Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM
Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of conver...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 186; pp. 174 - 184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.
•We present a new algorithm for coordinate-based meta-analyses (CBMA) methods.•Opposed to current methods, it conducts common permutation tests.•It may be implemented in several CBMA methods.•We detail and validate its implementation for seed-based d mapping (SDM). |
---|---|
AbstractList | Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method. Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method. •We present a new algorithm for coordinate-based meta-analyses (CBMA) methods.•Opposed to current methods, it conducts common permutation tests.•It may be implemented in several CBMA methods.•We detail and validate its implementation for seed-based d mapping (SDM). Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method. |
Author | Solanes, Aleix Vieta, Eduard Albajes-Eizagirre, Anton Radua, Joaquim |
Author_xml | – sequence: 1 givenname: Anton surname: Albajes-Eizagirre fullname: Albajes-Eizagirre, Anton organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain – sequence: 2 givenname: Aleix surname: Solanes fullname: Solanes, Aleix organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain – sequence: 3 givenname: Eduard surname: Vieta fullname: Vieta, Eduard organization: Mental Health Research Networking Center (CIBERSAM), Madrid, Spain – sequence: 4 givenname: Joaquim surname: Radua fullname: Radua, Joaquim email: Joaquim.Radua@kcl.ac.uk organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30389629$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568$$DView record from Swedish Publication Index |
BookMark | eNqNkUtv1TAQhS1URB_wF5AlNmWRix07D7NAhZZHpSKQWthajj0B3yZ2sJOW--9xyKVId3VXHs18czw65xgdOO8AIUzJihJavlqvHEzB2179gFVOaJ3aK1JVj9ARJaLIRFHlB3NdsKymVByi4xjXhBBBef0EHTLCalHm4giZ7_43dFmjIhjcw6gy5VS3iTbiO6vwAKGfRjVa77BvcZyaNegR__044tOv15cvX-Obn-DDBitn0mDooAe3XWl9wNcXn5-ix63qIjzbvifo24f3N-efsqsvHy_P315luqRszFRLTK6U1jUXJQFKNGGFaVtBCGtYoUypuaKEsVaUigtDiWp5VWsQpsibOmcnKFt04z0MUyOHkA4NG-mVldvWbapA8pozIRJ_uvBD8L8miKPsbdTQdcqBn6LMaS4KxgrOE_piB137KSSrZqqsKGekJIl6vqWmpgfzcMA_vxNQL4AOPsYA7QNCiZyjlWv5P1o5RztPUrRp9c3OqraLzWNQtttH4N0iACmCOwtBRm3BaTA2pFCl8XYfkbMdEd1ZZ7XqbmGzn8QfZurcow |
CitedBy_id | crossref_primary_10_1016_j_pscychresns_2023_111691 crossref_primary_10_1016_j_neubiorev_2021_11_020 crossref_primary_10_1080_00949655_2020_1836183 crossref_primary_10_1093_cercor_bhae116 crossref_primary_10_1177_10870547231167499 crossref_primary_10_3390_app12199954 crossref_primary_10_1016_j_neubiorev_2024_105835 crossref_primary_10_1016_j_rpsm_2023_01_001 crossref_primary_10_1016_j_rpsmen_2022_06_007 crossref_primary_10_1016_j_sleep_2025_02_028 crossref_primary_10_1016_j_rpsm_2023_01_005 crossref_primary_10_1111_cns_70218 crossref_primary_10_1016_j_jad_2024_07_050 crossref_primary_10_1111_acps_13539 crossref_primary_10_1016_j_neubiorev_2021_03_025 crossref_primary_10_1016_j_neubiorev_2022_104991 crossref_primary_10_1016_j_neuroimage_2019_116259 crossref_primary_10_1016_j_jad_2021_10_084 crossref_primary_10_3390_brainsci12091192 crossref_primary_10_1016_j_neubiorev_2021_06_020 crossref_primary_10_1093_schbul_sbad115 crossref_primary_10_1016_j_neubiorev_2021_03_010 crossref_primary_10_1016_j_neuropsychologia_2020_107495 crossref_primary_10_1097_MD_0000000000021378 crossref_primary_10_1097_MD_0000000000021499 crossref_primary_10_1016_j_neubiorev_2022_104625 crossref_primary_10_1016_j_neubiorev_2024_105970 crossref_primary_10_1017_S0033291722003750 crossref_primary_10_1016_j_jpsychires_2021_05_008 crossref_primary_10_1016_j_neuroimage_2024_120720 crossref_primary_10_1016_j_neubiorev_2021_06_030 crossref_primary_10_3390_ijerph20021171 crossref_primary_10_1097_MD_0000000000021374 crossref_primary_10_1016_j_neubiorev_2021_06_035 crossref_primary_10_1016_j_pnpbp_2022_110540 crossref_primary_10_1016_j_ebiom_2022_103915 crossref_primary_10_1111_cns_14314 crossref_primary_10_1016_j_jad_2023_01_049 crossref_primary_10_1016_j_biopsych_2024_10_020 crossref_primary_10_1016_j_pnpbp_2022_110669 crossref_primary_10_3390_biomedicines11123138 crossref_primary_10_1007_s00415_024_12852_w crossref_primary_10_3389_fnagi_2022_914049 crossref_primary_10_1080_02701367_2022_2026285 crossref_primary_10_1007_s00787_022_02133_0 crossref_primary_10_1007_s11053_021_09940_3 crossref_primary_10_1016_j_jpsychires_2024_09_012 crossref_primary_10_1016_j_neuroimage_2024_120551 crossref_primary_10_3389_fneur_2022_891789 crossref_primary_10_3389_fnhum_2020_616054 crossref_primary_10_1111_bdi_13091 crossref_primary_10_1016_j_ajp_2020_102467 crossref_primary_10_3389_fpsyt_2021_671348 crossref_primary_10_3389_fpsyt_2023_1302255 crossref_primary_10_1017_pen_2021_5 crossref_primary_10_1016_j_jadr_2024_100770 crossref_primary_10_1093_cercor_bhad471 crossref_primary_10_1016_j_ijchp_2023_100395 crossref_primary_10_3389_fnins_2020_600423 crossref_primary_10_1016_j_neubiorev_2021_02_035 crossref_primary_10_1016_j_bpsc_2024_08_019 crossref_primary_10_1007_s11682_022_00659_0 crossref_primary_10_1017_S0033291723000661 crossref_primary_10_1016_j_neubiorev_2020_09_013 crossref_primary_10_1007_s11682_022_00697_8 crossref_primary_10_1111_desc_13379 crossref_primary_10_3389_fnagi_2020_00213 crossref_primary_10_3389_fpsyt_2021_786113 crossref_primary_10_1002_jmri_26929 crossref_primary_10_1016_j_neubiorev_2023_105082 crossref_primary_10_1016_j_neubiorev_2023_105081 crossref_primary_10_1016_j_schres_2021_05_008 crossref_primary_10_1016_j_avb_2025_102035 crossref_primary_10_1038_s41598_022_25051_2 crossref_primary_10_1111_insr_12431 crossref_primary_10_3389_fnagi_2021_627919 crossref_primary_10_1016_j_cortex_2021_12_007 crossref_primary_10_1016_j_jpsychires_2024_05_029 crossref_primary_10_1016_j_neuroimage_2023_120207 crossref_primary_10_3389_fneur_2022_999375 crossref_primary_10_1016_j_biopsych_2022_06_013 crossref_primary_10_1002_hbm_26177 crossref_primary_10_1176_appi_ajp_2020_19111153 crossref_primary_10_3389_fendo_2021_658198 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1016_j_neubiorev_2021_02_016 crossref_primary_10_1038_s41380_023_02343_1 crossref_primary_10_1007_s11682_023_00791_5 crossref_primary_10_1038_s41380_023_02173_1 crossref_primary_10_3389_fneur_2023_1289934 crossref_primary_10_1016_j_cortex_2023_05_006 crossref_primary_10_1016_j_metrad_2023_100035 crossref_primary_10_1016_j_clineuro_2020_106279 crossref_primary_10_1016_j_jneumeth_2022_109556 crossref_primary_10_1038_s41537_023_00338_z crossref_primary_10_1038_s41598_022_15195_6 crossref_primary_10_1371_journal_pone_0255292 crossref_primary_10_1089_brain_2020_0911 crossref_primary_10_3389_fnagi_2021_678359 crossref_primary_10_3389_fnins_2023_1180434 crossref_primary_10_3390_app122111249 crossref_primary_10_1016_j_neubiorev_2020_05_015 crossref_primary_10_1186_s10194_020_01158_7 crossref_primary_10_3389_fpsyt_2021_807839 crossref_primary_10_1007_s10548_021_00824_6 crossref_primary_10_1016_j_heliyon_2024_e39059 crossref_primary_10_1002_brb3_3057 crossref_primary_10_1111_jsr_13298 crossref_primary_10_1007_s00406_022_01541_2 crossref_primary_10_1016_j_neuroimage_2022_119800 crossref_primary_10_1007_s11682_023_00762_w crossref_primary_10_1016_j_bpsgos_2021_11_010 crossref_primary_10_3390_brainsci13060960 crossref_primary_10_1016_j_pnpbp_2024_111121 crossref_primary_10_3389_fnhum_2022_1072345 crossref_primary_10_1007_s00415_023_11568_7 crossref_primary_10_1016_j_jpsychires_2022_08_010 crossref_primary_10_1155_2023_7966540 crossref_primary_10_1016_j_neuroimage_2021_118436 crossref_primary_10_1016_j_pscychresns_2022_111458 crossref_primary_10_1016_j_neubiorev_2024_105791 crossref_primary_10_1002_hbm_25948 crossref_primary_10_1038_s42003_021_02926_0 crossref_primary_10_1093_cercor_bhac211 crossref_primary_10_3389_fpsyt_2021_670739 crossref_primary_10_30773_pi_2021_0383 crossref_primary_10_1111_ejn_70081 crossref_primary_10_1016_j_neuroimage_2022_119354 crossref_primary_10_1016_j_neubiorev_2023_105394 crossref_primary_10_1016_j_wneu_2024_01_138 crossref_primary_10_1111_ejn_14954 crossref_primary_10_1080_00952990_2023_2172423 crossref_primary_10_3389_fpsyt_2024_1378439 crossref_primary_10_1016_j_nicl_2021_102830 crossref_primary_10_1038_s41537_024_00452_6 crossref_primary_10_1038_s41398_023_02363_z crossref_primary_10_1016_j_nicl_2023_103496 crossref_primary_10_1080_02791072_2023_2190758 crossref_primary_10_1002_hbm_26387 crossref_primary_10_1007_s11682_025_00973_3 crossref_primary_10_1111_pcn_13547 crossref_primary_10_1002_hbm_25602 crossref_primary_10_1016_j_neubiorev_2022_104588 crossref_primary_10_2139_ssrn_3981548 crossref_primary_10_1016_j_jad_2024_09_021 crossref_primary_10_3389_fnins_2024_1452216 crossref_primary_10_1038_s41537_022_00311_2 crossref_primary_10_1017_S0033291721005444 crossref_primary_10_1111_adb_12902 crossref_primary_10_1016_j_neuroimage_2020_116858 crossref_primary_10_1097_MD_0000000000021403 crossref_primary_10_1016_j_bpsc_2020_06_007 crossref_primary_10_1017_S0033291722002392 crossref_primary_10_1016_j_pscychresns_2023_111720 crossref_primary_10_1016_j_neubiorev_2024_105584 crossref_primary_10_1016_j_cpr_2024_102480 crossref_primary_10_1016_j_neuroimage_2024_120798 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_3389_fnins_2021_766633 crossref_primary_10_1136_bmjopen_2023_072075 crossref_primary_10_1007_s00406_024_01946_1 crossref_primary_10_1002_hbm_25471 crossref_primary_10_1016_j_neubiorev_2021_10_024 crossref_primary_10_1016_j_pnpbp_2025_111326 crossref_primary_10_2147_PRBM_S453035 crossref_primary_10_1016_j_neubiorev_2021_10_027 crossref_primary_10_1016_j_neuroimage_2022_119204 crossref_primary_10_1038_s41398_022_01995_x crossref_primary_10_1016_j_neuroimage_2024_120824 crossref_primary_10_1080_15622975_2023_2251057 crossref_primary_10_1002_hbm_70031 crossref_primary_10_1016_j_jad_2023_01_051 crossref_primary_10_1177_09612033211045062 crossref_primary_10_3390_brainsci14040395 crossref_primary_10_1093_cercor_bhaf013 crossref_primary_10_1080_20445911_2022_2143788 crossref_primary_10_31083_j_jin2309170 crossref_primary_10_1002_jmri_29568 crossref_primary_10_1097_CM9_0000000000000419 crossref_primary_10_1038_s41398_022_02157_9 crossref_primary_10_1016_j_neubiorev_2021_04_028 crossref_primary_10_1016_j_neuroimage_2020_116956 crossref_primary_10_1093_brain_awaa123 crossref_primary_10_18632_aging_202368 crossref_primary_10_1016_j_neubiorev_2022_104874 crossref_primary_10_1162_imag_a_00211 crossref_primary_10_3389_fpsyt_2022_955741 crossref_primary_10_1016_j_ajp_2022_103179 crossref_primary_10_3389_fnagi_2020_591666 crossref_primary_10_1017_S0033291724002563 crossref_primary_10_1016_j_brainresbull_2023_110827 crossref_primary_10_1038_s41386_022_01271_y crossref_primary_10_1162_imag_a_00423 crossref_primary_10_3390_brainsci12101367 crossref_primary_10_1017_S0033291721005523 crossref_primary_10_1093_cercor_bhaa381 crossref_primary_10_1016_j_jad_2021_02_079 crossref_primary_10_1007_s00406_022_01485_7 crossref_primary_10_3389_fneur_2022_950997 crossref_primary_10_3389_fpsyg_2023_1328523 crossref_primary_10_3389_fneur_2025_1510115 crossref_primary_10_1038_s41598_023_37309_4 crossref_primary_10_1016_j_rpsm_2021_07_001 crossref_primary_10_1111_bdi_13048 crossref_primary_10_1016_j_bpsc_2022_06_003 crossref_primary_10_1016_j_neubiorev_2022_104895 |
Cites_doi | 10.1192/bjp.bp.108.055046 10.1192/bjp.bp.114.159087 10.1016/j.eurpsy.2011.04.001 10.1109/42.750253 10.1186/2045-5380-2-6 10.1002/hbm.1058 10.1097/00004647-199601000-00002 10.3102/10769986030003261 10.1002/jrsm.53 10.1214/11-AOAS523 10.1016/j.neuroimage.2014.01.060 10.3389/fpsyt.2014.00013 10.3389/fnins.2017.00745 10.1002/hbm.20136 10.2202/1544-6115.1585 10.1093/scan/nsm015 10.1002/hbm.20718 10.1073/pnas.1602413113 10.1016/j.neuroimage.2008.03.061 10.1006/nimg.2002.1131 10.1111/acps.12440 10.1198/jasa.2011.ap09735 10.1214/14-AOAS757 10.1081/ETC-200067925 10.2307/1907382 10.1016/j.neuroimage.2011.09.017 10.1093/biomet/26.4.404 10.1016/j.pscychresns.2016.06.002 10.3389/fninf.2015.00008 10.1016/j.neuroimage.2009.01.031 10.1001/jamapsychiatry.2015.2196 10.1016/j.jneumeth.2012.07.016 10.1016/j.neuroimage.2018.04.065 10.1038/mp.2015.88 10.1002/hbm.21186 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 1, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.neuroimage.2018.10.077 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 184 |
ExternalDocumentID | oai_swepub_ki_se_484399 30389629 10_1016_j_neuroimage_2018_10_077 S1053811918320585 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c613t-af0d2aacc84960e10c035dff9003b35ad6c4a1033f96a49d10af478ce9d52b823 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Mon Aug 25 03:38:25 EDT 2025 Thu Jul 10 21:59:30 EDT 2025 Sat Aug 23 14:40:13 EDT 2025 Wed Feb 19 02:28:56 EST 2025 Tue Jul 01 03:02:05 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:36:56 EST 2024 Tue Aug 26 20:02:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Seed-based d mapping Activation likelihood estimation Signed differential mapping Familywise error rate Coordinate-based meta-analysis Tests for spatial convergence |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c613t-af0d2aacc84960e10c035dff9003b35ad6c4a1033f96a49d10af478ce9d52b823 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568 |
PMID | 30389629 |
PQID | 2167143060 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_484399 proquest_miscellaneous_2129533544 proquest_journals_2167143060 pubmed_primary_30389629 crossref_primary_10_1016_j_neuroimage_2018_10_077 crossref_citationtrail_10_1016_j_neuroimage_2018_10_077 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_10_077 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_10_077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Radua (bib27) 2012; 27 Yue, Lindquist, Loh (bib42) 2012; 6 Bullmore (bib5) 1999; 18 Schnedler (bib31) 2005; 24 Eklund, Nichols, Knutsson (bib11) 2016; 113 Albajes-Eizagirre, Solanes, Radua (bib2) 2018 Costafreda (bib7) 2012; 210 Clopper, Pearson (bib6) 1934; 26 Eickhoff (bib9) 2009; 30 Radua, Mataix-Cols (bib25) 2009; 195 Nichols, Holmes (bib23) 2002; 15 Radua (bib28) 2014; 5 Montagna (bib21) 2017 Eickhoff (bib10) 2012; 59 Winkler (bib40) 2014; 92 Amann (bib3) 2016; 133 Rubin (bib30) 1987 Costafreda, David, Brammer (bib8) 2009; 46 Li (bib20) 1991; 1 Laird (bib18) 2005; 25 Holmes (bib15) 1996; 16 Radua, Mataix-Cols (bib26) 2012; 2 Wise (bib41) 2016 Thorlund (bib33) 2011; 2 Gorgolewski (bib13) 2015; 9 Albajes-Eizagirre, Radua (bib1) 2018 Landin-Romero (bib19) 2016; 42 Vicens (bib37) 2016; 208 Viechtbauer (bib38) 2005; 30 Kang (bib17) 2014; 8 Moreno-Alcazar (bib22) 2016; 254 Bossier (bib4) 2017; 11 Turkeltaub (bib35) 2002; 16 Hedges, Olkin (bib14) 1985 Phipson, Smyth (bib24) 2010; 9 Tobin (bib34) 1958; 26 Radua (bib29) 2015; 72 Smith, Nichols (bib32) 2009; 44 Turkeltaub (bib36) 2012; 33 Wager, Lindquist, Kaplan (bib39) 2007; 2 Kang (bib16) 2011; 106 Fullana (bib12) 2016; 21 Albajes-Eizagirre (10.1016/j.neuroimage.2018.10.077_bib1) 2018 Radua (10.1016/j.neuroimage.2018.10.077_bib25) 2009; 195 Yue (10.1016/j.neuroimage.2018.10.077_bib42) 2012; 6 Nichols (10.1016/j.neuroimage.2018.10.077_bib23) 2002; 15 Gorgolewski (10.1016/j.neuroimage.2018.10.077_bib13) 2015; 9 Hedges (10.1016/j.neuroimage.2018.10.077_bib14) 1985 Phipson (10.1016/j.neuroimage.2018.10.077_bib24) 2010; 9 Thorlund (10.1016/j.neuroimage.2018.10.077_bib33) 2011; 2 Amann (10.1016/j.neuroimage.2018.10.077_bib3) 2016; 133 Radua (10.1016/j.neuroimage.2018.10.077_bib27) 2012; 27 Bullmore (10.1016/j.neuroimage.2018.10.077_bib5) 1999; 18 Radua (10.1016/j.neuroimage.2018.10.077_bib28) 2014; 5 Vicens (10.1016/j.neuroimage.2018.10.077_bib37) 2016; 208 Radua (10.1016/j.neuroimage.2018.10.077_bib26) 2012; 2 Laird (10.1016/j.neuroimage.2018.10.077_bib18) 2005; 25 Smith (10.1016/j.neuroimage.2018.10.077_bib32) 2009; 44 Tobin (10.1016/j.neuroimage.2018.10.077_bib34) 1958; 26 Kang (10.1016/j.neuroimage.2018.10.077_bib16) 2011; 106 Wise (10.1016/j.neuroimage.2018.10.077_bib41) 2016 Wager (10.1016/j.neuroimage.2018.10.077_bib39) 2007; 2 Radua (10.1016/j.neuroimage.2018.10.077_bib29) 2015; 72 Costafreda (10.1016/j.neuroimage.2018.10.077_bib8) 2009; 46 Bossier (10.1016/j.neuroimage.2018.10.077_bib4) 2017; 11 Winkler (10.1016/j.neuroimage.2018.10.077_bib40) 2014; 92 Eickhoff (10.1016/j.neuroimage.2018.10.077_bib9) 2009; 30 Costafreda (10.1016/j.neuroimage.2018.10.077_bib7) 2012; 210 Li (10.1016/j.neuroimage.2018.10.077_bib20) 1991; 1 Fullana (10.1016/j.neuroimage.2018.10.077_bib12) 2016; 21 Albajes-Eizagirre (10.1016/j.neuroimage.2018.10.077_bib2) 2018 Turkeltaub (10.1016/j.neuroimage.2018.10.077_bib35) 2002; 16 Viechtbauer (10.1016/j.neuroimage.2018.10.077_bib38) 2005; 30 Kang (10.1016/j.neuroimage.2018.10.077_bib17) 2014; 8 Rubin (10.1016/j.neuroimage.2018.10.077_bib30) 1987 Turkeltaub (10.1016/j.neuroimage.2018.10.077_bib36) 2012; 33 Eklund (10.1016/j.neuroimage.2018.10.077_bib11) 2016; 113 Eickhoff (10.1016/j.neuroimage.2018.10.077_bib10) 2012; 59 Schnedler (10.1016/j.neuroimage.2018.10.077_bib31) 2005; 24 Clopper (10.1016/j.neuroimage.2018.10.077_bib6) 1934; 26 Holmes (10.1016/j.neuroimage.2018.10.077_bib15) 1996; 16 Moreno-Alcazar (10.1016/j.neuroimage.2018.10.077_bib22) 2016; 254 Montagna (10.1016/j.neuroimage.2018.10.077_bib21) 2017 Landin-Romero (10.1016/j.neuroimage.2018.10.077_bib19) 2016; 42 33610413 - Neuroimage. 2021 Feb 17;:117859 |
References_xml | – volume: 72 start-page: 1243 year: 2015 end-page: 1251 ident: bib29 article-title: Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis publication-title: JAMA Psychiatry – volume: 133 start-page: 23 year: 2016 end-page: 33 ident: bib3 article-title: Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder publication-title: Acta Psychiatr. Scand. – year: 2017 ident: bib21 article-title: Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data – volume: 42 start-page: 229 year: 2016 end-page: 238 ident: bib19 article-title: Midline brain abnormalities across psychotic and mood disorders publication-title: Schizophr. Bull. – volume: 11 start-page: 745 year: 2017 ident: bib4 article-title: The influence of study-level inference models and study set size on coordinate-based fMRI meta-analyses publication-title: Front. Neurosci. – volume: 195 start-page: 393 year: 2009 end-page: 402 ident: bib25 article-title: Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder publication-title: Br. J. Psychiatry – volume: 8 start-page: 1800 year: 2014 end-page: 1824 ident: bib17 article-title: A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis publication-title: Ann. Appl. Stat. – volume: 6 start-page: 697 year: 2012 end-page: 718 ident: bib42 article-title: Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression publication-title: Ann. Appl. Stat. – volume: 2 start-page: 238 year: 2011 end-page: 253 ident: bib33 article-title: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses publication-title: Res. Synth. Methods – volume: 208 start-page: 153 year: 2016 end-page: 159 ident: bib37 article-title: Structural and functional brain changes in delusional disorder publication-title: Br. J. Psychiatry – year: 1985 ident: bib14 article-title: Statistical Methods for Meta-analysis – volume: 18 start-page: 32 year: 1999 end-page: 42 ident: bib5 article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain publication-title: IEEE Trans. Med. Imag. – year: 1987 ident: bib30 article-title: Multiple Imputation for Nonresponse in Surveys – volume: 1 start-page: 65 year: 1991 end-page: 92 ident: bib20 article-title: Significance levels from repeated p-values with multiply-imputed data publication-title: Stat. Sin. – volume: 9 start-page: 8 year: 2015 ident: bib13 article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinf. – volume: 44 start-page: 83 year: 2009 end-page: 98 ident: bib32 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage – volume: 26 start-page: 24 year: 1958 end-page: 36 ident: bib34 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica – volume: 24 start-page: 195 year: 2005 end-page: 217 ident: bib31 article-title: Likelihood estimation for censored random vectors publication-title: Econom. Rev. – volume: 26 start-page: 404 year: 1934 end-page: 413 ident: bib6 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika – volume: 30 start-page: 261 year: 2005 end-page: 293 ident: bib38 article-title: Bias and efficiency of meta-analytic variance estimators in the random-effects model publication-title: J. Educ. Behav. Stat. – volume: 2 start-page: 150 year: 2007 end-page: 158 ident: bib39 article-title: Meta-analysis of functional neuroimaging data: current and future directions publication-title: Soc. Cognit. Affect Neurosci. – year: 2018 ident: bib2 article-title: Meta-analysis of non-statistically significant unreported effects (MetaNSUE) publication-title: Stat. Methods Med. Res. – volume: 254 start-page: 41 year: 2016 end-page: 47 ident: bib22 article-title: Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry publication-title: Psychiatr. Res. – year: 2016 ident: bib41 article-title: Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis publication-title: Mol. Psychiatr. – volume: 30 start-page: 2907 year: 2009 end-page: 2926 ident: bib9 article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty publication-title: Hum. Brain Mapp. – volume: 2 start-page: 6 year: 2012 ident: bib26 article-title: Meta-analytic methods for neuroimaging data explained publication-title: Biol. Mood Anxiety Disord. – volume: 113 start-page: 7900 year: 2016 end-page: 7905 ident: bib11 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 start-page: 115 year: 2009 end-page: 122 ident: bib8 article-title: A parametric approach to voxel-based meta-analysis publication-title: Neuroimage – volume: 9 start-page: Article 39 year: 2010 ident: bib24 article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 92 start-page: 381 year: 2014 end-page: 397 ident: bib40 article-title: Permutation inference for the general linear model publication-title: Neuroimage – volume: 210 start-page: 291 year: 2012 end-page: 300 ident: bib7 article-title: Parametric coordinate-based meta-analysis: valid effect size meta-analysis of studies with differing statistical thresholds publication-title: J. Neurosci. Methods – volume: 27 start-page: 605 year: 2012 end-page: 611 ident: bib27 article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps publication-title: Eur. Psychiatr. – volume: 16 start-page: 765 year: 2002 end-page: 780 ident: bib35 article-title: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation publication-title: Neuroimage – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: bib23 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 33 start-page: 1 year: 2012 end-page: 13 ident: bib36 article-title: Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses publication-title: Hum. Brain Mapp. – year: 2018 ident: bib1 article-title: What do results from coordinate-based meta-analyses tell us? publication-title: Neuroimage – volume: 59 start-page: 2349 year: 2012 end-page: 2361 ident: bib10 article-title: Activation likelihood estimation meta-analysis revisited publication-title: Neuroimage – volume: 25 start-page: 155 year: 2005 end-page: 164 ident: bib18 article-title: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts publication-title: Hum. Brain Mapp. – volume: 16 start-page: 7 year: 1996 end-page: 22 ident: bib15 article-title: Nonparametric analysis of statistic images from functional mapping experiments publication-title: J. Cerebr. Blood Flow Metabol. – volume: 21 start-page: 500 year: 2016 end-page: 508 ident: bib12 article-title: Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies publication-title: Mol. Psychiatr. – volume: 106 start-page: 124 year: 2011 end-page: 134 ident: bib16 article-title: Meta analysis of functional neuroimaging data via Bayesian spatial point processes publication-title: J. Am. Stat. Assoc. – volume: 5 start-page: 13 year: 2014 ident: bib28 article-title: Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies publication-title: Front. Psychiatr. – volume: 195 start-page: 393 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2018.10.077_bib25 article-title: Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.108.055046 – volume: 42 start-page: 229 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib19 article-title: Midline brain abnormalities across psychotic and mood disorders publication-title: Schizophr. Bull. – volume: 208 start-page: 153 issue: 2 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib37 article-title: Structural and functional brain changes in delusional disorder publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.114.159087 – year: 1985 ident: 10.1016/j.neuroimage.2018.10.077_bib14 – volume: 27 start-page: 605 issue: 8 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib27 article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps publication-title: Eur. Psychiatr. doi: 10.1016/j.eurpsy.2011.04.001 – volume: 18 start-page: 32 issue: 1 year: 1999 ident: 10.1016/j.neuroimage.2018.10.077_bib5 article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.750253 – volume: 2 start-page: 6 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib26 article-title: Meta-analytic methods for neuroimaging data explained publication-title: Biol. Mood Anxiety Disord. doi: 10.1186/2045-5380-2-6 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2018.10.077_bib23 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 16 start-page: 7 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2018.10.077_bib15 article-title: Nonparametric analysis of statistic images from functional mapping experiments publication-title: J. Cerebr. Blood Flow Metabol. doi: 10.1097/00004647-199601000-00002 – volume: 1 start-page: 65 issue: 1 year: 1991 ident: 10.1016/j.neuroimage.2018.10.077_bib20 article-title: Significance levels from repeated p-values with multiply-imputed data publication-title: Stat. Sin. – volume: 30 start-page: 261 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2018.10.077_bib38 article-title: Bias and efficiency of meta-analytic variance estimators in the random-effects model publication-title: J. Educ. Behav. Stat. doi: 10.3102/10769986030003261 – volume: 2 start-page: 238 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2018.10.077_bib33 article-title: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses publication-title: Res. Synth. Methods doi: 10.1002/jrsm.53 – volume: 6 start-page: 697 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib42 article-title: Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression publication-title: Ann. Appl. Stat. doi: 10.1214/11-AOAS523 – volume: 92 start-page: 381 year: 2014 ident: 10.1016/j.neuroimage.2018.10.077_bib40 article-title: Permutation inference for the general linear model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.060 – volume: 5 start-page: 13 year: 2014 ident: 10.1016/j.neuroimage.2018.10.077_bib28 article-title: Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies publication-title: Front. Psychiatr. doi: 10.3389/fpsyt.2014.00013 – volume: 11 start-page: 745 year: 2017 ident: 10.1016/j.neuroimage.2018.10.077_bib4 article-title: The influence of study-level inference models and study set size on coordinate-based fMRI meta-analyses publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00745 – volume: 25 start-page: 155 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2018.10.077_bib18 article-title: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20136 – volume: 9 start-page: Article 39 year: 2010 ident: 10.1016/j.neuroimage.2018.10.077_bib24 article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1585 – volume: 2 start-page: 150 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2018.10.077_bib39 article-title: Meta-analysis of functional neuroimaging data: current and future directions publication-title: Soc. Cognit. Affect Neurosci. doi: 10.1093/scan/nsm015 – volume: 30 start-page: 2907 issue: 9 year: 2009 ident: 10.1016/j.neuroimage.2018.10.077_bib9 article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20718 – volume: 113 start-page: 7900 issue: 28 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib11 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1602413113 – volume: 44 start-page: 83 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2018.10.077_bib32 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.061 – year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib41 article-title: Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis publication-title: Mol. Psychiatr. – volume: 16 start-page: 765 issue: 3 Pt 1 year: 2002 ident: 10.1016/j.neuroimage.2018.10.077_bib35 article-title: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation publication-title: Neuroimage doi: 10.1006/nimg.2002.1131 – year: 1987 ident: 10.1016/j.neuroimage.2018.10.077_bib30 – volume: 133 start-page: 23 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib3 article-title: Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder publication-title: Acta Psychiatr. Scand. doi: 10.1111/acps.12440 – volume: 106 start-page: 124 issue: 493 year: 2011 ident: 10.1016/j.neuroimage.2018.10.077_bib16 article-title: Meta analysis of functional neuroimaging data via Bayesian spatial point processes publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.ap09735 – volume: 8 start-page: 1800 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2018.10.077_bib17 article-title: A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis publication-title: Ann. Appl. Stat. doi: 10.1214/14-AOAS757 – volume: 24 start-page: 195 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2018.10.077_bib31 article-title: Likelihood estimation for censored random vectors publication-title: Econom. Rev. doi: 10.1081/ETC-200067925 – year: 2018 ident: 10.1016/j.neuroimage.2018.10.077_bib2 article-title: Meta-analysis of non-statistically significant unreported effects (MetaNSUE) publication-title: Stat. Methods Med. Res. – volume: 26 start-page: 24 issue: 1 year: 1958 ident: 10.1016/j.neuroimage.2018.10.077_bib34 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica doi: 10.2307/1907382 – volume: 59 start-page: 2349 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib10 article-title: Activation likelihood estimation meta-analysis revisited publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.017 – year: 2017 ident: 10.1016/j.neuroimage.2018.10.077_bib21 – volume: 26 start-page: 404 year: 1934 ident: 10.1016/j.neuroimage.2018.10.077_bib6 article-title: The use of confidence or fiducial limits illustrated in the case of the binomial publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 254 start-page: 41 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib22 article-title: Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry publication-title: Psychiatr. Res. doi: 10.1016/j.pscychresns.2016.06.002 – volume: 9 start-page: 8 year: 2015 ident: 10.1016/j.neuroimage.2018.10.077_bib13 article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinf. doi: 10.3389/fninf.2015.00008 – volume: 46 start-page: 115 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2018.10.077_bib8 article-title: A parametric approach to voxel-based meta-analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.031 – volume: 72 start-page: 1243 issue: 12 year: 2015 ident: 10.1016/j.neuroimage.2018.10.077_bib29 article-title: Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.2196 – volume: 210 start-page: 291 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib7 article-title: Parametric coordinate-based meta-analysis: valid effect size meta-analysis of studies with differing statistical thresholds publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.07.016 – year: 2018 ident: 10.1016/j.neuroimage.2018.10.077_bib1 article-title: What do results from coordinate-based meta-analyses tell us? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.04.065 – volume: 21 start-page: 500 issue: 4 year: 2016 ident: 10.1016/j.neuroimage.2018.10.077_bib12 article-title: Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies publication-title: Mol. Psychiatr. doi: 10.1038/mp.2015.88 – volume: 33 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2018.10.077_bib36 article-title: Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21186 – reference: 33610413 - Neuroimage. 2021 Feb 17;:117859 |
SSID | ssj0009148 |
Score | 2.6435907 |
Snippet | Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 174 |
SubjectTerms | Activation likelihood estimation Algorithms Bias Brain - diagnostic imaging Brain mapping Brain research Coordinate-based meta-analysis Familywise error rate Humans Image Processing, Computer-Assisted - methods Medical imaging Mental disorders Meta-analysis Meta-Analysis as Topic Methods Models, Statistical Neuroimaging Neuroimaging - methods Seed-based d mapping Signed differential mapping Software Statistical analysis Studies Systematic review Tests for spatial convergence |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lD8UX8dvVKhFE9CG97Cab7LZPUi1VOBHOSt-WbD7gart3eHfik397ZzbZLSrCgW-7mQzkYzIzSX4zIeSlwxA0IQwLOggmteSsxgy0OjheWFMGzjHAefpJnZ7Jj-fl-Q45HmJhEFaZdH_U6b22TiWTNJqT5Xw-mYFnAOYG9hsglBy8Xoxglxql_ODXDcyjzmUMhysFw9oJzRMxXn3OyPkVrFwEeVUHiPPS-l8m6m8X9I_8or1NOrlDbidnkr6N7b1Ldnx3j-xN03X5feK-Ln76S4aWytErvzbMpBwk9Mfc0CVo5U28iqeLQFebFg9laN_SFX39efbhzSGNwfvUdA4IA9i8ZwF3l87eTR-Qs5P3X45PWXpWgVmw3WtmAneFMdZWErYvPueWi9KFgGearSiNU1aanAsRamVk7XJugtSV9bUri7YqxEOy2y06_5hQZSoVykKBkjLSK14FLYNxss6NVU62GdHDSDY25RzHpy8umwFcdtHczEGDc4AUmIOM5CPnMubd2IKnHiarGeJKQRM2YBy24D0aeX-Tvy259wfZaJIOWDVFrvBxea54Rl6MZFi9eCVjOr_YYJ0C8b2llBl5FGVq7K7A3IeqqDPyKgrZSMGU4KnoG3z5Rla4rXzyX314Sm7BXx0R6ftkd_1945-Bw7Vun_cr6hro6yqW priority: 102 providerName: Elsevier |
Title | Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918320585 https://dx.doi.org/10.1016/j.neuroimage.2018.10.077 https://www.ncbi.nlm.nih.gov/pubmed/30389629 https://www.proquest.com/docview/2167143060 https://www.proquest.com/docview/2129533544 http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN8LjMpICMGDhxM7dgIPaIxNHdCq2hjqW-T4QxpsaaEt4om_HV_spBII1KdEcU5ycvbd2f7d7xB6aiAFjTFFnHSMcMkpKYGBVjpDM61yRykkOI_GYnjO30_zadxwW0RYZWcTW0NtZhr2yF9mqYBS3VTQN_NvBKpGwelqLKGxhXaAugwgXXIq16S7KQ-pcDkjhX8hInkCvqvli7y48rMWAF7FPmC8pPyXe_o7_PyDW7T1R8e30M0YSOKDoPnb6Jpt7qDro3hUfheZz7Of9pKAlzL4yi4VUZF_BP-4UHjuLfIqHMPjmcOLVQ0bMrjt6QI_n5ydvHiFQ-I-Vo3xDR3QvBXxoS4-eze6h86Pjz4dDkksqUC099tLohw1mVJaF9wvXWxKNWW5cQ72M2uWKyM0VyllzJVC8dKkVDkuC21Lk2d1kbH7aLuZNXYXYaEK4fJMeAOluBW0cJI7ZXiZKi0MrxMkuz9Z6cg3DmUvLqsOWPalWuugAh1Ai9dBgtJech44NzaQKTtlVV1OqbeClXcMG8i-7mVj3BHiiQ2l97qxUcX5v6jWozVBT_pmP3PhOEY1draCdzLA9uacJ-hBGFP95zLgPRRZmaBnYZD1LUAHHh999Xe24gUsKR_-vxeP0A3f5TLAzffQ9vL7yj720dSyHqCt_V_poJ04A7RzcHj6cQLXkw_Dsb--PRpPTn8DaQgkzw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN8EBhgJEDwYnNhxEhBCwDa1bK0mtqG9Bccf0mBLCm35-Kf4G_HFTiqBQH3ZW1T3JCd3vjvbv_sdQg80lKAxJonNLCM845QUwECbWU0TJVNLKRQ4jydieMjfHaVHa-hXVwsDsMrOJ7aOWjcKzsifJbGAVt1U0FfTLwS6RsHtatdCw5vFjvn53W3ZZi9Hm06_D5Nke-vg7ZCErgJEudA1J9JSnUipVM5d9m5iqihLtbVwpFexVGqhuIwpY7YQkhc6ptLyLFem0GlS5UB04Fz-OmduKzNA62-2JnvvlzS_MffFdykjeRwXATvkEWUtQ-XxqfMTACnLnwKqLMv-FRD_Tnj_YDNtI-D2JXQxpK74tbe1y2jN1FfQuXG4nL-K9IfmhzkhEBc1PjVzSWRgPMHfjiWeuhiw8Bf_uLF4tqjgCAi3M53hx3v7oyfPsacKwLLWbqCDtrciLrnG-5vja-jwTD73dTSom9rcRFjIXNg0Ec4lSm4EzW3GrdS8iKUSmlcRyrovWarAcA6NNk7KDsr2qVzqoAQdwIjTQYTiXnLqWT5WkCk6ZZVdFavzu6ULRSvIvuhlQ6bjM5gVpTc62yiDx5mVy_URofv9sPMVcAEka9Ms4D8JoIlTziN0w9tU_7oMmBZFUkTokTeyfgQIyMNPn92TKXkOm9hb_5_FPXR-eDDeLXdHk53b6IKbfuHB7htoMP-6MHdcLjev7oYFhNHHs16zvwGIIF2h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IO4EBhgJEDyY2YljJyCEEKVaGZ0mjaG-eU5sS4OtKbTl8tf4dfjETiqBQH3ZW1X3SG7ONfZ3voPQQwMtaFmmiZMuI1xySkpgoJXO0LTWuaMUGpzH-2L3iL-b5JMN9KvrhQFYZRcT20BtmhrOyHdSJmBUNxV0x0VYxMFg-Gr2hcAEKbhp7cZpBBPZsz-_-9e3-cvRwOv6UZoO3354s0vihAFS-zS2INpRk2pd1wX3lbxltKZZbpyD470qy7URNdeMZpkrhealYVQ7LovaliZPqwJID3z4vyCznIGPyYlcEf4yHtrw8owUjJURRRSwZS1X5cmZjxgALiueAb5Myn-lxr9L3z94TdtcOLyMLsUiFr8OVncFbdjpVbQ1jtf015D52PywpwQypMFndqGJjtwn-NuJxjOfDZYBAoAbh-fLCg6DcLvTOX5ycDh6-hwH0gCsp8YvdCD3VsSX2fhwML6Ojs7lYd9Am9Nmam8hLHQhXJ4KHxw1t4IWTnKnDS-ZroXhVYJk9yRVHbnOYeTGqepAbZ_USgcKdAArXgcJYr3kLPB9rCFTdspSXT-rj8DKJ6U1ZF_0srHmCbXMmtLbnW2oGHvmauUpCXrQL_uoAVdBemqbJfwmBVxxznmCbgab6v9uBpyLIi0T9DgYWb8CVOTxq8_-k1W8gNfZ2__fxX205T1VvR_t791BF_3uy4B630abi69Le9cXdYvqXus9GB2ft7v-BtCkYHE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-based+meta-analysis+via+permutation+of+subject+images+%28PSI%29%3A+Theory+and+implementation+for+SDM&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Albajes-Eizagirre%2C+Anton&rft.au=Solanes%2C+Aleix&rft.au=Vieta%2C+Eduard&rft.au=Radua%2C+Joaquim&rft.date=2019-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=186&rft.spage=174&rft.epage=184&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.10.077&rft.externalDocID=S1053811918320585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |