Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor
Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the...
Saved in:
Published in | Plant biotechnology journal Vol. 14; no. 10; pp. 2045 - 2065 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.10.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole‐3‐acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. |
---|---|
AbstractList | Although great progress has been made towards understanding the role of abscisic acid (
ABA
) and sucrose in fruit ripening, the mechanisms underlying the
ABA
and sucrose signalling pathways remain elusive. In this study, transcription factor
ABA
‐stress‐ripening (
ASR
), which is involved in the transduction of
ABA
and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four
ASR
isoforms in tomato and one in strawberry. All
ASR
sequences contained the
ABA
stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (
ABA
/
WDS
) domain and all
ASR
transcripts showed increased expression during fruit development. The expression of the
ASR
gene was influenced not only by sucrose and
ABA
, but also by jasmonic acid (
JA
) and indole‐3‐acetic acid (
IAA
), and these four factors were correlated with each other during fruit development.
ASR
bound the hexose transporter (
HT
) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the
ASR
gene promoted fruit softening and ripening, whereas
RNA
interference delayed fruit ripening, as well as affected fruit physiological changes. Change in
ASR
gene expression influenced the expression of several ripening‐related genes such as
CHS
,
CHI
,
F3H
,
DFR
,
ANS
,
UFGT
,
PG
,
PL
,
EXP
1/2
,
XET
16
,
Cel1/2
and
PME
. Taken together, this study may provide new evidence on the important role of
ASR
in cross‐signalling between
ABA
and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. Summary Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA‐stress‐ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress‐ and ripening‐induced proteins and water‐deficit stress‐induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole‐3‐acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening‐related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross‐signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. |
Audience | Academic |
Author | Cui, Liwen Jia, Haifeng Zhang, Cheng Liu, Zhongjie Tariq, Pervaiz Wang, Chen Jiu, Songtao Wang, Baoju Fang, Jinggui |
AuthorAffiliation | 1 Key Laboratory of Genetics and Fruit Development Horticultural College Nanjing Agricultural University Nanjing China |
AuthorAffiliation_xml | – name: 1 Key Laboratory of Genetics and Fruit Development Horticultural College Nanjing Agricultural University Nanjing China |
Author_xml | – sequence: 1 givenname: Haifeng surname: Jia fullname: Jia, Haifeng organization: Nanjing Agricultural University – sequence: 2 givenname: Songtao surname: Jiu fullname: Jiu, Songtao organization: Nanjing Agricultural University – sequence: 3 givenname: Cheng surname: Zhang fullname: Zhang, Cheng organization: Nanjing Agricultural University – sequence: 4 givenname: Chen surname: Wang fullname: Wang, Chen organization: Nanjing Agricultural University – sequence: 5 givenname: Pervaiz surname: Tariq fullname: Tariq, Pervaiz organization: Nanjing Agricultural University – sequence: 6 givenname: Zhongjie surname: Liu fullname: Liu, Zhongjie organization: Nanjing Agricultural University – sequence: 7 givenname: Baoju surname: Wang fullname: Wang, Baoju organization: Nanjing Agricultural University – sequence: 8 givenname: Liwen surname: Cui fullname: Cui, Liwen organization: Nanjing Agricultural University – sequence: 9 givenname: Jinggui surname: Fang fullname: Fang, Jinggui email: Fanggg@njau.edu.cn organization: Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27005823$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURC-w4AVQJDawmKkvie1skIaKS6VKsIC1deKcZFwl9mAnVLNj3VWfkSfBQ8pQKgHxwnb8nV__sf_j7MB5h1n2lJIlTd_pprZLykrBH2RHtBByIUXJDvbrojjMjmO8JIRRUYpH2SGThJSK8aPselVHY6M1ORjb5OCaPE4m-Ih5wG7qYcR89AOMfj4bA1zVGMI2b8NkxzzYDTrrunxcBz916zRjDnc1v3-7SVUYY1r8pgO4aNJ2tN7lLZjRh8fZwxb6iE9u55Ps89s3n87eLy4-vDs_W10sjKAFX3AgAqEVvJKgakNMI8qKAS84gdQwtLRkFQpV1FUDVLXKQCNFjY0sFUdj-En2atbdTPWAjUGX3PR6E-wAYas9WP3nibNr3fmvuiQFLyqaBF7cCgT_ZcI46sFGg30PDv0UNSMlVxVVlfwvShWTFSGkUAl9fg-99FNw6SY0YxVhUlDOErWcqQ561Na1Plk0aTQ4WJNi0dr0fyU5p4IqsXPw7G63-zZ_RSABL2dg9-oxYLtHKNG7eOkUL_0zXok9vccaO8LuDZML2_-r4ir52v5dWn98fT5X_ACL4eXL |
CitedBy_id | crossref_primary_10_1016_j_scienta_2022_111114 crossref_primary_10_1007_s12223_024_01211_x crossref_primary_10_1111_pbi_13543 crossref_primary_10_5010_JPB_2018_45_2_090 crossref_primary_10_1007_s10570_020_03607_7 crossref_primary_10_3389_fpls_2022_1023739 crossref_primary_10_1007_s10725_020_00582_8 crossref_primary_10_3390_agronomy12123227 crossref_primary_10_3389_fpls_2018_01259 crossref_primary_10_1016_j_envexpbot_2025_106133 crossref_primary_10_1186_s12870_019_2126_y crossref_primary_10_1111_tpj_70050 crossref_primary_10_3389_fpls_2019_00136 crossref_primary_10_1016_j_plaphy_2019_12_023 crossref_primary_10_1186_s12870_019_1931_7 crossref_primary_10_1016_S2095_3119_20_63381_0 crossref_primary_10_1186_s12870_022_03670_1 crossref_primary_10_1007_s00344_023_11195_6 crossref_primary_10_1038_s41438_020_0252_1 crossref_primary_10_1093_jxb_erac043 crossref_primary_10_1002_csc2_21076 crossref_primary_10_1093_aob_mcy057 crossref_primary_10_1016_j_foodchem_2020_126407 crossref_primary_10_1111_ppl_12759 crossref_primary_10_1186_s12870_019_1942_4 crossref_primary_10_1093_plphys_kiae599 crossref_primary_10_1021_acs_jafc_2c05483 crossref_primary_10_1371_journal_pone_0225886 crossref_primary_10_1016_j_indcrop_2022_114796 crossref_primary_10_3390_genes13061064 crossref_primary_10_1007_s11240_017_1246_z crossref_primary_10_1111_tpj_16862 crossref_primary_10_3389_fpls_2023_1279031 crossref_primary_10_48130_FruRes_2023_0015 crossref_primary_10_3390_ijms251910283 crossref_primary_10_1016_j_plantsci_2019_02_006 crossref_primary_10_3390_genes11050580 crossref_primary_10_3390_ijms23095201 crossref_primary_10_1016_j_postharvbio_2020_111301 crossref_primary_10_3390_ijms25021178 crossref_primary_10_3390_ijms25020760 crossref_primary_10_1111_mpp_12794 crossref_primary_10_1016_j_envexpbot_2020_104251 crossref_primary_10_1038_s41467_024_55294_8 crossref_primary_10_1016_j_fbio_2024_104054 crossref_primary_10_1021_acs_jafc_7b04252 crossref_primary_10_1093_plcell_koab070 crossref_primary_10_1002_agj2_20545 crossref_primary_10_1007_s42729_022_01116_z crossref_primary_10_48130_vegres_0024_0018 crossref_primary_10_1093_hr_uhac089 crossref_primary_10_1016_j_plantsci_2019_110339 crossref_primary_10_1016_j_scienta_2019_109020 crossref_primary_10_1016_j_jplph_2020_153309 crossref_primary_10_3390_ijms23010101 crossref_primary_10_1016_j_scienta_2019_108850 crossref_primary_10_3390_plants11182354 crossref_primary_10_3390_cells8091029 crossref_primary_10_3390_agronomy10020245 crossref_primary_10_1186_s12870_019_1719_9 crossref_primary_10_1016_j_envexpbot_2021_104667 crossref_primary_10_1016_j_scienta_2020_109196 crossref_primary_10_1038_s41598_023_41311_1 crossref_primary_10_1042_BCJ20170866 crossref_primary_10_1093_jxb_eraa350 crossref_primary_10_3390_agronomy11101947 crossref_primary_10_3389_fpls_2020_619953 crossref_primary_10_1016_j_plaphy_2023_01_031 crossref_primary_10_1007_s11101_023_09907_7 crossref_primary_10_3389_fpls_2021_711725 crossref_primary_10_1079_cabireviews_2024_0052 crossref_primary_10_1016_j_scienta_2021_109999 crossref_primary_10_3390_ijms22126294 crossref_primary_10_1371_journal_pone_0180600 crossref_primary_10_1080_21655979_2019_1710932 crossref_primary_10_1016_j_fbio_2021_100896 crossref_primary_10_1016_j_plaphy_2023_108037 crossref_primary_10_1016_j_scienta_2023_111827 crossref_primary_10_3389_fgene_2021_792250 crossref_primary_10_1007_s00344_021_10564_3 crossref_primary_10_1016_j_plaphy_2024_108684 crossref_primary_10_1002_tpg2_20181 crossref_primary_10_1016_j_plantsci_2018_07_012 crossref_primary_10_1146_annurev_phyto_021722_035135 crossref_primary_10_1038_s41598_025_85821_6 crossref_primary_10_1111_pce_14885 crossref_primary_10_1016_j_copbio_2022_102872 crossref_primary_10_3390_agronomy11040737 crossref_primary_10_3390_ijms23147757 crossref_primary_10_1111_pbi_14297 crossref_primary_10_1021_acs_jafc_2c08157 crossref_primary_10_3389_fpls_2018_00759 crossref_primary_10_1016_j_jplph_2019_05_005 crossref_primary_10_1155_2019_9203057 crossref_primary_10_1093_plphys_kiad294 crossref_primary_10_3390_agronomy14112494 crossref_primary_10_3389_fpls_2020_543958 crossref_primary_10_1016_j_plantsci_2022_111572 crossref_primary_10_1002_aesr_202300175 crossref_primary_10_1016_j_foodchem_2020_128838 crossref_primary_10_31857_S001533032360002X crossref_primary_10_1016_j_plaphy_2021_12_022 crossref_primary_10_5010_JPB_2017_44_2_178 crossref_primary_10_3390_ijms22168799 crossref_primary_10_1093_plphys_kiad160 crossref_primary_10_1016_j_scienta_2021_110159 crossref_primary_10_1007_s12298_022_01166_8 crossref_primary_10_1080_14620316_2019_1635535 crossref_primary_10_1016_j_scienta_2021_110709 crossref_primary_10_1186_s43897_023_00056_1 crossref_primary_10_1016_j_scienta_2024_113259 crossref_primary_10_1016_j_hpj_2023_09_010 crossref_primary_10_3389_fpls_2023_1092654 crossref_primary_10_1093_molbev_msaa027 crossref_primary_10_1134_S1021443722020236 crossref_primary_10_7717_peerj_10739 crossref_primary_10_1371_journal_pone_0196953 crossref_primary_10_3389_fpls_2023_1138865 crossref_primary_10_3390_ijms21030921 crossref_primary_10_1111_tpj_16257 crossref_primary_10_1016_j_postharvbio_2023_112719 crossref_primary_10_1016_j_postharvbio_2018_12_013 crossref_primary_10_1016_j_plantsci_2020_110634 crossref_primary_10_1016_j_postharvbio_2020_111252 crossref_primary_10_1016_j_plantsci_2022_111287 crossref_primary_10_3389_fpls_2019_01752 crossref_primary_10_1093_plphys_kiae510 crossref_primary_10_1111_pbi_12756 crossref_primary_10_1007_s00425_020_03489_w crossref_primary_10_1093_jxb_erab269 crossref_primary_10_3389_fpls_2018_00592 crossref_primary_10_1016_j_plaphy_2017_05_010 crossref_primary_10_1186_s12870_017_1093_4 crossref_primary_10_3390_agronomy13051249 crossref_primary_10_3389_fgene_2021_683904 crossref_primary_10_1007_s11816_021_00738_6 crossref_primary_10_3390_horticulturae8100905 crossref_primary_10_1093_hr_uhab042 crossref_primary_10_1016_j_indcrop_2020_112788 crossref_primary_10_1021_acs_jafc_9b07740 crossref_primary_10_3389_fhort_2024_1353070 crossref_primary_10_3390_plants9020166 crossref_primary_10_1016_j_scienta_2021_109919 crossref_primary_10_1016_j_hpj_2021_06_005 crossref_primary_10_3389_fpls_2017_00475 crossref_primary_10_1186_s12870_017_1043_1 crossref_primary_10_1016_j_postharvbio_2022_111913 crossref_primary_10_3390_plants14060970 crossref_primary_10_1021_acs_jafc_8b03951 crossref_primary_10_1186_s43170_020_00021_8 crossref_primary_10_1016_j_jplph_2023_154120 crossref_primary_10_1016_j_jfca_2022_104398 crossref_primary_10_3389_fpls_2020_564917 crossref_primary_10_3389_fpls_2022_1066142 crossref_primary_10_1186_s12870_021_03421_8 crossref_primary_10_1038_s41598_020_65275_8 crossref_primary_10_48130_frures_0024_0003 crossref_primary_10_1093_plphys_kiad119 crossref_primary_10_1016_j_postharvbio_2023_112532 crossref_primary_10_1016_j_postharvbio_2021_111688 crossref_primary_10_3389_fpls_2023_1117156 crossref_primary_10_1007_s42994_021_00061_2 crossref_primary_10_1016_j_jafr_2025_101841 crossref_primary_10_1016_j_scienta_2024_113460 crossref_primary_10_3390_plants8120577 crossref_primary_10_1007_s00344_017_9710_x crossref_primary_10_1007_s00344_017_9695_5 crossref_primary_10_1111_ppl_13648 crossref_primary_10_1016_j_eng_2020_07_029 crossref_primary_10_1016_j_envexpbot_2019_103855 crossref_primary_10_1016_j_foodchem_2019_03_042 crossref_primary_10_1186_s12915_022_01391_3 crossref_primary_10_3389_fpls_2020_00995 crossref_primary_10_1093_pcp_pcaa118 crossref_primary_10_1093_plphys_kiad106 crossref_primary_10_1016_j_scienta_2023_112545 crossref_primary_10_3390_ijms242115815 crossref_primary_10_3390_foods12203795 crossref_primary_10_1111_mpp_70028 crossref_primary_10_1016_j_plantsci_2021_110925 crossref_primary_10_1093_jxb_erad484 crossref_primary_10_1021_acs_jafc_1c06391 crossref_primary_10_3390_foods10040896 crossref_primary_10_1007_s00438_019_01629_w crossref_primary_10_1016_j_scienta_2024_113248 crossref_primary_10_1111_pbi_13257 crossref_primary_10_3390_ijms252212024 crossref_primary_10_1016_j_carbpol_2024_122536 crossref_primary_10_1016_j_cpb_2016_09_002 crossref_primary_10_3389_fpls_2020_00174 crossref_primary_10_1007_s10142_022_00885_1 crossref_primary_10_1016_j_sajb_2019_07_002 crossref_primary_10_1007_s00344_019_09934_9 crossref_primary_10_1007_s42773_024_00336_z crossref_primary_10_3389_fpls_2022_1022369 crossref_primary_10_1016_j_postharvbio_2022_111835 crossref_primary_10_1134_S102144372360023X crossref_primary_10_1111_tpj_70021 |
Cites_doi | 10.1093/nar/27.1.297 10.1002/j.1460-2075.1987.tb02730.x 10.1104/pp.105.065458 10.1016/j.scienta.2009.07.006 10.1046/j.1365-313X.2003.01723.x 10.1093/jxb/erp114 10.1186/1471-2229-10-257 10.1016/j.postharvbio.2006.05.002 10.1093/jxb/erp026 10.1007/s10142-014-0426-8 10.1016/j.gene.2006.05.010 10.1093/jxb/erj048 10.1104/pp.108.3.1323 10.1007/s00425-008-0693-5 10.1023/A:1005897921567 10.1111/j.1467-7652.2007.00319.x 10.1105/tpc.013854 10.1111/j.1744-7909.2010.00912.x 10.1093/jxb/ert214 10.1093/jxb/err391 10.1016/S0176-1617(11)81973-5 10.1146/annurev.arplant.57.032905.105441 10.1016/j.plaphy.2005.06.010 10.1016/j.tplants.2003.12.004 10.1023/B:PLAN.0000036371.30528.26 10.1371/journal.pone.0107117 10.1093/jexbot/51.350.1575 10.1093/jxb/eri202 10.1104/pp.110.161869 10.1111/nph.12176 10.1111/j.1467-7652.2008.00328.x 10.1105/tpc.104.025833 10.21273/JASHS.127.3.435 10.1111/j.1365-313X.2004.02188.x 10.1007/s11103-006-9120-0 10.1007/s004250050278 10.1111/j.1365-313X.2009.03871.x 10.1104/pp.113.232454 10.1104/pp.104.042580 10.1093/jxb/eru144 10.1104/pp.111.177311 10.1007/BF00959527 10.1093/jxb/ers386 10.1104/pp.105.069468 10.1016/j.ejbt.2014.09.002 10.4161/15592324.2014.992751 10.1104/pp.112.211094 10.1016/S1369-5266(01)00225-4 10.1093/jxb/erf072 10.1111/j.1365-313X.2007.03170.x 10.1104/pp.111.186866 10.1016/j.jplph.2010.05.027 10.1111/pce.12074 10.1016/j.plantsci.2004.06.026 10.1007/s00344-007-9002-y 10.1007/s00425-011-1421-0 10.1146/annurev-genet-110410-132507 10.1093/jxb/err252 10.1105/tpc.105.036053 10.21273/JASHS.109.3.330 10.1093/jxb/ern117 10.1016/S0300-9084(02)00024-X 10.1093/jxb/eru277 10.1007/BF02637265 10.1104/pp.81.3.922 10.21273/HORTSCI.23.5.880 10.1371/journal.ppat.1003659 10.1104/pp.114.251314 10.1016/0003-2697(76)90527-3 10.1104/pp.87.3.731 10.1042/BJ20031800 10.1371/journal.pone.0024649 10.1104/pp.96.3.881 10.1111/j.1399-3054.1996.tb00490.x 10.4238/vol9-1gmr754 10.1111/j.1365-2621.1968.tb00887.x 10.1111/j.1399-3054.2005.00454.x 10.1007/s00344-012-9312-6 10.1007/s00299-011-1030-1 10.1104/pp.113.227603 10.1007/BF00201035 10.1104/pp.102.4.1353 10.1111/j.1365-313X.2005.02441.x 10.1016/S0168-9452(01)00565-9 10.1111/tpj.12272 10.1111/j.1365-2621.1968.tb00888.x 10.1146/annurev.genet.32.1.227 |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. COPYRIGHT 2016 John Wiley & Sons, Inc. 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: COPYRIGHT 2016 John Wiley & Sons, Inc. – notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7TM 7S9 L.6 5PM |
DOI | 10.1111/pbi.12563 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Haifeng Jia et al |
EISSN | 1467-7652 |
EndPage | 2065 |
ExternalDocumentID | PMC5043491 A733161867 27005823 10_1111_pbi_12563 PBI12563 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: China National Natural Science Fund funderid: 31401847 – fundername: Jiangsu Natural Science Fund funderid: BK20140707 – fundername: China Postdoctoral Science Fund funderid: 2014M561663 – fundername: Fundamental Research Funds for the Central Universities funderid: KJQN201541 – fundername: China National Natural Science Fund grantid: 31401847 – fundername: China Postdoctoral Science Fund grantid: 2014M561663 – fundername: Jiangsu Natural Science Fund grantid: BK20140707 – fundername: Fundamental Research Funds for the Central Universities grantid: KJQN201541 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7TM 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6143-3a06eaf6397a8bc0cd6592a3430a146af1529e684b9da18f8cad76bed7583ecc3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 |
IngestDate | Thu Aug 21 14:00:05 EDT 2025 Fri Jul 11 18:35:14 EDT 2025 Fri Jul 11 05:13:57 EDT 2025 Wed Aug 13 02:33:06 EDT 2025 Tue Jun 10 20:23:27 EDT 2025 Thu Apr 03 07:11:21 EDT 2025 Tue Jul 01 02:34:39 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Wed Jan 22 16:27:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | abscisic acid tomato fruit sucrose strawberry fruit transcription factor ASR |
Language | English |
License | Attribution 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6143-3a06eaf6397a8bc0cd6592a3430a146af1529e684b9da18f8cad76bed7583ecc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12563 |
PMID | 27005823 |
PQID | 2290276132 |
PQPubID | 1096352 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043491 proquest_miscellaneous_2053891897 proquest_miscellaneous_1827900048 proquest_journals_2290276132 gale_infotracacademiconefile_A733161867 pubmed_primary_27005823 crossref_primary_10_1111_pbi_12563 crossref_citationtrail_10_1111_pbi_12563 wiley_primary_10_1111_pbi_12563_PBI12563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2004; 167 1997; 115 2010; 10 2011; 234 2011; 157 2002; 53 1991; 96 1987; 4 1987; 6 2013; 64 2004; 23 2011; 62 2004; 9 2005; 139 2000; 51 2003; 15 2008; 227 2013; 163 2008; 6 2004; 2 2013; 161 2013; 9 2006; 378 2014; 65 1986; 81 2004; 135 2002; 84 1976; 72 1988; 87 2010; 154 2009; 123 1988; 174 2013; 198 1998; 204 2007; 63 2014; 17 2014; 9 2014; 164 2009; 59 2010; 9 2007; 26 2012; 63 1968b; 33 2015; 15 2004; 40 2006; 57 2009; 60 2015; 167 1999; 27 2004; 381 1994; 194 2010; 167 2015; 10 2011; 30 2008; 59 1984; 109 1968a; 33 2005; 43 2007; 51 1993; 102 2011; 6 2014; 45 1996; 97 2003; 34 2004; 54 2006; 42 2013; 36 2013; 76 2013; 32 2004; 16 2001; 5 2002; 162 2005; 123 1995; 108 1997; 35 1988; 23 2002; 127 1995; 146 2011; 45 2012; 158 2005; 17 1998; 32 2010; 52 2005; 56 Obrucheva N.V. (e_1_2_7_69_1) 2014; 45 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Saitou N. (e_1_2_7_78_1) 1987; 4 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Rudell D.R. (e_1_2_7_77_1) 2002; 127 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 Zhong X.H. (e_1_2_7_92_1) 2004; 2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Archbold D.D. (e_1_2_7_8_1) 1984; 109 Mbeguie A.M.D. (e_1_2_7_65_1) 1997; 115 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Archbold D.D. (e_1_2_7_7_1) 1988; 23 22060040 - Annu Rev Genet. 2011;45:41-59 15326278 - Plant Physiol. 2004 Aug;135(4):1865-78 20391333 - Genet Mol Res. 2010 Mar 16;9(1):484-505 12713544 - Plant J. 2003 May;34(3):383-92 18363631 - Plant Biotechnol J. 2008 May;6(4):368-78 25310287 - PLoS One. 2014 Oct 13;9(10):e107117 18270732 - Planta. 2008 May;227(6):1213-9 25028558 - J Exp Bot. 2014 Aug;65(16):4561-75 15361140 - Plant J. 2004 Oct;40(1):47-59 17655616 - Plant J. 2007 Aug;51(3):458-67 12595141 - Biochimie. 2002 Nov;84(11):1127-35 22108525 - Plant Physiol. 2012 Jan;158(1):283-98 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 15998315 - Plant J. 2005 Jul;43(2):299-308 19401410 - J Exp Bot. 2009;60(9):2641-52 19246595 - J Exp Bot. 2009;60(6):1579-88 16169963 - Plant Physiol. 2005 Oct;139(2):836-46 24170204 - Plant Physiol. 2013 Dec;163(4):1729-40 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300 24402050 - Plant Physiol. 2014 Apr;164(4):1918-29 21873532 - J Exp Bot. 2011 Nov;62(15):5659-69 15548743 - Plant Cell. 2004 Dec;16(12):3460-79 7630961 - Plant Physiol. 1995 Jul;108(3):1323-4 21630042 - Planta. 2011 Oct;234(4):785-98 23356734 - Plant Cell Environ. 2013 Aug;36(8):1449-64 21915355 - PLoS One. 2011;6(9):e24649 20876338 - Plant Physiol. 2010 Nov;154(3):1514-31 18487633 - J Exp Bot. 2008;59(10):2611-25 20377692 - J Integr Plant Biol. 2010 Mar;52(3):315-23 8278555 - Plant Physiol. 1993 Aug;102(4):1353-4 25794140 - Plant Signal Behav. 2015;10(4):e992751 11006308 - J Exp Bot. 2000 Sep;51(350):1575-84 16244140 - Plant Physiol. 2005 Nov;139(3):1163-74 17211513 - Plant Mol Biol. 2007 Mar;63(5):719-30 19302419 - Plant J. 2009 Jul;59(2):316-28 18086233 - Plant Biotechnol J. 2008 Apr;6(3):295-300 12953118 - Plant Cell. 2003 Sep;15(9):2165-80 16664926 - Plant Physiol. 1986 Jul;81(3):922-4 25720262 - Ontogenez. 2014 Jan-Feb;45(1):14-27 12324528 - J Exp Bot. 2002 Oct;53(377):2039-55 11989489 - Plant Sci. 2002 Feb;162(2):239-44 16666216 - Plant Physiol. 1988 Jul;87(3):731-6 22140241 - J Exp Bot. 2012 Feb;63(3):1495-510 16289880 - Plant Physiol Biochem. 2005 Sep;43(9):836-43 23250627 - Plant Physiol. 2013 Feb;161(2):628-43 16669778 - Annu Rev Plant Biol. 2006;57:675-709 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 16822623 - Gene. 2006 Aug 15;378:74-83 15101820 - Biochem J. 2004 Jul 15;381(Pt 2):373-8 16243903 - Plant Cell. 2005 Nov;17(11):2954-65 942051 - Anal Biochem. 1976 May 7;72:248-54 15106586 - Trends Plant Sci. 2004 Feb;9(2):57-9 16668269 - Plant Physiol. 1991 Jul;96(3):881-6 20728961 - J Plant Physiol. 2010 Nov 15;167(17):1486-93 25504197 - Funct Integr Genomics. 2015 May;15(3):363-73 23888065 - J Exp Bot. 2013 Sep;64(12):3775-86 24221523 - Planta. 1988 Jun;174(3):402-6 9928480 - Annu Rev Genet. 1998;32:227-54 23425297 - New Phytol. 2013 Apr;198(2):453-65 21327389 - Plant Cell Rep. 2011 Jul;30(7):1219-30 23564958 - J Exp Bot. 2013 Apr;64(6):1471-83 11788304 - Curr Opin Plant Biol. 2002 Feb;5(1):26-32 23802911 - Plant J. 2013 Oct;76(1):24-35 16396998 - J Exp Bot. 2006;57(3):633-43 24098120 - PLoS Pathog. 2013;9(10):e1003659 15955790 - J Exp Bot. 2005 Aug;56(418):2037-46 9426600 - Plant Mol Biol. 1997 Dec;35(6):801-7 15284494 - Plant Mol Biol. 2004 Feb;54(3):387-404 25609556 - Plant Physiol. 2015 Mar;167(3):915-30 21092180 - BMC Plant Biol. 2010 Nov 22;10 :257 24723396 - J Exp Bot. 2014 Aug;65(16):4491-503 21734113 - Plant Physiol. 2011 Sep;157(1):188-99 |
References_xml | – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal. Biochem. – volume: 158 start-page: 283 year: 2012 end-page: 298 article-title: Suppression of 9‐cis‐epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato publication-title: Plant Physiol. – volume: 163 start-page: 1729 year: 2013 end-page: 1740 article-title: Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers publication-title: Plant Physiol. – volume: 161 start-page: 628 year: 2013 end-page: 643 article-title: Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation publication-title: Plant Physiol. – volume: 2 start-page: 107 year: 2004 end-page: 111 article-title: Content variation of endogenous hormone during fruit developing period of strawberry publication-title: Acta Agriculturae Universitatis Jiangxiensis – volume: 5 start-page: 26 year: 2001 end-page: 32 article-title: ABA and sugar interactions regulating development: ross‐talk or voices in a crowd? publication-title: Curr. Opin. Plant Biol. – volume: 57 start-page: 675 year: 2006 end-page: 709 article-title: Sugar sensing and signaling in plants: conserved and novel mechanisms publication-title: Annu. Rev. Plant Biol. – volume: 43 start-page: 836 year: 2005 end-page: 843 article-title: Molecular cloning, characterization and expression of a novel Asr gene from publication-title: Plant Physiol. Biochem. – volume: 139 start-page: 1163 year: 2005 end-page: 1174 article-title: Differential expression of sucrose‐phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark‐governed starch mobilization in source leaves publication-title: Plant Physiol. – volume: 26 start-page: 143 year: 2007 end-page: 159 article-title: Ethylene and fruit ripening publication-title: J. Plant Growth Regul. – volume: 34 start-page: 383 year: 2003 end-page: 392 article-title: A chemical‐regulated inducible RNAi system in plant publication-title: Plant J. – volume: 27 start-page: 297 year: 1999 end-page: 300 article-title: Plant cis‐acting regulatory DNA elements (PLACE) database: 1999 publication-title: Nucleic Acids Res. – volume: 23 start-page: 246 year: 2004 end-page: 260 article-title: Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening publication-title: J. Plant Growth Regul. – volume: 17 start-page: 2954 year: 2005 end-page: 2965 article-title: Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development publication-title: Plant Cell – volume: 167 start-page: 1301 year: 2004 end-page: 1305 article-title: Ethylene seems required for the berry development and ripening in grape, a non‐climacteric fruit publication-title: Plant Sci. – volume: 135 start-page: 1865 year: 2004 end-page: 1878 article-title: Functional characterization of enzymes forming volatile esters from strawberry and banana publication-title: Plant Physiol. – volume: 62 start-page: 5659 year: 2011 end-page: 5669 article-title: Transcriptional regulation of , , and gene families encoding ABA signal core components during tomato fruit development and drought stress publication-title: J. Exp. Bot. – volume: 204 start-page: 444 year: 1998 end-page: 449 article-title: A role for jasmonates in climacteric fruit ripening publication-title: Planta – volume: 127 start-page: 435 year: 2002 end-page: 441 article-title: Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji apples publication-title: J. Am. Soc. Hortic. Sci. – volume: 6 start-page: 368 year: 2008 end-page: 378 article-title: Tomato ASR1 abrogates the response to abscisic acid and glucose in by competing with ABI4 for DNA binding publication-title: Plant Biotechnol. J. – volume: 81 start-page: 922 year: 1986 end-page: 924 article-title: Light, temperature and anthocyanin production publication-title: Plant Physiol. – volume: 227 start-page: 1213 year: 2008 end-page: 1219 article-title: Synergism between the chaperone‐like activity of the stress regulated ASR1 protein and the osmolyte glycine‐betaine publication-title: Planta – volume: 42 start-page: 16 year: 2006 end-page: 22 article-title: Differential expression of genes during banana fruit development, ripening and 1‐MCP treatment: presence of distinct fruit specific, ethylene induced and ethylene repressed expression publication-title: Postharvest Biol. Technol. – volume: 381 start-page: 373 year: 2004 end-page: 378 article-title: The water‐ and salt‐stress‐regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc‐dependent DNA‐binding protein publication-title: Biochem. J. – volume: 6 start-page: 295 year: 2008 end-page: 300 article-title: Fruit‐specific suppression of the ethylene receptor LeETR4 results in early‐ripening tomato fruit publication-title: Plant Biotechnol. J. – volume: 9 start-page: e107117 year: 2014 article-title: Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited publication-title: PLoS One – volume: 43 start-page: 299 year: 2005 end-page: 308 article-title: Virus‐induced gene silencing in tomato fruit publication-title: Plant J. – volume: 164 start-page: 1918 year: 2014 end-page: 1929 article-title: Global selection on sucrose synthase haplotypes during a century of wheat breeding publication-title: Plant Physiol. – volume: 60 start-page: 1579 year: 2009 end-page: 1588 article-title: The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit publication-title: J. Exp. Bot. – volume: 63 start-page: 1495 year: 2012 end-page: 1510 article-title: Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid publication-title: J. Exp. Bot. – volume: 87 start-page: 731 year: 1988 end-page: 736 article-title: Sink metabolism in tomato fruit: II. Phloem unloading and sugar uptake publication-title: Plant Physiol. – volume: 53 start-page: 2039 year: 2002 end-page: 2055 article-title: Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening publication-title: J. Exp. Bot. – volume: 123 start-page: 5 year: 2009 end-page: 10 article-title: Methyl jasmonate plays a role in fruit ripening of “Pajaro” strawberry through stimulation of ethylene biosynthesis publication-title: Sci. Hortic. – volume: 51 start-page: 1575 year: 2000 end-page: 1584 article-title: Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene publication-title: J. Exp. Bot. – volume: 9 start-page: 57 year: 2004 end-page: 59 article-title: Heard it through the grapevine? ABA and sugar cross‐talk: the ASR story publication-title: Trends Plant Sci. – volume: 30 start-page: 1219 year: 2011 article-title: MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis publication-title: Plant Cell Rep. – volume: 15 start-page: 2165 year: 2003 end-page: 2180 article-title: A grape ASR protein involved in sugar and abscisic acid signaling publication-title: Plant Cell – volume: 378 start-page: 74 year: 2006 end-page: 83 article-title: Evolutionary history of the Asr gene family publication-title: Gene – volume: 84 start-page: 1127 year: 2002 end-page: 1135 article-title: Improvement of drought tolerance in maize: towards the functional validation of the zm‐asr1 gene and increase of water use efficiency by over‐expressing c4‐pepc publication-title: Biochimie – volume: 54 start-page: 387 year: 2004 end-page: 404 article-title: Evidence that CTR1‐mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features publication-title: Plant Mol. Biol. – volume: 59 start-page: 316 year: 2009 end-page: 328 article-title: SnRK1 (SNF1‐related kinase 1) has a central role in sugar and ABA signalling in publication-title: Plant J. – volume: 51 start-page: 458 year: 2007 end-page: 467 article-title: Ethylene receptor degradation controls the timing of ripening in tomato fruit publication-title: Plant J. – volume: 10 start-page: 257 year: 2010 article-title: Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest publication-title: BMC Plant Biol. – volume: 6 start-page: 3901 year: 1987 end-page: 3907 article-title: GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO J. – volume: 40 start-page: 47 year: 2004 end-page: 59 article-title: Comprehensive EST analysis of tomato and comparative genomics of fruit ripening publication-title: Plant J. – volume: 102 start-page: 1353 year: 1993 end-page: 1354 article-title: Tomato ( ) transcript induced by water deficit and ripening publication-title: Plant Physiol. – volume: 115 start-page: 1288 year: 1997 article-title: Molecular cloning and nucleotide sequence of an abscisic acid‐, stress‐, ripening‐induced (ASR)‐like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening. (PGR97‐166) publication-title: Plant Physiol. – volume: 108 start-page: 1323 year: 1995 end-page: 1324 article-title: Pummelo fruit transcript homologous to ripening‐induced genes publication-title: Plant Physiol. – volume: 194 start-page: 62 year: 1994 end-page: 68 article-title: Changes in gene expression during strawberry fruit ripening and their regulation by auxin publication-title: Planta – volume: 56 start-page: 2037 year: 2005 end-page: 2046 article-title: Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non‐climacteric fruits? publication-title: J. Exp. Bot. – volume: 60 start-page: 2641 year: 2009 end-page: 2652 article-title: The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice ( L.) publication-title: J. Exp. Bot. – volume: 33 start-page: 78 year: 1968b end-page: 82 article-title: Quantitative methods for anthocyanins: 2. Determination of total anthocyanin and degradation index for cranberry juice publication-title: J. Food Sci. – volume: 174 start-page: 402 year: 1988 end-page: 406 article-title: Hormonal regulation of ripening in the strawberry, a non‐climacteric fruit publication-title: Planta – volume: 9 start-page: e1003659 year: 2013 article-title: Type I J‐domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity publication-title: PLoS Pathog. – volume: 65 start-page: 4561 year: 2014 end-page: 4575 article-title: Role of plant hormones and their interplay in development and ripening of fleshy fruits publication-title: J. Exp. Bot. – volume: 63 start-page: 719 year: 2007 end-page: 730 article-title: / expression influences glucose accumulation in potato tubers publication-title: Plant Mol. Biol. – volume: 10 start-page: e992751 year: 2015 article-title: ASR1 transcription factor and its role in metabolism publication-title: Plant Signal Behav. – volume: 32 start-page: 227 year: 1998 end-page: 254 article-title: The ethylene gas signaling pathway in plants: a molecular perspective publication-title: Annu. Rev. Genet. – volume: 109 start-page: 330 year: 1984 end-page: 335 article-title: Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development publication-title: J. Am. Soc. Hortic. Sci. – volume: 59 start-page: 2611 year: 2008 end-page: 2625 article-title: Multi‐substrate flavonol O‐glucosyltransferases from strawberry (Fragaria × ananassa) achene and receptacle publication-title: J. Exp. Bot. – volume: 64 start-page: 1471 year: 2013 end-page: 1483 article-title: The strawberry (Fragariaxananassa) fruit‐specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell‐wall middle lamellae publication-title: J. Exp. Bot. – volume: 45 start-page: 14 year: 2014 end-page: 27 article-title: Hormonal regulation during plant fruit development publication-title: Ontogenez – volume: 4 start-page: 406 year: 1987 end-page: 425 article-title: Neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Mol. Biol. Evol. – volume: 96 start-page: 881 year: 1991 end-page: 886 article-title: Acid and neutral invertases in the mesocarp of developing muskmelon ( L. cv Prince) fruit publication-title: Plant Physiol. – volume: 35 start-page: 801 year: 1997 end-page: 807 article-title: Expression analysis of a gene family in loblolly pine ( L.) induced by water deficit stress publication-title: Plant Mol. Biol. – volume: 234 start-page: 785 year: 2011 end-page: 798 article-title: Structure and regulation of the gene family in banana publication-title: Planta – volume: 36 start-page: 1449 year: 2013 end-page: 1464 article-title: TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco publication-title: Plant, Cell Environ. – volume: 123 start-page: 314 year: 2005 end-page: 320 article-title: A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal publication-title: Physiol. Plant. – volume: 9 start-page: 484 year: 2010 end-page: 505 article-title: Jasmonates are phytohormones with multiple functions, including plant defense and reproduction publication-title: Genet. Mol. Res. – volume: 146 start-page: 95 year: 1995 end-page: 102 article-title: Comparison of sorbitol transport in excised tissue discs and cortex tissue of intact apple fruit publication-title: J. Plant Physiol. – volume: 15 start-page: 363 year: 2015 end-page: 373 article-title: Upregulation of jasmonate biosynthesis and jasmonate‐responsive genes in rice leaves in response to a bacterial pathogen mimic publication-title: Funct. Integr. Genomics – volume: 139 start-page: 836 year: 2005 end-page: 846 article-title: A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in publication-title: Plant Physiol. – volume: 45 start-page: 41 year: 2011 end-page: 59 article-title: Genetics and control of tomato fruit ripening and quality attributes publication-title: Annu. Rev. Genet. – volume: 65 start-page: 4491 year: 2014 end-page: 4503 article-title: The fruit, the whole fruit, and everything about the fruit publication-title: J. Exp. Bot. – volume: 154 start-page: 1514 year: 2010 end-page: 1531 article-title: Ethylene suppression of sugar‐induced anthocyanin pigmentation in arabidopsis publication-title: Plant Physiol. – volume: 198 start-page: 453 year: 2013 end-page: 465 article-title: Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening publication-title: New Phytol. – volume: 76 start-page: 24 year: 2013 end-page: 35 article-title: The role of in fruit ripening and fungal infection of strawberry publication-title: Plant J. – volume: 57 start-page: 633 year: 2006 end-page: 643 article-title: Cloning and characterization of two 9‐cis‐epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions from orange ( L. OsbeC) publication-title: J. Exp. Bot. – volume: 16 start-page: 3460 year: 2004 end-page: 3479 article-title: Antagonistic interaction between abscisic acid and jasmonate‐ethylene signaling pathways modulates defense gene expression and disease resistance in publication-title: Plant Cell – volume: 167 start-page: 915 year: 2015 end-page: 930 article-title: SUCROSE NONFERMENTING1‐RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening publication-title: Plant Physiol. – volume: 167 start-page: 1486 year: 2010 end-page: 1493 article-title: Cloning and expression analysis of cDNAs for ABA 8'‐hydroxylase during sweet cherry fruit maturation and under stress conditions publication-title: J. Plant Physiol. – volume: 97 start-page: 139 year: 1996 end-page: 148 article-title: Gene expression under water deficit in loblolly pine ( L.): Isolation and characterization of cDNA clones publication-title: Physiol. Plant. – volume: 33 start-page: 72 year: 1968a end-page: 77 article-title: Quantitative methods for anthocyanins: 1. Extraction and determination of total anthocyanin in cranberries publication-title: J. Food Sci. – volume: 23 start-page: 880 year: 1988 end-page: 881 article-title: Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks publication-title: HortScience – volume: 32 start-page: 461 year: 2013 end-page: 470 article-title: New evidence for the role of ethylene in strawberry fruit ripening publication-title: J. Plant Growth Regul. – volume: 6 start-page: e24649 year: 2011 article-title: Molecular characterization of a strawberry FaASR gene in relation to fruit ripening publication-title: PLoS One – volume: 162 start-page: 239 year: 2002 end-page: 244 article-title: Sucrose regulation of ADP‐gulcose pyrophosphorylase subunit genes transcript levels in leaves and fruits publication-title: Plant Sci. – volume: 52 start-page: 315 year: 2010 end-page: 323 article-title: Characterization of a novel plantain gene, , that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses publication-title: J. Integr. Plant Biol. – volume: 64 start-page: 3775 year: 2013 end-page: 3786 article-title: A SHATTERPROOF‐like gene controls ripening in non‐climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression publication-title: J. Exp. Bot. – volume: 17 start-page: 287 year: 2014 end-page: 295 article-title: Molecular cloning and expression analysis of the maasr1 gene in banana and functional characterization under salt stress publication-title: Electron. J. Biotechnol. – volume: 157 start-page: 188 year: 2011 end-page: 199 article-title: Abscisic acid plays an important role in the regulation of strawberry fruit ripening publication-title: Plant Physiol. – ident: e_1_2_7_41_1 doi: 10.1093/nar/27.1.297 – ident: e_1_2_7_46_1 doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 115 start-page: 1288 year: 1997 ident: e_1_2_7_65_1 article-title: Molecular cloning and nucleotide sequence of an abscisic acid‐, stress‐, ripening‐induced (ASR)‐like protein from apricot fruit (accession no. U82760). Gene expression during fruit ripening. (PGR97‐166) publication-title: Plant Physiol. – ident: e_1_2_7_90_1 doi: 10.1104/pp.105.065458 – ident: e_1_2_7_68_1 doi: 10.1016/j.scienta.2009.07.006 – ident: e_1_2_7_37_1 doi: 10.1046/j.1365-313X.2003.01723.x – ident: e_1_2_7_87_1 doi: 10.1093/jxb/erp114 – ident: e_1_2_7_83_1 doi: 10.1186/1471-2229-10-257 – ident: e_1_2_7_38_1 doi: 10.1016/j.postharvbio.2006.05.002 – ident: e_1_2_7_91_1 doi: 10.1093/jxb/erp026 – ident: e_1_2_7_9_1 doi: 10.1007/s10142-014-0426-8 – ident: e_1_2_7_29_1 doi: 10.1016/j.gene.2006.05.010 – ident: e_1_2_7_75_1 doi: 10.1093/jxb/erj048 – ident: e_1_2_7_16_1 doi: 10.1104/pp.108.3.1323 – ident: e_1_2_7_56_1 doi: 10.1007/s00425-008-0693-5 – ident: e_1_2_7_71_1 doi: 10.1023/A:1005897921567 – ident: e_1_2_7_54_1 doi: 10.1111/j.1467-7652.2007.00319.x – ident: e_1_2_7_15_1 doi: 10.1105/tpc.013854 – ident: e_1_2_7_61_1 doi: 10.1111/j.1744-7909.2010.00912.x – ident: e_1_2_7_64_1 doi: 10.1093/jxb/ert214 – ident: e_1_2_7_79_1 doi: 10.1093/jxb/err391 – ident: e_1_2_7_13_1 doi: 10.1016/S0176-1617(11)81973-5 – ident: e_1_2_7_76_1 doi: 10.1146/annurev.arplant.57.032905.105441 – ident: e_1_2_7_81_1 doi: 10.1016/j.plaphy.2005.06.010 – ident: e_1_2_7_17_1 doi: 10.1016/j.tplants.2003.12.004 – ident: e_1_2_7_2_1 doi: 10.1023/B:PLAN.0000036371.30528.26 – ident: e_1_2_7_35_1 doi: 10.1371/journal.pone.0107117 – ident: e_1_2_7_80_1 doi: 10.1093/jexbot/51.350.1575 – ident: e_1_2_7_88_1 doi: 10.1093/jxb/eri202 – ident: e_1_2_7_47_1 doi: 10.1104/pp.110.161869 – ident: e_1_2_7_49_1 doi: 10.1111/nph.12176 – ident: e_1_2_7_82_1 doi: 10.1111/j.1467-7652.2008.00328.x – ident: e_1_2_7_5_1 doi: 10.1105/tpc.104.025833 – volume: 127 start-page: 435 year: 2002 ident: e_1_2_7_77_1 article-title: Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji apples publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.127.3.435 – ident: e_1_2_7_27_1 doi: 10.1111/j.1365-313X.2004.02188.x – ident: e_1_2_7_30_1 doi: 10.1007/s11103-006-9120-0 – ident: e_1_2_7_26_1 doi: 10.1007/s004250050278 – volume: 45 start-page: 14 year: 2014 ident: e_1_2_7_69_1 article-title: Hormonal regulation during plant fruit development publication-title: Ontogenez – volume: 4 start-page: 406 year: 1987 ident: e_1_2_7_78_1 article-title: Neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Mol. Biol. Evol. – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-313X.2009.03871.x – ident: e_1_2_7_42_1 doi: 10.1104/pp.113.232454 – ident: e_1_2_7_12_1 doi: 10.1104/pp.104.042580 – ident: e_1_2_7_57_1 doi: 10.1093/jxb/eru144 – ident: e_1_2_7_48_1 doi: 10.1104/pp.111.177311 – ident: e_1_2_7_34_1 doi: 10.1007/BF00959527 – ident: e_1_2_7_67_1 doi: 10.1093/jxb/ers386 – ident: e_1_2_7_19_1 doi: 10.1104/pp.105.069468 – ident: e_1_2_7_66_1 doi: 10.1016/j.ejbt.2014.09.002 – ident: e_1_2_7_24_1 doi: 10.4161/15592324.2014.992751 – ident: e_1_2_7_70_1 doi: 10.1104/pp.112.211094 – ident: e_1_2_7_28_1 doi: 10.1016/S1369-5266(01)00225-4 – ident: e_1_2_7_4_1 doi: 10.1093/jxb/erf072 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-313X.2007.03170.x – ident: e_1_2_7_85_1 doi: 10.1104/pp.111.186866 – ident: e_1_2_7_74_1 doi: 10.1016/j.jplph.2010.05.027 – ident: e_1_2_7_43_1 doi: 10.1111/pce.12074 – ident: e_1_2_7_21_1 doi: 10.1016/j.plantsci.2004.06.026 – ident: e_1_2_7_11_1 doi: 10.1007/s00344-007-9002-y – ident: e_1_2_7_40_1 doi: 10.1007/s00425-011-1421-0 – volume: 2 start-page: 107 year: 2004 ident: e_1_2_7_92_1 article-title: Content variation of endogenous hormone during fruit developing period of strawberry publication-title: Acta Agriculturae Universitatis Jiangxiensis – ident: e_1_2_7_55_1 doi: 10.1146/annurev-genet-110410-132507 – ident: e_1_2_7_84_1 doi: 10.1093/jxb/err252 – ident: e_1_2_7_3_1 doi: 10.1105/tpc.105.036053 – volume: 109 start-page: 330 year: 1984 ident: e_1_2_7_8_1 article-title: Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.109.3.330 – ident: e_1_2_7_36_1 doi: 10.1093/jxb/ern117 – ident: e_1_2_7_45_1 doi: 10.1016/S0300-9084(02)00024-X – ident: e_1_2_7_58_1 doi: 10.1093/jxb/eru277 – ident: e_1_2_7_72_1 doi: 10.1007/BF02637265 – ident: e_1_2_7_73_1 doi: 10.1104/pp.81.3.922 – volume: 23 start-page: 880 year: 1988 ident: e_1_2_7_7_1 article-title: Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro publication-title: HortScience doi: 10.21273/HORTSCI.23.5.880 – ident: e_1_2_7_25_1 doi: 10.1371/journal.ppat.1003659 – ident: e_1_2_7_39_1 doi: 10.1104/pp.114.251314 – ident: e_1_2_7_14_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_7_23_1 doi: 10.1104/pp.87.3.731 – ident: e_1_2_7_52_1 doi: 10.1042/BJ20031800 – ident: e_1_2_7_20_1 doi: 10.1371/journal.pone.0024649 – ident: e_1_2_7_6_1 doi: 10.1104/pp.96.3.881 – ident: e_1_2_7_18_1 doi: 10.1111/j.1399-3054.1996.tb00490.x – ident: e_1_2_7_10_1 doi: 10.4238/vol9-1gmr754 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2621.1968.tb00887.x – ident: e_1_2_7_89_1 doi: 10.1111/j.1399-3054.2005.00454.x – ident: e_1_2_7_86_1 doi: 10.1007/s00344-012-9312-6 – ident: e_1_2_7_22_1 doi: 10.1007/s00299-011-1030-1 – ident: e_1_2_7_62_1 doi: 10.1104/pp.113.227603 – ident: e_1_2_7_63_1 doi: 10.1007/BF00201035 – ident: e_1_2_7_44_1 doi: 10.1104/pp.102.4.1353 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-313X.2005.02441.x – ident: e_1_2_7_59_1 doi: 10.1016/S0168-9452(01)00565-9 – ident: e_1_2_7_60_1 doi: 10.1111/tpj.12272 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2621.1968.tb00888.x – ident: e_1_2_7_50_1 doi: 10.1146/annurev.genet.32.1.227 – reference: 12953118 - Plant Cell. 2003 Sep;15(9):2165-80 – reference: 18487633 - J Exp Bot. 2008;59(10):2611-25 – reference: 23250627 - Plant Physiol. 2013 Feb;161(2):628-43 – reference: 17211513 - Plant Mol Biol. 2007 Mar;63(5):719-30 – reference: 11989489 - Plant Sci. 2002 Feb;162(2):239-44 – reference: 24723396 - J Exp Bot. 2014 Aug;65(16):4491-503 – reference: 25720262 - Ontogenez. 2014 Jan-Feb;45(1):14-27 – reference: 16664926 - Plant Physiol. 1986 Jul;81(3):922-4 – reference: 8278555 - Plant Physiol. 1993 Aug;102(4):1353-4 – reference: 9928480 - Annu Rev Genet. 1998;32:227-54 – reference: 24170204 - Plant Physiol. 2013 Dec;163(4):1729-40 – reference: 20377692 - J Integr Plant Biol. 2010 Mar;52(3):315-23 – reference: 16666216 - Plant Physiol. 1988 Jul;87(3):731-6 – reference: 16396998 - J Exp Bot. 2006;57(3):633-43 – reference: 7630961 - Plant Physiol. 1995 Jul;108(3):1323-4 – reference: 16169963 - Plant Physiol. 2005 Oct;139(2):836-46 – reference: 23888065 - J Exp Bot. 2013 Sep;64(12):3775-86 – reference: 20728961 - J Plant Physiol. 2010 Nov 15;167(17):1486-93 – reference: 15998315 - Plant J. 2005 Jul;43(2):299-308 – reference: 16822623 - Gene. 2006 Aug 15;378:74-83 – reference: 21630042 - Planta. 2011 Oct;234(4):785-98 – reference: 24098120 - PLoS Pathog. 2013;9(10):e1003659 – reference: 16668269 - Plant Physiol. 1991 Jul;96(3):881-6 – reference: 19302419 - Plant J. 2009 Jul;59(2):316-28 – reference: 18270732 - Planta. 2008 May;227(6):1213-9 – reference: 15955790 - J Exp Bot. 2005 Aug;56(418):2037-46 – reference: 3447015 - Mol Biol Evol. 1987 Jul;4(4):406-25 – reference: 25028558 - J Exp Bot. 2014 Aug;65(16):4561-75 – reference: 19246595 - J Exp Bot. 2009;60(6):1579-88 – reference: 25794140 - Plant Signal Behav. 2015;10(4):e992751 – reference: 20391333 - Genet Mol Res. 2010 Mar 16;9(1):484-505 – reference: 22108525 - Plant Physiol. 2012 Jan;158(1):283-98 – reference: 9847208 - Nucleic Acids Res. 1999 Jan 1;27(1):297-300 – reference: 22140241 - J Exp Bot. 2012 Feb;63(3):1495-510 – reference: 21915355 - PLoS One. 2011;6(9):e24649 – reference: 16669778 - Annu Rev Plant Biol. 2006;57:675-709 – reference: 23564958 - J Exp Bot. 2013 Apr;64(6):1471-83 – reference: 25504197 - Funct Integr Genomics. 2015 May;15(3):363-73 – reference: 15284494 - Plant Mol Biol. 2004 Feb;54(3):387-404 – reference: 25310287 - PLoS One. 2014 Oct 13;9(10):e107117 – reference: 18363631 - Plant Biotechnol J. 2008 May;6(4):368-78 – reference: 21873532 - J Exp Bot. 2011 Nov;62(15):5659-69 – reference: 12713544 - Plant J. 2003 May;34(3):383-92 – reference: 23356734 - Plant Cell Environ. 2013 Aug;36(8):1449-64 – reference: 16244140 - Plant Physiol. 2005 Nov;139(3):1163-74 – reference: 20876338 - Plant Physiol. 2010 Nov;154(3):1514-31 – reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 – reference: 15106586 - Trends Plant Sci. 2004 Feb;9(2):57-9 – reference: 15326278 - Plant Physiol. 2004 Aug;135(4):1865-78 – reference: 12595141 - Biochimie. 2002 Nov;84(11):1127-35 – reference: 15361140 - Plant J. 2004 Oct;40(1):47-59 – reference: 16243903 - Plant Cell. 2005 Nov;17(11):2954-65 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 21092180 - BMC Plant Biol. 2010 Nov 22;10 :257 – reference: 16289880 - Plant Physiol Biochem. 2005 Sep;43(9):836-43 – reference: 15548743 - Plant Cell. 2004 Dec;16(12):3460-79 – reference: 25609556 - Plant Physiol. 2015 Mar;167(3):915-30 – reference: 23425297 - New Phytol. 2013 Apr;198(2):453-65 – reference: 11006308 - J Exp Bot. 2000 Sep;51(350):1575-84 – reference: 12324528 - J Exp Bot. 2002 Oct;53(377):2039-55 – reference: 22060040 - Annu Rev Genet. 2011;45:41-59 – reference: 15101820 - Biochem J. 2004 Jul 15;381(Pt 2):373-8 – reference: 24221523 - Planta. 1988 Jun;174(3):402-6 – reference: 24402050 - Plant Physiol. 2014 Apr;164(4):1918-29 – reference: 18086233 - Plant Biotechnol J. 2008 Apr;6(3):295-300 – reference: 21327389 - Plant Cell Rep. 2011 Jul;30(7):1219-30 – reference: 9426600 - Plant Mol Biol. 1997 Dec;35(6):801-7 – reference: 21734113 - Plant Physiol. 2011 Sep;157(1):188-99 – reference: 23802911 - Plant J. 2013 Oct;76(1):24-35 – reference: 17655616 - Plant J. 2007 Aug;51(3):458-67 – reference: 11788304 - Curr Opin Plant Biol. 2002 Feb;5(1):26-32 – reference: 19401410 - J Exp Bot. 2009;60(9):2641-52 |
SSID | ssj0021656 |
Score | 2.5717022 |
Snippet | Summary
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying... Although great progress has been made towards understanding the role of abscisic acid ( ABA ) and sucrose in fruit ripening, the mechanisms underlying the ABA... Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2045 |
SubjectTerms | Abscisic acid Abscisic Acid - metabolism Abscisic Acid - pharmacology Acetic acid Binding sites Cyclopentanes - pharmacology Fragaria Fragaria - drug effects Fragaria - genetics Fragaria - metabolism Fragaria ananassa Fruit - genetics Fruit - growth & development Fruit - metabolism fruit quality fruiting Fruits Gene expression Gene Expression Regulation, Plant - drug effects gene overexpression Genes Hexose Hexose transporter indole acetic acid Indoleacetic acid Indoleacetic Acids - pharmacology Isoforms Jasmonic acid Lycopersicon esculentum Lycopersicon esculentum - drug effects Lycopersicon esculentum - genetics Lycopersicon esculentum - growth & development Metabolism monosaccharide transport proteins Morphology Oxylipins - pharmacology Physiological aspects Physiology Plant Proteins - genetics Plant Proteins - metabolism Proteins Regulatory mechanisms (biology) Ripening RNA interference RNA-mediated interference Signal transduction Signal Transduction - drug effects Signaling Solanum lycopersicum var. lycopersicum Strawberries strawberry fruit Sucrose Sucrose - metabolism Sucrose - pharmacology Sugar tomato fruit Tomatoes transcription (genetics) transcription factor ASR Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELcYvGwPE2MfFBjypknbi7c0ThPnaSoTCCYNoWlIvFkX24VIU1LSVtP-Af5u7mIntAh4aiWfEsd3vg-f73eMfYpBjWwqY-GikREJIC9AGbrhCHlCBju2VJz86zQ9Pk9-XowuwoHbLFyr7HRiq6htbeiM_BvhkscYc8v4-_RaUNcoyq6GFhrP2AaqYIXB18bB4enZ7z7kImwZX1-UiQxNf8AWors806L8itY9lSsW6b5eXjJM9y9NLjuzrTU62mQvgxvJx57vr9iaq7bYi_FlE6A03Gt2M0aVUCITOJjScqgsny1oCo43vgG94_MaHdbaj-Hr_hWuaf7zSbMo5xy1iaNDEx5a-eCv47D8TOELTcQdJRm-Tg1x38rnDTs_Ovzz41iErgvCoKmWQkKUOphQwg9UYSJjKfMKMpER4DrCBC1-7lKVFLmFoZooAzZLC2cx8pAoEPItW6_qym0zDrjdwRSmwJVPKCPa4t3lLood-jWZG7Av3cprEyDJqTPGX92FJsgk3TJpwD72pFOPw_EQ0Wdin6a9ic8xEEoMcDaEcqXH1KCSGgRkA7bXcViHTTvTdyI2YB_6YdxulEOBytWLmcZwLMvbSvzHaWJUbCofqhxf884LTT9nyvOPVIxTzVbEqScguO_Vkaq8amG_CWsuyYe4aK3gPb4M-uzgpP2z8_RX7rLn6P6l_mriHlufNwv3Hl2sebEf9tEtJV0oVw priority: 102 providerName: ProQuest |
Title | Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12563 https://www.ncbi.nlm.nih.gov/pubmed/27005823 https://www.proquest.com/docview/2290276132 https://www.proquest.com/docview/1827900048 https://www.proquest.com/docview/2053891897 https://pubmed.ncbi.nlm.nih.gov/PMC5043491 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIH3rCFpTIICS6pUidNHHHqoi0LEqtqxUp7QLLGjgsRq3SVJkJw4syJ38gvYcZOQluxEuLSRvI09WNetme-YeyZADnJk0gENpyYIAZcC5CGIhwhi8lgi5ySk98dJ0en8duzydkOe9nlwnh8iP7AjSTD6WsScNCrNSG_0MUIrXNCSJ8Uq0UO0UkPHSUIVcZnFqVBika_RRWiKJ7-lxu2aFsjr5mk7XDJdTfW2aHZTfahG4EPP_k8amo9Mt-2wB3_c4i32I3WP-VTz1C32Y4t77Dr049Vi9Fh77IfU9Q1Ba4uB1PkHMqcrxoaoeWVr2xveb1ET3jp23A0X7Stqq98UTVFzVFNWTqN4W2NIPy2HNbf-ev7T5_Dgg9_qMmqdjqO-zpB99jp7PD9q6OgLekQGPQDoiCCMLGwoNtEkNqEJqdrXYjiKARcKligO5HZRMY6y2EsF9JAniba5ritiZDbovtst1yWdo9xQF0CRhuNixvTdasD08tsKCw6TakdsBfd4irT4p1T2Y1z1e17cHqVm94Be9qTXniQj78RPScOUST4-B4Dbf4C9oYgtNSUql9S9YF0wPY7JlKtRlgpwtUXKTpPYsCe9M0oy3RBA6VdNiuFe700c2n-l9MI1JoyG8sM_-aB58u-zxREMJECu5pucGxPQFjimy1l8clhihOQXZyNcdIcQ14-DWp-8MY9PPx30kfsGvqZiY-B3Ge7ddXYx-jL1XrIroh4jp9y9nrIrh4cHs9Phu5cZOjE-TeoXE7b |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywH2gHhvYQGDQHAxpHaaOAeEyqO07EMcdqW9GcdxIRJKStpqtX-An8NvZCZOsu2K5banVvLIcTzjecQz3wA8F0YNskgK7oKB5aFBXhhlKcPRJCEZbJFRcfL-QTQ-Cr8cD4434E9bC0Npla1OrBV1Vlr6Rv6GcMkFxtxSvJv94tQ1im5X2xYaXix23ekJhmzzt5OPyN8XQow-HX4Y86arALdoiiSXJoicmdKFllGpDWxGN4tGhjIwqDbMFC1a4iIVpklm-mqqrMniKHUZetYSX1jivFfgaihlQidKjT53AR4h2fhqppjH6Gg0SEaUOTRL89foS0Ryzf6dtwIrZvB8iuaq61zbvtFNuNE4rWzopewWbLjiNmwNv1cNcIe7A7-HqIByZDkzNs-YKTI2X9ISHKt8u3vHFiW6x6Ufw8edpK6qTtm0WuYLhrrL0Sca1jQOwl_HzOqc3Je18DNKMrOt0mO-cdBdOLoUbtyDzaIs3DYwg8rF2NSmuPMh3b_W6HqJC4RDLyp2PXjV7ry2DQA69eH4qdtACJmkayb14FlHOvOoH_8iekns06QJcB5rmoIGXA1haukhtcOkdgRxD3ZaDutGRcz1mUD34Gk3jIebbmxM4crlXGPwFyd13f_FNALVqEr6KsHH3PdC062ZsgoGSuBS4zVx6ggIXHx9pMh_1CDjhGwXJn3ctFrwLt4G_fX9pP7z4P9v-QSujQ_39_Te5GD3IVxHxzPySZE7sLmolu4ROneL9HF9ohh8u-wj_BdkQmRB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEL0gHgTKLAgEFxMnbXjxwGhlDZqKEQRolJvy3o9aS0hOziJqv4BfhS_jhl77SYV5dZTIu1ovd6ZnYdn9huA11JH_TTwpINu3zi-Jl7oyHCFo459Ntgy5cvJX8fBwZH_-bh_vAF_mrswXFbZ6MRKUaeF4W_kO4xLLinm9uTO1JZFTPaGH2e_HO4gxZnWpp1GLSKHeH5G4dv8w2iPeP1GyuH-908Hju0w4BgyS57jaTdAPeXklo4S45qUs4za8z1XkwrRU7JuMQaRn8Sp7kXTyOg0DBJMycv26OU9mvcGbIYUFbkd2NzdH0--teEe49rUd5tCJyS3w-IacR3RLMnek2cReGvW8LJNWDGKlws2Vx3pyhIO78Bt68KKQS1zd2ED83uwNTgpLYwH3offA1JHGQmA0CZLhc5TMV_yElCUeMIdw1AsCnKWi3qMHneWYFmei2m5zBaCNBnyBxth2wjRLwq9OqdTX3JxLijZ6DYqUNRthB7A0bXw4yF08iLHxyA0qRptEpPQzvucja2w9mJ0JZJPFWIX3jU7r4yFQ-euHD9VExYRk1TFpC68aklnNQbIv4jeMvsU6wWax2h7vYFWwwhbasDNMbk5QdiF7YbDyiqMuboQ7y68bIfpqHP-RudYLOeKQsEwrlAArqaRpFSjuBfF9JhHtdC0a-Yag34kaanhmji1BAw1vj6SZ6cV5Djj3PlxjzatEryrt0FNdkfVnyf_f8sXcJOOr_oyGh8-hVvkhQZ1heQ2dBblEp-Rp7dIntsjJeDHdZ_iv8IgadM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abscisic+acid+and+sucrose+regulate+tomato+and+strawberry+fruit+ripening+through+the+abscisic+acid-stress-ripening+transcription+factor&rft.jtitle=Plant+biotechnology+journal&rft.au=Jia%2C+Haifeng&rft.au=Jiu%2C+Songtao&rft.au=Zhang%2C+Cheng&rft.au=Wang%2C+Chen&rft.date=2016-10-01&rft.eissn=1467-7652&rft.volume=14&rft.issue=10&rft.spage=2045&rft_id=info:doi/10.1111%2Fpbi.12563&rft_id=info%3Apmid%2F27005823&rft.externalDocID=27005823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |