A fibered laser system for the MIGA large scale atom interferometer
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87 Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; pp. 3268 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.02.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-020-59971-8 |
Cover
Abstract | We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of
87
Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. |
---|---|
AbstractList | We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. Abstract We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87 Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of 87Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna. |
ArticleNumber | 3268 |
Author | Sabulsky, D. O. Junca, J. Stern, G. Zou, X. Bertoldi, A. Canuel, B. Beaufils, Q. Battelier, B. Landragin, A. Lefèvre, G. Geiger, R. Prevedelli, M. Santoire, J. Desruelle, B. Bouyer, P. |
Author_xml | – sequence: 1 givenname: D. O. surname: Sabulsky fullname: Sabulsky, D. O. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 2 givenname: J. surname: Junca fullname: Junca, J. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, MUQUANS, Institut d’Optique d’Aquitaine – sequence: 3 givenname: G. surname: Lefèvre fullname: Lefèvre, G. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 4 givenname: X. surname: Zou fullname: Zou, X. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 5 givenname: A. surname: Bertoldi fullname: Bertoldi, A. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 6 givenname: B. surname: Battelier fullname: Battelier, B. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 7 givenname: M. surname: Prevedelli fullname: Prevedelli, M. organization: Dipartimento di Fisica e Astronomia, Università di Bologna – sequence: 8 givenname: G. surname: Stern fullname: Stern, G. organization: MUQUANS, Institut d’Optique d’Aquitaine – sequence: 9 givenname: J. surname: Santoire fullname: Santoire, J. organization: MUQUANS, Institut d’Optique d’Aquitaine – sequence: 10 givenname: Q. surname: Beaufils fullname: Beaufils, Q. organization: LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université – sequence: 11 givenname: R. surname: Geiger fullname: Geiger, R. organization: LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université – sequence: 12 givenname: A. surname: Landragin fullname: Landragin, A. organization: LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université – sequence: 13 givenname: B. surname: Desruelle fullname: Desruelle, B. organization: MUQUANS, Institut d’Optique d’Aquitaine – sequence: 14 givenname: P. surname: Bouyer fullname: Bouyer, P. organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 – sequence: 15 givenname: B. surname: Canuel fullname: Canuel, B. email: benjamin.canuel@institutoptique.fr organization: LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32094360$$D View this record in MEDLINE/PubMed https://hal.science/hal-02384954$$DView record in HAL |
BookMark | eNp9UktvEzEQtlARLaV_gANaiQscFvzahy9IUQRtpCIucLZm7XHiaHdd7E2l_vs62RbaHOqLRzPfY8aet-RkDCMS8p7RL4yK9muSrFJtSTktK6UaVravyBmnsiq54PzkSXxKLlLa0nwqriRTb8ip4FRJUdMzslwUzncY0RY9JIxFuksTDoULsZg2WPxcXS5yJa6xSAZ6LGAKQ-HHCaPDGAbMwTvy2kGf8OLhPid_fnz_vbwqr39drpaL69LUTEyldVC1Bh2ohkONkmNdg3MWKysBQFEDtIMc2k7ahgI2mWBRghHQNJ0V52Q169oAW30T_QDxTgfw-pAIca0hTt70qAWzeVZUxtpW1kx1SrCOt51zLZNcuaz1bda62XUDWoPjFKF_Jvq8MvqNXodb3VBJKeNZ4PMssDmiXS2u9T5HuWilquQty9hPD2Yx_N1hmvTgk8G-hxHDLmkuakklbyqaoR-PoNuwi2N-1j2Kc1rXB_MPT7v_5__4rxnQzgATQ0oRnTZ-gsmH_TC-14zq_RbpeYtyr1Qftki3mcqPqI_qL5LETEoZPK4x_m_7BdY99VbZNg |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_16_044018 crossref_primary_10_1116_5_0009093 crossref_primary_10_1051_e3sconf_202235705001 crossref_primary_10_1364_AO_458361 crossref_primary_10_1116_5_0185291 crossref_primary_10_1109_JPHOT_2023_3266108 crossref_primary_10_3390_app13106076 crossref_primary_10_1016_j_yofte_2024_104043 crossref_primary_10_1038_s41467_022_31410_4 crossref_primary_10_1038_s41598_022_23468_3 crossref_primary_10_1103_PhysRevLett_132_213601 crossref_primary_10_1364_OE_477648 crossref_primary_10_1364_OE_528832 crossref_primary_10_1116_5_0098119 crossref_primary_10_3389_feart_2020_573396 crossref_primary_10_1016_j_cap_2025_02_005 crossref_primary_10_1063_5_0190625 crossref_primary_10_1088_1742_6596_1859_1_012019 crossref_primary_10_1002_qute_202400076 crossref_primary_10_1063_5_0156231 crossref_primary_10_1109_TIM_2023_3285974 crossref_primary_10_1126_sciadv_ade4454 crossref_primary_10_1364_AO_497749 crossref_primary_10_1016_j_optlastec_2025_112771 crossref_primary_10_1016_j_jece_2021_106209 crossref_primary_10_1109_JPHOT_2024_3402742 crossref_primary_10_1364_OE_447073 crossref_primary_10_1007_s11082_024_07949_5 |
Cites_doi | 10.1103/PhysRevLett.120.043602 10.1016/j.optcom.2017.02.013 10.1103/PhysRevD.99.104026 10.1364/AO.53.004468 10.1038/nature13433 10.1007/s10714-010-1055-8 10.1088/1361-6382/ab4548 10.1088/0022-3727/34/3/331 10.1103/PhysRevLett.118.183602 10.1038/s41567-017-0004-9 10.1364/OL.43.003937 10.1103/physreva.80.063604 10.1103/revmodphys.70.707 10.1364/OL.36.004128 10.1103/PhysRevLett.67.177 10.1364/OE.26.001586 10.1088/2F1367-2630/2Faaf07d 10.1126/science.aaa8883 10.1088/0264-9381/24/9/001 10.1007/s00340-014-5788-z 10.1088/0957-0233/19/10/105601 10.1088/1681-7575/aab637 10.1364/ol.36.004128 10.1103/physreva.89.023607 10.1103/PhysRevLett.106.080801 10.1088/0026-1394/38/1/4 10.1364/AO.46.004780 10.1038/s41598-018-32165-z 10.1364/OL.42.004557 10.1007/s00340-016-6490-0 10.1364/AO.57.006545 10.1038/23655 10.1103/PhysRevLett.66.2693 10.1088/1742-6596/723/1/012050 10.1088/2F0256-307x/2F29/2F7/2F074206 10.1088/1367-2630/17/3/035011 10.1103/PhysRevLett.112.203002 10.1103/PhysRevLett.110.171102 10.1103/PhysRevLett.66.2689 10.1126/sciadv.aau7948 10.1088/1367-2630/17/8/085010 10.1038/s41598-018-30608-1 10.1126/science.1135459 10.1364/ol.40.002576 10.1103/PhysRevLett.111.170802 10.1007/s00340-010-4263-8 10.1007/s00340-007-2775-7 10.1103/PhysRevD.93.021101 10.1364/OE.11.001709 10.1126/science.aap7706 10.1103/PhysRevD.78.122002 10.1016/0030-4018(94)90567-3 10.1103/physreva.65.033608 10.1103/PhysRevLett.67.181 10.1103/revmodphys.70.721 10.1103/revmodphys.70.685 10.1155/2011/903758 10.1140/epjp/i2012-12114-y 10.1088/0264-9381/31/11/115010 10.1038/s41586-018-0605-1 10.1051/jphyslet:019830044024098300 10.1103/PhysRevApplied.10.034030 10.1098/rsta.2016.0238 10.1038/ncomms13786 10.1016/j.optcom.2015.09.001 10.1103/PhysRevLett.116.183003 10.1140/epjd/e2009-00139-0 10.1103/PhysRevLett.97.010402 10.1103/physrevlett.78.2046 10.1103/PhysRevLett.123.061102 10.1103/PhysRevLett.100.031101 10.1103/physreva.88.043615 10.1103/physrevlett.113.023005 10.1038/s41467-018-03040-2 10.1103/PhysRevLett.98.111102 10.22323/1.340.0021 10.1103/PhysRevLett.123.240402 10.1140/epjd/e2019-100360-2 10.1038/ncomms1479 10.1103/physrevlett.117.023001 10.1007/3540077197_20 10.1117/12.2228825 10.1038/s41526-018-0049-9 10.1007/978-1-4612-1470-0 10.1140/epjd/e2019-100324-6 10.1142/s0218271819400054 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NoDerivatives |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NoDerivatives |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41598-020-59971-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_31d294e9cdd84619b931b28bff81429f PMC7040012 oai_HAL_hal_02384954v1 32094360 10_1038_s41598_020_59971_8 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c613t-dfa58cefa972a6e42e66affde5d4aaa90ca0ba4aadb4d70ae7fa5de4ac3a77bd3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:27 EDT 2025 Thu Aug 21 18:08:16 EDT 2025 Fri Sep 12 12:47:40 EDT 2025 Thu Sep 04 18:51:30 EDT 2025 Wed Aug 13 06:12:46 EDT 2025 Thu Jan 02 22:37:32 EST 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Jul 01 03:24:00 EDT 2025 Fri Feb 21 02:38:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Atom interferometry Cold atom Quantum sensor Fiber lasers |
Language | English |
License | Attribution - NoDerivatives: http://creativecommons.org/licenses/by-nd Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c613t-dfa58cefa972a6e42e66affde5d4aaa90ca0ba4aadb4d70ae7fa5de4ac3a77bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4458-0089 0000-0002-2941-4982 0000-0002-3136-2392 0000-0003-4678-7139 0000-0002-1678-2831 0000-0002-4839-0947 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-59971-8 |
PMID | 32094360 |
PQID | 2362206612 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31d294e9cdd84619b931b28bff81429f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7040012 hal_primary_oai_HAL_hal_02384954v1 proquest_miscellaneous_2364042750 proquest_journals_2362206612 pubmed_primary_32094360 crossref_citationtrail_10_1038_s41598_020_59971_8 crossref_primary_10_1038_s41598_020_59971_8 springer_journals_10_1038_s41598_020_59971_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-24 |
PublicationDateYYYYMMDD | 2020-02-24 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Geiger, Trupke (CR31) 2018; 120 Junca (CR4) 2019; 99 Cohen-Tannoudji (CR9) 1998; 70 CR38 Sabulsky (CR43) 2019; 123 CR34 CR33 CR32 Gustavson, Bouyer, Kasevich (CR20) 1997; 78 Keith, Ekstrom, Turchette, Pritchard (CR6) 1991; 66 Müller, Chiow, Herrmann, Chu, Chung (CR39) 2008; 100 Aguilera, Ahlers, Battelier, Bawamia, Bertoldi, Bondarescu, Bongs, Bouyer, Braxmaier, Cacciapuoti, Chaloner, Chwalla, Ertmer, Franz, Gaaloul, Gehler, Gerardi, Gesa, Gürlebeck, Hartwig, Hauth, Hellmig, Herr, Herrmann, Heske, Hinton, Ireland, Jetzer, Johann, Krutzik, Kubelka, Lämmerzahl, Landragin, Lloro, Massonnet, Mateos, Milke, Nofrarias, Oswald, Peters, Posso-Trujillo, Rasel, Rocco, Roura, Rudolph, Schleich, Schubert, Schuldt, Seidel, Sengstock, Sopuerta, Sorrentino, Summers, Tino, Trenkel, Uzunoglu, von Klitzing, Walser, Wendrich, Wenzlawski, Weßels, Wicht, Wille, Williams, Windpassinger, Zahzam (CR56) 2014; 31 Parker, Yu, Zhong, Estey, Müller (CR29) 2018; 360 Peters, Chung, Chu (CR13) 1999; 400 Schmidt, Prevedelli, Giorgini, Tino, Peters (CR89) 2010; 102 Hinton (CR62) 2017; 375 Letokhov (CR90) 1976 Zhang (CR67) 2012; 29 CR41 CR40 Lienhart (CR65) 2007; 89 Bettini (CR2) 2012; 127 Tino, Vetrano (CR47) 2007; 24 Chaibi (CR3) 2016; 93 Bouchendira, Cladé, Guellati-Khélifa, Nez, Biraben (CR28) 2011; 106 Canuel (CR1) 2018; 8 CR59 CR58 Dutta (CR23) 2016; 116 CR54 CR52 CR51 Cheiney (CR55) 2018; 10 Hartwig (CR97) 2015; 17 Carnal, Mlynek (CR5) 1991; 66 Gauguet, Canuel, Lévèque, Chaibi, Landragin (CR22) 2009; 80 Haslinger (CR45) 2017; 14 Ménoret (CR74) 2018; 8 Karcher, Imanaliev, Merlet, Santos (CR14) 2018; 20 Barrett, Antoni-Micollier, Chichet, Battelier, Gominet, Bertoldi, Bouyer, Landragin (CR36) 2015; 17 Fang (CR84) 2018; 26 Matthey, Gruet, Schilt, Mileti (CR69) 2015; 40 Wang (CR16) 2018; 55 Trimeche (CR57) 2019; 36 McGuirk, Foster, Fixler, Snadden, Kasevich (CR18) 2002; 65 Freier (CR15) 2016; 723 CR79 Graham, Hogan, Kasevich, Rajendran (CR50) 2013; 110 CR77 CR76 CR75 Barrett (CR37) 2016; 7 CR73 CR72 Ménoret (CR66) 2011; 36 Yu, Tinto (CR49) 2010; 43 Theron (CR71) 2017; 393 Dimopoulos, Graham, Hogan, Kasevich, Rajendran (CR48) 2008; 78 Becker (CR42) 2018; 562 Savoie (CR25) 2018; 4 Hamilton (CR44) 2015; 349 Duncker (CR86) 2014; 53 CR87 CR83 Müller (CR21) 2009; 53 Schlippert (CR35) 2014; 112 Bordé, Sharma, Tourrenc, Damour (CR46) 1983; 44 Zhang (CR85) 2018; 57 Fixler, Foster, McGuirk, Kasevich (CR26) 2007; 315 Antoni-Micollier (CR81) 2018; 43 Sorrentino (CR19) 2014; 89 Ménoret (CR80) 2011; 36 Rota-Rodrigo (CR101) 2017; 42 Chu (CR8) 1998; 70 CR17 Masuda, Seki, Niki (CR64) 2007; 46 CR11 CR99 CR98 Kasevich, Chu (CR12) 1991; 67 Asenbaum (CR30) 2017; 118 CR95 CR94 Phillips (CR10) 1998; 70 CR93 Canuel (CR53) 2006; 97 CR92 Wang, Wang, Fu, Liu, Lin (CR70) 2016; 358 McCarron, King, Cornish (CR91) 2008; 19 Thompson, Tu, Aveline, Lundblad, Maleki (CR63) 2003; 11 Biedermann (CR78) 2013; 111 Romaides (CR60) 2001; 34 Lévèque, Antoni-Micollier, Faure, Berthon (CR68) 2014; 116 Rosi, Sorrentino, Cacciapuoti, Prevedelli, Tino (CR27) 2014; 510 Peters, Chung, Chu (CR96) 2001; 38 CR24 Schkolnik (CR82) 2016; 122 Santarelli, Clairon, Lea, Tino (CR88) 1994; 104 Riehle, Kisters, Witte, Helmcke, Bordé (CR7) 1991; 67 CR100 Metje, Chapman, Rogers, Bongs (CR61) 2011; 2011 B Barrett (59971_CR37) 2016; 7 V Ménoret (59971_CR74) 2018; 8 I Dutta (59971_CR23) 2016; 116 S Chu (59971_CR8) 1998; 70 J Hartwig (59971_CR97) 2015; 17 59971_CR72 P Asenbaum (59971_CR30) 2017; 118 59971_CR73 59971_CR76 59971_CR77 RJ Thompson (59971_CR63) 2003; 11 59971_CR75 F Theron (59971_CR71) 2017; 393 N Yu (59971_CR49) 2010; 43 59971_CR79 F Riehle (59971_CR7) 1991; 67 H Duncker (59971_CR86) 2014; 53 O Carnal (59971_CR5) 1991; 66 D Savoie (59971_CR25) 2018; 4 R Matthey (59971_CR69) 2015; 40 S Dimopoulos (59971_CR48) 2008; 78 59971_CR83 TL Gustavson (59971_CR20) 1997; 78 59971_CR87 R Karcher (59971_CR14) 2018; 20 DJ McCarron (59971_CR91) 2008; 19 P Haslinger (59971_CR45) 2017; 14 AJ Romaides (59971_CR60) 2001; 34 V Schkolnik (59971_CR82) 2016; 122 A Bettini (59971_CR2) 2012; 127 X Zhang (59971_CR85) 2018; 57 DW Keith (59971_CR6) 1991; 66 J Fang (59971_CR84) 2018; 26 S Masuda (59971_CR64) 2007; 46 M Schmidt (59971_CR89) 2010; 102 59971_CR94 59971_CR95 F Lienhart (59971_CR65) 2007; 89 59971_CR92 59971_CR93 59971_CR98 59971_CR11 PW Graham (59971_CR50) 2013; 110 59971_CR99 WD Phillips (59971_CR10) 1998; 70 G Santarelli (59971_CR88) 1994; 104 59971_CR17 V Ménoret (59971_CR66) 2011; 36 B Canuel (59971_CR1) 2018; 8 A Peters (59971_CR96) 2001; 38 GM Tino (59971_CR47) 2007; 24 W Chaibi (59971_CR3) 2016; 93 B Barrett (59971_CR36) 2015; 17 R Bouchendira (59971_CR28) 2011; 106 D Schlippert (59971_CR35) 2014; 112 A Trimeche (59971_CR57) 2019; 36 59971_CR24 R Geiger (59971_CR31) 2018; 120 S-K Wang (59971_CR16) 2018; 55 A Peters (59971_CR13) 1999; 400 JM McGuirk (59971_CR18) 2002; 65 C Freier (59971_CR15) 2016; 723 DO Sabulsky (59971_CR43) 2019; 123 59971_CR32 59971_CR33 P Hamilton (59971_CR44) 2015; 349 59971_CR34 S Rota-Rodrigo (59971_CR101) 2017; 42 59971_CR38 GW Biedermann (59971_CR78) 2013; 111 D Becker (59971_CR42) 2018; 562 V Ménoret (59971_CR80) 2011; 36 P Cheiney (59971_CR55) 2018; 10 F Sorrentino (59971_CR19) 2014; 89 N Metje (59971_CR61) 2011; 2011 J Junca (59971_CR4) 2019; 99 59971_CR40 G Rosi (59971_CR27) 2014; 510 Q Wang (59971_CR70) 2016; 358 A Hinton (59971_CR62) 2017; 375 M Kasevich (59971_CR12) 1991; 67 59971_CR41 CN Cohen-Tannoudji (59971_CR9) 1998; 70 T Müller (59971_CR21) 2009; 53 59971_CR100 A Gauguet (59971_CR22) 2009; 80 T Lévèque (59971_CR68) 2014; 116 CJ Bordé (59971_CR46) 1983; 44 59971_CR51 D N Aguilera (59971_CR56) 2014; 31 59971_CR54 59971_CR52 L Antoni-Micollier (59971_CR81) 2018; 43 59971_CR58 59971_CR59 V. S. Letokhov (59971_CR90) 1976 H Müller (59971_CR39) 2008; 100 X Zhang (59971_CR67) 2012; 29 B Canuel (59971_CR53) 2006; 97 JB Fixler (59971_CR26) 2007; 315 RH Parker (59971_CR29) 2018; 360 |
References_xml | – volume: 120 start-page: 043602 year: 2018 ident: CR31 article-title: Proposal for a quantum test of the weak equivalence principle with entangled atomic species publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.043602 – volume: 393 start-page: 152 year: 2017 ident: CR71 article-title: Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.02.013 – ident: CR51 – volume: 99 start-page: 104026 year: 2019 ident: CR4 article-title: Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104026 – volume: 53 start-page: 4468 year: 2014 end-page: 4474 ident: CR86 article-title: Ultrastable, zerodur-based optical benches for quantum gas experiments publication-title: Appl. Opt. doi: 10.1364/AO.53.004468 – ident: CR54 – volume: 510 start-page: 518 year: 2014 ident: CR27 article-title: Precision measurement of the Newtonian gravitational constant using cold atoms publication-title: Nature doi: 10.1038/nature13433 – ident: CR77 – volume: 43 start-page: 1943 year: 2010 end-page: 1952 ident: CR49 article-title: Gravitational wave detection with single-laser atom interferometers publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-010-1055-8 – volume: 36 start-page: 215004 year: 2019 ident: CR57 article-title: Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab4548 – volume: 34 start-page: 433 year: 2001 end-page: 443 ident: CR60 article-title: A comparison of gravimetric techniques for measuring subsurface void signals publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/34/3/331 – ident: CR92 – volume: 118 start-page: 183602 year: 2017 ident: CR30 article-title: Phase shift in an atom interferometer due to spacetime curvature across its wave function publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.183602 – volume: 14 start-page: 257 year: 2017 ident: CR45 article-title: Attractive force on atoms due to blackbody radiation publication-title: Nat. Phys. doi: 10.1038/s41567-017-0004-9 – ident: CR11 – volume: 43 start-page: 3937 year: 2018 end-page: 3940 ident: CR81 article-title: Watt-level narrow-linewidth fibered laser source at 852 nm for FIB application publication-title: Opt. Lett. doi: 10.1364/OL.43.003937 – volume: 80 start-page: 063604 year: 2009 ident: CR22 article-title: Characterization and limits of a cold-atom Sagnac interferometer publication-title: Phys. Rev. A doi: 10.1103/physreva.80.063604 – volume: 70 start-page: 707 year: 1998 ident: CR9 article-title: Nobel Lecture: Manipulating atoms with photons publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.707 – volume: 36 start-page: 4128 year: 2011 end-page: 4130 ident: CR80 article-title: Dual-wavelength laser source for onboard atom interferometry publication-title: Opt. Lett. doi: 10.1364/OL.36.004128 – ident: CR100 – volume: 67 start-page: 177 year: 1991 ident: CR7 article-title: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.177 – volume: 26 start-page: 1586 year: 2018 end-page: 1596 ident: CR84 article-title: Realization of a compact one-seed laser system for atom interferometer-based gravimeters publication-title: Opt. Express doi: 10.1364/OE.26.001586 – ident: CR72 – volume: 20 start-page: 113041 year: 2018 ident: CR14 article-title: Improving the accuracy of atom interferometers with ultracold sources publication-title: New Journal of Physics doi: 10.1088/2F1367-2630/2Faaf07d – volume: 349 start-page: 849 year: 2015 ident: CR44 article-title: Atom-interferometry constraints on dark energy publication-title: Science doi: 10.1126/science.aaa8883 – ident: CR33 – volume: 24 start-page: 2167 year: 2007 ident: CR47 article-title: Is it possible to detect gravitational waves with atom interferometers? publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/24/9/001 – volume: 116 year: 2014 ident: CR68 article-title: A laser setup for Rubidium cooling dedicated to space applications publication-title: Appl. Phys. B doi: 10.1007/s00340-014-5788-z – volume: 19 start-page: 105601 year: 2008 ident: CR91 article-title: Modulation transfer spectroscopy in atomic rubidium publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/10/105601 – volume: 55 start-page: 360 year: 2018 end-page: 365 ident: CR16 article-title: Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5x publication-title: Metrologia doi: 10.1088/1681-7575/aab637 – volume: 36 start-page: 4128 year: 2011 ident: CR66 article-title: Dual-wavelength laser source for onboard atom interferometry publication-title: Opt. Lett. doi: 10.1364/ol.36.004128 – volume: 89 start-page: 023607 year: 2014 ident: CR19 article-title: Sensitivity limits of a Raman atom interferometer as a gravity gradiometer publication-title: Phys. Rev. A doi: 10.1103/physreva.89.023607 – volume: 106 start-page: 080801 year: 2011 ident: CR28 article-title: New determination of the fine structure constant and test of the quantum electrodynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.080801 – ident: CR94 – volume: 38 start-page: 25 year: 2001 ident: CR96 article-title: High-precision gravity measurements using atom interferometry publication-title: Metrologia doi: 10.1088/0026-1394/38/1/4 – volume: 46 start-page: 4780 year: 2007 ident: CR64 article-title: Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of Rubidium vapor publication-title: Appl. Opt. doi: 10.1364/AO.46.004780 – ident: CR38 – ident: CR52 – volume: 8 year: 2018 ident: CR1 article-title: Exploring gravity with the MIGA large scale atom interferometer publication-title: Sci. Rep. doi: 10.1038/s41598-018-32165-z – volume: 42 start-page: 4557 year: 2017 end-page: 4560 ident: CR101 article-title: Watt-level single-frequency tunable neodymium mopa fiber laser operating at 915 to 937 nm publication-title: Opt. Lett. doi: 10.1364/OL.42.004557 – volume: 122 year: 2016 ident: CR82 article-title: A compact and robust diode laser system for atom interferometry on a sounding rocket publication-title: Appl. Phys. B doi: 10.1007/s00340-016-6490-0 – volume: 57 start-page: 6545 year: 2018 end-page: 6551 ident: CR85 article-title: Compact portable laser system for mobile cold atom gravimeters publication-title: Appl. Opt. doi: 10.1364/AO.57.006545 – volume: 400 start-page: 849 year: 1999 ident: CR13 article-title: Measurement of gravitational acceleration by dropping atoms publication-title: Nature doi: 10.1038/23655 – ident: CR83 – volume: 66 start-page: 2693 year: 1991 ident: CR6 article-title: An interferometer for atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2693 – volume: 723 start-page: 012050 year: 2016 ident: CR15 article-title: Mobile quantum gravity sensor with unprecedented stability publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/723/1/012050 – ident: CR41 – volume: 29 start-page: 074206 year: 2012 ident: CR67 article-title: A compact setup of saturated absorption spectroscopy for diode laser frequency stabilization publication-title: Chin. Phys. Lett. doi: 10.1088/2F0256-307x/2F29/2F7/2F074206 – start-page: 95 year: 1976 end-page: 171 ident: CR90 article-title: Saturation spectroscopy publication-title: Topics in Applied Physics – volume: 17 start-page: 035011 year: 2015 ident: CR97 article-title: Testing the universality of free fall with Rubidium and Ytterbium in a very large baseline atom interferometer publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035011 – ident: CR24 – volume: 112 start-page: 203002 year: 2014 ident: CR35 article-title: Quantum test of the universality of free fall publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.203002 – volume: 110 start-page: 171102 year: 2013 ident: CR50 article-title: New method for gravitational wave detection with atomic sensors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.171102 – volume: 66 start-page: 2689 year: 1991 ident: CR5 article-title: Young’s double-slit experiment with atoms: A simple atom interferometer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2689 – ident: CR93 – ident: CR87 – volume: 4 start-page: eaau7948 year: 2018 ident: CR25 article-title: Interleaved atom interferometry for high-sensitivity inertial measurements publication-title: Sci. Adv. doi: 10.1126/sciadv.aau7948 – volume: 17 start-page: 085010 issue: 8 year: 2015 ident: CR36 article-title: Correlative methods for dual-species quantum tests of the weak equivalence principle publication-title: New Journal of Physics doi: 10.1088/1367-2630/17/8/085010 – volume: 8 year: 2018 ident: CR74 article-title: Gravity measurements below 10 with a transportable absolute quantum gravimeter publication-title: Sci. Rep. doi: 10.1038/s41598-018-30608-1 – volume: 315 start-page: 74 year: 2007 ident: CR26 article-title: Atom interferometer measurement of the Newtonian constant of gravity publication-title: Science doi: 10.1126/science.1135459 – ident: CR58 – volume: 40 start-page: 2576 year: 2015 ident: CR69 article-title: Compact Rubidium-stabilized multi-frequency reference source in the 1.55- m region publication-title: Opt. Lett. doi: 10.1364/ol.40.002576 – volume: 111 start-page: 170802 year: 2013 ident: CR78 article-title: Zero-dead-time operation of interleaved atomic clocks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.170802 – volume: 102 year: 2010 ident: CR89 article-title: A portable laser system for high-precision atom interferometry experiments publication-title: Appl. Phys. B doi: 10.1007/s00340-010-4263-8 – volume: 89 start-page: 177 year: 2007 end-page: 180 ident: CR65 article-title: Compact and robust laser system for Rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm publication-title: Applied Physics B doi: 10.1007/s00340-007-2775-7 – volume: 93 start-page: 021101 year: 2016 ident: CR3 article-title: Low frequency gravitational-wave detection with ground-based atom interferometer arrays publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.021101 – volume: 11 start-page: 1709 year: 2003 ident: CR63 article-title: High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals publication-title: Opt. Express doi: 10.1364/OE.11.001709 – ident: CR75 – volume: 360 start-page: 191 year: 2018 ident: CR29 article-title: Measurement of the fine-structure constant as a test of the standard model publication-title: Science doi: 10.1126/science.aap7706 – volume: 78 start-page: 122002 year: 2008 ident: CR48 article-title: Atomic gravitational wave interferometric sensor publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.122002 – volume: 104 start-page: 339 year: 1994 ident: CR88 article-title: Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz publication-title: Opt. Commun. doi: 10.1016/0030-4018(94)90567-3 – volume: 65 start-page: 033608 year: 2002 ident: CR18 article-title: Sensitive absolute-gravity gradiometry using atom interferometry publication-title: Phys. Rev. A doi: 10.1103/physreva.65.033608 – volume: 67 start-page: 181 year: 1991 ident: CR12 article-title: Atomic interferometry using stimulated Raman transitions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.181 – ident: CR32 – ident: CR99 – volume: 70 start-page: 721 year: 1998 ident: CR10 article-title: Nobel Lecture: Laser cooling and trapping of neutral atoms publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.721 – volume: 70 start-page: 685 year: 1998 ident: CR8 article-title: Nobel Lecture: The manipulation of neutral particles publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.685 – ident: CR95 – volume: 2011 start-page: 1 year: 2011 ident: CR61 article-title: Seeing through the Ground: The Potential of Gravity Gradient as a Complementary Technology publication-title: Advances in Civil Engineering doi: 10.1155/2011/903758 – volume: 127 year: 2012 ident: CR2 article-title: The world deep underground laboratories publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2012-12114-y – volume: 31 start-page: 115010 issue: 11 year: 2014 ident: CR56 article-title: STE-QUEST—test of the universality of free fall using cold atom interferometry publication-title: Classical and Quantum Gravity doi: 10.1088/0264-9381/31/11/115010 – volume: 562 start-page: 391 year: 2018 ident: CR42 article-title: Space-borne Bose-Einstein condensation for precision interferometry publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 44 start-page: 983 year: 1983 ident: CR46 article-title: Theoretical approaches to laser spectroscopy in the presence of gravitational fields publication-title: J. Physique doi: 10.1051/jphyslet:019830044024098300 – volume: 10 start-page: 034030 year: 2018 ident: CR55 article-title: Navigation-Compatible Hybrid Quantum Accelerometer Using a Kalman Filter publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.10.034030 – ident: CR79 – ident: CR40 – volume: 375 start-page: 20160238 year: 2017 ident: CR62 article-title: A portable magneto-optical trap with prospects for atom interferometry in civil engineering publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2016.0238 – ident: CR98 – volume: 7 year: 2016 ident: CR37 article-title: Dual matter-wave inertial sensors in weightlessness publication-title: Nat. Commun. doi: 10.1038/ncomms13786 – ident: CR73 – volume: 358 start-page: 82 year: 2016 ident: CR70 article-title: A compact laser system for the cold atom gravimeter publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.09.001 – volume: 116 start-page: 183003 year: 2016 ident: CR23 article-title: Continuous Cold-Atom Inertial Sensor with 1 nrad/sec Rotation Stability publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.183003 – ident: CR17 – volume: 53 start-page: 273 year: 2009 end-page: 281 ident: CR21 article-title: A compact dual atom interferometer gyroscope based on laser-cooled rubidium publication-title: The Eur. Phys. J. D doi: 10.1140/epjd/e2009-00139-0 – volume: 97 start-page: 010402 year: 2006 ident: CR53 article-title: Six-axis inertial sensor using cold-atom interferometry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.010402 – ident: CR34 – ident: CR59 – ident: CR76 – volume: 78 start-page: 2046 year: 1997 ident: CR20 article-title: Precision Rotation Measurements with an Atom Interferometer Gyroscope publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.78.2046 – volume: 123 start-page: 061102 year: 2019 ident: CR43 article-title: Experiment to Detect Dark Energy Forces Using Atom Interferometry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.061102 – volume: 100 start-page: 031101 year: 2008 ident: CR39 article-title: Atom-interferometry tests of the isotropy of post-Newtonian gravity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.031101 – ident: 59971_CR94 – volume: 70 start-page: 707 year: 1998 ident: 59971_CR9 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.707 – volume: 11 start-page: 1709 year: 2003 ident: 59971_CR63 publication-title: Opt. Express doi: 10.1364/OE.11.001709 – volume: 562 start-page: 391 year: 2018 ident: 59971_CR42 publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 93 start-page: 021101 year: 2016 ident: 59971_CR3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.021101 – volume: 80 start-page: 063604 year: 2009 ident: 59971_CR22 publication-title: Phys. Rev. A doi: 10.1103/physreva.80.063604 – volume: 358 start-page: 82 year: 2016 ident: 59971_CR70 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.09.001 – volume: 19 start-page: 105601 year: 2008 ident: 59971_CR91 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/10/105601 – volume: 111 start-page: 170802 year: 2013 ident: 59971_CR78 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.170802 – ident: 59971_CR79 – volume: 24 start-page: 2167 year: 2007 ident: 59971_CR47 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/24/9/001 – volume: 53 start-page: 4468 year: 2014 ident: 59971_CR86 publication-title: Appl. Opt. doi: 10.1364/AO.53.004468 – volume: 110 start-page: 171102 year: 2013 ident: 59971_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.171102 – ident: 59971_CR24 – volume: 89 start-page: 177 year: 2007 ident: 59971_CR65 publication-title: Applied Physics B doi: 10.1007/s00340-007-2775-7 – volume: 40 start-page: 2576 year: 2015 ident: 59971_CR69 publication-title: Opt. Lett. doi: 10.1364/ol.40.002576 – volume: 127 year: 2012 ident: 59971_CR2 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/i2012-12114-y – volume: 14 start-page: 257 year: 2017 ident: 59971_CR45 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0004-9 – volume: 2011 start-page: 1 year: 2011 ident: 59971_CR61 publication-title: Advances in Civil Engineering doi: 10.1155/2011/903758 – ident: 59971_CR33 doi: 10.1103/physreva.88.043615 – volume: 349 start-page: 849 year: 2015 ident: 59971_CR44 publication-title: Science doi: 10.1126/science.aaa8883 – volume: 43 start-page: 1943 year: 2010 ident: 59971_CR49 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-010-1055-8 – volume: 55 start-page: 360 year: 2018 ident: 59971_CR16 publication-title: Metrologia doi: 10.1088/1681-7575/aab637 – ident: 59971_CR34 doi: 10.1103/physrevlett.113.023005 – volume: 31 start-page: 115010 issue: 11 year: 2014 ident: 59971_CR56 publication-title: Classical and Quantum Gravity doi: 10.1088/0264-9381/31/11/115010 – volume: 57 start-page: 6545 year: 2018 ident: 59971_CR85 publication-title: Appl. Opt. doi: 10.1364/AO.57.006545 – ident: 59971_CR59 – volume: 17 start-page: 035011 year: 2015 ident: 59971_CR97 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035011 – volume: 4 start-page: eaau7948 year: 2018 ident: 59971_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau7948 – ident: 59971_CR17 doi: 10.1038/s41467-018-03040-2 – ident: 59971_CR76 – volume: 42 start-page: 4557 year: 2017 ident: 59971_CR101 publication-title: Opt. Lett. doi: 10.1364/OL.42.004557 – volume: 70 start-page: 721 year: 1998 ident: 59971_CR10 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.721 – volume: 53 start-page: 273 year: 2009 ident: 59971_CR21 publication-title: The Eur. Phys. J. D doi: 10.1140/epjd/e2009-00139-0 – ident: 59971_CR73 – volume: 34 start-page: 433 year: 2001 ident: 59971_CR60 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/34/3/331 – volume: 66 start-page: 2689 year: 1991 ident: 59971_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2689 – volume: 70 start-page: 685 year: 1998 ident: 59971_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.685 – volume: 723 start-page: 012050 year: 2016 ident: 59971_CR15 publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/723/1/012050 – volume: 7 year: 2016 ident: 59971_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms13786 – volume: 116 year: 2014 ident: 59971_CR68 publication-title: Appl. Phys. B doi: 10.1007/s00340-014-5788-z – volume: 44 start-page: 983 year: 1983 ident: 59971_CR46 publication-title: J. Physique doi: 10.1051/jphyslet:019830044024098300 – volume: 8 year: 2018 ident: 59971_CR1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-32165-z – volume: 315 start-page: 74 year: 2007 ident: 59971_CR26 publication-title: Science doi: 10.1126/science.1135459 – ident: 59971_CR32 doi: 10.1103/PhysRevLett.98.111102 – volume: 26 start-page: 1586 year: 2018 ident: 59971_CR84 publication-title: Opt. Express doi: 10.1364/OE.26.001586 – ident: 59971_CR95 – volume: 360 start-page: 191 year: 2018 ident: 59971_CR29 publication-title: Science doi: 10.1126/science.aap7706 – volume: 36 start-page: 215004 year: 2019 ident: 59971_CR57 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab4548 – volume: 120 start-page: 043602 year: 2018 ident: 59971_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.043602 – ident: 59971_CR98 doi: 10.22323/1.340.0021 – volume: 100 start-page: 031101 year: 2008 ident: 59971_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.031101 – ident: 59971_CR40 doi: 10.1103/PhysRevLett.123.240402 – volume: 36 start-page: 4128 year: 2011 ident: 59971_CR80 publication-title: Opt. Lett. doi: 10.1364/OL.36.004128 – ident: 59971_CR100 – volume: 65 start-page: 033608 year: 2002 ident: 59971_CR18 publication-title: Phys. Rev. A doi: 10.1103/physreva.65.033608 – ident: 59971_CR75 – volume: 97 start-page: 010402 year: 2006 ident: 59971_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.010402 – ident: 59971_CR52 – volume: 67 start-page: 177 year: 1991 ident: 59971_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.177 – volume: 38 start-page: 25 year: 2001 ident: 59971_CR96 publication-title: Metrologia doi: 10.1088/0026-1394/38/1/4 – volume: 99 start-page: 104026 year: 2019 ident: 59971_CR4 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104026 – volume: 116 start-page: 183003 year: 2016 ident: 59971_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.183003 – volume: 43 start-page: 3937 year: 2018 ident: 59971_CR81 publication-title: Opt. Lett. doi: 10.1364/OL.43.003937 – volume: 122 year: 2016 ident: 59971_CR82 publication-title: Appl. Phys. B doi: 10.1007/s00340-016-6490-0 – volume: 510 start-page: 518 year: 2014 ident: 59971_CR27 publication-title: Nature doi: 10.1038/nature13433 – ident: 59971_CR72 doi: 10.1140/epjd/e2019-100360-2 – ident: 59971_CR54 doi: 10.1038/ncomms1479 – volume: 104 start-page: 339 year: 1994 ident: 59971_CR88 publication-title: Opt. Commun. doi: 10.1016/0030-4018(94)90567-3 – ident: 59971_CR93 – ident: 59971_CR87 – ident: 59971_CR38 doi: 10.1103/physrevlett.117.023001 – volume: 67 start-page: 181 year: 1991 ident: 59971_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.181 – volume: 400 start-page: 849 year: 1999 ident: 59971_CR13 publication-title: Nature doi: 10.1038/23655 – start-page: 95 volume-title: Topics in Applied Physics year: 1976 ident: 59971_CR90 doi: 10.1007/3540077197_20 – volume: 393 start-page: 152 year: 2017 ident: 59971_CR71 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.02.013 – ident: 59971_CR41 – volume: 17 start-page: 085010 issue: 8 year: 2015 ident: 59971_CR36 publication-title: New Journal of Physics doi: 10.1088/1367-2630/17/8/085010 – ident: 59971_CR92 doi: 10.1117/12.2228825 – volume: 10 start-page: 034030 year: 2018 ident: 59971_CR55 publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.10.034030 – ident: 59971_CR83 doi: 10.1038/s41526-018-0049-9 – ident: 59971_CR11 doi: 10.1007/978-1-4612-1470-0 – volume: 66 start-page: 2693 year: 1991 ident: 59971_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2693 – volume: 36 start-page: 4128 year: 2011 ident: 59971_CR66 publication-title: Opt. Lett. doi: 10.1364/ol.36.004128 – volume: 78 start-page: 122002 year: 2008 ident: 59971_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.122002 – volume: 106 start-page: 080801 year: 2011 ident: 59971_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.080801 – volume: 8 year: 2018 ident: 59971_CR74 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30608-1 – volume: 78 start-page: 2046 year: 1997 ident: 59971_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.78.2046 – volume: 118 start-page: 183602 year: 2017 ident: 59971_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.183602 – ident: 59971_CR77 – volume: 112 start-page: 203002 year: 2014 ident: 59971_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.203002 – ident: 59971_CR58 doi: 10.1140/epjd/e2019-100324-6 – volume: 46 start-page: 4780 year: 2007 ident: 59971_CR64 publication-title: Appl. Opt. doi: 10.1364/AO.46.004780 – ident: 59971_CR51 doi: 10.1142/s0218271819400054 – volume: 20 start-page: 113041 year: 2018 ident: 59971_CR14 publication-title: New Journal of Physics doi: 10.1088/2F1367-2630/2Faaf07d – volume: 123 start-page: 061102 year: 2019 ident: 59971_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.061102 – volume: 375 start-page: 20160238 year: 2017 ident: 59971_CR62 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2016.0238 – volume: 29 start-page: 074206 year: 2012 ident: 59971_CR67 publication-title: Chin. Phys. Lett. doi: 10.1088/2F0256-307x/2F29/2F7/2F074206 – volume: 102 year: 2010 ident: 59971_CR89 publication-title: Appl. Phys. B doi: 10.1007/s00340-010-4263-8 – ident: 59971_CR99 – volume: 89 start-page: 023607 year: 2014 ident: 59971_CR19 publication-title: Phys. Rev. A doi: 10.1103/physreva.89.023607 |
SSID | ssj0000529419 |
Score | 2.467441 |
Snippet | We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling,... Abstract We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3268 |
SubjectTerms | 639/624 639/624/1020/1086 639/624/1020/1093 639/624/400/1113 639/766/36 639/766/483/3924 639/766/930 Astrophysics Atomic Physics Humanities and Social Sciences Instrumentation and Detectors Lasers multidisciplinary Optics Physics Polarization Remote control Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggziBlHjR2L7uFSUBQEnKvVm2fGYIkGKdrdI_HtmnOzSUAEXbpEfsTVvy-NvGHsmVLKgjK5BGFUTfEttdXK1EYACIjowoWRbfOiWx_rtSXtyodQX5YSN8MAj4Q6USNJpcH1K6CqFi06JKG3M2Qq0pZmsb-OaC4epEdUbJwk3vZJplD1Yo6ei12R4WmqdM6K2M09UAPvRv5xSOuTlWPNyyuRv96bFHR3dYNenOJIvxv3fZFdguMWujpUlf9xmhwueKRcEEsfwGFZ8RGzmGKJyDPn4-zevF9iz-gR8jVwCjmfvr5ywI1YZCMEAP-6w46NXHw-X9VQvoe7RKW_qlENre8jBGRk60BK6LuScoE06hOCaPjQx4GeKOpkmgMEJCXToVTAmJnWX7Q1nA9xnPArXJsLCa3Cs6QFtZrRS6Nhl1GFnKia2tPP9BCZONS2--HKprawf6e2R3r7Q29uKPd_N-TZCafx19EtiyW4kwWCXBhQOPwmH_5dwVOwpMnT2j-Xinac2ilXwcKi_i4rtb_ntJwVee4mOnZDuhazYk103qh7dp4QBzs7LGE2lStqmYvdG8dgtpSSlbHbYY2aCM9vLvGf4fFrgvQ3ZVVr3xVbEfm3rz_R68D_o9ZBdk6Qh9GRf77O9zeocHmHQtYmPi379BEJyJPQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyQuiDeBggziBlHjxIntA0LbqmVBsEKISr1ZdjxpkSBbslsk_j0zzqNaKnqLYuc1b2fG3zD2ShRBQ6FkCkIVKcG3pFoGkyoBKCCiAuVitcWimh_LjyflyRZbjHthqKxytInRUIdlTf_I93K0tAQ9LvJ3579S6hpF2dWxhYYbWiuEtxFi7AbbQZOsUe539g8XX75Of10oryWFGXbPZIXeW6EHo11muIoqjVEi1RseKgL5o985ozLJqzHo1VLKf_Kp0U0d3WG3h_iSz3qBuMu2oL3HbvYdJ__cZwcz3lCNCASOYTN0vEdy5hi6cgwF-ecP72c40p0CXyH3gOOa_CcnTImuAUI2wIMH7Pjo8NvBPB36KKQ1Out1GhpX6hoaZ1TuKpA5VJVrmgBlkM45k9Uu8w4Pg5dBZQ4UXhBAurpwSvlQPGTb7bKFx4x7YcpAGHkZzlU1oC31OhfSVw3qtlEJEyPtbD2AjFOvix82JrsLbXt6W6S3jfS2OmGvp2vOe4iNa2fvE0ummQSPHU8su1M7aJstREA-g6lDwPhKGG8K4XPtm0YLdMBNwl4iQzfuMZ99snSOYhhcNMrfImG7I7_toNgreymGCXsxDaNKUp7FtbC8iHMktTAps4Q96sVjelSRUylnhSNqQ3A23mVzpP1-FmG_Fdlbeu6bUcQuX-v_9Hpy_Vc8Zbdykn3apC932fa6u4BnGGat_fNBd_4C-CQjFQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVkhcKt4ECjKIG0TEsRPbx1BRlhVwgUq9WU48aZEgW2W3SPx7ZpxsUCggcbPscWzNwzOOx58Zey5kMCC1SkFomRJ8S2pUsKkWgAoiStA-Zlt8LJcnanVanO6xfHcXJibtR0jLuEzvssNebdDR0GUw3OwU1mqRmmts36D7yxdsv6pWn1bTnxU6u1LCjjdkMmn-0HnmhSJYP_qWc0qFvBpnXk2X_O3MNLqi45vsYIwheTXM-hbbg-42uz68KvnjDjuqeEt5IBA4hsbQ8wGtmWN4yjHc4x_eva2wpT8DvkEJAcd99zdOuBF9C4RegIW77OT4zeejZTq-lZA26JC3aWh9YRpovdW5L0HlUJa-bQMUQXnvbdb4rPZYDLUKOvOgsUMA5Rvpta6DvMcW3bqDB4zXwhaBcPAypNUN4HpZm1youmzRfq1OmNjxzjUjkDi9Z_HVxQNtadzAb4f8dpHfziTsxdTnYoDR-Cf1axLJREkQ2LFi3Z-5USWcFAHlDLYJAWMoYWsrRZ2bum2NQCfbJuwZCnT2jWX13lEdxSm4MVTfRcIOd_J2o_FuXI5OnVDuRZ6wp1Mzmh2dpfgO1peRRtEzJUWWsPuDekxDyZzSNUts0TPFmc1l3tJ9OY_Q3prWVBr35U7Ffk3r7_x6-H_kj9iNnGyBLuarQ7bY9pfwGEOrbf1ktKWf-Tsb3w priority: 102 providerName: Springer Nature |
Title | A fibered laser system for the MIGA large scale atom interferometer |
URI | https://link.springer.com/article/10.1038/s41598-020-59971-8 https://www.ncbi.nlm.nih.gov/pubmed/32094360 https://www.proquest.com/docview/2362206612 https://www.proquest.com/docview/2364042750 https://hal.science/hal-02384954 https://pubmed.ncbi.nlm.nih.gov/PMC7040012 https://doaj.org/article/31d294e9cdd84619b931b28bff81429f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsjKIG4TGiRPHB4TSVcuyohUCVtqb5cROi1R2IbtF9N8z4yRbLS0cOCXyI47mkZmJx98AvOCJzV0iRei4TEKCbwlzYVUouUMB4ZmTxmdbHGejiRhP0-kG9OWOOgIurg3tqJ7UpDl7_evHxVtU-DftkfF8b4FGiA6KYSCUKiV5mG_CNlqmjIKxo87db7G-YyW46s7OXD91B24mMaXbedDKS1PlEf3RAJ1SvuRVZ_RqTuUfG6veXh3ehludo8mKVjLuwIab3YUbbenJi3swLFhNySLOMvSfXcNaSGeGPixDn5AdvX9XYE9z4tgC2egYBuffGIFLNLUjiAO8uQ-Tw4Mvw1HYFVQIK7Tay9DWJs0rVxslY5M5EbssM3VtXWqFMUZFlYlKg7e2FFZGxkmcYJ0wVWKkLG3yALZm85l7BKzkKrUElhfhWFk5_KiWecxFmdWo5EoGwHva6apDG6eiF2fa73onuW5Jr5H02pNe5wG8XM353mJt_HP0PrFkNZJwsn3DvDnRndrphFtkuVOVtehocVWqhJdxXtZ1ztES1wE8R4auPWNUfNDURs4MRo_iJw9gt-e37gVUx2j5CQqfxwE8W3WjbtKGi5m5-bkfI6iWSRoF8LAVj9VSvZAFINcEZ-1d1ntmX089_rekDy-t-6oXscvX-ju9Hv_3Qk9gJyYNoYP8Yhe2ls25e4qu2LIcwKacygFsF8X48xiv-wfHHz9h6zAbDvzvjYHXwN8HpTL3 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVgguiDeBAgOCE0TNJJNMcqjQtrTs0u0KoVbqbTrJOC0SbMruFtQ_x2_DzmOrpaK33qLM5GV7bE9sfwZ4IyOXYqSVj1JHPsO3-Klyma8lkoDIBLWtsy3GyeBAfT6MD1fgT1cLw2mVnU6sFbWrCv5Hvh6SpmXocRl-OP3pc9cojq52LTRs21rBbdQQY21hxy6e_6Yt3Gxj-JH4_TYMd7b3twZ-22XAL8iUzX1X2jgtsLSZDm2CKsQksWXpMHbKWpsFhQ1yS4cuV04HFjVd4FDZIrJa5y6i-96AVcUVrj1Y3dwef_m6-MvDcTQls7ZaJ4jS9RlZTK5qo11bnGVa-umSRawbB5CdO-G0zMs-7-XUzX_it7VZ3LkLd1p_VvQbAbwHKzi5DzebDpfnD2CrL0rOSUEnyE3HqWiQowW5yoJcT7E3_NSnkekxihlJCwo7r34IxrCYlshICnTwEA6uhaKPoDepJvgERC6z2DEmX0BzdYGku_M0lCpPStIlmfZAdrQzRQtqzr01vps6uB6lpqG3IXqbmt4m9eDd4prTBtLjytmbzJLFTIbjrk9U02PTrm4TSUd8xqxwjvw5meVZJPMwzcsylWTwSw9eE0OX7jHojwyfY5-JNqnql_RgreO3aRXJzFyIvQevFsOkAjiuYydYndVzFLdMiQMPHjfisXhUFHLqaEIjeklwlt5leWTy7aSGGdes3_m57zsRu3it_9Pr6dVf8RJuDfb3RmY0HO8-g9shrwMGCFBr0JtPz_A5uXjz_EW7jgQcXffS_QtdXGU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO4EBhgETxA1Tpw4fphQdyktG9WEmLQ3z4ntDWlrR9uB9hf5VZyTS6cysbe9RbFzO3fnHH8H4B1PbO4SKULHZRISfEuYC6tCyR0KCM-cNFW1xSgb7IsvB-nBCvxp98JQWWVrEytDbScl_SPvxmhpCXqcx13flEXsbfU_nf0MqYMUZVrbdhqmabNg1yu4sWaTx467-I3Ludn6cAt5_z6O-9vfNwdh03EgLNGtzUPrTZqXzhslY5M5EbssM95bl1phjFFRaaLC4KEthJWRcRIvsE6YMjFSFjbB-96CVYleUnRgdWN7tPdt8ceHcmqCq2bnTpTk3Rl6T9rhhiu4VCnJw3zJO1ZNBNDnHVOJ5tX492oZ5z-53MpF9u_DvSa2Zb1aGB_Aihs_hNt1t8uLR7DZY57qU5xlGLK7KatRpBmGzQzDUPZ1-LmHI9Mjx2YoOY6Z-eSUEZ7F1DtCVcCDx7B_IxR9Ap3xZOyeASu4Si3h80U4V5YO7XiRx1wUmUe7omQAvKWdLhuAc-qzcaKrRHuS65reGumtK3rrPIAPi2vOaniPa2dvEEsWMwmauzoxmR7pRtN1wi3y2anSWoztuCpUwos4L7zPOTp_H8BbZOjSPQa9XU3nKH7CBav4xQNYa_mtG6My05cqEMCbxTCaA8rxmLGbnFdzBLVPSaMAntbisXhUElMZaYYjcklwlt5leWT847iCHJdk6-m5H1sRu3yt_9Pr-fVf8RruoArr3eFo5wXcjUkNCCtArEFnPj13LzHamxevGjVicHjTmvsXz8FpZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fibered+laser+system+for+the+MIGA+large+scale+atom+interferometer&rft.jtitle=Scientific+reports&rft.au=Sabulsky%2C+D.+O.&rft.au=Junca%2C+J.&rft.au=Lef%C3%A8vre%2C+G.&rft.au=Zou%2C+X.&rft.date=2020-02-24&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft_id=info:doi/10.1038%2Fs41598-020-59971-8&rft_id=info%3Apmid%2F32094360&rft.externalDocID=PMC7040012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |