Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans
A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 108; no. 6; pp. 1487 - 1496 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A low maximal oxygen consumption (V̇o
2max
) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o
2max
with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇o
2max
training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇o
2max
response. Two independent preintervention RNA expression data sets were generated ( n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇o
2max
(“predictor” genes). The HERITAGE Family Study ( n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇o
2max
training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇o
2max
in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇o
2max
, corresponding to ∼50% of the estimated genetic variance for V̇o
2max
. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇o
2max
responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. |
---|---|
AbstractList | A low maximal oxygen consumption (V̇
o
2max
) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇
o
2max
with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇
o
2max
training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇
o
2max
response. Two independent preintervention RNA expression data sets were generated (
n
= 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇
o
2max
(“predictor” genes). The HERITAGE Family Study (
n
= 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇
o
2max
training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇
o
2max
in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇
o
2max
, corresponding to ∼50% of the estimated genetic variance for V̇
o
2max
. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇
o
2max
responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487-1496, 2010. First published February 4, 2010; doi:10.1152/japplphysiol.01295.2009.-A low maximal oxygen consumption ((V) over dotO(2max)) is a strong risk factor for premature mortality. Supervised endurance exercise training increases (V) over dotO(2max) with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts (V) over dotO(2max) training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous (V) over dotO(2max) response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in (V) over dotO(2max) (""predictor"" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted (V) over dotO(2max) training response on a continuous scale; these genes contained similar to 6 new single-nucleotide polymorphisms associated with gains in (V) over dotO(2max) in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., ""reciprocal"" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in (V) over dotO(2max), corresponding to similar to 50% of the estimated genetic variance for (V) over dotO(2max). In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. (V) over dotO(2max) responses to endurance training can be predicted by measuring a similar to 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. A low maximal oxygen consumption (...) is a strong risk factor for premature mortality. Supervised endurance exercise training increases ... with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts ... training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous ... response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in ...("predictor" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29- RNA signature that predicted ... training response on a continuous scale; these genes contained 6 new single-nucleotide polymorphisms associated with gains in ... in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in ..., corresponding to 50% of the estimated genetic variance for ... In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. ... responses to endurance training can be predicted by measuring a 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. (ProQuest: ... denotes formulae/symbols omitted.) A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇o 2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇o 2max response. Two independent preintervention RNA expression data sets were generated ( n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇o 2max (“predictor” genes). The HERITAGE Family Study ( n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇o 2max training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇o 2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇o 2max , corresponding to ∼50% of the estimated genetic variance for V̇o 2max . In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇o 2max responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. |
Author | Jensen, Thomas Bouchard, Claude Koch, Lauren G. Pedersen, Bente K. MacDougald, Ormond A. Timmons, James A. Knudsen, Steen Vollaard, Niels B. J. van Loon, Luc J. C. Keller, Pernille Wahlestedt, Claes Britton, Steven L. Nielsen, Søren Sarzynski, Mark Åkerström, Thorbjörn Rankinen, Tuomo Greenhaff, Paul L. Tarnopolsky, Mark A. Sundberg, Carl Johan Scheele, Camilla Jansson, Eva |
Author_xml | – sequence: 1 givenname: James A. surname: Timmons fullname: Timmons, James A. organization: Section of Systems Biology Research, Panum Institutet and Center for Healthy Ageing,, Royal Veterinary College, University of London, Camden, London,, The Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University – sequence: 2 givenname: Steen surname: Knudsen fullname: Knudsen, Steen organization: Medical Prognosis Institute, Hørsholm, Denmark – sequence: 3 givenname: Tuomo surname: Rankinen fullname: Rankinen, Tuomo organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana – sequence: 4 givenname: Lauren G. surname: Koch fullname: Koch, Lauren G. organization: Departments of 6Physical Medicine and Rehabilitation and – sequence: 5 givenname: Mark surname: Sarzynski fullname: Sarzynski, Mark organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana – sequence: 6 givenname: Thomas surname: Jensen fullname: Jensen, Thomas organization: Medical Prognosis Institute, Hørsholm, Denmark – sequence: 7 givenname: Pernille surname: Keller fullname: Keller, Pernille organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen,, Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan – sequence: 8 givenname: Camilla surname: Scheele fullname: Scheele, Camilla organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen,, The Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University – sequence: 9 givenname: Niels B. J. surname: Vollaard fullname: Vollaard, Niels B. J. organization: Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands – sequence: 10 givenname: Søren surname: Nielsen fullname: Nielsen, Søren organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen – sequence: 11 givenname: Thorbjörn surname: Åkerström fullname: Åkerström, Thorbjörn organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen – sequence: 12 givenname: Ormond A. surname: MacDougald fullname: MacDougald, Ormond A. organization: Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan – sequence: 13 givenname: Eva surname: Jansson fullname: Jansson, Eva organization: Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska University Hospital – sequence: 14 givenname: Paul L. surname: Greenhaff fullname: Greenhaff, Paul L. organization: Centre for Integrated Systems Biology Medicine, University Medical School, Nottingham, United Kingdom – sequence: 15 givenname: Mark A. surname: Tarnopolsky fullname: Tarnopolsky, Mark A. organization: Department of Paediatrics and Medicine (Neurology and Rehabilitation), McMaster University Medical Centre, Hamilton, Ontario, Canada; and – sequence: 16 givenname: Luc J. C. surname: van Loon fullname: van Loon, Luc J. C. organization: Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands – sequence: 17 givenname: Bente K. surname: Pedersen fullname: Pedersen, Bente K. organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen – sequence: 18 givenname: Carl Johan surname: Sundberg fullname: Sundberg, Carl Johan organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – sequence: 19 givenname: Claes surname: Wahlestedt fullname: Wahlestedt, Claes organization: Molecular and Integrative Neurosciences Department, The Scripps Research Institute, Jupiter, Florida – sequence: 20 givenname: Steven L. surname: Britton fullname: Britton, Steven L. organization: Departments of 6Physical Medicine and Rehabilitation and, Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan – sequence: 21 givenname: Claude surname: Bouchard fullname: Bouchard, Claude organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22883511$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20133430$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-48910$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822$$DView record from Swedish Publication Index |
BookMark | eNqFkl9v0zAUxS00xLrCVwALCfGAUuw4iZMHkKbxV5rEC-PVunVvWhfHDnbCVvHlcdYOtkmIJ1u-v3N87XtOyJHzDgl5xtmC8zJ_vYW-t_1mF423C8bzplzkjDUPyCxV84xXjB-RWS1LlsmylsfkJMYtY7woSv6IHOeMC1EINiO_LqJxa9p5i3q0EKi2EKNpjYbBeEcHT_uAK6MHugbjIjWOdnBlOrAUMPil0VRDD9oMO9p6a_3l5IduNQZwGileYdAmIh1C0k-15LAZO3DxMXnYgo345LDOycWH91_PPmXnXz5-Pjs9z3TFxZChbCSTLWe54LDUIHMGAlnac6wgZxXWQq9kW-u6aQBhWbFlI6pWtkVTlW0r5iTb-8ZL7Mel6kNqP-yUB6MOR9_TDlVZCpHXiX_1T_6d-XaqfFirOKqibjhL9Ns9ndAOVxpdeqm9I7pbcWaj1v6nyuu6qpoiGbw8GAT_Y8Q4qM5EjdaCQz9GJYXgBZuePyfP75FbPwaX_k6VuWzKhlUiQU9v9_OnkZuZJ-DFAYCowbbTnEz8y6W-RMl54t7sOR18jAFblYZ8nYpplFZxpqYsqttZVNdZVFMWk17e099c8T_lbxVM7Qo |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1113_expphysiol_2011_063727 crossref_primary_10_1113_expphysiol_2010_056234 crossref_primary_10_5114_jhk_191847 crossref_primary_10_1016_j_ijcard_2011_07_097 crossref_primary_10_1113_expphysiol_2011_057729 crossref_primary_10_1152_physiolgenomics_00078_2015 crossref_primary_10_1134_S0362119712010082 crossref_primary_10_1093_eurjpc_zwad232 crossref_primary_10_1152_japplphysiol_00343_2021 crossref_primary_10_1016_j_jshs_2025_101029 crossref_primary_10_1590_1517_869220172304169935 crossref_primary_10_1007_s40279_013_0114_1 crossref_primary_10_1186_s13073_021_00994_9 crossref_primary_10_1007_s00421_020_04477_4 crossref_primary_10_1016_j_freeradbiomed_2016_02_007 crossref_primary_10_1186_s12864_017_4192_6 crossref_primary_10_1177_1745691616635591 crossref_primary_10_1016_j_pmrj_2012_10_007 crossref_primary_10_1007_s40279_020_01335_3 crossref_primary_10_1016_j_archger_2013_08_001 crossref_primary_10_12688_f1000research_3_9_v2 crossref_primary_10_1016_j_exger_2018_06_030 crossref_primary_10_1152_japplphysiol_01067_2014 crossref_primary_10_12688_f1000research_3_9_v1 crossref_primary_10_1242_jeb_048397 crossref_primary_10_1159_000441029 crossref_primary_10_1086_678567 crossref_primary_10_1016_j_metabol_2015_06_008 crossref_primary_10_1097_SLA_0000000000004527 crossref_primary_10_1249_MSS_0000000000002539 crossref_primary_10_1136_bmjsem_2017_000309 crossref_primary_10_3390_jfmk4020025 crossref_primary_10_1080_17511321_2020_1770846 crossref_primary_10_1152_physiolgenomics_00167_2012 crossref_primary_10_2337_db21_0934 crossref_primary_10_2337_db13_0062 crossref_primary_10_1101_cshperspect_a029769 crossref_primary_10_1016_j_cmet_2023_12_025 crossref_primary_10_1016_j_cca_2025_120178 crossref_primary_10_1093_bja_aeu348 crossref_primary_10_1371_journal_pone_0037887 crossref_primary_10_1016_j_nbt_2012_11_015 crossref_primary_10_15857_ksep_2024_00402 crossref_primary_10_1113_JP273480 crossref_primary_10_1113_JP272270 crossref_primary_10_1016_j_celrep_2020_107980 crossref_primary_10_1126_sciimmunol_adi5377 crossref_primary_10_14814_phy2_13184 crossref_primary_10_1038_s42255_020_0240_7 crossref_primary_10_1016_j_cmet_2012_12_012 crossref_primary_10_1111_brv_12916 crossref_primary_10_1113_JP270536 crossref_primary_10_1111_j_1600_0838_2010_01139_x crossref_primary_10_1152_japplphysiol_00489_2020 crossref_primary_10_1007_s00018_018_2925_6 crossref_primary_10_1186_2046_2395_2_13 crossref_primary_10_1080_17511321_2018_1535522 crossref_primary_10_1002_art_34572 crossref_primary_10_1152_japplphysiol_00634_2010 crossref_primary_10_1152_ajpendo_00027_2012 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1136_bjsports_2016_096724 crossref_primary_10_1249_MSS_0b013e31828983f7 crossref_primary_10_1177_2053369115623899 crossref_primary_10_23736_S0022_4707_18_08258_0 crossref_primary_10_32652_olympic2018_3_3 crossref_primary_10_3389_fendo_2017_00229 crossref_primary_10_17721_1728_2748_2014_68_71_75 crossref_primary_10_3389_fpubh_2024_1334081 crossref_primary_10_1371_journal_pone_0169821 crossref_primary_10_1038_s42255_021_00400_z crossref_primary_10_1007_s00421_022_04945_z crossref_primary_10_1113_jphysiol_2011_207035 crossref_primary_10_1371_journal_pone_0077200 crossref_primary_10_3390_ijerph191610173 crossref_primary_10_1093_ptj_pzy069 crossref_primary_10_1371_journal_pgen_1003389 crossref_primary_10_1101_cshperspect_a029694 crossref_primary_10_1152_japplphysiol_01330_2010 crossref_primary_10_3389_fphys_2019_01165 crossref_primary_10_7717_peerj_445 crossref_primary_10_1186_s12920_020_00784_z crossref_primary_10_1152_japplphysiol_01327_2010 crossref_primary_10_1123_japa_2017_0054 crossref_primary_10_1002_elps_201400604 crossref_primary_10_1096_fj_14_266890 crossref_primary_10_1371_journal_pone_0207597 crossref_primary_10_1113_expphysiol_2012_069633 crossref_primary_10_1371_journal_pone_0145741 crossref_primary_10_14814_phy2_14962 crossref_primary_10_1007_s00421_012_2547_x crossref_primary_10_1007_s12152_020_09435_7 crossref_primary_10_1371_journal_pone_0092031 crossref_primary_10_1152_physiolgenomics_00072_2014 crossref_primary_10_1111_sdi_12805 crossref_primary_10_3390_nu13113999 crossref_primary_10_12688_f1000research_21588_1 crossref_primary_10_1111_1365_2435_12653 crossref_primary_10_1139_apnm_2017_0224 crossref_primary_10_1007_s40279_013_0086_1 crossref_primary_10_1016_j_cmet_2017_04_018 crossref_primary_10_1371_journal_pone_0212115 crossref_primary_10_1139_apnm_2016_0253 crossref_primary_10_1177_2047487319828478 crossref_primary_10_1161_CIRCGENETICS_110_957183 crossref_primary_10_4161_15592294_2014_982445 crossref_primary_10_1371_journal_pone_0147330 crossref_primary_10_1152_physiolgenomics_00140_2017 crossref_primary_10_3389_fspor_2019_00028 crossref_primary_10_1055_a_1198_5496 crossref_primary_10_1096_fj_10_157313 crossref_primary_10_1002_acr_22680 crossref_primary_10_1007_s11556_010_0077_2 crossref_primary_10_2174_1875399X01710010191 crossref_primary_10_3390_ijms252313041 crossref_primary_10_1177_2047487319877716 crossref_primary_10_1007_s12020_015_0792_6 crossref_primary_10_1159_000501206 crossref_primary_10_1249_MSS_0000000000001387 crossref_primary_10_1016_j_orthtr_2013_07_014 crossref_primary_10_1111_sms_12927 crossref_primary_10_3390_ijerph17134860 crossref_primary_10_1136_bjsports_2011_090704 crossref_primary_10_1002_clc_23369 crossref_primary_10_1542_peds_2021_056003 crossref_primary_10_1007_s12170_011_0179_z crossref_primary_10_1152_japplphysiol_01487_2012 crossref_primary_10_15857_ksep_2014_23_2_69 crossref_primary_10_1177_2047487319838221 crossref_primary_10_1016_j_cell_2020_06_004 crossref_primary_10_1177_1545968318818904 crossref_primary_10_3233_CH_141857 crossref_primary_10_1113_expphysiol_2013_076406 crossref_primary_10_1186_s13059_015_0750_x crossref_primary_10_1016_j_cellsig_2013_08_004 crossref_primary_10_1055_a_1255_3161 crossref_primary_10_1186_s40798_023_00579_3 crossref_primary_10_1016_j_bbagen_2013_10_012 crossref_primary_10_1073_pnas_1906171116 crossref_primary_10_1152_japplphysiol_01110_2014 crossref_primary_10_3390_cells10051022 crossref_primary_10_3389_fphys_2019_01401 crossref_primary_10_1249_MSS_0b013e3182155d21 crossref_primary_10_3389_fphys_2021_756618 crossref_primary_10_1113_jphysiol_2010_201525 crossref_primary_10_3389_fphys_2018_00569 crossref_primary_10_3389_fphys_2019_00672 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1097_JOM_0000000000002983 crossref_primary_10_1249_MSS_0000000000001288 crossref_primary_10_1249_MSS_0000000000001041 crossref_primary_10_1371_journal_pone_0240866 crossref_primary_10_1080_00336297_2010_10483652 crossref_primary_10_3390_jcm9123951 crossref_primary_10_1007_s40279_024_02089_y crossref_primary_10_1249_MSS_0b013e3182784e9f crossref_primary_10_1007_s11082_023_06016_9 crossref_primary_10_1016_j_heliyon_2023_e19268 crossref_primary_10_1113_expphysiol_2010_055400 crossref_primary_10_1186_s40798_017_0085_0 crossref_primary_10_3945_ajcn_116_132563 crossref_primary_10_1089_ars_2011_4498 crossref_primary_10_1152_physrev_00064_2017 crossref_primary_10_1183_09031936_00041212 crossref_primary_10_1093_eurjpc_zwaa142 crossref_primary_10_1017_jns_2014_55 crossref_primary_10_1093_narmme_ugae016 crossref_primary_10_1007_s00421_011_1869_4 crossref_primary_10_1016_j_tvjl_2013_07_023 crossref_primary_10_1007_s40279_014_0197_3 crossref_primary_10_1080_02640414_2012_658080 crossref_primary_10_1371_journal_pone_0074098 crossref_primary_10_1186_s40798_017_0110_3 crossref_primary_10_1186_s40798_021_00315_9 crossref_primary_10_1139_apnm_2018_0343 crossref_primary_10_1242_jeb_164327 crossref_primary_10_15406_mojgg_2024_09_00323 crossref_primary_10_1152_physiol_00019_2013 crossref_primary_10_1152_physrev_00035_2013 crossref_primary_10_1111_ahg_12006 crossref_primary_10_1113_JP272559 crossref_primary_10_1152_japplphysiol_01107_2012 crossref_primary_10_1007_s40279_014_0162_1 crossref_primary_10_1016_j_mhpa_2012_03_002 crossref_primary_10_1038_s41576_021_00400_5 crossref_primary_10_1093_pubmed_fdx077 crossref_primary_10_3389_fgene_2019_01215 crossref_primary_10_3390_sports10060095 crossref_primary_10_1113_expphysiol_2011_058735 crossref_primary_10_1371_journal_pone_0273766 crossref_primary_10_3390_cells11050872 crossref_primary_10_1152_japplphysiol_01259_2010 crossref_primary_10_1080_15592294_2019_1603961 crossref_primary_10_1152_physiolgenomics_00169_2013 crossref_primary_10_1101_cshperspect_a029868 crossref_primary_10_1080_00948705_2018_1455148 crossref_primary_10_1139_apnm_2020_0855 crossref_primary_10_3390_ijms24076454 crossref_primary_10_3390_medicina56080395 crossref_primary_10_1093_ecco_jcc_jjac129 crossref_primary_10_1096_fj_14_255000 crossref_primary_10_1016_j_cophys_2019_06_005 crossref_primary_10_1016_j_ygeno_2021_06_035 crossref_primary_10_1152_japplphysiol_00901_2010 crossref_primary_10_1007_s40279_013_0018_0 crossref_primary_10_1016_j_mrrev_2015_08_001 crossref_primary_10_1152_japplphysiol_00934_2010 crossref_primary_10_3389_fped_2018_00404 crossref_primary_10_1249_MSS_0000000000002859 crossref_primary_10_3390_metabo14090512 crossref_primary_10_1113_EP089434 crossref_primary_10_1007_s00424_014_1554_7 crossref_primary_10_1038_s41598_022_15578_9 crossref_primary_10_1152_japplphysiol_00268_2010 crossref_primary_10_1136_bmjopen_2020_044676 crossref_primary_10_3389_fphys_2021_682891 crossref_primary_10_1152_japplphysiol_00714_2014 crossref_primary_10_3389_fnut_2019_00191 crossref_primary_10_1016_j_exger_2012_03_004 crossref_primary_10_1136_bjsports_2015_095179 crossref_primary_10_29407_js_unpgri_v8i2_18499 crossref_primary_10_3389_fpsyg_2019_02338 crossref_primary_10_1007_s00421_011_2036_7 crossref_primary_10_1590_S1807_55092014000100177 crossref_primary_10_1016_j_jesf_2013_03_003 crossref_primary_10_1152_japplphysiol_00242_2021 crossref_primary_10_1111_j_1600_0838_2010_01289_x crossref_primary_10_1016_j_clinph_2018_04_689 crossref_primary_10_1097_JES_0b013e31822643f6 crossref_primary_10_1152_physiolgenomics_00021_2013 crossref_primary_10_1159_000520471 crossref_primary_10_3389_fgene_2018_00242 crossref_primary_10_3389_fphys_2019_00019 crossref_primary_10_1016_j_celrep_2017_10_040 crossref_primary_10_1016_j_mayocp_2013_11_013 crossref_primary_10_1007_s00421_016_3353_7 crossref_primary_10_1097_SLA_0000000000005083 crossref_primary_10_1111_pedi_13035 crossref_primary_10_1007_s40279_016_0496_y crossref_primary_10_1152_physiolgenomics_00017_2023 crossref_primary_10_1113_jphysiol_2011_213413 crossref_primary_10_7600_jpfsm_1_595 crossref_primary_10_1186_s12864_017_4186_4 crossref_primary_10_1002_mus_23771 crossref_primary_10_1152_japplphysiol_00973_2010 |
Cites_doi | 10.1073/pnas.091062498 10.1038/291381a0 10.1002/0471670278 10.1001/jama.1989.03430170057028 10.1186/gb-2003-4-5-p3 10.1096/fj.04-1980com 10.1097/00005768-200106001-00013 10.2337/db08-1173 10.1056/NEJMoa011858 10.1161/01.CIR.0000091080.57509.E9 10.1161/CIRCULATIONAHA.107.734764 10.1001/jama.1996.03540030039029 10.1126/science.1163802 10.1096/fj.01-0570com 10.1001/jama.282.16.1547 10.1096/fasebj.12.13.1379 10.1152/jappl.1999.87.3.1003 10.1038/msb.2009.32 10.1055/s-2008-1025911 10.1038/nature06757 10.1042/BST0351306 10.1139/H07-079 10.1038/44334 10.1042/bse0420001 10.1086/302698 10.2337/diacare.28.1.108 10.1073/pnas.0601752103 10.1152/ajpcell.00248.2004 10.1038/nrcardio.2009.9 10.1186/gb-2005-6-2-r16 10.1152/jappl.2000.88.2.551 10.1152/jappl.2000.88.1.327 10.1152/physrev.90100.2007 10.1038/nature07206 10.1249/00005768-198902000-00013 10.1111/j.1365-2796.2007.01802.x 10.1113/jphysiol.2002.036616 10.1152/japplphysiol.91453.2008 10.1152/japplphysiol.00331.2004 10.1126/science.1108177 10.1152/japplphysiol.01395.2005 10.1016/j.ygeno.2005.09.007 10.1152/ajpendo.00666.2007 10.1186/1471-2105-6-129 10.1096/fj.04-3149fje 10.1249/00005768-199505000-00015 10.1096/fj.02-0367com 10.1073/pnas.98.1.31 10.1186/gb-2003-4-10-r70 10.1126/science.1118439 10.1038/nrg2554 10.1249/01.mss.0000181838.96815.4d 10.1152/japplphysiol.00015.2008 10.1086/504926 10.1038/nbt0503-477 10.1152/ajpendo.1998.274.2.E377 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Physiological Society Jun 2010 Copyright © 2010 the American Physiological Society 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Physiological Society Jun 2010 – notice: Copyright © 2010 the American Physiological Society 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM ADTPV AOWAS DG7 D8T ZZAVC |
DOI | 10.1152/japplphysiol.01295.2009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Stockholms universitet SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1496 |
ExternalDocumentID | oai_swepub_ki_se_553328 oai_DiVA_org_su_48910 PMC2886694 2069484511 20133430 22883511 10_1152_japplphysiol_01295_2009 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-47323 – fundername: NHLBI NIH HHS grantid: HL-47327 – fundername: NHLBI NIH HHS grantid: HL-45670 – fundername: NHLBI NIH HHS grantid: HL-47321 – fundername: NCRR NIH HHS grantid: RR-17718 – fundername: NHLBI NIH HHS grantid: HL-47317 |
GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX ADXHL AEILP AENEX AETEA AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ OHT OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM YCJ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM ADTPV AOWAS DG7 D8T ZZAVC |
ID | FETCH-LOGICAL-c613t-e79707f10231abca720a3e01ab1e6a206e83cd7f8c899aeab60b936f7f4965ff3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Mon Aug 25 03:30:06 EDT 2025 Thu Aug 21 06:45:18 EDT 2025 Thu Aug 21 13:51:43 EDT 2025 Fri Jul 11 00:08:44 EDT 2025 Mon Jun 30 08:41:01 EDT 2025 Thu Apr 03 07:01:51 EDT 2025 Mon Jul 21 09:15:48 EDT 2025 Tue Jul 01 01:13:30 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Physical exercise Human Vertebrata Physical training Mammalia Classification endurance training Genotype Endurance personalized medicine |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c613t-e79707f10231abca720a3e01ab1e6a206e83cd7f8c899aeab60b936f7f4965ff3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822 |
PMID | 20133430 |
PQID | 527959063 |
PQPubID | 40905 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_553328 swepub_primary_oai_DiVA_org_su_48910 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2886694 proquest_miscellaneous_733140102 proquest_journals_527959063 pubmed_primary_20133430 pascalfrancis_primary_22883511 crossref_citationtrail_10_1152_japplphysiol_01295_2009 crossref_primary_10_1152_japplphysiol_01295_2009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-01 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 Li C (B32) 2001; 2 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B15 B16 B17 B18 B19 12721560 - Nat Biotechnol. 2003 May;21(5):477-9 7242661 - Nature. 1981 Jun 4;291(5814):381-2 19352336 - Nat Rev Cardiol. 2009 Apr;6(4):317-21 11893790 - N Engl J Med. 2002 Mar 14;346(11):793-801 10546694 - JAMA. 1999 Oct 27;282(16):1547-53 12087069 - FASEB J. 2002 Jul;16(9):1077-86 9486171 - Am J Physiol. 1998 Feb;274(2 Pt 1):E377-80 15693945 - Genome Biol. 2005;6(2):R16 15921534 - BMC Bioinformatics. 2005;6:129 12468452 - FASEB J. 2002 Dec;16(14):1879-86 9761781 - FASEB J. 1998 Oct;12(13):1379-89 18385305 - J Appl Physiol (1985). 2008 Apr;104(4):1250 15662013 - Science. 2005 Jan 21;307(5708):418-20 19196912 - J Appl Physiol (1985). 2009 May;106(5):1479-86 15985525 - FASEB J. 2005 Sep;19(11):1498-500 15857889 - FASEB J. 2005 May;19(7):750-60 16260967 - Med Sci Sports Exerc. 2005 Oct;37(10):1680-96 12975254 - Circulation. 2003 Sep 30;108(13):1554-9 16326070 - Genomics. 2006 Jan;87(1):165-72 18073319 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E463-74 12611918 - J Physiol. 2003 Apr 15;548(Pt 2):401-10 2795824 - JAMA. 1989 Nov 3;262(17):2395-401 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 12734009 - Genome Biol. 2003;4(5):P3 17144876 - Essays Biochem. 2006;42:1-12 20299619 - J Appl Physiol (1985). 2010 Jun;108(6):1452-3 6500788 - Int J Sports Med. 1984 Oct;5(5):232-6 19455137 - Mol Syst Biol. 2009;5:273 15616242 - Diabetes Care. 2005 Jan;28(1):108-14 15229108 - Am J Physiol Cell Physiol. 2004 Nov;287(5):C1311-9 10631157 - Am J Hum Genet. 2000 Jan;66(1):279-92 16773565 - Am J Hum Genet. 2006 Jul;79(1):54-61 17444885 - J Intern Med. 2007 May;261(5):461-71 15347626 - J Appl Physiol (1985). 2005 Jan;98(1):168-79 8667564 - JAMA. 1996 Jul 17;276(3):205-10 18212278 - Circulation. 2008 Feb 5;117(5):614-22 18650917 - Nature. 2008 Jul 24;454(7203):463-9 2538707 - Med Sci Sports Exerc. 1989 Feb;21(1):71-7 10658022 - J Appl Physiol (1985). 2000 Feb;88(2):551-9 18988810 - Science. 2008 Dec 12;322(5908):1717-20 16421282 - J Appl Physiol (1985). 2006 Feb;100(2):744-5 19293820 - Nat Rev Genet. 2009 Apr;10(4):241-51 16556842 - Science. 2006 Mar 24;311(5768):1764-7 11427769 - Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3 18059615 - Appl Physiol Nutr Metab. 2007 Oct;32(5):904-11 18344982 - Nature. 2008 Mar 27;452(7186):429-35 14519205 - Genome Biol. 2003;4(10):R70 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 19258437 - Diabetes. 2009 Jun;58(6):1440-4 17956337 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1306-9 16617105 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6676-81 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406 7674877 - Med Sci Sports Exerc. 1995 May;27(5):721-9 10537105 - Nature. 1999 Oct 14;401(6754):670-7 10484570 - J Appl Physiol (1985). 1999 Sep;87(3):1003-8 10642397 - J Appl Physiol (1985). 2000 Jan;88(1):327-31 |
References_xml | – ident: B52 doi: 10.1073/pnas.091062498 – ident: B4 doi: 10.1038/291381a0 – ident: B28 doi: 10.1002/0471670278 – ident: B6 doi: 10.1001/jama.1989.03430170057028 – ident: B15 doi: 10.1186/gb-2003-4-5-p3 – ident: B50 doi: 10.1096/fj.04-1980com – ident: B10 doi: 10.1097/00005768-200106001-00013 – ident: B53 doi: 10.2337/db08-1173 – ident: B37 doi: 10.1056/NEJMoa011858 – ident: B19 doi: 10.1161/01.CIR.0000091080.57509.E9 – ident: B29 doi: 10.1161/CIRCULATIONAHA.107.734764 – volume: 2 year: 2001 ident: B32 publication-title: Genome Biol – ident: B5 doi: 10.1001/jama.1996.03540030039029 – ident: B38 doi: 10.1126/science.1163802 – ident: B39 doi: 10.1096/fj.01-0570com – ident: B55 doi: 10.1001/jama.282.16.1547 – ident: B56 doi: 10.1096/fasebj.12.13.1379 – ident: B7 doi: 10.1152/jappl.1999.87.3.1003 – ident: B46 doi: 10.1038/msb.2009.32 – ident: B34 doi: 10.1055/s-2008-1025911 – ident: B13 doi: 10.1038/nature06757 – ident: B27 doi: 10.1042/BST0351306 – ident: B26 doi: 10.1139/H07-079 – ident: B35 doi: 10.1038/44334 – ident: B22 doi: 10.1042/bse0420001 – ident: B1 doi: 10.1086/302698 – ident: B12 doi: 10.2337/diacare.28.1.108 – ident: B17 doi: 10.1073/pnas.0601752103 – ident: B2 doi: 10.1152/ajpcell.00248.2004 – ident: B40 doi: 10.1038/nrcardio.2009.9 – ident: B14 doi: 10.1186/gb-2005-6-2-r16 – ident: B11 doi: 10.1152/jappl.2000.88.2.551 – ident: B20 doi: 10.1152/jappl.2000.88.1.327 – ident: B41 doi: 10.1152/physrev.90100.2007 – ident: B21 doi: 10.1038/nature07206 – ident: B8 doi: 10.1249/00005768-198902000-00013 – ident: B18 doi: 10.1111/j.1365-2796.2007.01802.x – ident: B23 doi: 10.1113/jphysiol.2002.036616 – ident: B54 doi: 10.1152/japplphysiol.91453.2008 – ident: B24 doi: 10.1152/japplphysiol.00331.2004 – ident: B57 doi: 10.1126/science.1108177 – ident: B44 doi: 10.1152/japplphysiol.01395.2005 – ident: B51 doi: 10.1016/j.ygeno.2005.09.007 – ident: B31 doi: 10.1152/ajpendo.00666.2007 – ident: B30 doi: 10.1186/1471-2105-6-129 – ident: B36 doi: 10.1096/fj.04-3149fje – ident: B9 doi: 10.1249/00005768-199505000-00015 – ident: B3 doi: 10.1096/fj.02-0367com – ident: B33 doi: 10.1073/pnas.98.1.31 – ident: B25 doi: 10.1186/gb-2003-4-10-r70 – ident: B43 doi: 10.1126/science.1118439 – ident: B16 doi: 10.1038/nrg2554 – ident: B42 doi: 10.1249/01.mss.0000181838.96815.4d – ident: B48 doi: 10.1152/japplphysiol.00015.2008 – ident: B45 doi: 10.1086/504926 – ident: B47 doi: 10.1038/nbt0503-477 – ident: B49 doi: 10.1152/ajpendo.1998.274.2.E377 – reference: 19258437 - Diabetes. 2009 Jun;58(6):1440-4 – reference: 12087069 - FASEB J. 2002 Jul;16(9):1077-86 – reference: 12734009 - Genome Biol. 2003;4(5):P3 – reference: 18385305 - J Appl Physiol (1985). 2008 Apr;104(4):1250 – reference: 19455137 - Mol Syst Biol. 2009;5:273 – reference: 10484570 - J Appl Physiol (1985). 1999 Sep;87(3):1003-8 – reference: 16617105 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6676-81 – reference: 9486171 - Am J Physiol. 1998 Feb;274(2 Pt 1):E377-80 – reference: 19293820 - Nat Rev Genet. 2009 Apr;10(4):241-51 – reference: 11427769 - Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3 – reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 – reference: 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406 – reference: 19196912 - J Appl Physiol (1985). 2009 May;106(5):1479-86 – reference: 11893790 - N Engl J Med. 2002 Mar 14;346(11):793-801 – reference: 8667564 - JAMA. 1996 Jul 17;276(3):205-10 – reference: 16260967 - Med Sci Sports Exerc. 2005 Oct;37(10):1680-96 – reference: 15347626 - J Appl Physiol (1985). 2005 Jan;98(1):168-79 – reference: 17144876 - Essays Biochem. 2006;42:1-12 – reference: 17956337 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1306-9 – reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 – reference: 15693945 - Genome Biol. 2005;6(2):R16 – reference: 7674877 - Med Sci Sports Exerc. 1995 May;27(5):721-9 – reference: 18073319 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E463-74 – reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 – reference: 18988810 - Science. 2008 Dec 12;322(5908):1717-20 – reference: 12611918 - J Physiol. 2003 Apr 15;548(Pt 2):401-10 – reference: 12975254 - Circulation. 2003 Sep 30;108(13):1554-9 – reference: 18059615 - Appl Physiol Nutr Metab. 2007 Oct;32(5):904-11 – reference: 15662013 - Science. 2005 Jan 21;307(5708):418-20 – reference: 18650917 - Nature. 2008 Jul 24;454(7203):463-9 – reference: 16556842 - Science. 2006 Mar 24;311(5768):1764-7 – reference: 10546694 - JAMA. 1999 Oct 27;282(16):1547-53 – reference: 15985525 - FASEB J. 2005 Sep;19(11):1498-500 – reference: 16421282 - J Appl Physiol (1985). 2006 Feb;100(2):744-5 – reference: 2795824 - JAMA. 1989 Nov 3;262(17):2395-401 – reference: 12468452 - FASEB J. 2002 Dec;16(14):1879-86 – reference: 9761781 - FASEB J. 1998 Oct;12(13):1379-89 – reference: 15229108 - Am J Physiol Cell Physiol. 2004 Nov;287(5):C1311-9 – reference: 15857889 - FASEB J. 2005 May;19(7):750-60 – reference: 16773565 - Am J Hum Genet. 2006 Jul;79(1):54-61 – reference: 2538707 - Med Sci Sports Exerc. 1989 Feb;21(1):71-7 – reference: 18344982 - Nature. 2008 Mar 27;452(7186):429-35 – reference: 19352336 - Nat Rev Cardiol. 2009 Apr;6(4):317-21 – reference: 10642397 - J Appl Physiol (1985). 2000 Jan;88(1):327-31 – reference: 16326070 - Genomics. 2006 Jan;87(1):165-72 – reference: 15921534 - BMC Bioinformatics. 2005;6:129 – reference: 20299619 - J Appl Physiol (1985). 2010 Jun;108(6):1452-3 – reference: 15616242 - Diabetes Care. 2005 Jan;28(1):108-14 – reference: 12721560 - Nat Biotechnol. 2003 May;21(5):477-9 – reference: 6500788 - Int J Sports Med. 1984 Oct;5(5):232-6 – reference: 10631157 - Am J Hum Genet. 2000 Jan;66(1):279-92 – reference: 10658022 - J Appl Physiol (1985). 2000 Feb;88(2):551-9 – reference: 14519205 - Genome Biol. 2003;4(10):R70 – reference: 10537105 - Nature. 1999 Oct 14;401(6754):670-7 – reference: 17444885 - J Intern Med. 2007 May;261(5):461-71 – reference: 18212278 - Circulation. 2008 Feb 5;117(5):614-22 – reference: 7242661 - Nature. 1981 Jun 4;291(5814):381-2 |
SSID | ssj0014451 |
Score | 2.4740436 |
Snippet | A low maximal oxygen consumption (V̇o
2max
) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o
2max
with a... A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very... A low maximal oxygen consumption (...) is a strong risk factor for premature mortality. Supervised endurance exercise training increases ... with a very wide... A low maximal oxygen consumption (V̇ o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇ o 2max with... Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E,... |
SourceID | swepub pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1487 |
SubjectTerms | Biological and medical sciences Biomarkers Deoxyribonucleic acid DNA endurance training Exercise Family studies Fundamental and applied biological sciences. Psychology Gene expression Gene mapping Genetic diversity Genetic variance genotype Genotype & phenotype Heterogeneity Humans Male Mortality Muscle Proteins - genetics NATURAL SCIENCES NATURVETENSKAP Oxygen consumption Oxygen Consumption - genetics personalized medicine Phenotype Physical Endurance - genetics Physical Exertion - physiology Physical Fitness - physiology Physical training Polymorphism Polymorphism, Single Nucleotide - genetics Regression analysis Ribonucleic acid Risk factors RNA Young Adult |
Title | Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20133430 https://www.proquest.com/docview/527959063 https://www.proquest.com/docview/733140102 https://pubmed.ncbi.nlm.nih.gov/PMC2886694 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-48910 http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELeiTpomTdPW7oN1q_xQ9SUiI4ABP0b7qjZ12rR26hsyxLRoCUQBtK__YX_z7oxxQE21bi8IYexA7sf5zr67HyGHnDGw4pPQTuaOY_ss9e2EscD2PDaH2cZnmcSlgZMPwfGZ_-6cnY9Gv3tRS02dTNKfW_NK_keqcA3kilmy_yBZMyhcgHOQLxxBwnC8kYzb_f5lx3A7TtEUxtifVqpgVq7WuBFTjy9E3kaML8X3fIn1ASQWYErHKUyWaa7CNheL8huOJ4t5s1aZBB0fkyGSwBEUq191jVErtFGrFkza8k5YCYpHrLfkAPiAv6gyQbrj2cTo_aKZ6zWhz7XspakJpHhoG06bclmaDmXLZYX53bIYv530lzFwB74LtzKRno4Nzks4UM1O1MNgX9GCFxdunwGYq5gH4HX1q05wrY2pPM_NpDcor_0q_zKLy_VFXDWxH3HM2LvlgtuBjBjvP212pbCYm6q_Cw78NFDU2uaxdewgtL245scHls_dlajgI8xa9pRt7s3VKN1BLVtl_5zeJ_e0jOmsReEDMpLFLtmbFaIulz_oEf1oJL5Lbp_oiI098kthlBqM0iFGaV1SjVGqMErzgmqMUo1R2mGUGoxSg1HaYZR2GMURWow-JGdvXp--PLY14YedglVZ2zLkoRNmWE1kKpJUhK4jPOnA-VQGwnUCGXnpPMyiFPSLkCIJnIR7QRZmyHqQZd4jslOUhXxCKBceFwmonkClWmcRVhoUDgwA-mjKuUWCThhxqqvh43MuYuUVMzfuSzFWUkTKVujomI6rtiDM37scDKRt-rlI9Q0ej0X2O_HHWr1UMTwvZxw8CItQ0wq6Hzf0RCHLpoqRb9XHopAWedxiZTM0uHae7zkWCQcoMjcg7octRX6pysvDQwUB9y1y2OJt0OXKp2KRoy236Utf4UzGDFxKN3p6s_H2yZ2NenhGdup1I5-D3V8nB-pj_AMRPQ4t |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+molecular+classification+to+predict+gains+in+maximal+aerobic+capacity+following+endurance+exercise+training+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Timmons%2C+James+A.&rft.au=Knudsen%2C+Steen&rft.au=Rankinen%2C+Tuomo&rft.au=Koch%2C+Lauren+G.&rft.date=2010-06-01&rft.issn=8750-7587&rft.volume=108&rft.issue=6&rft.spage=1487&rft_id=info:doi/10.1152%2Fjapplphysiol.01295.2009&rft.externalDocID=oai_DiVA_org_su_48910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |