Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans

A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 108; no. 6; pp. 1487 - 1496
Main Authors Timmons, James A., Knudsen, Steen, Rankinen, Tuomo, Koch, Lauren G., Sarzynski, Mark, Jensen, Thomas, Keller, Pernille, Scheele, Camilla, Vollaard, Niels B. J., Nielsen, Søren, Åkerström, Thorbjörn, MacDougald, Ormond A., Jansson, Eva, Greenhaff, Paul L., Tarnopolsky, Mark A., van Loon, Luc J. C., Pedersen, Bente K., Sundberg, Carl Johan, Wahlestedt, Claes, Britton, Steven L., Bouchard, Claude
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇o 2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇o 2max response. Two independent preintervention RNA expression data sets were generated ( n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇o 2max (“predictor” genes). The HERITAGE Family Study ( n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇o 2max training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇o 2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇o 2max , corresponding to ∼50% of the estimated genetic variance for V̇o 2max . In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇o 2max responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
AbstractList A low maximal oxygen consumption (V̇ o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇ o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇ o 2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇ o 2max response. Two independent preintervention RNA expression data sets were generated ( n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇ o 2max (“predictor” genes). The HERITAGE Family Study ( n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇ o 2max training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇ o 2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇ o 2max , corresponding to ∼50% of the estimated genetic variance for V̇ o 2max . In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇ o 2max responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487-1496, 2010. First published February 4, 2010; doi:10.1152/japplphysiol.01295.2009.-A low maximal oxygen consumption ((V) over dotO(2max)) is a strong risk factor for premature mortality. Supervised endurance exercise training increases (V) over dotO(2max) with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts (V) over dotO(2max) training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous (V) over dotO(2max) response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in (V) over dotO(2max) (""predictor"" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted (V) over dotO(2max) training response on a continuous scale; these genes contained similar to 6 new single-nucleotide polymorphisms associated with gains in (V) over dotO(2max) in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., ""reciprocal"" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in (V) over dotO(2max), corresponding to similar to 50% of the estimated genetic variance for (V) over dotO(2max). In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. (V) over dotO(2max) responses to endurance training can be predicted by measuring a similar to 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts VO2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous VO2max response. Two independent preintervention RNA expression data sets were generated (n=41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in VO2max ("predictor" genes). The HERITAGE Family Study (n=473) was used for genotyping. We discovered a 29-RNA signature that predicted VO2max training response on a continuous scale; these genes contained approximately 6 new single-nucleotide polymorphisms associated with gains in VO2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in VO2max, corresponding to approximately 50% of the estimated genetic variance for VO2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. VO2max responses to endurance training can be predicted by measuring a approximately 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
A low maximal oxygen consumption (...) is a strong risk factor for premature mortality. Supervised endurance exercise training increases ... with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts ... training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous ... response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in ...("predictor" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29- RNA signature that predicted ... training response on a continuous scale; these genes contained 6 new single-nucleotide polymorphisms associated with gains in ... in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., "reciprocal" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in ..., corresponding to 50% of the estimated genetic variance for ... In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. ... responses to endurance training can be predicted by measuring a 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans. (ProQuest: ... denotes formulae/symbols omitted.)
A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇o 2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇o 2max response. Two independent preintervention RNA expression data sets were generated ( n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇o 2max (“predictor” genes). The HERITAGE Family Study ( n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇o 2max training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇o 2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇o 2max , corresponding to ∼50% of the estimated genetic variance for V̇o 2max . In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇o 2max responses to endurance training can be predicted by measuring a ∼30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
Author Jensen, Thomas
Bouchard, Claude
Koch, Lauren G.
Pedersen, Bente K.
MacDougald, Ormond A.
Timmons, James A.
Knudsen, Steen
Vollaard, Niels B. J.
van Loon, Luc J. C.
Keller, Pernille
Wahlestedt, Claes
Britton, Steven L.
Nielsen, Søren
Sarzynski, Mark
Åkerström, Thorbjörn
Rankinen, Tuomo
Greenhaff, Paul L.
Tarnopolsky, Mark A.
Sundberg, Carl Johan
Scheele, Camilla
Jansson, Eva
Author_xml – sequence: 1
  givenname: James A.
  surname: Timmons
  fullname: Timmons, James A.
  organization: Section of Systems Biology Research, Panum Institutet and Center for Healthy Ageing,, Royal Veterinary College, University of London, Camden, London,, The Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University
– sequence: 2
  givenname: Steen
  surname: Knudsen
  fullname: Knudsen, Steen
  organization: Medical Prognosis Institute, Hørsholm, Denmark
– sequence: 3
  givenname: Tuomo
  surname: Rankinen
  fullname: Rankinen, Tuomo
  organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
– sequence: 4
  givenname: Lauren G.
  surname: Koch
  fullname: Koch, Lauren G.
  organization: Departments of 6Physical Medicine and Rehabilitation and
– sequence: 5
  givenname: Mark
  surname: Sarzynski
  fullname: Sarzynski, Mark
  organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
– sequence: 6
  givenname: Thomas
  surname: Jensen
  fullname: Jensen, Thomas
  organization: Medical Prognosis Institute, Hørsholm, Denmark
– sequence: 7
  givenname: Pernille
  surname: Keller
  fullname: Keller, Pernille
  organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen,, Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
– sequence: 8
  givenname: Camilla
  surname: Scheele
  fullname: Scheele, Camilla
  organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen,, The Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University
– sequence: 9
  givenname: Niels B. J.
  surname: Vollaard
  fullname: Vollaard, Niels B. J.
  organization: Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
– sequence: 10
  givenname: Søren
  surname: Nielsen
  fullname: Nielsen, Søren
  organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen
– sequence: 11
  givenname: Thorbjörn
  surname: Åkerström
  fullname: Åkerström, Thorbjörn
  organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen
– sequence: 12
  givenname: Ormond A.
  surname: MacDougald
  fullname: MacDougald, Ormond A.
  organization: Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
– sequence: 13
  givenname: Eva
  surname: Jansson
  fullname: Jansson, Eva
  organization: Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska University Hospital
– sequence: 14
  givenname: Paul L.
  surname: Greenhaff
  fullname: Greenhaff, Paul L.
  organization: Centre for Integrated Systems Biology Medicine, University Medical School, Nottingham, United Kingdom
– sequence: 15
  givenname: Mark A.
  surname: Tarnopolsky
  fullname: Tarnopolsky, Mark A.
  organization: Department of Paediatrics and Medicine (Neurology and Rehabilitation), McMaster University Medical Centre, Hamilton, Ontario, Canada; and
– sequence: 16
  givenname: Luc J. C.
  surname: van Loon
  fullname: van Loon, Luc J. C.
  organization: Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
– sequence: 17
  givenname: Bente K.
  surname: Pedersen
  fullname: Pedersen, Bente K.
  organization: Centre of Inflammation and Metabolism, Faculty of Health Sciences, University of Copenhagen, Copenhagen
– sequence: 18
  givenname: Carl Johan
  surname: Sundberg
  fullname: Sundberg, Carl Johan
  organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
– sequence: 19
  givenname: Claes
  surname: Wahlestedt
  fullname: Wahlestedt, Claes
  organization: Molecular and Integrative Neurosciences Department, The Scripps Research Institute, Jupiter, Florida
– sequence: 20
  givenname: Steven L.
  surname: Britton
  fullname: Britton, Steven L.
  organization: Departments of 6Physical Medicine and Rehabilitation and, Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
– sequence: 21
  givenname: Claude
  surname: Bouchard
  fullname: Bouchard, Claude
  organization: Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22883511$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20133430$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-48910$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822$$DView record from Swedish Publication Index
BookMark eNqFkl9v0zAUxS00xLrCVwALCfGAUuw4iZMHkKbxV5rEC-PVunVvWhfHDnbCVvHlcdYOtkmIJ1u-v3N87XtOyJHzDgl5xtmC8zJ_vYW-t_1mF423C8bzplzkjDUPyCxV84xXjB-RWS1LlsmylsfkJMYtY7woSv6IHOeMC1EINiO_LqJxa9p5i3q0EKi2EKNpjYbBeEcHT_uAK6MHugbjIjWOdnBlOrAUMPil0VRDD9oMO9p6a_3l5IduNQZwGileYdAmIh1C0k-15LAZO3DxMXnYgo345LDOycWH91_PPmXnXz5-Pjs9z3TFxZChbCSTLWe54LDUIHMGAlnac6wgZxXWQq9kW-u6aQBhWbFlI6pWtkVTlW0r5iTb-8ZL7Mel6kNqP-yUB6MOR9_TDlVZCpHXiX_1T_6d-XaqfFirOKqibjhL9Ns9ndAOVxpdeqm9I7pbcWaj1v6nyuu6qpoiGbw8GAT_Y8Q4qM5EjdaCQz9GJYXgBZuePyfP75FbPwaX_k6VuWzKhlUiQU9v9_OnkZuZJ-DFAYCowbbTnEz8y6W-RMl54t7sOR18jAFblYZ8nYpplFZxpqYsqttZVNdZVFMWk17e099c8T_lbxVM7Qo
CODEN JAPHEV
CitedBy_id crossref_primary_10_1113_expphysiol_2011_063727
crossref_primary_10_1113_expphysiol_2010_056234
crossref_primary_10_5114_jhk_191847
crossref_primary_10_1016_j_ijcard_2011_07_097
crossref_primary_10_1113_expphysiol_2011_057729
crossref_primary_10_1152_physiolgenomics_00078_2015
crossref_primary_10_1134_S0362119712010082
crossref_primary_10_1093_eurjpc_zwad232
crossref_primary_10_1152_japplphysiol_00343_2021
crossref_primary_10_1016_j_jshs_2025_101029
crossref_primary_10_1590_1517_869220172304169935
crossref_primary_10_1007_s40279_013_0114_1
crossref_primary_10_1186_s13073_021_00994_9
crossref_primary_10_1007_s00421_020_04477_4
crossref_primary_10_1016_j_freeradbiomed_2016_02_007
crossref_primary_10_1186_s12864_017_4192_6
crossref_primary_10_1177_1745691616635591
crossref_primary_10_1016_j_pmrj_2012_10_007
crossref_primary_10_1007_s40279_020_01335_3
crossref_primary_10_1016_j_archger_2013_08_001
crossref_primary_10_12688_f1000research_3_9_v2
crossref_primary_10_1016_j_exger_2018_06_030
crossref_primary_10_1152_japplphysiol_01067_2014
crossref_primary_10_12688_f1000research_3_9_v1
crossref_primary_10_1242_jeb_048397
crossref_primary_10_1159_000441029
crossref_primary_10_1086_678567
crossref_primary_10_1016_j_metabol_2015_06_008
crossref_primary_10_1097_SLA_0000000000004527
crossref_primary_10_1249_MSS_0000000000002539
crossref_primary_10_1136_bmjsem_2017_000309
crossref_primary_10_3390_jfmk4020025
crossref_primary_10_1080_17511321_2020_1770846
crossref_primary_10_1152_physiolgenomics_00167_2012
crossref_primary_10_2337_db21_0934
crossref_primary_10_2337_db13_0062
crossref_primary_10_1101_cshperspect_a029769
crossref_primary_10_1016_j_cmet_2023_12_025
crossref_primary_10_1016_j_cca_2025_120178
crossref_primary_10_1093_bja_aeu348
crossref_primary_10_1371_journal_pone_0037887
crossref_primary_10_1016_j_nbt_2012_11_015
crossref_primary_10_15857_ksep_2024_00402
crossref_primary_10_1113_JP273480
crossref_primary_10_1113_JP272270
crossref_primary_10_1016_j_celrep_2020_107980
crossref_primary_10_1126_sciimmunol_adi5377
crossref_primary_10_14814_phy2_13184
crossref_primary_10_1038_s42255_020_0240_7
crossref_primary_10_1016_j_cmet_2012_12_012
crossref_primary_10_1111_brv_12916
crossref_primary_10_1113_JP270536
crossref_primary_10_1111_j_1600_0838_2010_01139_x
crossref_primary_10_1152_japplphysiol_00489_2020
crossref_primary_10_1007_s00018_018_2925_6
crossref_primary_10_1186_2046_2395_2_13
crossref_primary_10_1080_17511321_2018_1535522
crossref_primary_10_1002_art_34572
crossref_primary_10_1152_japplphysiol_00634_2010
crossref_primary_10_1152_ajpendo_00027_2012
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1136_bjsports_2016_096724
crossref_primary_10_1249_MSS_0b013e31828983f7
crossref_primary_10_1177_2053369115623899
crossref_primary_10_23736_S0022_4707_18_08258_0
crossref_primary_10_32652_olympic2018_3_3
crossref_primary_10_3389_fendo_2017_00229
crossref_primary_10_17721_1728_2748_2014_68_71_75
crossref_primary_10_3389_fpubh_2024_1334081
crossref_primary_10_1371_journal_pone_0169821
crossref_primary_10_1038_s42255_021_00400_z
crossref_primary_10_1007_s00421_022_04945_z
crossref_primary_10_1113_jphysiol_2011_207035
crossref_primary_10_1371_journal_pone_0077200
crossref_primary_10_3390_ijerph191610173
crossref_primary_10_1093_ptj_pzy069
crossref_primary_10_1371_journal_pgen_1003389
crossref_primary_10_1101_cshperspect_a029694
crossref_primary_10_1152_japplphysiol_01330_2010
crossref_primary_10_3389_fphys_2019_01165
crossref_primary_10_7717_peerj_445
crossref_primary_10_1186_s12920_020_00784_z
crossref_primary_10_1152_japplphysiol_01327_2010
crossref_primary_10_1123_japa_2017_0054
crossref_primary_10_1002_elps_201400604
crossref_primary_10_1096_fj_14_266890
crossref_primary_10_1371_journal_pone_0207597
crossref_primary_10_1113_expphysiol_2012_069633
crossref_primary_10_1371_journal_pone_0145741
crossref_primary_10_14814_phy2_14962
crossref_primary_10_1007_s00421_012_2547_x
crossref_primary_10_1007_s12152_020_09435_7
crossref_primary_10_1371_journal_pone_0092031
crossref_primary_10_1152_physiolgenomics_00072_2014
crossref_primary_10_1111_sdi_12805
crossref_primary_10_3390_nu13113999
crossref_primary_10_12688_f1000research_21588_1
crossref_primary_10_1111_1365_2435_12653
crossref_primary_10_1139_apnm_2017_0224
crossref_primary_10_1007_s40279_013_0086_1
crossref_primary_10_1016_j_cmet_2017_04_018
crossref_primary_10_1371_journal_pone_0212115
crossref_primary_10_1139_apnm_2016_0253
crossref_primary_10_1177_2047487319828478
crossref_primary_10_1161_CIRCGENETICS_110_957183
crossref_primary_10_4161_15592294_2014_982445
crossref_primary_10_1371_journal_pone_0147330
crossref_primary_10_1152_physiolgenomics_00140_2017
crossref_primary_10_3389_fspor_2019_00028
crossref_primary_10_1055_a_1198_5496
crossref_primary_10_1096_fj_10_157313
crossref_primary_10_1002_acr_22680
crossref_primary_10_1007_s11556_010_0077_2
crossref_primary_10_2174_1875399X01710010191
crossref_primary_10_3390_ijms252313041
crossref_primary_10_1177_2047487319877716
crossref_primary_10_1007_s12020_015_0792_6
crossref_primary_10_1159_000501206
crossref_primary_10_1249_MSS_0000000000001387
crossref_primary_10_1016_j_orthtr_2013_07_014
crossref_primary_10_1111_sms_12927
crossref_primary_10_3390_ijerph17134860
crossref_primary_10_1136_bjsports_2011_090704
crossref_primary_10_1002_clc_23369
crossref_primary_10_1542_peds_2021_056003
crossref_primary_10_1007_s12170_011_0179_z
crossref_primary_10_1152_japplphysiol_01487_2012
crossref_primary_10_15857_ksep_2014_23_2_69
crossref_primary_10_1177_2047487319838221
crossref_primary_10_1016_j_cell_2020_06_004
crossref_primary_10_1177_1545968318818904
crossref_primary_10_3233_CH_141857
crossref_primary_10_1113_expphysiol_2013_076406
crossref_primary_10_1186_s13059_015_0750_x
crossref_primary_10_1016_j_cellsig_2013_08_004
crossref_primary_10_1055_a_1255_3161
crossref_primary_10_1186_s40798_023_00579_3
crossref_primary_10_1016_j_bbagen_2013_10_012
crossref_primary_10_1073_pnas_1906171116
crossref_primary_10_1152_japplphysiol_01110_2014
crossref_primary_10_3390_cells10051022
crossref_primary_10_3389_fphys_2019_01401
crossref_primary_10_1249_MSS_0b013e3182155d21
crossref_primary_10_3389_fphys_2021_756618
crossref_primary_10_1113_jphysiol_2010_201525
crossref_primary_10_3389_fphys_2018_00569
crossref_primary_10_3389_fphys_2019_00672
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1097_JOM_0000000000002983
crossref_primary_10_1249_MSS_0000000000001288
crossref_primary_10_1249_MSS_0000000000001041
crossref_primary_10_1371_journal_pone_0240866
crossref_primary_10_1080_00336297_2010_10483652
crossref_primary_10_3390_jcm9123951
crossref_primary_10_1007_s40279_024_02089_y
crossref_primary_10_1249_MSS_0b013e3182784e9f
crossref_primary_10_1007_s11082_023_06016_9
crossref_primary_10_1016_j_heliyon_2023_e19268
crossref_primary_10_1113_expphysiol_2010_055400
crossref_primary_10_1186_s40798_017_0085_0
crossref_primary_10_3945_ajcn_116_132563
crossref_primary_10_1089_ars_2011_4498
crossref_primary_10_1152_physrev_00064_2017
crossref_primary_10_1183_09031936_00041212
crossref_primary_10_1093_eurjpc_zwaa142
crossref_primary_10_1017_jns_2014_55
crossref_primary_10_1093_narmme_ugae016
crossref_primary_10_1007_s00421_011_1869_4
crossref_primary_10_1016_j_tvjl_2013_07_023
crossref_primary_10_1007_s40279_014_0197_3
crossref_primary_10_1080_02640414_2012_658080
crossref_primary_10_1371_journal_pone_0074098
crossref_primary_10_1186_s40798_017_0110_3
crossref_primary_10_1186_s40798_021_00315_9
crossref_primary_10_1139_apnm_2018_0343
crossref_primary_10_1242_jeb_164327
crossref_primary_10_15406_mojgg_2024_09_00323
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_1152_physrev_00035_2013
crossref_primary_10_1111_ahg_12006
crossref_primary_10_1113_JP272559
crossref_primary_10_1152_japplphysiol_01107_2012
crossref_primary_10_1007_s40279_014_0162_1
crossref_primary_10_1016_j_mhpa_2012_03_002
crossref_primary_10_1038_s41576_021_00400_5
crossref_primary_10_1093_pubmed_fdx077
crossref_primary_10_3389_fgene_2019_01215
crossref_primary_10_3390_sports10060095
crossref_primary_10_1113_expphysiol_2011_058735
crossref_primary_10_1371_journal_pone_0273766
crossref_primary_10_3390_cells11050872
crossref_primary_10_1152_japplphysiol_01259_2010
crossref_primary_10_1080_15592294_2019_1603961
crossref_primary_10_1152_physiolgenomics_00169_2013
crossref_primary_10_1101_cshperspect_a029868
crossref_primary_10_1080_00948705_2018_1455148
crossref_primary_10_1139_apnm_2020_0855
crossref_primary_10_3390_ijms24076454
crossref_primary_10_3390_medicina56080395
crossref_primary_10_1093_ecco_jcc_jjac129
crossref_primary_10_1096_fj_14_255000
crossref_primary_10_1016_j_cophys_2019_06_005
crossref_primary_10_1016_j_ygeno_2021_06_035
crossref_primary_10_1152_japplphysiol_00901_2010
crossref_primary_10_1007_s40279_013_0018_0
crossref_primary_10_1016_j_mrrev_2015_08_001
crossref_primary_10_1152_japplphysiol_00934_2010
crossref_primary_10_3389_fped_2018_00404
crossref_primary_10_1249_MSS_0000000000002859
crossref_primary_10_3390_metabo14090512
crossref_primary_10_1113_EP089434
crossref_primary_10_1007_s00424_014_1554_7
crossref_primary_10_1038_s41598_022_15578_9
crossref_primary_10_1152_japplphysiol_00268_2010
crossref_primary_10_1136_bmjopen_2020_044676
crossref_primary_10_3389_fphys_2021_682891
crossref_primary_10_1152_japplphysiol_00714_2014
crossref_primary_10_3389_fnut_2019_00191
crossref_primary_10_1016_j_exger_2012_03_004
crossref_primary_10_1136_bjsports_2015_095179
crossref_primary_10_29407_js_unpgri_v8i2_18499
crossref_primary_10_3389_fpsyg_2019_02338
crossref_primary_10_1007_s00421_011_2036_7
crossref_primary_10_1590_S1807_55092014000100177
crossref_primary_10_1016_j_jesf_2013_03_003
crossref_primary_10_1152_japplphysiol_00242_2021
crossref_primary_10_1111_j_1600_0838_2010_01289_x
crossref_primary_10_1016_j_clinph_2018_04_689
crossref_primary_10_1097_JES_0b013e31822643f6
crossref_primary_10_1152_physiolgenomics_00021_2013
crossref_primary_10_1159_000520471
crossref_primary_10_3389_fgene_2018_00242
crossref_primary_10_3389_fphys_2019_00019
crossref_primary_10_1016_j_celrep_2017_10_040
crossref_primary_10_1016_j_mayocp_2013_11_013
crossref_primary_10_1007_s00421_016_3353_7
crossref_primary_10_1097_SLA_0000000000005083
crossref_primary_10_1111_pedi_13035
crossref_primary_10_1007_s40279_016_0496_y
crossref_primary_10_1152_physiolgenomics_00017_2023
crossref_primary_10_1113_jphysiol_2011_213413
crossref_primary_10_7600_jpfsm_1_595
crossref_primary_10_1186_s12864_017_4186_4
crossref_primary_10_1002_mus_23771
crossref_primary_10_1152_japplphysiol_00973_2010
Cites_doi 10.1073/pnas.091062498
10.1038/291381a0
10.1002/0471670278
10.1001/jama.1989.03430170057028
10.1186/gb-2003-4-5-p3
10.1096/fj.04-1980com
10.1097/00005768-200106001-00013
10.2337/db08-1173
10.1056/NEJMoa011858
10.1161/01.CIR.0000091080.57509.E9
10.1161/CIRCULATIONAHA.107.734764
10.1001/jama.1996.03540030039029
10.1126/science.1163802
10.1096/fj.01-0570com
10.1001/jama.282.16.1547
10.1096/fasebj.12.13.1379
10.1152/jappl.1999.87.3.1003
10.1038/msb.2009.32
10.1055/s-2008-1025911
10.1038/nature06757
10.1042/BST0351306
10.1139/H07-079
10.1038/44334
10.1042/bse0420001
10.1086/302698
10.2337/diacare.28.1.108
10.1073/pnas.0601752103
10.1152/ajpcell.00248.2004
10.1038/nrcardio.2009.9
10.1186/gb-2005-6-2-r16
10.1152/jappl.2000.88.2.551
10.1152/jappl.2000.88.1.327
10.1152/physrev.90100.2007
10.1038/nature07206
10.1249/00005768-198902000-00013
10.1111/j.1365-2796.2007.01802.x
10.1113/jphysiol.2002.036616
10.1152/japplphysiol.91453.2008
10.1152/japplphysiol.00331.2004
10.1126/science.1108177
10.1152/japplphysiol.01395.2005
10.1016/j.ygeno.2005.09.007
10.1152/ajpendo.00666.2007
10.1186/1471-2105-6-129
10.1096/fj.04-3149fje
10.1249/00005768-199505000-00015
10.1096/fj.02-0367com
10.1073/pnas.98.1.31
10.1186/gb-2003-4-10-r70
10.1126/science.1118439
10.1038/nrg2554
10.1249/01.mss.0000181838.96815.4d
10.1152/japplphysiol.00015.2008
10.1086/504926
10.1038/nbt0503-477
10.1152/ajpendo.1998.274.2.E377
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Physiological Society Jun 2010
Copyright © 2010 the American Physiological Society 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Physiological Society Jun 2010
– notice: Copyright © 2010 the American Physiological Society 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ADTPV
AOWAS
DG7
D8T
ZZAVC
DOI 10.1152/japplphysiol.01295.2009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1496
ExternalDocumentID oai_swepub_ki_se_553328
oai_DiVA_org_su_48910
PMC2886694
2069484511
20133430
22883511
10_1152_japplphysiol_01295_2009
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-47323
– fundername: NHLBI NIH HHS
  grantid: HL-47327
– fundername: NHLBI NIH HHS
  grantid: HL-45670
– fundername: NHLBI NIH HHS
  grantid: HL-47321
– fundername: NCRR NIH HHS
  grantid: RR-17718
– fundername: NHLBI NIH HHS
  grantid: HL-47317
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
ADXHL
AEILP
AENEX
AETEA
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
YCJ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ADTPV
AOWAS
DG7
D8T
ZZAVC
ID FETCH-LOGICAL-c613t-e79707f10231abca720a3e01ab1e6a206e83cd7f8c899aeab60b936f7f4965ff3
ISSN 8750-7587
1522-1601
IngestDate Mon Aug 25 03:30:06 EDT 2025
Thu Aug 21 06:45:18 EDT 2025
Thu Aug 21 13:51:43 EDT 2025
Fri Jul 11 00:08:44 EDT 2025
Mon Jun 30 08:41:01 EDT 2025
Thu Apr 03 07:01:51 EDT 2025
Mon Jul 21 09:15:48 EDT 2025
Tue Jul 01 01:13:30 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Physical exercise
Human
Vertebrata
Physical training
Mammalia
Classification
endurance training
Genotype
Endurance
personalized medicine
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c613t-e79707f10231abca720a3e01ab1e6a206e83cd7f8c899aeab60b936f7f4965ff3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822
PMID 20133430
PQID 527959063
PQPubID 40905
PageCount 10
ParticipantIDs swepub_primary_oai_swepub_ki_se_553328
swepub_primary_oai_DiVA_org_su_48910
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2886694
proquest_miscellaneous_733140102
proquest_journals_527959063
pubmed_primary_20133430
pascalfrancis_primary_22883511
crossref_citationtrail_10_1152_japplphysiol_01295_2009
crossref_primary_10_1152_japplphysiol_01295_2009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
Li C (B32) 2001; 2
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B15
B16
B17
B18
B19
12721560 - Nat Biotechnol. 2003 May;21(5):477-9
7242661 - Nature. 1981 Jun 4;291(5814):381-2
19352336 - Nat Rev Cardiol. 2009 Apr;6(4):317-21
11893790 - N Engl J Med. 2002 Mar 14;346(11):793-801
10546694 - JAMA. 1999 Oct 27;282(16):1547-53
12087069 - FASEB J. 2002 Jul;16(9):1077-86
9486171 - Am J Physiol. 1998 Feb;274(2 Pt 1):E377-80
15693945 - Genome Biol. 2005;6(2):R16
15921534 - BMC Bioinformatics. 2005;6:129
12468452 - FASEB J. 2002 Dec;16(14):1879-86
9761781 - FASEB J. 1998 Oct;12(13):1379-89
18385305 - J Appl Physiol (1985). 2008 Apr;104(4):1250
15662013 - Science. 2005 Jan 21;307(5708):418-20
19196912 - J Appl Physiol (1985). 2009 May;106(5):1479-86
15985525 - FASEB J. 2005 Sep;19(11):1498-500
15857889 - FASEB J. 2005 May;19(7):750-60
16260967 - Med Sci Sports Exerc. 2005 Oct;37(10):1680-96
12975254 - Circulation. 2003 Sep 30;108(13):1554-9
16326070 - Genomics. 2006 Jan;87(1):165-72
18073319 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E463-74
12611918 - J Physiol. 2003 Apr 15;548(Pt 2):401-10
2795824 - JAMA. 1989 Nov 3;262(17):2395-401
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
11532216 - Genome Biol. 2001;2(8):RESEARCH0032
12734009 - Genome Biol. 2003;4(5):P3
17144876 - Essays Biochem. 2006;42:1-12
20299619 - J Appl Physiol (1985). 2010 Jun;108(6):1452-3
6500788 - Int J Sports Med. 1984 Oct;5(5):232-6
19455137 - Mol Syst Biol. 2009;5:273
15616242 - Diabetes Care. 2005 Jan;28(1):108-14
15229108 - Am J Physiol Cell Physiol. 2004 Nov;287(5):C1311-9
10631157 - Am J Hum Genet. 2000 Jan;66(1):279-92
16773565 - Am J Hum Genet. 2006 Jul;79(1):54-61
17444885 - J Intern Med. 2007 May;261(5):461-71
15347626 - J Appl Physiol (1985). 2005 Jan;98(1):168-79
8667564 - JAMA. 1996 Jul 17;276(3):205-10
18212278 - Circulation. 2008 Feb 5;117(5):614-22
18650917 - Nature. 2008 Jul 24;454(7203):463-9
2538707 - Med Sci Sports Exerc. 1989 Feb;21(1):71-7
10658022 - J Appl Physiol (1985). 2000 Feb;88(2):551-9
18988810 - Science. 2008 Dec 12;322(5908):1717-20
16421282 - J Appl Physiol (1985). 2006 Feb;100(2):744-5
19293820 - Nat Rev Genet. 2009 Apr;10(4):241-51
16556842 - Science. 2006 Mar 24;311(5768):1764-7
11427769 - Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3
18059615 - Appl Physiol Nutr Metab. 2007 Oct;32(5):904-11
18344982 - Nature. 2008 Mar 27;452(7186):429-35
14519205 - Genome Biol. 2003;4(10):R70
11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
19258437 - Diabetes. 2009 Jun;58(6):1440-4
17956337 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1306-9
16617105 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6676-81
18923185 - Physiol Rev. 2008 Oct;88(4):1379-406
7674877 - Med Sci Sports Exerc. 1995 May;27(5):721-9
10537105 - Nature. 1999 Oct 14;401(6754):670-7
10484570 - J Appl Physiol (1985). 1999 Sep;87(3):1003-8
10642397 - J Appl Physiol (1985). 2000 Jan;88(1):327-31
References_xml – ident: B52
  doi: 10.1073/pnas.091062498
– ident: B4
  doi: 10.1038/291381a0
– ident: B28
  doi: 10.1002/0471670278
– ident: B6
  doi: 10.1001/jama.1989.03430170057028
– ident: B15
  doi: 10.1186/gb-2003-4-5-p3
– ident: B50
  doi: 10.1096/fj.04-1980com
– ident: B10
  doi: 10.1097/00005768-200106001-00013
– ident: B53
  doi: 10.2337/db08-1173
– ident: B37
  doi: 10.1056/NEJMoa011858
– ident: B19
  doi: 10.1161/01.CIR.0000091080.57509.E9
– ident: B29
  doi: 10.1161/CIRCULATIONAHA.107.734764
– volume: 2
  year: 2001
  ident: B32
  publication-title: Genome Biol
– ident: B5
  doi: 10.1001/jama.1996.03540030039029
– ident: B38
  doi: 10.1126/science.1163802
– ident: B39
  doi: 10.1096/fj.01-0570com
– ident: B55
  doi: 10.1001/jama.282.16.1547
– ident: B56
  doi: 10.1096/fasebj.12.13.1379
– ident: B7
  doi: 10.1152/jappl.1999.87.3.1003
– ident: B46
  doi: 10.1038/msb.2009.32
– ident: B34
  doi: 10.1055/s-2008-1025911
– ident: B13
  doi: 10.1038/nature06757
– ident: B27
  doi: 10.1042/BST0351306
– ident: B26
  doi: 10.1139/H07-079
– ident: B35
  doi: 10.1038/44334
– ident: B22
  doi: 10.1042/bse0420001
– ident: B1
  doi: 10.1086/302698
– ident: B12
  doi: 10.2337/diacare.28.1.108
– ident: B17
  doi: 10.1073/pnas.0601752103
– ident: B2
  doi: 10.1152/ajpcell.00248.2004
– ident: B40
  doi: 10.1038/nrcardio.2009.9
– ident: B14
  doi: 10.1186/gb-2005-6-2-r16
– ident: B11
  doi: 10.1152/jappl.2000.88.2.551
– ident: B20
  doi: 10.1152/jappl.2000.88.1.327
– ident: B41
  doi: 10.1152/physrev.90100.2007
– ident: B21
  doi: 10.1038/nature07206
– ident: B8
  doi: 10.1249/00005768-198902000-00013
– ident: B18
  doi: 10.1111/j.1365-2796.2007.01802.x
– ident: B23
  doi: 10.1113/jphysiol.2002.036616
– ident: B54
  doi: 10.1152/japplphysiol.91453.2008
– ident: B24
  doi: 10.1152/japplphysiol.00331.2004
– ident: B57
  doi: 10.1126/science.1108177
– ident: B44
  doi: 10.1152/japplphysiol.01395.2005
– ident: B51
  doi: 10.1016/j.ygeno.2005.09.007
– ident: B31
  doi: 10.1152/ajpendo.00666.2007
– ident: B30
  doi: 10.1186/1471-2105-6-129
– ident: B36
  doi: 10.1096/fj.04-3149fje
– ident: B9
  doi: 10.1249/00005768-199505000-00015
– ident: B3
  doi: 10.1096/fj.02-0367com
– ident: B33
  doi: 10.1073/pnas.98.1.31
– ident: B25
  doi: 10.1186/gb-2003-4-10-r70
– ident: B43
  doi: 10.1126/science.1118439
– ident: B16
  doi: 10.1038/nrg2554
– ident: B42
  doi: 10.1249/01.mss.0000181838.96815.4d
– ident: B48
  doi: 10.1152/japplphysiol.00015.2008
– ident: B45
  doi: 10.1086/504926
– ident: B47
  doi: 10.1038/nbt0503-477
– ident: B49
  doi: 10.1152/ajpendo.1998.274.2.E377
– reference: 19258437 - Diabetes. 2009 Jun;58(6):1440-4
– reference: 12087069 - FASEB J. 2002 Jul;16(9):1077-86
– reference: 12734009 - Genome Biol. 2003;4(5):P3
– reference: 18385305 - J Appl Physiol (1985). 2008 Apr;104(4):1250
– reference: 19455137 - Mol Syst Biol. 2009;5:273
– reference: 10484570 - J Appl Physiol (1985). 1999 Sep;87(3):1003-8
– reference: 16617105 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6676-81
– reference: 9486171 - Am J Physiol. 1998 Feb;274(2 Pt 1):E377-80
– reference: 19293820 - Nat Rev Genet. 2009 Apr;10(4):241-51
– reference: 11427769 - Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 18923185 - Physiol Rev. 2008 Oct;88(4):1379-406
– reference: 19196912 - J Appl Physiol (1985). 2009 May;106(5):1479-86
– reference: 11893790 - N Engl J Med. 2002 Mar 14;346(11):793-801
– reference: 8667564 - JAMA. 1996 Jul 17;276(3):205-10
– reference: 16260967 - Med Sci Sports Exerc. 2005 Oct;37(10):1680-96
– reference: 15347626 - J Appl Physiol (1985). 2005 Jan;98(1):168-79
– reference: 17144876 - Essays Biochem. 2006;42:1-12
– reference: 17956337 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1306-9
– reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032
– reference: 15693945 - Genome Biol. 2005;6(2):R16
– reference: 7674877 - Med Sci Sports Exerc. 1995 May;27(5):721-9
– reference: 18073319 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E463-74
– reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
– reference: 18988810 - Science. 2008 Dec 12;322(5908):1717-20
– reference: 12611918 - J Physiol. 2003 Apr 15;548(Pt 2):401-10
– reference: 12975254 - Circulation. 2003 Sep 30;108(13):1554-9
– reference: 18059615 - Appl Physiol Nutr Metab. 2007 Oct;32(5):904-11
– reference: 15662013 - Science. 2005 Jan 21;307(5708):418-20
– reference: 18650917 - Nature. 2008 Jul 24;454(7203):463-9
– reference: 16556842 - Science. 2006 Mar 24;311(5768):1764-7
– reference: 10546694 - JAMA. 1999 Oct 27;282(16):1547-53
– reference: 15985525 - FASEB J. 2005 Sep;19(11):1498-500
– reference: 16421282 - J Appl Physiol (1985). 2006 Feb;100(2):744-5
– reference: 2795824 - JAMA. 1989 Nov 3;262(17):2395-401
– reference: 12468452 - FASEB J. 2002 Dec;16(14):1879-86
– reference: 9761781 - FASEB J. 1998 Oct;12(13):1379-89
– reference: 15229108 - Am J Physiol Cell Physiol. 2004 Nov;287(5):C1311-9
– reference: 15857889 - FASEB J. 2005 May;19(7):750-60
– reference: 16773565 - Am J Hum Genet. 2006 Jul;79(1):54-61
– reference: 2538707 - Med Sci Sports Exerc. 1989 Feb;21(1):71-7
– reference: 18344982 - Nature. 2008 Mar 27;452(7186):429-35
– reference: 19352336 - Nat Rev Cardiol. 2009 Apr;6(4):317-21
– reference: 10642397 - J Appl Physiol (1985). 2000 Jan;88(1):327-31
– reference: 16326070 - Genomics. 2006 Jan;87(1):165-72
– reference: 15921534 - BMC Bioinformatics. 2005;6:129
– reference: 20299619 - J Appl Physiol (1985). 2010 Jun;108(6):1452-3
– reference: 15616242 - Diabetes Care. 2005 Jan;28(1):108-14
– reference: 12721560 - Nat Biotechnol. 2003 May;21(5):477-9
– reference: 6500788 - Int J Sports Med. 1984 Oct;5(5):232-6
– reference: 10631157 - Am J Hum Genet. 2000 Jan;66(1):279-92
– reference: 10658022 - J Appl Physiol (1985). 2000 Feb;88(2):551-9
– reference: 14519205 - Genome Biol. 2003;4(10):R70
– reference: 10537105 - Nature. 1999 Oct 14;401(6754):670-7
– reference: 17444885 - J Intern Med. 2007 May;261(5):461-71
– reference: 18212278 - Circulation. 2008 Feb 5;117(5):614-22
– reference: 7242661 - Nature. 1981 Jun 4;291(5814):381-2
SSID ssj0014451
Score 2.4740436
Snippet A low maximal oxygen consumption (V̇o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o 2max with a...
A low maximal oxygen consumption (VO2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases VO2max with a very...
A low maximal oxygen consumption (...) is a strong risk factor for premature mortality. Supervised endurance exercise training increases ... with a very wide...
A low maximal oxygen consumption (V̇ o 2max ) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇ o 2max with...
Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E,...
SourceID swepub
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1487
SubjectTerms Biological and medical sciences
Biomarkers
Deoxyribonucleic acid
DNA
endurance training
Exercise
Family studies
Fundamental and applied biological sciences. Psychology
Gene expression
Gene mapping
Genetic diversity
Genetic variance
genotype
Genotype & phenotype
Heterogeneity
Humans
Male
Mortality
Muscle Proteins - genetics
NATURAL SCIENCES
NATURVETENSKAP
Oxygen consumption
Oxygen Consumption - genetics
personalized medicine
Phenotype
Physical Endurance - genetics
Physical Exertion - physiology
Physical Fitness - physiology
Physical training
Polymorphism
Polymorphism, Single Nucleotide - genetics
Regression analysis
Ribonucleic acid
Risk factors
RNA
Young Adult
Title Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans
URI https://www.ncbi.nlm.nih.gov/pubmed/20133430
https://www.proquest.com/docview/527959063
https://www.proquest.com/docview/733140102
https://pubmed.ncbi.nlm.nih.gov/PMC2886694
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-48910
http://kipublications.ki.se/Default.aspx?queryparsed=id:120932822
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELeiTpomTdPW7oN1q_xQ9SUiI4ABP0b7qjZ12rR26hsyxLRoCUQBtK__YX_z7oxxQE21bi8IYexA7sf5zr67HyGHnDGw4pPQTuaOY_ss9e2EscD2PDaH2cZnmcSlgZMPwfGZ_-6cnY9Gv3tRS02dTNKfW_NK_keqcA3kilmy_yBZMyhcgHOQLxxBwnC8kYzb_f5lx3A7TtEUxtifVqpgVq7WuBFTjy9E3kaML8X3fIn1ASQWYErHKUyWaa7CNheL8huOJ4t5s1aZBB0fkyGSwBEUq191jVErtFGrFkza8k5YCYpHrLfkAPiAv6gyQbrj2cTo_aKZ6zWhz7XspakJpHhoG06bclmaDmXLZYX53bIYv530lzFwB74LtzKRno4Nzks4UM1O1MNgX9GCFxdunwGYq5gH4HX1q05wrY2pPM_NpDcor_0q_zKLy_VFXDWxH3HM2LvlgtuBjBjvP212pbCYm6q_Cw78NFDU2uaxdewgtL245scHls_dlajgI8xa9pRt7s3VKN1BLVtl_5zeJ_e0jOmsReEDMpLFLtmbFaIulz_oEf1oJL5Lbp_oiI098kthlBqM0iFGaV1SjVGqMErzgmqMUo1R2mGUGoxSg1HaYZR2GMURWow-JGdvXp--PLY14YedglVZ2zLkoRNmWE1kKpJUhK4jPOnA-VQGwnUCGXnpPMyiFPSLkCIJnIR7QRZmyHqQZd4jslOUhXxCKBceFwmonkClWmcRVhoUDgwA-mjKuUWCThhxqqvh43MuYuUVMzfuSzFWUkTKVujomI6rtiDM37scDKRt-rlI9Q0ej0X2O_HHWr1UMTwvZxw8CItQ0wq6Hzf0RCHLpoqRb9XHopAWedxiZTM0uHae7zkWCQcoMjcg7octRX6pysvDQwUB9y1y2OJt0OXKp2KRoy236Utf4UzGDFxKN3p6s_H2yZ2NenhGdup1I5-D3V8nB-pj_AMRPQ4t
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+molecular+classification+to+predict+gains+in+maximal+aerobic+capacity+following+endurance+exercise+training+in+humans&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Timmons%2C+James+A.&rft.au=Knudsen%2C+Steen&rft.au=Rankinen%2C+Tuomo&rft.au=Koch%2C+Lauren+G.&rft.date=2010-06-01&rft.issn=8750-7587&rft.volume=108&rft.issue=6&rft.spage=1487&rft_id=info:doi/10.1152%2Fjapplphysiol.01295.2009&rft.externalDocID=oai_DiVA_org_su_48910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon