USiWQ2kodgYpDw3OpDZVRbOFGrKI0CYiRLJKB5hp8XIaaZ1orlfPYKJlEj9B6URZmA2EtQ0IUUUEW55QbliQyJjKDR6qNJMpDO52GhGpZy-1Pz0WXvUBnCddZHnrRi1YNVccqoQ1Qs5CHMISKyVdiJ3zsvYQRSz30yum-rwx5DZi6u0YYXE6QgItQRAQEtzrjEK3HL0TIWRynPOHxymJi16MBzHHqoed9MbiyXZ-RhSmX7hMwekICF14lwxPImCMeXCWTUhZYpOqhx43t9m2CDNJy-kHtHWeBf-8pMd4fuYcn_y76DN3c3xuKT-_HHzfRLdu5zSanLbReny7NNuC3Onvq_PQ37Z4_SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+soil+microbial+community+predicts+the+importance+of+plant+traits+in+plant-soil+feedback&rft.jtitle=The+New+phytologist&rft.au=Ke%2C+Po-Ju&rft.au=Miki%2C+Takeshi&rft.au=Ding%2C+Tzung-Su&rft.date=2015-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=206&rft.issue=1&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1111%2Fnph.13215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon