Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor

Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 14; no. 10; pp. 2045 - 2065
Main Authors Jia, Haifeng, Jiu, Songtao, Zhang, Cheng, Wang, Chen, Tariq, Pervaiz, Liu, Zhongjie, Wang, Baoju, Cui, Liwen, Fang, Jinggui
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.10.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole‐3‐acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
AbstractList Although great progress has been made towards understanding the role of abscisic acid ( ABA ) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA ‐stress‐ripening ( ASR ), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins ( ABA / WDS ) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA , but also by jasmonic acid ( JA ) and indole‐3‐acetic acid ( IAA ), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter ( HT ) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS , CHI , F3H , DFR , ANS , UFGT , PG , PL , EXP 1/2 , XET 16 , Cel1/2 and PME . Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole‐3‐acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Audience Academic
Author Cui, Liwen
Jia, Haifeng
Zhang, Cheng
Liu, Zhongjie
Tariq, Pervaiz
Wang, Chen
Jiu, Songtao
Wang, Baoju
Fang, Jinggui
AuthorAffiliation 1 Key Laboratory of Genetics and Fruit Development Horticultural College Nanjing Agricultural University Nanjing China
AuthorAffiliation_xml – name: 1 Key Laboratory of Genetics and Fruit Development Horticultural College Nanjing Agricultural University Nanjing China
Author_xml – sequence: 1
  givenname: Haifeng
  surname: Jia
  fullname: Jia, Haifeng
  organization: Nanjing Agricultural University
– sequence: 2
  givenname: Songtao
  surname: Jiu
  fullname: Jiu, Songtao
  organization: Nanjing Agricultural University
– sequence: 3
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Nanjing Agricultural University
– sequence: 4
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: Nanjing Agricultural University
– sequence: 5
  givenname: Pervaiz
  surname: Tariq
  fullname: Tariq, Pervaiz
  organization: Nanjing Agricultural University
– sequence: 6
  givenname: Zhongjie
  surname: Liu
  fullname: Liu, Zhongjie
  organization: Nanjing Agricultural University
– sequence: 7
  givenname: Baoju
  surname: Wang
  fullname: Wang, Baoju
  organization: Nanjing Agricultural University
– sequence: 8
  givenname: Liwen
  surname: Cui
  fullname: Cui, Liwen
  organization: Nanjing Agricultural University
– sequence: 9
  givenname: Jinggui
  surname: Fang
  fullname: Fang, Jinggui
  email: Fanggg@njau.edu.cn
  organization: Nanjing Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27005823$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC-w4AVQJDawmKkvie1skIaKS6VKsIC1deKcZFwl9mAnVLNj3VWfkSfBQ8pQKgHxwnb8nV__sf_j7MB5h1n2lJIlTd_pprZLykrBH2RHtBByIUXJDvbrojjMjmO8JIRRUYpH2SGThJSK8aPselVHY6M1ORjb5OCaPE4m-Ih5wG7qYcR89AOMfj4bA1zVGMI2b8NkxzzYDTrrunxcBz916zRjDnc1v3-7SVUYY1r8pgO4aNJ2tN7lLZjRh8fZwxb6iE9u55Ps89s3n87eLy4-vDs_W10sjKAFX3AgAqEVvJKgakNMI8qKAS84gdQwtLRkFQpV1FUDVLXKQCNFjY0sFUdj-En2atbdTPWAjUGX3PR6E-wAYas9WP3nibNr3fmvuiQFLyqaBF7cCgT_ZcI46sFGg30PDv0UNSMlVxVVlfwvShWTFSGkUAl9fg-99FNw6SY0YxVhUlDOErWcqQ561Na1Plk0aTQ4WJNi0dr0fyU5p4IqsXPw7G63-zZ_RSABL2dg9-oxYLtHKNG7eOkUL_0zXok9vccaO8LuDZML2_-r4ir52v5dWn98fT5X_ACL4eXL
CitedBy_id crossref_primary_10_1016_j_scienta_2022_111114
crossref_primary_10_1007_s12223_024_01211_x
crossref_primary_10_1111_pbi_13543
crossref_primary_10_5010_JPB_2018_45_2_090
crossref_primary_10_1007_s10570_020_03607_7
crossref_primary_10_3389_fpls_2022_1023739
crossref_primary_10_1007_s10725_020_00582_8
crossref_primary_10_3390_agronomy12123227
crossref_primary_10_3389_fpls_2018_01259
crossref_primary_10_1016_j_envexpbot_2025_106133
crossref_primary_10_1186_s12870_019_2126_y
crossref_primary_10_1111_tpj_70050
crossref_primary_10_3389_fpls_2019_00136
crossref_primary_10_1016_j_plaphy_2019_12_023
crossref_primary_10_1186_s12870_019_1931_7
crossref_primary_10_1016_S2095_3119_20_63381_0
crossref_primary_10_1186_s12870_022_03670_1
crossref_primary_10_1007_s00344_023_11195_6
crossref_primary_10_1038_s41438_020_0252_1
crossref_primary_10_1093_jxb_erac043
crossref_primary_10_1002_csc2_21076
crossref_primary_10_1093_aob_mcy057
crossref_primary_10_1016_j_foodchem_2020_126407
crossref_primary_10_1111_ppl_12759
crossref_primary_10_1186_s12870_019_1942_4
crossref_primary_10_1093_plphys_kiae599
crossref_primary_10_1021_acs_jafc_2c05483
crossref_primary_10_1371_journal_pone_0225886
crossref_primary_10_1016_j_indcrop_2022_114796
crossref_primary_10_3390_genes13061064
crossref_primary_10_1007_s11240_017_1246_z
crossref_primary_10_1111_tpj_16862
crossref_primary_10_3389_fpls_2023_1279031
crossref_primary_10_48130_FruRes_2023_0015
crossref_primary_10_3390_ijms251910283
crossref_primary_10_1016_j_plantsci_2019_02_006
crossref_primary_10_3390_genes11050580
crossref_primary_10_3390_ijms23095201
crossref_primary_10_1016_j_postharvbio_2020_111301
crossref_primary_10_3390_ijms25021178
crossref_primary_10_3390_ijms25020760
crossref_primary_10_1111_mpp_12794
crossref_primary_10_1016_j_envexpbot_2020_104251
crossref_primary_10_1038_s41467_024_55294_8
crossref_primary_10_1016_j_fbio_2024_104054
crossref_primary_10_1021_acs_jafc_7b04252
crossref_primary_10_1093_plcell_koab070
crossref_primary_10_1002_agj2_20545
crossref_primary_10_1007_s42729_022_01116_z
crossref_primary_10_48130_vegres_0024_0018
crossref_primary_10_1093_hr_uhac089
crossref_primary_10_1016_j_plantsci_2019_110339
crossref_primary_10_1016_j_scienta_2019_109020
crossref_primary_10_1016_j_jplph_2020_153309
crossref_primary_10_3390_ijms23010101
crossref_primary_10_1016_j_scienta_2019_108850
crossref_primary_10_3390_plants11182354
crossref_primary_10_3390_cells8091029
crossref_primary_10_3390_agronomy10020245
crossref_primary_10_1186_s12870_019_1719_9
crossref_primary_10_1016_j_envexpbot_2021_104667
crossref_primary_10_1016_j_scienta_2020_109196
crossref_primary_10_1038_s41598_023_41311_1
crossref_primary_10_1042_BCJ20170866
crossref_primary_10_1093_jxb_eraa350
crossref_primary_10_3390_agronomy11101947
crossref_primary_10_3389_fpls_2020_619953
crossref_primary_10_1016_j_plaphy_2023_01_031
crossref_primary_10_1007_s11101_023_09907_7
crossref_primary_10_3389_fpls_2021_711725
crossref_primary_10_1079_cabireviews_2024_0052
crossref_primary_10_1016_j_scienta_2021_109999
crossref_primary_10_3390_ijms22126294
crossref_primary_10_1371_journal_pone_0180600
crossref_primary_10_1080_21655979_2019_1710932
crossref_primary_10_1016_j_fbio_2021_100896
crossref_primary_10_1016_j_plaphy_2023_108037
crossref_primary_10_1016_j_scienta_2023_111827
crossref_primary_10_3389_fgene_2021_792250
crossref_primary_10_1007_s00344_021_10564_3
crossref_primary_10_1016_j_plaphy_2024_108684
crossref_primary_10_1002_tpg2_20181
crossref_primary_10_1016_j_plantsci_2018_07_012
crossref_primary_10_1146_annurev_phyto_021722_035135
crossref_primary_10_1038_s41598_025_85821_6
crossref_primary_10_1111_pce_14885
crossref_primary_10_1016_j_copbio_2022_102872
crossref_primary_10_3390_agronomy11040737
crossref_primary_10_3390_ijms23147757
crossref_primary_10_1111_pbi_14297
crossref_primary_10_1021_acs_jafc_2c08157
crossref_primary_10_3389_fpls_2018_00759
crossref_primary_10_1016_j_jplph_2019_05_005
crossref_primary_10_1155_2019_9203057
crossref_primary_10_1093_plphys_kiad294
crossref_primary_10_3390_agronomy14112494
crossref_primary_10_3389_fpls_2020_543958
crossref_primary_10_1016_j_plantsci_2022_111572
crossref_primary_10_1002_aesr_202300175
crossref_primary_10_1016_j_foodchem_2020_128838
crossref_primary_10_31857_S001533032360002X
crossref_primary_10_1016_j_plaphy_2021_12_022
crossref_primary_10_5010_JPB_2017_44_2_178
crossref_primary_10_3390_ijms22168799
crossref_primary_10_1093_plphys_kiad160
crossref_primary_10_1016_j_scienta_2021_110159
crossref_primary_10_1007_s12298_022_01166_8
crossref_primary_10_1080_14620316_2019_1635535
crossref_primary_10_1016_j_scienta_2021_110709
crossref_primary_10_1186_s43897_023_00056_1
crossref_primary_10_1016_j_scienta_2024_113259
crossref_primary_10_1016_j_hpj_2023_09_010
crossref_primary_10_3389_fpls_2023_1092654
crossref_primary_10_1093_molbev_msaa027
crossref_primary_10_1134_S1021443722020236
crossref_primary_10_7717_peerj_10739
crossref_primary_10_1371_journal_pone_0196953
crossref_primary_10_3389_fpls_2023_1138865
crossref_primary_10_3390_ijms21030921
crossref_primary_10_1111_tpj_16257
crossref_primary_10_1016_j_postharvbio_2023_112719
crossref_primary_10_1016_j_postharvbio_2018_12_013
crossref_primary_10_1016_j_plantsci_2020_110634
crossref_primary_10_1016_j_postharvbio_2020_111252
crossref_primary_10_1016_j_plantsci_2022_111287
crossref_primary_10_3389_fpls_2019_01752
crossref_primary_10_1093_plphys_kiae510
crossref_primary_10_1111_pbi_12756
crossref_primary_10_1007_s00425_020_03489_w
crossref_primary_10_1093_jxb_erab269
crossref_primary_10_3389_fpls_2018_00592
crossref_primary_10_1016_j_plaphy_2017_05_010
crossref_primary_10_1186_s12870_017_1093_4
crossref_primary_10_3390_agronomy13051249
crossref_primary_10_3389_fgene_2021_683904
crossref_primary_10_1007_s11816_021_00738_6
crossref_primary_10_3390_horticulturae8100905
crossref_primary_10_1093_hr_uhab042
crossref_primary_10_1016_j_indcrop_2020_112788
crossref_primary_10_1021_acs_jafc_9b07740
crossref_primary_10_3389_fhort_2024_1353070
crossref_primary_10_3390_plants9020166
crossref_primary_10_1016_j_scienta_2021_109919
crossref_primary_10_1016_j_hpj_2021_06_005
crossref_primary_10_3389_fpls_2017_00475
crossref_primary_10_1186_s12870_017_1043_1
crossref_primary_10_1016_j_postharvbio_2022_111913
crossref_primary_10_3390_plants14060970
crossref_primary_10_1021_acs_jafc_8b03951
crossref_primary_10_1186_s43170_020_00021_8
crossref_primary_10_1016_j_jplph_2023_154120
crossref_primary_10_1016_j_jfca_2022_104398
crossref_primary_10_3389_fpls_2020_564917
crossref_primary_10_3389_fpls_2022_1066142
crossref_primary_10_1186_s12870_021_03421_8
crossref_primary_10_1038_s41598_020_65275_8
crossref_primary_10_48130_frures_0024_0003
crossref_primary_10_1093_plphys_kiad119
crossref_primary_10_1016_j_postharvbio_2023_112532
crossref_primary_10_1016_j_postharvbio_2021_111688
crossref_primary_10_3389_fpls_2023_1117156
crossref_primary_10_1007_s42994_021_00061_2
crossref_primary_10_1016_j_jafr_2025_101841
crossref_primary_10_1016_j_scienta_2024_113460
crossref_primary_10_3390_plants8120577
crossref_primary_10_1007_s00344_017_9710_x
crossref_primary_10_1007_s00344_017_9695_5
crossref_primary_10_1111_ppl_13648
crossref_primary_10_1016_j_eng_2020_07_029
crossref_primary_10_1016_j_envexpbot_2019_103855
crossref_primary_10_1016_j_foodchem_2019_03_042
crossref_primary_10_1186_s12915_022_01391_3
crossref_primary_10_3389_fpls_2020_00995
crossref_primary_10_1093_pcp_pcaa118
crossref_primary_10_1093_plphys_kiad106
crossref_primary_10_1016_j_scienta_2023_112545
crossref_primary_10_3390_ijms242115815
crossref_primary_10_3390_foods12203795
crossref_primary_10_1111_mpp_70028
crossref_primary_10_1016_j_plantsci_2021_110925
crossref_primary_10_1093_jxb_erad484
crossref_primary_10_1021_acs_jafc_1c06391
crossref_primary_10_3390_foods10040896
crossref_primary_10_1007_s00438_019_01629_w
crossref_primary_10_1016_j_scienta_2024_113248
crossref_primary_10_1111_pbi_13257
crossref_primary_10_3390_ijms252212024
crossref_primary_10_1016_j_carbpol_2024_122536
crossref_primary_10_1016_j_cpb_2016_09_002
crossref_primary_10_3389_fpls_2020_00174
crossref_primary_10_1007_s10142_022_00885_1
crossref_primary_10_1016_j_sajb_2019_07_002
crossref_primary_10_1007_s00344_019_09934_9
crossref_primary_10_1007_s42773_024_00336_z
crossref_primary_10_3389_fpls_2022_1022369
crossref_primary_10_1016_j_postharvbio_2022_111835
crossref_primary_10_1134_S102144372360023X
crossref_primary_10_1111_tpj_70021
Cites_doi 10.1093/nar/27.1.297
10.1002/j.1460-2075.1987.tb02730.x
10.1104/pp.105.065458
10.1016/j.scienta.2009.07.006
10.1046/j.1365-313X.2003.01723.x
10.1093/jxb/erp114
10.1186/1471-2229-10-257
10.1016/j.postharvbio.2006.05.002
10.1093/jxb/erp026
10.1007/s10142-014-0426-8
10.1016/j.gene.2006.05.010
10.1093/jxb/erj048
10.1104/pp.108.3.1323
10.1007/s00425-008-0693-5
10.1023/A:1005897921567
10.1111/j.1467-7652.2007.00319.x
10.1105/tpc.013854
10.1111/j.1744-7909.2010.00912.x
10.1093/jxb/ert214
10.1093/jxb/err391
10.1016/S0176-1617(11)81973-5
10.1146/annurev.arplant.57.032905.105441
10.1016/j.plaphy.2005.06.010
10.1016/j.tplants.2003.12.004
10.1023/B:PLAN.0000036371.30528.26
10.1371/journal.pone.0107117
10.1093/jexbot/51.350.1575
10.1093/jxb/eri202
10.1104/pp.110.161869
10.1111/nph.12176
10.1111/j.1467-7652.2008.00328.x
10.1105/tpc.104.025833
10.21273/JASHS.127.3.435
10.1111/j.1365-313X.2004.02188.x
10.1007/s11103-006-9120-0
10.1007/s004250050278
10.1111/j.1365-313X.2009.03871.x
10.1104/pp.113.232454
10.1104/pp.104.042580
10.1093/jxb/eru144
10.1104/pp.111.177311
10.1007/BF00959527
10.1093/jxb/ers386
10.1104/pp.105.069468
10.1016/j.ejbt.2014.09.002
10.4161/15592324.2014.992751
10.1104/pp.112.211094
10.1016/S1369-5266(01)00225-4
10.1093/jxb/erf072
10.1111/j.1365-313X.2007.03170.x
10.1104/pp.111.186866
10.1016/j.jplph.2010.05.027
10.1111/pce.12074
10.1016/j.plantsci.2004.06.026
10.1007/s00344-007-9002-y
10.1007/s00425-011-1421-0
10.1146/annurev-genet-110410-132507
10.1093/jxb/err252
10.1105/tpc.105.036053
10.21273/JASHS.109.3.330
10.1093/jxb/ern117
10.1016/S0300-9084(02)00024-X
10.1093/jxb/eru277
10.1007/BF02637265
10.1104/pp.81.3.922
10.21273/HORTSCI.23.5.880
10.1371/journal.ppat.1003659
10.1104/pp.114.251314
10.1016/0003-2697(76)90527-3
10.1104/pp.87.3.731
10.1042/BJ20031800
10.1371/journal.pone.0024649
10.1104/pp.96.3.881
10.1111/j.1399-3054.1996.tb00490.x
10.4238/vol9-1gmr754
10.1111/j.1365-2621.1968.tb00887.x
10.1111/j.1399-3054.2005.00454.x
10.1007/s00344-012-9312-6
10.1007/s00299-011-1030-1
10.1104/pp.113.227603
10.1007/BF00201035
10.1104/pp.102.4.1353
10.1111/j.1365-313X.2005.02441.x
10.1016/S0168-9452(01)00565-9
10.1111/tpj.12272
10.1111/j.1365-2621.1968.tb00888.x
10.1146/annurev.genet.32.1.227
ContentType Journal Article
Copyright 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
COPYRIGHT 2016 John Wiley & Sons, Inc.
2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2016 John Wiley & Sons, Inc.
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7TM
7S9
L.6
5PM
DOI 10.1111/pbi.12563
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA


MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Haifeng Jia et al
EISSN 1467-7652
EndPage 2065
ExternalDocumentID PMC5043491
A733161867
27005823
10_1111_pbi_12563
PBI12563
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: China National Natural Science Fund
  funderid: 31401847
– fundername: Jiangsu Natural Science Fund
  funderid: BK20140707
– fundername: China Postdoctoral Science Fund
  funderid: 2014M561663
– fundername: Fundamental Research Funds for the Central Universities
  funderid: KJQN201541
– fundername: China National Natural Science Fund
  grantid: 31401847
– fundername: China Postdoctoral Science Fund
  grantid: 2014M561663
– fundername: Jiangsu Natural Science Fund
  grantid: BK20140707
– fundername: Fundamental Research Funds for the Central Universities
  grantid: KJQN201541
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7TM
7S9
L.6
5PM
ID FETCH-LOGICAL-c6143-3a06eaf6397a8bc0cd6592a3430a146af1529e684b9da18f8cad76bed7583ecc3
IEDL.DBID DR2
ISSN 1467-7644
IngestDate Thu Aug 21 14:00:05 EDT 2025
Fri Jul 11 18:35:14 EDT 2025
Fri Jul 11 05:13:57 EDT 2025
Wed Aug 13 02:33:06 EDT 2025
Tue Jun 10 20:23:27 EDT 2025
Thu Apr 03 07:11:21 EDT 2025
Tue Jul 01 02:34:39 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 16:27:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords abscisic acid
tomato fruit
sucrose
strawberry fruit
transcription factor ASR
Language English
License Attribution
2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6143-3a06eaf6397a8bc0cd6592a3430a146af1529e684b9da18f8cad76bed7583ecc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12563
PMID 27005823
PQID 2290276132
PQPubID 1096352
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043491
proquest_miscellaneous_2053891897
proquest_miscellaneous_1827900048
proquest_journals_2290276132
gale_infotracacademiconefile_A733161867
pubmed_primary_27005823
crossref_primary_10_1111_pbi_12563
crossref_citationtrail_10_1111_pbi_12563
wiley_primary_10_1111_pbi_12563_PBI12563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2016
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2004; 167
1997; 115
2010; 10
2011; 234
2011; 157
2002; 53
1991; 96
1987; 4
1987; 6
2013; 64
2004; 23
2011; 62
2004; 9
2005; 139
2000; 51
2003; 15
2008; 227
2013; 163
2008; 6
2004; 2
2013; 161
2013; 9
2006; 378
2014; 65
1986; 81
2004; 135
2002; 84
1976; 72
1988; 87
2010; 154
2009; 123
1988; 174
2013; 198
1998; 204
2007; 63
2014; 17
2014; 9
2014; 164
2009; 59
2010; 9
2007; 26
2012; 63
1968b; 33
2015; 15
2004; 40
2006; 57
2009; 60
2015; 167
1999; 27
2004; 381
1994; 194
2010; 167
2015; 10
2011; 30
2008; 59
1984; 109
1968a; 33
2005; 43
2007; 51
1993; 102
2011; 6
2014; 45
1996; 97
2003; 34
2004; 54
2006; 42
2013; 36
2013; 76
2013; 32
2004; 16
2001; 5
2002; 162
2005; 123
1995; 108
1997; 35
1988; 23
2002; 127
1995; 146
2011; 45
2012; 158
2005; 17
1998; 32
2010; 52
2005; 56
Obrucheva N.V. (e_1_2_7_69_1) 2014; 45
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Saitou N. (e_1_2_7_78_1) 1987; 4
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Rudell D.R. (e_1_2_7_77_1) 2002; 127
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
Zhong X.H. (e_1_2_7_92_1) 2004; 2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Archbold D.D. (e_1_2_7_8_1) 1984; 109
Mbeguie A.M.D. (e_1_2_7_65_1) 1997; 115
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Archbold D.D. (e_1_2_7_7_1) 1988; 23
22060040 - Annu Rev Genet. 2011;45:41-59
15326278 - Plant Physiol. 2004 Aug;135(4):1865-78
20391333 - Genet Mol Res. 2010 Mar 16;9(1):484-505
12713544 - Plant J. 2003 May;34(3):383-92
18363631 - Plant Biotechnol J. 2008 May;6(4):368-78
25310287 - PLoS One. 2014 Oct 13;9(10):e107117
18270732 - Planta. 2008 May;227(6):1213-9
25028558 - J Exp Bot. 2014 Aug;65(16):4561-75
15361140 - Plant J. 2004 Oct;40(1):47-59
17655616 - Plant J. 2007 Aug;51(3):458-67
12595141 - Biochimie. 2002 Nov;84(11):1127-35
22108525 - Plant Physiol. 2012 Jan;158(1):283-98
3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
15998315 - Plant J. 2005 Jul;43(2):299-308
19401410 - J Exp Bot. 2009;60(9):2641-52
19246595 - J Exp Bot. 2009;60(6):1579-88
16169963 - Plant Physiol. 2005 Oct;139(2):836-46
24170204 - Plant Physiol. 2013 Dec;163(4):1729-40
9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300
24402050 - Plant Physiol. 2014 Apr;164(4):1918-29
21873532 - J Exp Bot. 2011 Nov;62(15):5659-69
15548743 - Plant Cell. 2004 Dec;16(12):3460-79
7630961 - Plant Physiol. 1995 Jul;108(3):1323-4
21630042 - Planta. 2011 Oct;234(4):785-98
23356734 - Plant Cell Environ. 2013 Aug;36(8):1449-64
21915355 - PLoS One. 2011;6(9):e24649
20876338 - Plant Physiol. 2010 Nov;154(3):1514-31
18487633 - J Exp Bot. 2008;59(10):2611-25
20377692 - J Integr Plant Biol. 2010 Mar;52(3):315-23
8278555 - Plant Physiol. 1993 Aug;102(4):1353-4
25794140 - Plant Signal Behav. 2015;10(4):e992751
11006308 - J Exp Bot. 2000 Sep;51(350):1575-84
16244140 - Plant Physiol. 2005 Nov;139(3):1163-74
17211513 - Plant Mol Biol. 2007 Mar;63(5):719-30
19302419 - Plant J. 2009 Jul;59(2):316-28
18086233 - Plant Biotechnol J. 2008 Apr;6(3):295-300
12953118 - Plant Cell. 2003 Sep;15(9):2165-80
16664926 - Plant Physiol. 1986 Jul;81(3):922-4
25720262 - Ontogenez. 2014 Jan-Feb;45(1):14-27
12324528 - J Exp Bot. 2002 Oct;53(377):2039-55
11989489 - Plant Sci. 2002 Feb;162(2):239-44
16666216 - Plant Physiol. 1988 Jul;87(3):731-6
22140241 - J Exp Bot. 2012 Feb;63(3):1495-510
16289880 - Plant Physiol Biochem. 2005 Sep;43(9):836-43
23250627 - Plant Physiol. 2013 Feb;161(2):628-43
16669778 - Annu Rev Plant Biol. 2006;57:675-709
3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
16822623 - Gene. 2006 Aug 15;378:74-83
15101820 - Biochem J. 2004 Jul 15;381(Pt 2):373-8
16243903 - Plant Cell. 2005 Nov;17(11):2954-65
942051 - Anal Biochem. 1976 May 7;72:248-54
15106586 - Trends Plant Sci. 2004 Feb;9(2):57-9
16668269 - Plant Physiol. 1991 Jul;96(3):881-6
20728961 - J Plant Physiol. 2010 Nov 15;167(17):1486-93
25504197 - Funct Integr Genomics. 2015 May;15(3):363-73
23888065 - J Exp Bot. 2013 Sep;64(12):3775-86
24221523 - Planta. 1988 Jun;174(3):402-6
9928480 - Annu Rev Genet. 1998;32:227-54
23425297 - New Phytol. 2013 Apr;198(2):453-65
21327389 - Plant Cell Rep. 2011 Jul;30(7):1219-30
23564958 - J Exp Bot. 2013 Apr;64(6):1471-83
11788304 - Curr Opin Plant Biol. 2002 Feb;5(1):26-32
23802911 - Plant J. 2013 Oct;76(1):24-35
16396998 - J Exp Bot. 2006;57(3):633-43
24098120 - PLoS Pathog. 2013;9(10):e1003659
15955790 - J Exp Bot. 2005 Aug;56(418):2037-46
9426600 - Plant Mol Biol. 1997 Dec;35(6):801-7
15284494 - Plant Mol Biol. 2004 Feb;54(3):387-404
25609556 - Plant Physiol. 2015 Mar;167(3):915-30
21092180 - BMC Plant Biol. 2010 Nov 22;10 :257
24723396 - J Exp Bot. 2014 Aug;65(16):4491-503
21734113 - Plant Physiol. 2011 Sep;157(1):188-99
References_xml – volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal. Biochem.
– volume: 158
  start-page: 283
  year: 2012
  end-page: 298
  article-title: Suppression of 9‐cis‐epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato
  publication-title: Plant Physiol.
– volume: 163
  start-page: 1729
  year: 2013
  end-page: 1740
  article-title: Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers
  publication-title: Plant Physiol.
– volume: 161
  start-page: 628
  year: 2013
  end-page: 643
  article-title: Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation
  publication-title: Plant Physiol.
– volume: 2
  start-page: 107
  year: 2004
  end-page: 111
  article-title: Content variation of endogenous hormone during fruit developing period of strawberry
  publication-title: Acta Agriculturae Universitatis Jiangxiensis
– volume: 5
  start-page: 26
  year: 2001
  end-page: 32
  article-title: ABA and sugar interactions regulating development: ross‐talk or voices in a crowd?
  publication-title: Curr. Opin. Plant Biol.
– volume: 57
  start-page: 675
  year: 2006
  end-page: 709
  article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms
  publication-title: Annu. Rev. Plant Biol.
– volume: 43
  start-page: 836
  year: 2005
  end-page: 843
  article-title: Molecular cloning, characterization and expression of a novel Asr gene from
  publication-title: Plant Physiol. Biochem.
– volume: 139
  start-page: 1163
  year: 2005
  end-page: 1174
  article-title: Differential expression of sucrose‐phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark‐governed starch mobilization in source leaves
  publication-title: Plant Physiol.
– volume: 26
  start-page: 143
  year: 2007
  end-page: 159
  article-title: Ethylene and fruit ripening
  publication-title: J. Plant Growth Regul.
– volume: 34
  start-page: 383
  year: 2003
  end-page: 392
  article-title: A chemical‐regulated inducible RNAi system in plant
  publication-title: Plant J.
– volume: 27
  start-page: 297
  year: 1999
  end-page: 300
  article-title: Plant cis‐acting regulatory DNA elements (PLACE) database: 1999
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 246
  year: 2004
  end-page: 260
  article-title: Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening
  publication-title: J. Plant Growth Regul.
– volume: 17
  start-page: 2954
  year: 2005
  end-page: 2965
  article-title: Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development
  publication-title: Plant Cell
– volume: 167
  start-page: 1301
  year: 2004
  end-page: 1305
  article-title: Ethylene seems required for the berry development and ripening in grape, a non‐climacteric fruit
  publication-title: Plant Sci.
– volume: 135
  start-page: 1865
  year: 2004
  end-page: 1878
  article-title: Functional characterization of enzymes forming volatile esters from strawberry and banana
  publication-title: Plant Physiol.
– volume: 62
  start-page: 5659
  year: 2011
  end-page: 5669
  article-title: Transcriptional regulation of , , and gene families encoding ABA signal core components during tomato fruit development and drought stress
  publication-title: J. Exp. Bot.
– volume: 204
  start-page: 444
  year: 1998
  end-page: 449
  article-title: A role for jasmonates in climacteric fruit ripening
  publication-title: Planta
– volume: 127
  start-page: 435
  year: 2002
  end-page: 441
  article-title: Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji apples
  publication-title: J. Am. Soc. Hortic. Sci.
– volume: 6
  start-page: 368
  year: 2008
  end-page: 378
  article-title: Tomato ASR1 abrogates the response to abscisic acid and glucose in by competing with ABI4 for DNA binding
  publication-title: Plant Biotechnol. J.
– volume: 81
  start-page: 922
  year: 1986
  end-page: 924
  article-title: Light, temperature and anthocyanin production
  publication-title: Plant Physiol.
– volume: 227
  start-page: 1213
  year: 2008
  end-page: 1219
  article-title: Synergism between the chaperone‐like activity of the stress regulated ASR1 protein and the osmolyte glycine‐betaine
  publication-title: Planta
– volume: 42
  start-page: 16
  year: 2006
  end-page: 22
  article-title: Differential expression of genes during banana fruit development, ripening and 1‐MCP treatment: presence of distinct fruit specific, ethylene induced and ethylene repressed expression
  publication-title: Postharvest Biol. Technol.
– volume: 381
  start-page: 373
  year: 2004
  end-page: 378
  article-title: The water‐ and salt‐stress‐regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc‐dependent DNA‐binding protein
  publication-title: Biochem. J.
– volume: 6
  start-page: 295
  year: 2008
  end-page: 300
  article-title: Fruit‐specific suppression of the ethylene receptor LeETR4 results in early‐ripening tomato fruit
  publication-title: Plant Biotechnol. J.
– volume: 9
  start-page: e107117
  year: 2014
  article-title: Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited
  publication-title: PLoS One
– volume: 43
  start-page: 299
  year: 2005
  end-page: 308
  article-title: Virus‐induced gene silencing in tomato fruit
  publication-title: Plant J.
– volume: 164
  start-page: 1918
  year: 2014
  end-page: 1929
  article-title: Global selection on sucrose synthase haplotypes during a century of wheat breeding
  publication-title: Plant Physiol.
– volume: 60
  start-page: 1579
  year: 2009
  end-page: 1588
  article-title: The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit
  publication-title: J. Exp. Bot.
– volume: 63
  start-page: 1495
  year: 2012
  end-page: 1510
  article-title: Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid
  publication-title: J. Exp. Bot.
– volume: 87
  start-page: 731
  year: 1988
  end-page: 736
  article-title: Sink metabolism in tomato fruit: II. Phloem unloading and sugar uptake
  publication-title: Plant Physiol.
– volume: 53
  start-page: 2039
  year: 2002
  end-page: 2055
  article-title: Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening
  publication-title: J. Exp. Bot.
– volume: 123
  start-page: 5
  year: 2009
  end-page: 10
  article-title: Methyl jasmonate plays a role in fruit ripening of “Pajaro” strawberry through stimulation of ethylene biosynthesis
  publication-title: Sci. Hortic.
– volume: 51
  start-page: 1575
  year: 2000
  end-page: 1584
  article-title: Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: 57
  year: 2004
  end-page: 59
  article-title: Heard it through the grapevine? ABA and sugar cross‐talk: the ASR story
  publication-title: Trends Plant Sci.
– volume: 30
  start-page: 1219
  year: 2011
  article-title: MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis
  publication-title: Plant Cell Rep.
– volume: 15
  start-page: 2165
  year: 2003
  end-page: 2180
  article-title: A grape ASR protein involved in sugar and abscisic acid signaling
  publication-title: Plant Cell
– volume: 378
  start-page: 74
  year: 2006
  end-page: 83
  article-title: Evolutionary history of the Asr gene family
  publication-title: Gene
– volume: 84
  start-page: 1127
  year: 2002
  end-page: 1135
  article-title: Improvement of drought tolerance in maize: towards the functional validation of the zm‐asr1 gene and increase of water use efficiency by over‐expressing c4‐pepc
  publication-title: Biochimie
– volume: 54
  start-page: 387
  year: 2004
  end-page: 404
  article-title: Evidence that CTR1‐mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features
  publication-title: Plant Mol. Biol.
– volume: 59
  start-page: 316
  year: 2009
  end-page: 328
  article-title: SnRK1 (SNF1‐related kinase 1) has a central role in sugar and ABA signalling in
  publication-title: Plant J.
– volume: 51
  start-page: 458
  year: 2007
  end-page: 467
  article-title: Ethylene receptor degradation controls the timing of ripening in tomato fruit
  publication-title: Plant J.
– volume: 10
  start-page: 257
  year: 2010
  article-title: Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest
  publication-title: BMC Plant Biol.
– volume: 6
  start-page: 3901
  year: 1987
  end-page: 3907
  article-title: GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO J.
– volume: 40
  start-page: 47
  year: 2004
  end-page: 59
  article-title: Comprehensive EST analysis of tomato and comparative genomics of fruit ripening
  publication-title: Plant J.
– volume: 102
  start-page: 1353
  year: 1993
  end-page: 1354
  article-title: Tomato ( ) transcript induced by water deficit and ripening
  publication-title: Plant Physiol.
– volume: 115
  start-page: 1288
  year: 1997
  article-title: Molecular cloning and nucleotide sequence of an abscisic acid‐, stress‐, ripening‐induced (ASR)‐like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening. (PGR97‐166)
  publication-title: Plant Physiol.
– volume: 108
  start-page: 1323
  year: 1995
  end-page: 1324
  article-title: Pummelo fruit transcript homologous to ripening‐induced genes
  publication-title: Plant Physiol.
– volume: 194
  start-page: 62
  year: 1994
  end-page: 68
  article-title: Changes in gene expression during strawberry fruit ripening and their regulation by auxin
  publication-title: Planta
– volume: 56
  start-page: 2037
  year: 2005
  end-page: 2046
  article-title: Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non‐climacteric fruits?
  publication-title: J. Exp. Bot.
– volume: 60
  start-page: 2641
  year: 2009
  end-page: 2652
  article-title: The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice ( L.)
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 78
  year: 1968b
  end-page: 82
  article-title: Quantitative methods for anthocyanins: 2. Determination of total anthocyanin and degradation index for cranberry juice
  publication-title: J. Food Sci.
– volume: 174
  start-page: 402
  year: 1988
  end-page: 406
  article-title: Hormonal regulation of ripening in the strawberry, a non‐climacteric fruit
  publication-title: Planta
– volume: 9
  start-page: e1003659
  year: 2013
  article-title: Type I J‐domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity
  publication-title: PLoS Pathog.
– volume: 65
  start-page: 4561
  year: 2014
  end-page: 4575
  article-title: Role of plant hormones and their interplay in development and ripening of fleshy fruits
  publication-title: J. Exp. Bot.
– volume: 63
  start-page: 719
  year: 2007
  end-page: 730
  article-title: / expression influences glucose accumulation in potato tubers
  publication-title: Plant Mol. Biol.
– volume: 10
  start-page: e992751
  year: 2015
  article-title: ASR1 transcription factor and its role in metabolism
  publication-title: Plant Signal Behav.
– volume: 32
  start-page: 227
  year: 1998
  end-page: 254
  article-title: The ethylene gas signaling pathway in plants: a molecular perspective
  publication-title: Annu. Rev. Genet.
– volume: 109
  start-page: 330
  year: 1984
  end-page: 335
  article-title: Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development
  publication-title: J. Am. Soc. Hortic. Sci.
– volume: 59
  start-page: 2611
  year: 2008
  end-page: 2625
  article-title: Multi‐substrate flavonol O‐glucosyltransferases from strawberry (Fragaria × ananassa) achene and receptacle
  publication-title: J. Exp. Bot.
– volume: 64
  start-page: 1471
  year: 2013
  end-page: 1483
  article-title: The strawberry (Fragariaxananassa) fruit‐specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell‐wall middle lamellae
  publication-title: J. Exp. Bot.
– volume: 45
  start-page: 14
  year: 2014
  end-page: 27
  article-title: Hormonal regulation during plant fruit development
  publication-title: Ontogenez
– volume: 4
  start-page: 406
  year: 1987
  end-page: 425
  article-title: Neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Mol. Biol. Evol.
– volume: 96
  start-page: 881
  year: 1991
  end-page: 886
  article-title: Acid and neutral invertases in the mesocarp of developing muskmelon ( L. cv Prince) fruit
  publication-title: Plant Physiol.
– volume: 35
  start-page: 801
  year: 1997
  end-page: 807
  article-title: Expression analysis of a gene family in loblolly pine ( L.) induced by water deficit stress
  publication-title: Plant Mol. Biol.
– volume: 234
  start-page: 785
  year: 2011
  end-page: 798
  article-title: Structure and regulation of the gene family in banana
  publication-title: Planta
– volume: 36
  start-page: 1449
  year: 2013
  end-page: 1464
  article-title: TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco
  publication-title: Plant, Cell Environ.
– volume: 123
  start-page: 314
  year: 2005
  end-page: 320
  article-title: A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal
  publication-title: Physiol. Plant.
– volume: 9
  start-page: 484
  year: 2010
  end-page: 505
  article-title: Jasmonates are phytohormones with multiple functions, including plant defense and reproduction
  publication-title: Genet. Mol. Res.
– volume: 146
  start-page: 95
  year: 1995
  end-page: 102
  article-title: Comparison of sorbitol transport in excised tissue discs and cortex tissue of intact apple fruit
  publication-title: J. Plant Physiol.
– volume: 15
  start-page: 363
  year: 2015
  end-page: 373
  article-title: Upregulation of jasmonate biosynthesis and jasmonate‐responsive genes in rice leaves in response to a bacterial pathogen mimic
  publication-title: Funct. Integr. Genomics
– volume: 139
  start-page: 836
  year: 2005
  end-page: 846
  article-title: A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in
  publication-title: Plant Physiol.
– volume: 45
  start-page: 41
  year: 2011
  end-page: 59
  article-title: Genetics and control of tomato fruit ripening and quality attributes
  publication-title: Annu. Rev. Genet.
– volume: 65
  start-page: 4491
  year: 2014
  end-page: 4503
  article-title: The fruit, the whole fruit, and everything about the fruit
  publication-title: J. Exp. Bot.
– volume: 154
  start-page: 1514
  year: 2010
  end-page: 1531
  article-title: Ethylene suppression of sugar‐induced anthocyanin pigmentation in arabidopsis
  publication-title: Plant Physiol.
– volume: 198
  start-page: 453
  year: 2013
  end-page: 465
  article-title: Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening
  publication-title: New Phytol.
– volume: 76
  start-page: 24
  year: 2013
  end-page: 35
  article-title: The role of in fruit ripening and fungal infection of strawberry
  publication-title: Plant J.
– volume: 57
  start-page: 633
  year: 2006
  end-page: 643
  article-title: Cloning and characterization of two 9‐cis‐epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions from orange ( L. OsbeC)
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 3460
  year: 2004
  end-page: 3479
  article-title: Antagonistic interaction between abscisic acid and jasmonate‐ethylene signaling pathways modulates defense gene expression and disease resistance in
  publication-title: Plant Cell
– volume: 167
  start-page: 915
  year: 2015
  end-page: 930
  article-title: SUCROSE NONFERMENTING1‐RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening
  publication-title: Plant Physiol.
– volume: 167
  start-page: 1486
  year: 2010
  end-page: 1493
  article-title: Cloning and expression analysis of cDNAs for ABA 8'‐hydroxylase during sweet cherry fruit maturation and under stress conditions
  publication-title: J. Plant Physiol.
– volume: 97
  start-page: 139
  year: 1996
  end-page: 148
  article-title: Gene expression under water deficit in loblolly pine ( L.): Isolation and characterization of cDNA clones
  publication-title: Physiol. Plant.
– volume: 33
  start-page: 72
  year: 1968a
  end-page: 77
  article-title: Quantitative methods for anthocyanins: 1. Extraction and determination of total anthocyanin in cranberries
  publication-title: J. Food Sci.
– volume: 23
  start-page: 880
  year: 1988
  end-page: 881
  article-title: Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks
  publication-title: HortScience
– volume: 32
  start-page: 461
  year: 2013
  end-page: 470
  article-title: New evidence for the role of ethylene in strawberry fruit ripening
  publication-title: J. Plant Growth Regul.
– volume: 6
  start-page: e24649
  year: 2011
  article-title: Molecular characterization of a strawberry FaASR gene in relation to fruit ripening
  publication-title: PLoS One
– volume: 162
  start-page: 239
  year: 2002
  end-page: 244
  article-title: Sucrose regulation of ADP‐gulcose pyrophosphorylase subunit genes transcript levels in leaves and fruits
  publication-title: Plant Sci.
– volume: 52
  start-page: 315
  year: 2010
  end-page: 323
  article-title: Characterization of a novel plantain gene, , that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses
  publication-title: J. Integr. Plant Biol.
– volume: 64
  start-page: 3775
  year: 2013
  end-page: 3786
  article-title: A SHATTERPROOF‐like gene controls ripening in non‐climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression
  publication-title: J. Exp. Bot.
– volume: 17
  start-page: 287
  year: 2014
  end-page: 295
  article-title: Molecular cloning and expression analysis of the maasr1 gene in banana and functional characterization under salt stress
  publication-title: Electron. J. Biotechnol.
– volume: 157
  start-page: 188
  year: 2011
  end-page: 199
  article-title: Abscisic acid plays an important role in the regulation of strawberry fruit ripening
  publication-title: Plant Physiol.
– ident: e_1_2_7_41_1
  doi: 10.1093/nar/27.1.297
– ident: e_1_2_7_46_1
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– volume: 115
  start-page: 1288
  year: 1997
  ident: e_1_2_7_65_1
  article-title: Molecular cloning and nucleotide sequence of an abscisic acid‐, stress‐, ripening‐induced (ASR)‐like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening. (PGR97‐166)
  publication-title: Plant Physiol.
– ident: e_1_2_7_90_1
  doi: 10.1104/pp.105.065458
– ident: e_1_2_7_68_1
  doi: 10.1016/j.scienta.2009.07.006
– ident: e_1_2_7_37_1
  doi: 10.1046/j.1365-313X.2003.01723.x
– ident: e_1_2_7_87_1
  doi: 10.1093/jxb/erp114
– ident: e_1_2_7_83_1
  doi: 10.1186/1471-2229-10-257
– ident: e_1_2_7_38_1
  doi: 10.1016/j.postharvbio.2006.05.002
– ident: e_1_2_7_91_1
  doi: 10.1093/jxb/erp026
– ident: e_1_2_7_9_1
  doi: 10.1007/s10142-014-0426-8
– ident: e_1_2_7_29_1
  doi: 10.1016/j.gene.2006.05.010
– ident: e_1_2_7_75_1
  doi: 10.1093/jxb/erj048
– ident: e_1_2_7_16_1
  doi: 10.1104/pp.108.3.1323
– ident: e_1_2_7_56_1
  doi: 10.1007/s00425-008-0693-5
– ident: e_1_2_7_71_1
  doi: 10.1023/A:1005897921567
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1467-7652.2007.00319.x
– ident: e_1_2_7_15_1
  doi: 10.1105/tpc.013854
– ident: e_1_2_7_61_1
  doi: 10.1111/j.1744-7909.2010.00912.x
– ident: e_1_2_7_64_1
  doi: 10.1093/jxb/ert214
– ident: e_1_2_7_79_1
  doi: 10.1093/jxb/err391
– ident: e_1_2_7_13_1
  doi: 10.1016/S0176-1617(11)81973-5
– ident: e_1_2_7_76_1
  doi: 10.1146/annurev.arplant.57.032905.105441
– ident: e_1_2_7_81_1
  doi: 10.1016/j.plaphy.2005.06.010
– ident: e_1_2_7_17_1
  doi: 10.1016/j.tplants.2003.12.004
– ident: e_1_2_7_2_1
  doi: 10.1023/B:PLAN.0000036371.30528.26
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pone.0107117
– ident: e_1_2_7_80_1
  doi: 10.1093/jexbot/51.350.1575
– ident: e_1_2_7_88_1
  doi: 10.1093/jxb/eri202
– ident: e_1_2_7_47_1
  doi: 10.1104/pp.110.161869
– ident: e_1_2_7_49_1
  doi: 10.1111/nph.12176
– ident: e_1_2_7_82_1
  doi: 10.1111/j.1467-7652.2008.00328.x
– ident: e_1_2_7_5_1
  doi: 10.1105/tpc.104.025833
– volume: 127
  start-page: 435
  year: 2002
  ident: e_1_2_7_77_1
  article-title: Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji apples
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.127.3.435
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1365-313X.2004.02188.x
– ident: e_1_2_7_30_1
  doi: 10.1007/s11103-006-9120-0
– ident: e_1_2_7_26_1
  doi: 10.1007/s004250050278
– volume: 45
  start-page: 14
  year: 2014
  ident: e_1_2_7_69_1
  article-title: Hormonal regulation during plant fruit development
  publication-title: Ontogenez
– volume: 4
  start-page: 406
  year: 1987
  ident: e_1_2_7_78_1
  article-title: Neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Mol. Biol. Evol.
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-313X.2009.03871.x
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.113.232454
– ident: e_1_2_7_12_1
  doi: 10.1104/pp.104.042580
– ident: e_1_2_7_57_1
  doi: 10.1093/jxb/eru144
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.111.177311
– ident: e_1_2_7_34_1
  doi: 10.1007/BF00959527
– ident: e_1_2_7_67_1
  doi: 10.1093/jxb/ers386
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.105.069468
– ident: e_1_2_7_66_1
  doi: 10.1016/j.ejbt.2014.09.002
– ident: e_1_2_7_24_1
  doi: 10.4161/15592324.2014.992751
– ident: e_1_2_7_70_1
  doi: 10.1104/pp.112.211094
– ident: e_1_2_7_28_1
  doi: 10.1016/S1369-5266(01)00225-4
– ident: e_1_2_7_4_1
  doi: 10.1093/jxb/erf072
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-313X.2007.03170.x
– ident: e_1_2_7_85_1
  doi: 10.1104/pp.111.186866
– ident: e_1_2_7_74_1
  doi: 10.1016/j.jplph.2010.05.027
– ident: e_1_2_7_43_1
  doi: 10.1111/pce.12074
– ident: e_1_2_7_21_1
  doi: 10.1016/j.plantsci.2004.06.026
– ident: e_1_2_7_11_1
  doi: 10.1007/s00344-007-9002-y
– ident: e_1_2_7_40_1
  doi: 10.1007/s00425-011-1421-0
– volume: 2
  start-page: 107
  year: 2004
  ident: e_1_2_7_92_1
  article-title: Content variation of endogenous hormone during fruit developing period of strawberry
  publication-title: Acta Agriculturae Universitatis Jiangxiensis
– ident: e_1_2_7_55_1
  doi: 10.1146/annurev-genet-110410-132507
– ident: e_1_2_7_84_1
  doi: 10.1093/jxb/err252
– ident: e_1_2_7_3_1
  doi: 10.1105/tpc.105.036053
– volume: 109
  start-page: 330
  year: 1984
  ident: e_1_2_7_8_1
  article-title: Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.109.3.330
– ident: e_1_2_7_36_1
  doi: 10.1093/jxb/ern117
– ident: e_1_2_7_45_1
  doi: 10.1016/S0300-9084(02)00024-X
– ident: e_1_2_7_58_1
  doi: 10.1093/jxb/eru277
– ident: e_1_2_7_72_1
  doi: 10.1007/BF02637265
– ident: e_1_2_7_73_1
  doi: 10.1104/pp.81.3.922
– volume: 23
  start-page: 880
  year: 1988
  ident: e_1_2_7_7_1
  article-title: Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro
  publication-title: HortScience
  doi: 10.21273/HORTSCI.23.5.880
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.ppat.1003659
– ident: e_1_2_7_39_1
  doi: 10.1104/pp.114.251314
– ident: e_1_2_7_14_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_7_23_1
  doi: 10.1104/pp.87.3.731
– ident: e_1_2_7_52_1
  doi: 10.1042/BJ20031800
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pone.0024649
– ident: e_1_2_7_6_1
  doi: 10.1104/pp.96.3.881
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1399-3054.1996.tb00490.x
– ident: e_1_2_7_10_1
  doi: 10.4238/vol9-1gmr754
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2621.1968.tb00887.x
– ident: e_1_2_7_89_1
  doi: 10.1111/j.1399-3054.2005.00454.x
– ident: e_1_2_7_86_1
  doi: 10.1007/s00344-012-9312-6
– ident: e_1_2_7_22_1
  doi: 10.1007/s00299-011-1030-1
– ident: e_1_2_7_62_1
  doi: 10.1104/pp.113.227603
– ident: e_1_2_7_63_1
  doi: 10.1007/BF00201035
– ident: e_1_2_7_44_1
  doi: 10.1104/pp.102.4.1353
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-313X.2005.02441.x
– ident: e_1_2_7_59_1
  doi: 10.1016/S0168-9452(01)00565-9
– ident: e_1_2_7_60_1
  doi: 10.1111/tpj.12272
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2621.1968.tb00888.x
– ident: e_1_2_7_50_1
  doi: 10.1146/annurev.genet.32.1.227
– reference: 12953118 - Plant Cell. 2003 Sep;15(9):2165-80
– reference: 18487633 - J Exp Bot. 2008;59(10):2611-25
– reference: 23250627 - Plant Physiol. 2013 Feb;161(2):628-43
– reference: 17211513 - Plant Mol Biol. 2007 Mar;63(5):719-30
– reference: 11989489 - Plant Sci. 2002 Feb;162(2):239-44
– reference: 24723396 - J Exp Bot. 2014 Aug;65(16):4491-503
– reference: 25720262 - Ontogenez. 2014 Jan-Feb;45(1):14-27
– reference: 16664926 - Plant Physiol. 1986 Jul;81(3):922-4
– reference: 8278555 - Plant Physiol. 1993 Aug;102(4):1353-4
– reference: 9928480 - Annu Rev Genet. 1998;32:227-54
– reference: 24170204 - Plant Physiol. 2013 Dec;163(4):1729-40
– reference: 20377692 - J Integr Plant Biol. 2010 Mar;52(3):315-23
– reference: 16666216 - Plant Physiol. 1988 Jul;87(3):731-6
– reference: 16396998 - J Exp Bot. 2006;57(3):633-43
– reference: 7630961 - Plant Physiol. 1995 Jul;108(3):1323-4
– reference: 16169963 - Plant Physiol. 2005 Oct;139(2):836-46
– reference: 23888065 - J Exp Bot. 2013 Sep;64(12):3775-86
– reference: 20728961 - J Plant Physiol. 2010 Nov 15;167(17):1486-93
– reference: 15998315 - Plant J. 2005 Jul;43(2):299-308
– reference: 16822623 - Gene. 2006 Aug 15;378:74-83
– reference: 21630042 - Planta. 2011 Oct;234(4):785-98
– reference: 24098120 - PLoS Pathog. 2013;9(10):e1003659
– reference: 16668269 - Plant Physiol. 1991 Jul;96(3):881-6
– reference: 19302419 - Plant J. 2009 Jul;59(2):316-28
– reference: 18270732 - Planta. 2008 May;227(6):1213-9
– reference: 15955790 - J Exp Bot. 2005 Aug;56(418):2037-46
– reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25
– reference: 25028558 - J Exp Bot. 2014 Aug;65(16):4561-75
– reference: 19246595 - J Exp Bot. 2009;60(6):1579-88
– reference: 25794140 - Plant Signal Behav. 2015;10(4):e992751
– reference: 20391333 - Genet Mol Res. 2010 Mar 16;9(1):484-505
– reference: 22108525 - Plant Physiol. 2012 Jan;158(1):283-98
– reference: 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300
– reference: 22140241 - J Exp Bot. 2012 Feb;63(3):1495-510
– reference: 21915355 - PLoS One. 2011;6(9):e24649
– reference: 16669778 - Annu Rev Plant Biol. 2006;57:675-709
– reference: 23564958 - J Exp Bot. 2013 Apr;64(6):1471-83
– reference: 25504197 - Funct Integr Genomics. 2015 May;15(3):363-73
– reference: 15284494 - Plant Mol Biol. 2004 Feb;54(3):387-404
– reference: 25310287 - PLoS One. 2014 Oct 13;9(10):e107117
– reference: 18363631 - Plant Biotechnol J. 2008 May;6(4):368-78
– reference: 21873532 - J Exp Bot. 2011 Nov;62(15):5659-69
– reference: 12713544 - Plant J. 2003 May;34(3):383-92
– reference: 23356734 - Plant Cell Environ. 2013 Aug;36(8):1449-64
– reference: 16244140 - Plant Physiol. 2005 Nov;139(3):1163-74
– reference: 20876338 - Plant Physiol. 2010 Nov;154(3):1514-31
– reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
– reference: 15106586 - Trends Plant Sci. 2004 Feb;9(2):57-9
– reference: 15326278 - Plant Physiol. 2004 Aug;135(4):1865-78
– reference: 12595141 - Biochimie. 2002 Nov;84(11):1127-35
– reference: 15361140 - Plant J. 2004 Oct;40(1):47-59
– reference: 16243903 - Plant Cell. 2005 Nov;17(11):2954-65
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 21092180 - BMC Plant Biol. 2010 Nov 22;10 :257
– reference: 16289880 - Plant Physiol Biochem. 2005 Sep;43(9):836-43
– reference: 15548743 - Plant Cell. 2004 Dec;16(12):3460-79
– reference: 25609556 - Plant Physiol. 2015 Mar;167(3):915-30
– reference: 23425297 - New Phytol. 2013 Apr;198(2):453-65
– reference: 11006308 - J Exp Bot. 2000 Sep;51(350):1575-84
– reference: 12324528 - J Exp Bot. 2002 Oct;53(377):2039-55
– reference: 22060040 - Annu Rev Genet. 2011;45:41-59
– reference: 15101820 - Biochem J. 2004 Jul 15;381(Pt 2):373-8
– reference: 24221523 - Planta. 1988 Jun;174(3):402-6
– reference: 24402050 - Plant Physiol. 2014 Apr;164(4):1918-29
– reference: 18086233 - Plant Biotechnol J. 2008 Apr;6(3):295-300
– reference: 21327389 - Plant Cell Rep. 2011 Jul;30(7):1219-30
– reference: 9426600 - Plant Mol Biol. 1997 Dec;35(6):801-7
– reference: 21734113 - Plant Physiol. 2011 Sep;157(1):188-99
– reference: 23802911 - Plant J. 2013 Oct;76(1):24-35
– reference: 17655616 - Plant J. 2007 Aug;51(3):458-67
– reference: 11788304 - Curr Opin Plant Biol. 2002 Feb;5(1):26-32
– reference: 19401410 - J Exp Bot. 2009;60(9):2641-52
SSID ssj0021656
Score 2.5717022
Snippet Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying...
Although great progress has been made towards understanding the role of abscisic acid ( ABA ) and sucrose in fruit ripening, the mechanisms underlying the ABA...
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2045
SubjectTerms Abscisic acid
Abscisic Acid - metabolism
Abscisic Acid - pharmacology
Acetic acid
Binding sites
Cyclopentanes - pharmacology
Fragaria
Fragaria - drug effects
Fragaria - genetics
Fragaria - metabolism
Fragaria ananassa
Fruit - genetics
Fruit - growth & development
Fruit - metabolism
fruit quality
fruiting
Fruits
Gene expression
Gene Expression Regulation, Plant - drug effects
gene overexpression
Genes
Hexose
Hexose transporter
indole acetic acid
Indoleacetic acid
Indoleacetic Acids - pharmacology
Isoforms
Jasmonic acid
Lycopersicon esculentum
Lycopersicon esculentum - drug effects
Lycopersicon esculentum - genetics
Lycopersicon esculentum - growth & development
Metabolism
monosaccharide transport proteins
Morphology
Oxylipins - pharmacology
Physiological aspects
Physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
Regulatory mechanisms (biology)
Ripening
RNA interference
RNA-mediated interference
Signal transduction
Signal Transduction - drug effects
Signaling
Solanum lycopersicum var. lycopersicum
Strawberries
strawberry fruit
Sucrose
Sucrose - metabolism
Sucrose - pharmacology
Sugar
tomato fruit
Tomatoes
transcription (genetics)
transcription factor ASR
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcYvGwPE2MfFBjypknbi7c0ThPnaSoTCCYNoWlIvFkX24VIU1LSVtP-Af5u7mIntAh4aiWfEsd3vg-f73eMfYpBjWwqY-GikREJIC9AGbrhCHlCBju2VJz86zQ9Pk9-XowuwoHbLFyr7HRiq6htbeiM_BvhkscYc8v4-_RaUNcoyq6GFhrP2AaqYIXB18bB4enZ7z7kImwZX1-UiQxNf8AWors806L8itY9lSsW6b5eXjJM9y9NLjuzrTU62mQvgxvJx57vr9iaq7bYi_FlE6A03Gt2M0aVUCITOJjScqgsny1oCo43vgG94_MaHdbaj-Hr_hWuaf7zSbMo5xy1iaNDEx5a-eCv47D8TOELTcQdJRm-Tg1x38rnDTs_Ovzz41iErgvCoKmWQkKUOphQwg9UYSJjKfMKMpER4DrCBC1-7lKVFLmFoZooAzZLC2cx8pAoEPItW6_qym0zDrjdwRSmwJVPKCPa4t3lLood-jWZG7Av3cprEyDJqTPGX92FJsgk3TJpwD72pFOPw_EQ0Wdin6a9ic8xEEoMcDaEcqXH1KCSGgRkA7bXcViHTTvTdyI2YB_6YdxulEOBytWLmcZwLMvbSvzHaWJUbCofqhxf884LTT9nyvOPVIxTzVbEqScguO_Vkaq8amG_CWsuyYe4aK3gPb4M-uzgpP2z8_RX7rLn6P6l_mriHlufNwv3Hl2sebEf9tEtJV0oVw
  priority: 102
  providerName: ProQuest
Title Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12563
https://www.ncbi.nlm.nih.gov/pubmed/27005823
https://www.proquest.com/docview/2290276132
https://www.proquest.com/docview/1827900048
https://www.proquest.com/docview/2053891897
https://pubmed.ncbi.nlm.nih.gov/PMC5043491
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIH3rCFpTIICS6pUidNHHHqoi0LEqtqxUp7QLLGjgsRq3SVJkJw4syJ38gvYcZOQluxEuLSRvI09WNetme-YeyZADnJk0gENpyYIAZcC5CGIhwhi8lgi5ySk98dJ0en8duzydkOe9nlwnh8iP7AjSTD6WsScNCrNSG_0MUIrXNCSJ8Uq0UO0UkPHSUIVcZnFqVBika_RRWiKJ7-lxu2aFsjr5mk7XDJdTfW2aHZTfahG4EPP_k8amo9Mt-2wB3_c4i32I3WP-VTz1C32Y4t77Dr049Vi9Fh77IfU9Q1Ba4uB1PkHMqcrxoaoeWVr2xveb1ET3jp23A0X7Stqq98UTVFzVFNWTqN4W2NIPy2HNbf-ev7T5_Dgg9_qMmqdjqO-zpB99jp7PD9q6OgLekQGPQDoiCCMLGwoNtEkNqEJqdrXYjiKARcKligO5HZRMY6y2EsF9JAniba5ritiZDbovtst1yWdo9xQF0CRhuNixvTdasD08tsKCw6TakdsBfd4irT4p1T2Y1z1e17cHqVm94Be9qTXniQj78RPScOUST4-B4Dbf4C9oYgtNSUql9S9YF0wPY7JlKtRlgpwtUXKTpPYsCe9M0oy3RBA6VdNiuFe700c2n-l9MI1JoyG8sM_-aB58u-zxREMJECu5pucGxPQFjimy1l8clhihOQXZyNcdIcQ14-DWp-8MY9PPx30kfsGvqZiY-B3Ge7ddXYx-jL1XrIroh4jp9y9nrIrh4cHs9Phu5cZOjE-TeoXE7b
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywH2gHhvYQGDQHAxpHaaOAeEyqO07EMcdqW9GcdxIRJKStpqtX-An8NvZCZOsu2K5banVvLIcTzjecQz3wA8F0YNskgK7oKB5aFBXhhlKcPRJCEZbJFRcfL-QTQ-Cr8cD4434E9bC0Npla1OrBV1Vlr6Rv6GcMkFxtxSvJv94tQ1im5X2xYaXix23ekJhmzzt5OPyN8XQow-HX4Y86arALdoiiSXJoicmdKFllGpDWxGN4tGhjIwqDbMFC1a4iIVpklm-mqqrMniKHUZetYSX1jivFfgaihlQidKjT53AR4h2fhqppjH6Gg0SEaUOTRL89foS0Ryzf6dtwIrZvB8iuaq61zbvtFNuNE4rWzopewWbLjiNmwNv1cNcIe7A7-HqIByZDkzNs-YKTI2X9ISHKt8u3vHFiW6x6Ufw8edpK6qTtm0WuYLhrrL0Sca1jQOwl_HzOqc3Je18DNKMrOt0mO-cdBdOLoUbtyDzaIs3DYwg8rF2NSmuPMh3b_W6HqJC4RDLyp2PXjV7ry2DQA69eH4qdtACJmkayb14FlHOvOoH_8iekns06QJcB5rmoIGXA1haukhtcOkdgRxD3ZaDutGRcz1mUD34Gk3jIebbmxM4crlXGPwFyd13f_FNALVqEr6KsHH3PdC062ZsgoGSuBS4zVx6ggIXHx9pMh_1CDjhGwXJn3ctFrwLt4G_fX9pP7z4P9v-QSujQ_39_Te5GD3IVxHxzPySZE7sLmolu4ROneL9HF9ohh8u-wj_BdkQmRB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEL0gHgTKLAgEFxMnbXjxwGhlDZqKEQRolJvy3o9aS0hOziJqv4BfhS_jhl77SYV5dZTIu1ovd6ZnYdn9huA11JH_TTwpINu3zi-Jl7oyHCFo459Ntgy5cvJX8fBwZH_-bh_vAF_mrswXFbZ6MRKUaeF4W_kO4xLLinm9uTO1JZFTPaGH2e_HO4gxZnWpp1GLSKHeH5G4dv8w2iPeP1GyuH-908Hju0w4BgyS57jaTdAPeXklo4S45qUs4za8z1XkwrRU7JuMQaRn8Sp7kXTyOg0DBJMycv26OU9mvcGbIYUFbkd2NzdH0--teEe49rUd5tCJyS3w-IacR3RLMnek2cReGvW8LJNWDGKlws2Vx3pyhIO78Bt68KKQS1zd2ED83uwNTgpLYwH3offA1JHGQmA0CZLhc5TMV_yElCUeMIdw1AsCnKWi3qMHneWYFmei2m5zBaCNBnyBxth2wjRLwq9OqdTX3JxLijZ6DYqUNRthB7A0bXw4yF08iLHxyA0qRptEpPQzvucja2w9mJ0JZJPFWIX3jU7r4yFQ-euHD9VExYRk1TFpC68aklnNQbIv4jeMvsU6wWax2h7vYFWwwhbasDNMbk5QdiF7YbDyiqMuboQ7y68bIfpqHP-RudYLOeKQsEwrlAArqaRpFSjuBfF9JhHtdC0a-Yag34kaanhmji1BAw1vj6SZ6cV5Djj3PlxjzatEryrt0FNdkfVnyf_f8sXcJOOr_oyGh8-hVvkhQZ1heQ2dBblEp-Rp7dIntsjJeDHdZ_iv8IgadM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abscisic+acid+and+sucrose+regulate+tomato+and+strawberry+fruit+ripening+through+the+abscisic+acid-stress-ripening+transcription+factor&rft.jtitle=Plant+biotechnology+journal&rft.au=Jia%2C+Haifeng&rft.au=Jiu%2C+Songtao&rft.au=Zhang%2C+Cheng&rft.au=Wang%2C+Chen&rft.date=2016-10-01&rft.eissn=1467-7652&rft.volume=14&rft.issue=10&rft.spage=2045&rft_id=info:doi/10.1111%2Fpbi.12563&rft_id=info%3Apmid%2F27005823&rft.externalDocID=27005823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon