Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM

Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of conver...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 186; pp. 174 - 184
Main Authors Albajes-Eizagirre, Anton, Solanes, Aleix, Vieta, Eduard, Radua, Joaquim
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method. •We present a new algorithm for coordinate-based meta-analyses (CBMA) methods.•Opposed to current methods, it conducts common permutation tests.•It may be implemented in several CBMA methods.•We detail and validate its implementation for seed-based d mapping (SDM).
AbstractList Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.
Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method. •We present a new algorithm for coordinate-based meta-analyses (CBMA) methods.•Opposed to current methods, it conducts common permutation tests.•It may be implemented in several CBMA methods.•We detail and validate its implementation for seed-based d mapping (SDM).
Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain abnormalities in neuropsychiatric disorders. However, current CBMA methods do not conduct common voxelwise tests, but rather a test of convergence, which relies on some spatial assumptions that data may seldom meet, and has lower statistical power when there are multiple effects. Here we present a new algorithm that can use standard voxelwise tests and, importantly, conducts a standard permutation of subject images (PSI). Its main steps are: a) multiple imputation of study images; b) imputation of subject images; and c) subject-based permutation test to control the familywise error rate (FWER). The PSI algorithm is general and we believe that developers might implement it for several CBMA methods. We present here an implementation of PSI for seed-based d mapping (SDM) method, which additionally benefits from the use of effect sizes, random-effects models, Freedman-Lane-based permutations and threshold-free cluster enhancement (TFCE) statistics, among others. Finally, we also provide an empirical validation of the control of the FWER in SDM-PSI, which showed that it might be too conservative. We hope that the neuroimaging meta-analytic community will welcome this new algorithm and method.
Author Solanes, Aleix
Vieta, Eduard
Albajes-Eizagirre, Anton
Radua, Joaquim
Author_xml – sequence: 1
  givenname: Anton
  surname: Albajes-Eizagirre
  fullname: Albajes-Eizagirre, Anton
  organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
– sequence: 2
  givenname: Aleix
  surname: Solanes
  fullname: Solanes, Aleix
  organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
– sequence: 3
  givenname: Eduard
  surname: Vieta
  fullname: Vieta, Eduard
  organization: Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
– sequence: 4
  givenname: Joaquim
  surname: Radua
  fullname: Radua, Joaquim
  email: Joaquim.Radua@kcl.ac.uk
  organization: FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30389629$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568$$DView record from Swedish Publication Index
BookMark eNqNkUtv1TAQhS1URB_wF5AlNmWRix07D7NAhZZHpSKQWthajj0B3yZ2sJOW--9xyKVId3VXHs18czw65xgdOO8AIUzJihJavlqvHEzB2179gFVOaJ3aK1JVj9ARJaLIRFHlB3NdsKymVByi4xjXhBBBef0EHTLCalHm4giZ7_43dFmjIhjcw6gy5VS3iTbiO6vwAKGfRjVa77BvcZyaNegR__044tOv15cvX-Obn-DDBitn0mDooAe3XWl9wNcXn5-ix63qIjzbvifo24f3N-efsqsvHy_P315luqRszFRLTK6U1jUXJQFKNGGFaVtBCGtYoUypuaKEsVaUigtDiWp5VWsQpsibOmcnKFt04z0MUyOHkA4NG-mVldvWbapA8pozIRJ_uvBD8L8miKPsbdTQdcqBn6LMaS4KxgrOE_piB137KSSrZqqsKGekJIl6vqWmpgfzcMA_vxNQL4AOPsYA7QNCiZyjlWv5P1o5RztPUrRp9c3OqraLzWNQtttH4N0iACmCOwtBRm3BaTA2pFCl8XYfkbMdEd1ZZ7XqbmGzn8QfZurcow
CitedBy_id crossref_primary_10_1016_j_pscychresns_2023_111691
crossref_primary_10_1016_j_neubiorev_2021_11_020
crossref_primary_10_1080_00949655_2020_1836183
crossref_primary_10_1093_cercor_bhae116
crossref_primary_10_1177_10870547231167499
crossref_primary_10_3390_app12199954
crossref_primary_10_1016_j_neubiorev_2024_105835
crossref_primary_10_1016_j_rpsm_2023_01_001
crossref_primary_10_1016_j_rpsmen_2022_06_007
crossref_primary_10_1016_j_sleep_2025_02_028
crossref_primary_10_1016_j_rpsm_2023_01_005
crossref_primary_10_1111_cns_70218
crossref_primary_10_1016_j_jad_2024_07_050
crossref_primary_10_1111_acps_13539
crossref_primary_10_1016_j_neubiorev_2021_03_025
crossref_primary_10_1016_j_neubiorev_2022_104991
crossref_primary_10_1016_j_neuroimage_2019_116259
crossref_primary_10_1016_j_jad_2021_10_084
crossref_primary_10_3390_brainsci12091192
crossref_primary_10_1016_j_neubiorev_2021_06_020
crossref_primary_10_1093_schbul_sbad115
crossref_primary_10_1016_j_neubiorev_2021_03_010
crossref_primary_10_1016_j_neuropsychologia_2020_107495
crossref_primary_10_1097_MD_0000000000021378
crossref_primary_10_1097_MD_0000000000021499
crossref_primary_10_1016_j_neubiorev_2022_104625
crossref_primary_10_1016_j_neubiorev_2024_105970
crossref_primary_10_1017_S0033291722003750
crossref_primary_10_1016_j_jpsychires_2021_05_008
crossref_primary_10_1016_j_neuroimage_2024_120720
crossref_primary_10_1016_j_neubiorev_2021_06_030
crossref_primary_10_3390_ijerph20021171
crossref_primary_10_1097_MD_0000000000021374
crossref_primary_10_1016_j_neubiorev_2021_06_035
crossref_primary_10_1016_j_pnpbp_2022_110540
crossref_primary_10_1016_j_ebiom_2022_103915
crossref_primary_10_1111_cns_14314
crossref_primary_10_1016_j_jad_2023_01_049
crossref_primary_10_1016_j_biopsych_2024_10_020
crossref_primary_10_1016_j_pnpbp_2022_110669
crossref_primary_10_3390_biomedicines11123138
crossref_primary_10_1007_s00415_024_12852_w
crossref_primary_10_3389_fnagi_2022_914049
crossref_primary_10_1080_02701367_2022_2026285
crossref_primary_10_1007_s00787_022_02133_0
crossref_primary_10_1007_s11053_021_09940_3
crossref_primary_10_1016_j_jpsychires_2024_09_012
crossref_primary_10_1016_j_neuroimage_2024_120551
crossref_primary_10_3389_fneur_2022_891789
crossref_primary_10_3389_fnhum_2020_616054
crossref_primary_10_1111_bdi_13091
crossref_primary_10_1016_j_ajp_2020_102467
crossref_primary_10_3389_fpsyt_2021_671348
crossref_primary_10_3389_fpsyt_2023_1302255
crossref_primary_10_1017_pen_2021_5
crossref_primary_10_1016_j_jadr_2024_100770
crossref_primary_10_1093_cercor_bhad471
crossref_primary_10_1016_j_ijchp_2023_100395
crossref_primary_10_3389_fnins_2020_600423
crossref_primary_10_1016_j_neubiorev_2021_02_035
crossref_primary_10_1016_j_bpsc_2024_08_019
crossref_primary_10_1007_s11682_022_00659_0
crossref_primary_10_1017_S0033291723000661
crossref_primary_10_1016_j_neubiorev_2020_09_013
crossref_primary_10_1007_s11682_022_00697_8
crossref_primary_10_1111_desc_13379
crossref_primary_10_3389_fnagi_2020_00213
crossref_primary_10_3389_fpsyt_2021_786113
crossref_primary_10_1002_jmri_26929
crossref_primary_10_1016_j_neubiorev_2023_105082
crossref_primary_10_1016_j_neubiorev_2023_105081
crossref_primary_10_1016_j_schres_2021_05_008
crossref_primary_10_1016_j_avb_2025_102035
crossref_primary_10_1038_s41598_022_25051_2
crossref_primary_10_1111_insr_12431
crossref_primary_10_3389_fnagi_2021_627919
crossref_primary_10_1016_j_cortex_2021_12_007
crossref_primary_10_1016_j_jpsychires_2024_05_029
crossref_primary_10_1016_j_neuroimage_2023_120207
crossref_primary_10_3389_fneur_2022_999375
crossref_primary_10_1016_j_biopsych_2022_06_013
crossref_primary_10_1002_hbm_26177
crossref_primary_10_1176_appi_ajp_2020_19111153
crossref_primary_10_3389_fendo_2021_658198
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1016_j_neubiorev_2021_02_016
crossref_primary_10_1038_s41380_023_02343_1
crossref_primary_10_1007_s11682_023_00791_5
crossref_primary_10_1038_s41380_023_02173_1
crossref_primary_10_3389_fneur_2023_1289934
crossref_primary_10_1016_j_cortex_2023_05_006
crossref_primary_10_1016_j_metrad_2023_100035
crossref_primary_10_1016_j_clineuro_2020_106279
crossref_primary_10_1016_j_jneumeth_2022_109556
crossref_primary_10_1038_s41537_023_00338_z
crossref_primary_10_1038_s41598_022_15195_6
crossref_primary_10_1371_journal_pone_0255292
crossref_primary_10_1089_brain_2020_0911
crossref_primary_10_3389_fnagi_2021_678359
crossref_primary_10_3389_fnins_2023_1180434
crossref_primary_10_3390_app122111249
crossref_primary_10_1016_j_neubiorev_2020_05_015
crossref_primary_10_1186_s10194_020_01158_7
crossref_primary_10_3389_fpsyt_2021_807839
crossref_primary_10_1007_s10548_021_00824_6
crossref_primary_10_1016_j_heliyon_2024_e39059
crossref_primary_10_1002_brb3_3057
crossref_primary_10_1111_jsr_13298
crossref_primary_10_1007_s00406_022_01541_2
crossref_primary_10_1016_j_neuroimage_2022_119800
crossref_primary_10_1007_s11682_023_00762_w
crossref_primary_10_1016_j_bpsgos_2021_11_010
crossref_primary_10_3390_brainsci13060960
crossref_primary_10_1016_j_pnpbp_2024_111121
crossref_primary_10_3389_fnhum_2022_1072345
crossref_primary_10_1007_s00415_023_11568_7
crossref_primary_10_1016_j_jpsychires_2022_08_010
crossref_primary_10_1155_2023_7966540
crossref_primary_10_1016_j_neuroimage_2021_118436
crossref_primary_10_1016_j_pscychresns_2022_111458
crossref_primary_10_1016_j_neubiorev_2024_105791
crossref_primary_10_1002_hbm_25948
crossref_primary_10_1038_s42003_021_02926_0
crossref_primary_10_1093_cercor_bhac211
crossref_primary_10_3389_fpsyt_2021_670739
crossref_primary_10_30773_pi_2021_0383
crossref_primary_10_1111_ejn_70081
crossref_primary_10_1016_j_neuroimage_2022_119354
crossref_primary_10_1016_j_neubiorev_2023_105394
crossref_primary_10_1016_j_wneu_2024_01_138
crossref_primary_10_1111_ejn_14954
crossref_primary_10_1080_00952990_2023_2172423
crossref_primary_10_3389_fpsyt_2024_1378439
crossref_primary_10_1016_j_nicl_2021_102830
crossref_primary_10_1038_s41537_024_00452_6
crossref_primary_10_1038_s41398_023_02363_z
crossref_primary_10_1016_j_nicl_2023_103496
crossref_primary_10_1080_02791072_2023_2190758
crossref_primary_10_1002_hbm_26387
crossref_primary_10_1007_s11682_025_00973_3
crossref_primary_10_1111_pcn_13547
crossref_primary_10_1002_hbm_25602
crossref_primary_10_1016_j_neubiorev_2022_104588
crossref_primary_10_2139_ssrn_3981548
crossref_primary_10_1016_j_jad_2024_09_021
crossref_primary_10_3389_fnins_2024_1452216
crossref_primary_10_1038_s41537_022_00311_2
crossref_primary_10_1017_S0033291721005444
crossref_primary_10_1111_adb_12902
crossref_primary_10_1016_j_neuroimage_2020_116858
crossref_primary_10_1097_MD_0000000000021403
crossref_primary_10_1016_j_bpsc_2020_06_007
crossref_primary_10_1017_S0033291722002392
crossref_primary_10_1016_j_pscychresns_2023_111720
crossref_primary_10_1016_j_neubiorev_2024_105584
crossref_primary_10_1016_j_cpr_2024_102480
crossref_primary_10_1016_j_neuroimage_2024_120798
crossref_primary_10_1016_j_neubiorev_2021_01_010
crossref_primary_10_3389_fnins_2021_766633
crossref_primary_10_1136_bmjopen_2023_072075
crossref_primary_10_1007_s00406_024_01946_1
crossref_primary_10_1002_hbm_25471
crossref_primary_10_1016_j_neubiorev_2021_10_024
crossref_primary_10_1016_j_pnpbp_2025_111326
crossref_primary_10_2147_PRBM_S453035
crossref_primary_10_1016_j_neubiorev_2021_10_027
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_1038_s41398_022_01995_x
crossref_primary_10_1016_j_neuroimage_2024_120824
crossref_primary_10_1080_15622975_2023_2251057
crossref_primary_10_1002_hbm_70031
crossref_primary_10_1016_j_jad_2023_01_051
crossref_primary_10_1177_09612033211045062
crossref_primary_10_3390_brainsci14040395
crossref_primary_10_1093_cercor_bhaf013
crossref_primary_10_1080_20445911_2022_2143788
crossref_primary_10_31083_j_jin2309170
crossref_primary_10_1002_jmri_29568
crossref_primary_10_1097_CM9_0000000000000419
crossref_primary_10_1038_s41398_022_02157_9
crossref_primary_10_1016_j_neubiorev_2021_04_028
crossref_primary_10_1016_j_neuroimage_2020_116956
crossref_primary_10_1093_brain_awaa123
crossref_primary_10_18632_aging_202368
crossref_primary_10_1016_j_neubiorev_2022_104874
crossref_primary_10_1162_imag_a_00211
crossref_primary_10_3389_fpsyt_2022_955741
crossref_primary_10_1016_j_ajp_2022_103179
crossref_primary_10_3389_fnagi_2020_591666
crossref_primary_10_1017_S0033291724002563
crossref_primary_10_1016_j_brainresbull_2023_110827
crossref_primary_10_1038_s41386_022_01271_y
crossref_primary_10_1162_imag_a_00423
crossref_primary_10_3390_brainsci12101367
crossref_primary_10_1017_S0033291721005523
crossref_primary_10_1093_cercor_bhaa381
crossref_primary_10_1016_j_jad_2021_02_079
crossref_primary_10_1007_s00406_022_01485_7
crossref_primary_10_3389_fneur_2022_950997
crossref_primary_10_3389_fpsyg_2023_1328523
crossref_primary_10_3389_fneur_2025_1510115
crossref_primary_10_1038_s41598_023_37309_4
crossref_primary_10_1016_j_rpsm_2021_07_001
crossref_primary_10_1111_bdi_13048
crossref_primary_10_1016_j_bpsc_2022_06_003
crossref_primary_10_1016_j_neubiorev_2022_104895
Cites_doi 10.1192/bjp.bp.108.055046
10.1192/bjp.bp.114.159087
10.1016/j.eurpsy.2011.04.001
10.1109/42.750253
10.1186/2045-5380-2-6
10.1002/hbm.1058
10.1097/00004647-199601000-00002
10.3102/10769986030003261
10.1002/jrsm.53
10.1214/11-AOAS523
10.1016/j.neuroimage.2014.01.060
10.3389/fpsyt.2014.00013
10.3389/fnins.2017.00745
10.1002/hbm.20136
10.2202/1544-6115.1585
10.1093/scan/nsm015
10.1002/hbm.20718
10.1073/pnas.1602413113
10.1016/j.neuroimage.2008.03.061
10.1006/nimg.2002.1131
10.1111/acps.12440
10.1198/jasa.2011.ap09735
10.1214/14-AOAS757
10.1081/ETC-200067925
10.2307/1907382
10.1016/j.neuroimage.2011.09.017
10.1093/biomet/26.4.404
10.1016/j.pscychresns.2016.06.002
10.3389/fninf.2015.00008
10.1016/j.neuroimage.2009.01.031
10.1001/jamapsychiatry.2015.2196
10.1016/j.jneumeth.2012.07.016
10.1016/j.neuroimage.2018.04.065
10.1038/mp.2015.88
10.1002/hbm.21186
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 1, 2019
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 1, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.neuroimage.2018.10.077
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 184
ExternalDocumentID oai_swepub_ki_se_484399
30389629
10_1016_j_neuroimage_2018_10_077
S1053811918320585
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c613t-af0d2aacc84960e10c035dff9003b35ad6c4a1033f96a49d10af478ce9d52b823
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Mon Aug 25 03:38:25 EDT 2025
Thu Jul 10 21:59:30 EDT 2025
Sat Aug 23 14:40:13 EDT 2025
Wed Feb 19 02:28:56 EST 2025
Tue Jul 01 03:02:05 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:36:56 EST 2024
Tue Aug 26 20:02:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Seed-based d mapping
Activation likelihood estimation
Signed differential mapping
Familywise error rate
Coordinate-based meta-analysis
Tests for spatial convergence
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-af0d2aacc84960e10c035dff9003b35ad6c4a1033f96a49d10af478ce9d52b823
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568
PMID 30389629
PQID 2167143060
PQPubID 2031077
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_484399
proquest_miscellaneous_2129533544
proquest_journals_2167143060
pubmed_primary_30389629
crossref_primary_10_1016_j_neuroimage_2018_10_077
crossref_citationtrail_10_1016_j_neuroimage_2018_10_077
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_10_077
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_10_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Radua (bib27) 2012; 27
Yue, Lindquist, Loh (bib42) 2012; 6
Bullmore (bib5) 1999; 18
Schnedler (bib31) 2005; 24
Eklund, Nichols, Knutsson (bib11) 2016; 113
Albajes-Eizagirre, Solanes, Radua (bib2) 2018
Costafreda (bib7) 2012; 210
Clopper, Pearson (bib6) 1934; 26
Eickhoff (bib9) 2009; 30
Radua, Mataix-Cols (bib25) 2009; 195
Nichols, Holmes (bib23) 2002; 15
Radua (bib28) 2014; 5
Montagna (bib21) 2017
Eickhoff (bib10) 2012; 59
Winkler (bib40) 2014; 92
Amann (bib3) 2016; 133
Rubin (bib30) 1987
Costafreda, David, Brammer (bib8) 2009; 46
Li (bib20) 1991; 1
Laird (bib18) 2005; 25
Holmes (bib15) 1996; 16
Radua, Mataix-Cols (bib26) 2012; 2
Wise (bib41) 2016
Thorlund (bib33) 2011; 2
Gorgolewski (bib13) 2015; 9
Albajes-Eizagirre, Radua (bib1) 2018
Landin-Romero (bib19) 2016; 42
Vicens (bib37) 2016; 208
Viechtbauer (bib38) 2005; 30
Kang (bib17) 2014; 8
Moreno-Alcazar (bib22) 2016; 254
Bossier (bib4) 2017; 11
Turkeltaub (bib35) 2002; 16
Hedges, Olkin (bib14) 1985
Phipson, Smyth (bib24) 2010; 9
Tobin (bib34) 1958; 26
Radua (bib29) 2015; 72
Smith, Nichols (bib32) 2009; 44
Turkeltaub (bib36) 2012; 33
Wager, Lindquist, Kaplan (bib39) 2007; 2
Kang (bib16) 2011; 106
Fullana (bib12) 2016; 21
Albajes-Eizagirre (10.1016/j.neuroimage.2018.10.077_bib1) 2018
Radua (10.1016/j.neuroimage.2018.10.077_bib25) 2009; 195
Yue (10.1016/j.neuroimage.2018.10.077_bib42) 2012; 6
Nichols (10.1016/j.neuroimage.2018.10.077_bib23) 2002; 15
Gorgolewski (10.1016/j.neuroimage.2018.10.077_bib13) 2015; 9
Hedges (10.1016/j.neuroimage.2018.10.077_bib14) 1985
Phipson (10.1016/j.neuroimage.2018.10.077_bib24) 2010; 9
Thorlund (10.1016/j.neuroimage.2018.10.077_bib33) 2011; 2
Amann (10.1016/j.neuroimage.2018.10.077_bib3) 2016; 133
Radua (10.1016/j.neuroimage.2018.10.077_bib27) 2012; 27
Bullmore (10.1016/j.neuroimage.2018.10.077_bib5) 1999; 18
Radua (10.1016/j.neuroimage.2018.10.077_bib28) 2014; 5
Vicens (10.1016/j.neuroimage.2018.10.077_bib37) 2016; 208
Radua (10.1016/j.neuroimage.2018.10.077_bib26) 2012; 2
Laird (10.1016/j.neuroimage.2018.10.077_bib18) 2005; 25
Smith (10.1016/j.neuroimage.2018.10.077_bib32) 2009; 44
Tobin (10.1016/j.neuroimage.2018.10.077_bib34) 1958; 26
Kang (10.1016/j.neuroimage.2018.10.077_bib16) 2011; 106
Wise (10.1016/j.neuroimage.2018.10.077_bib41) 2016
Wager (10.1016/j.neuroimage.2018.10.077_bib39) 2007; 2
Radua (10.1016/j.neuroimage.2018.10.077_bib29) 2015; 72
Costafreda (10.1016/j.neuroimage.2018.10.077_bib8) 2009; 46
Bossier (10.1016/j.neuroimage.2018.10.077_bib4) 2017; 11
Winkler (10.1016/j.neuroimage.2018.10.077_bib40) 2014; 92
Eickhoff (10.1016/j.neuroimage.2018.10.077_bib9) 2009; 30
Costafreda (10.1016/j.neuroimage.2018.10.077_bib7) 2012; 210
Li (10.1016/j.neuroimage.2018.10.077_bib20) 1991; 1
Fullana (10.1016/j.neuroimage.2018.10.077_bib12) 2016; 21
Albajes-Eizagirre (10.1016/j.neuroimage.2018.10.077_bib2) 2018
Turkeltaub (10.1016/j.neuroimage.2018.10.077_bib35) 2002; 16
Viechtbauer (10.1016/j.neuroimage.2018.10.077_bib38) 2005; 30
Kang (10.1016/j.neuroimage.2018.10.077_bib17) 2014; 8
Rubin (10.1016/j.neuroimage.2018.10.077_bib30) 1987
Turkeltaub (10.1016/j.neuroimage.2018.10.077_bib36) 2012; 33
Eklund (10.1016/j.neuroimage.2018.10.077_bib11) 2016; 113
Eickhoff (10.1016/j.neuroimage.2018.10.077_bib10) 2012; 59
Schnedler (10.1016/j.neuroimage.2018.10.077_bib31) 2005; 24
Clopper (10.1016/j.neuroimage.2018.10.077_bib6) 1934; 26
Holmes (10.1016/j.neuroimage.2018.10.077_bib15) 1996; 16
Moreno-Alcazar (10.1016/j.neuroimage.2018.10.077_bib22) 2016; 254
Montagna (10.1016/j.neuroimage.2018.10.077_bib21) 2017
Landin-Romero (10.1016/j.neuroimage.2018.10.077_bib19) 2016; 42
33610413 - Neuroimage. 2021 Feb 17;:117859
References_xml – volume: 72
  start-page: 1243
  year: 2015
  end-page: 1251
  ident: bib29
  article-title: Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis
  publication-title: JAMA Psychiatry
– volume: 133
  start-page: 23
  year: 2016
  end-page: 33
  ident: bib3
  article-title: Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder
  publication-title: Acta Psychiatr. Scand.
– year: 2017
  ident: bib21
  article-title: Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
– volume: 42
  start-page: 229
  year: 2016
  end-page: 238
  ident: bib19
  article-title: Midline brain abnormalities across psychotic and mood disorders
  publication-title: Schizophr. Bull.
– volume: 11
  start-page: 745
  year: 2017
  ident: bib4
  article-title: The influence of study-level inference models and study set size on coordinate-based fMRI meta-analyses
  publication-title: Front. Neurosci.
– volume: 195
  start-page: 393
  year: 2009
  end-page: 402
  ident: bib25
  article-title: Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder
  publication-title: Br. J. Psychiatry
– volume: 8
  start-page: 1800
  year: 2014
  end-page: 1824
  ident: bib17
  article-title: A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis
  publication-title: Ann. Appl. Stat.
– volume: 6
  start-page: 697
  year: 2012
  end-page: 718
  ident: bib42
  article-title: Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression
  publication-title: Ann. Appl. Stat.
– volume: 2
  start-page: 238
  year: 2011
  end-page: 253
  ident: bib33
  article-title: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses
  publication-title: Res. Synth. Methods
– volume: 208
  start-page: 153
  year: 2016
  end-page: 159
  ident: bib37
  article-title: Structural and functional brain changes in delusional disorder
  publication-title: Br. J. Psychiatry
– year: 1985
  ident: bib14
  article-title: Statistical Methods for Meta-analysis
– volume: 18
  start-page: 32
  year: 1999
  end-page: 42
  ident: bib5
  article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain
  publication-title: IEEE Trans. Med. Imag.
– year: 1987
  ident: bib30
  article-title: Multiple Imputation for Nonresponse in Surveys
– volume: 1
  start-page: 65
  year: 1991
  end-page: 92
  ident: bib20
  article-title: Significance levels from repeated p-values with multiply-imputed data
  publication-title: Stat. Sin.
– volume: 9
  start-page: 8
  year: 2015
  ident: bib13
  article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinf.
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  ident: bib32
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
– volume: 26
  start-page: 24
  year: 1958
  end-page: 36
  ident: bib34
  article-title: Estimation of relationships for limited dependent variables
  publication-title: Econometrica
– volume: 24
  start-page: 195
  year: 2005
  end-page: 217
  ident: bib31
  article-title: Likelihood estimation for censored random vectors
  publication-title: Econom. Rev.
– volume: 26
  start-page: 404
  year: 1934
  end-page: 413
  ident: bib6
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
– volume: 30
  start-page: 261
  year: 2005
  end-page: 293
  ident: bib38
  article-title: Bias and efficiency of meta-analytic variance estimators in the random-effects model
  publication-title: J. Educ. Behav. Stat.
– volume: 2
  start-page: 150
  year: 2007
  end-page: 158
  ident: bib39
  article-title: Meta-analysis of functional neuroimaging data: current and future directions
  publication-title: Soc. Cognit. Affect Neurosci.
– year: 2018
  ident: bib2
  article-title: Meta-analysis of non-statistically significant unreported effects (MetaNSUE)
  publication-title: Stat. Methods Med. Res.
– volume: 254
  start-page: 41
  year: 2016
  end-page: 47
  ident: bib22
  article-title: Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry
  publication-title: Psychiatr. Res.
– year: 2016
  ident: bib41
  article-title: Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis
  publication-title: Mol. Psychiatr.
– volume: 30
  start-page: 2907
  year: 2009
  end-page: 2926
  ident: bib9
  article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 6
  year: 2012
  ident: bib26
  article-title: Meta-analytic methods for neuroimaging data explained
  publication-title: Biol. Mood Anxiety Disord.
– volume: 113
  start-page: 7900
  year: 2016
  end-page: 7905
  ident: bib11
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 46
  start-page: 115
  year: 2009
  end-page: 122
  ident: bib8
  article-title: A parametric approach to voxel-based meta-analysis
  publication-title: Neuroimage
– volume: 9
  start-page: Article 39
  year: 2010
  ident: bib24
  article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 92
  start-page: 381
  year: 2014
  end-page: 397
  ident: bib40
  article-title: Permutation inference for the general linear model
  publication-title: Neuroimage
– volume: 210
  start-page: 291
  year: 2012
  end-page: 300
  ident: bib7
  article-title: Parametric coordinate-based meta-analysis: valid effect size meta-analysis of studies with differing statistical thresholds
  publication-title: J. Neurosci. Methods
– volume: 27
  start-page: 605
  year: 2012
  end-page: 611
  ident: bib27
  article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps
  publication-title: Eur. Psychiatr.
– volume: 16
  start-page: 765
  year: 2002
  end-page: 780
  ident: bib35
  article-title: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation
  publication-title: Neuroimage
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bib23
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– volume: 33
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib36
  article-title: Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses
  publication-title: Hum. Brain Mapp.
– year: 2018
  ident: bib1
  article-title: What do results from coordinate-based meta-analyses tell us?
  publication-title: Neuroimage
– volume: 59
  start-page: 2349
  year: 2012
  end-page: 2361
  ident: bib10
  article-title: Activation likelihood estimation meta-analysis revisited
  publication-title: Neuroimage
– volume: 25
  start-page: 155
  year: 2005
  end-page: 164
  ident: bib18
  article-title: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts
  publication-title: Hum. Brain Mapp.
– volume: 16
  start-page: 7
  year: 1996
  end-page: 22
  ident: bib15
  article-title: Nonparametric analysis of statistic images from functional mapping experiments
  publication-title: J. Cerebr. Blood Flow Metabol.
– volume: 21
  start-page: 500
  year: 2016
  end-page: 508
  ident: bib12
  article-title: Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies
  publication-title: Mol. Psychiatr.
– volume: 106
  start-page: 124
  year: 2011
  end-page: 134
  ident: bib16
  article-title: Meta analysis of functional neuroimaging data via Bayesian spatial point processes
  publication-title: J. Am. Stat. Assoc.
– volume: 5
  start-page: 13
  year: 2014
  ident: bib28
  article-title: Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies
  publication-title: Front. Psychiatr.
– volume: 195
  start-page: 393
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2018.10.077_bib25
  article-title: Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.108.055046
– volume: 42
  start-page: 229
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib19
  article-title: Midline brain abnormalities across psychotic and mood disorders
  publication-title: Schizophr. Bull.
– volume: 208
  start-page: 153
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib37
  article-title: Structural and functional brain changes in delusional disorder
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.114.159087
– year: 1985
  ident: 10.1016/j.neuroimage.2018.10.077_bib14
– volume: 27
  start-page: 605
  issue: 8
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib27
  article-title: A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps
  publication-title: Eur. Psychiatr.
  doi: 10.1016/j.eurpsy.2011.04.001
– volume: 18
  start-page: 32
  issue: 1
  year: 1999
  ident: 10.1016/j.neuroimage.2018.10.077_bib5
  article-title: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.750253
– volume: 2
  start-page: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib26
  article-title: Meta-analytic methods for neuroimaging data explained
  publication-title: Biol. Mood Anxiety Disord.
  doi: 10.1186/2045-5380-2-6
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2018.10.077_bib23
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 16
  start-page: 7
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2018.10.077_bib15
  article-title: Nonparametric analysis of statistic images from functional mapping experiments
  publication-title: J. Cerebr. Blood Flow Metabol.
  doi: 10.1097/00004647-199601000-00002
– volume: 1
  start-page: 65
  issue: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2018.10.077_bib20
  article-title: Significance levels from repeated p-values with multiply-imputed data
  publication-title: Stat. Sin.
– volume: 30
  start-page: 261
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2018.10.077_bib38
  article-title: Bias and efficiency of meta-analytic variance estimators in the random-effects model
  publication-title: J. Educ. Behav. Stat.
  doi: 10.3102/10769986030003261
– volume: 2
  start-page: 238
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2018.10.077_bib33
  article-title: Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses
  publication-title: Res. Synth. Methods
  doi: 10.1002/jrsm.53
– volume: 6
  start-page: 697
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib42
  article-title: Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS523
– volume: 92
  start-page: 381
  year: 2014
  ident: 10.1016/j.neuroimage.2018.10.077_bib40
  article-title: Permutation inference for the general linear model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.060
– volume: 5
  start-page: 13
  year: 2014
  ident: 10.1016/j.neuroimage.2018.10.077_bib28
  article-title: Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies
  publication-title: Front. Psychiatr.
  doi: 10.3389/fpsyt.2014.00013
– volume: 11
  start-page: 745
  year: 2017
  ident: 10.1016/j.neuroimage.2018.10.077_bib4
  article-title: The influence of study-level inference models and study set size on coordinate-based fMRI meta-analyses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00745
– volume: 25
  start-page: 155
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2018.10.077_bib18
  article-title: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20136
– volume: 9
  start-page: Article 39
  year: 2010
  ident: 10.1016/j.neuroimage.2018.10.077_bib24
  article-title: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1585
– volume: 2
  start-page: 150
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2018.10.077_bib39
  article-title: Meta-analysis of functional neuroimaging data: current and future directions
  publication-title: Soc. Cognit. Affect Neurosci.
  doi: 10.1093/scan/nsm015
– volume: 30
  start-page: 2907
  issue: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2018.10.077_bib9
  article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20718
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib11
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602413113
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2018.10.077_bib32
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.061
– year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib41
  article-title: Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis
  publication-title: Mol. Psychiatr.
– volume: 16
  start-page: 765
  issue: 3 Pt 1
  year: 2002
  ident: 10.1016/j.neuroimage.2018.10.077_bib35
  article-title: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1131
– year: 1987
  ident: 10.1016/j.neuroimage.2018.10.077_bib30
– volume: 133
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib3
  article-title: Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder
  publication-title: Acta Psychiatr. Scand.
  doi: 10.1111/acps.12440
– volume: 106
  start-page: 124
  issue: 493
  year: 2011
  ident: 10.1016/j.neuroimage.2018.10.077_bib16
  article-title: Meta analysis of functional neuroimaging data via Bayesian spatial point processes
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.ap09735
– volume: 8
  start-page: 1800
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2018.10.077_bib17
  article-title: A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/14-AOAS757
– volume: 24
  start-page: 195
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2018.10.077_bib31
  article-title: Likelihood estimation for censored random vectors
  publication-title: Econom. Rev.
  doi: 10.1081/ETC-200067925
– year: 2018
  ident: 10.1016/j.neuroimage.2018.10.077_bib2
  article-title: Meta-analysis of non-statistically significant unreported effects (MetaNSUE)
  publication-title: Stat. Methods Med. Res.
– volume: 26
  start-page: 24
  issue: 1
  year: 1958
  ident: 10.1016/j.neuroimage.2018.10.077_bib34
  article-title: Estimation of relationships for limited dependent variables
  publication-title: Econometrica
  doi: 10.2307/1907382
– volume: 59
  start-page: 2349
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib10
  article-title: Activation likelihood estimation meta-analysis revisited
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.017
– year: 2017
  ident: 10.1016/j.neuroimage.2018.10.077_bib21
– volume: 26
  start-page: 404
  year: 1934
  ident: 10.1016/j.neuroimage.2018.10.077_bib6
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 254
  start-page: 41
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib22
  article-title: Brain abnormalities in adults with Attention Deficit Hyperactivity Disorder revealed by voxel-based morphometry
  publication-title: Psychiatr. Res.
  doi: 10.1016/j.pscychresns.2016.06.002
– volume: 9
  start-page: 8
  year: 2015
  ident: 10.1016/j.neuroimage.2018.10.077_bib13
  article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2015.00008
– volume: 46
  start-page: 115
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2018.10.077_bib8
  article-title: A parametric approach to voxel-based meta-analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.031
– volume: 72
  start-page: 1243
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2018.10.077_bib29
  article-title: Ventral striatal activation during reward processing in psychosis: a neurofunctional meta-analysis
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.2196
– volume: 210
  start-page: 291
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib7
  article-title: Parametric coordinate-based meta-analysis: valid effect size meta-analysis of studies with differing statistical thresholds
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.07.016
– year: 2018
  ident: 10.1016/j.neuroimage.2018.10.077_bib1
  article-title: What do results from coordinate-based meta-analyses tell us?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.04.065
– volume: 21
  start-page: 500
  issue: 4
  year: 2016
  ident: 10.1016/j.neuroimage.2018.10.077_bib12
  article-title: Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2015.88
– volume: 33
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2018.10.077_bib36
  article-title: Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21186
– reference: 33610413 - Neuroimage. 2021 Feb 17;:117859
SSID ssj0009148
Score 2.6435907
Snippet Coordinate-based meta-analyses (CBMA) are very useful for summarizing the large number of voxel-based neuroimaging studies of normal brain functions and brain...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 174
SubjectTerms Activation likelihood estimation
Algorithms
Bias
Brain - diagnostic imaging
Brain mapping
Brain research
Coordinate-based meta-analysis
Familywise error rate
Humans
Image Processing, Computer-Assisted - methods
Medical imaging
Mental disorders
Meta-analysis
Meta-Analysis as Topic
Methods
Models, Statistical
Neuroimaging
Neuroimaging - methods
Seed-based d mapping
Signed differential mapping
Software
Statistical analysis
Studies
Systematic review
Tests for spatial convergence
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lD8UX8dvVKhFE9CG97Cab7LZPUi1VOBHOSt-WbD7gart3eHfik397ZzbZLSrCgW-7mQzkYzIzSX4zIeSlwxA0IQwLOggmteSsxgy0OjheWFMGzjHAefpJnZ7Jj-fl-Q45HmJhEFaZdH_U6b22TiWTNJqT5Xw-mYFnAOYG9hsglBy8Xoxglxql_ODXDcyjzmUMhysFw9oJzRMxXn3OyPkVrFwEeVUHiPPS-l8m6m8X9I_8or1NOrlDbidnkr6N7b1Ldnx3j-xN03X5feK-Ln76S4aWytErvzbMpBwk9Mfc0CVo5U28iqeLQFebFg9laN_SFX39efbhzSGNwfvUdA4IA9i8ZwF3l87eTR-Qs5P3X45PWXpWgVmw3WtmAneFMdZWErYvPueWi9KFgGearSiNU1aanAsRamVk7XJugtSV9bUri7YqxEOy2y06_5hQZSoVykKBkjLSK14FLYNxss6NVU62GdHDSDY25RzHpy8umwFcdtHczEGDc4AUmIOM5CPnMubd2IKnHiarGeJKQRM2YBy24D0aeX-Tvy259wfZaJIOWDVFrvBxea54Rl6MZFi9eCVjOr_YYJ0C8b2llBl5FGVq7K7A3IeqqDPyKgrZSMGU4KnoG3z5Rla4rXzyX314Sm7BXx0R6ftkd_1945-Bw7Vun_cr6hro6yqW
  priority: 102
  providerName: Elsevier
Title Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918320585
https://dx.doi.org/10.1016/j.neuroimage.2018.10.077
https://www.ncbi.nlm.nih.gov/pubmed/30389629
https://www.proquest.com/docview/2167143060
https://www.proquest.com/docview/2129533544
http://kipublications.ki.se/Default.aspx?queryparsed=id:140068568
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN8LjMpICMGDhxM7dgIPaIxNHdCq2hjqW-T4QxpsaaEt4om_HV_spBII1KdEcU5ycvbd2f7d7xB6aiAFjTFFnHSMcMkpKYGBVjpDM61yRykkOI_GYnjO30_zadxwW0RYZWcTW0NtZhr2yF9mqYBS3VTQN_NvBKpGwelqLKGxhXaAugwgXXIq16S7KQ-pcDkjhX8hInkCvqvli7y48rMWAF7FPmC8pPyXe_o7_PyDW7T1R8e30M0YSOKDoPnb6Jpt7qDro3hUfheZz7Of9pKAlzL4yi4VUZF_BP-4UHjuLfIqHMPjmcOLVQ0bMrjt6QI_n5ydvHiFQ-I-Vo3xDR3QvBXxoS4-eze6h86Pjz4dDkksqUC099tLohw1mVJaF9wvXWxKNWW5cQ72M2uWKyM0VyllzJVC8dKkVDkuC21Lk2d1kbH7aLuZNXYXYaEK4fJMeAOluBW0cJI7ZXiZKi0MrxMkuz9Z6cg3DmUvLqsOWPalWuugAh1Ai9dBgtJech44NzaQKTtlVV1OqbeClXcMG8i-7mVj3BHiiQ2l97qxUcX5v6jWozVBT_pmP3PhOEY1draCdzLA9uacJ-hBGFP95zLgPRRZmaBnYZD1LUAHHh999Xe24gUsKR_-vxeP0A3f5TLAzffQ9vL7yj720dSyHqCt_V_poJ04A7RzcHj6cQLXkw_Dsb--PRpPTn8DaQgkzw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeEN8EBhgJEDwYnNhxEhBCwDa1bK0mtqG9Bccf0mBLCm35-Kf4G_HFTiqBQH3ZW1T3JCd3vjvbv_sdQg80lKAxJonNLCM845QUwECbWU0TJVNLKRQ4jydieMjfHaVHa-hXVwsDsMrOJ7aOWjcKzsifJbGAVt1U0FfTLwS6RsHtatdCw5vFjvn53W3ZZi9Hm06_D5Nke-vg7ZCErgJEudA1J9JSnUipVM5d9m5iqihLtbVwpFexVGqhuIwpY7YQkhc6ptLyLFem0GlS5UB04Fz-OmduKzNA62-2JnvvlzS_MffFdykjeRwXATvkEWUtQ-XxqfMTACnLnwKqLMv-FRD_Tnj_YDNtI-D2JXQxpK74tbe1y2jN1FfQuXG4nL-K9IfmhzkhEBc1PjVzSWRgPMHfjiWeuhiw8Bf_uLF4tqjgCAi3M53hx3v7oyfPsacKwLLWbqCDtrciLrnG-5vja-jwTD73dTSom9rcRFjIXNg0Ec4lSm4EzW3GrdS8iKUSmlcRyrovWarAcA6NNk7KDsr2qVzqoAQdwIjTQYTiXnLqWT5WkCk6ZZVdFavzu6ULRSvIvuhlQ6bjM5gVpTc62yiDx5mVy_URofv9sPMVcAEka9Ms4D8JoIlTziN0w9tU_7oMmBZFUkTokTeyfgQIyMNPn92TKXkOm9hb_5_FPXR-eDDeLXdHk53b6IKbfuHB7htoMP-6MHdcLjev7oYFhNHHs16zvwGIIF2h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IO4EBhgJEDyY2YljJyCEEKVaGZ0mjaG-eU5sS4OtKbTl8tf4dfjETiqBQH3ZW1X3SG7ONfZ3voPQQwMtaFmmiZMuI1xySkpgoJXO0LTWuaMUGpzH-2L3iL-b5JMN9KvrhQFYZRcT20BtmhrOyHdSJmBUNxV0x0VYxMFg-Gr2hcAEKbhp7cZpBBPZsz-_-9e3-cvRwOv6UZoO3354s0vihAFS-zS2INpRk2pd1wX3lbxltKZZbpyD470qy7URNdeMZpkrhealYVQ7LovaliZPqwJID3z4vyCznIGPyYlcEf4yHtrw8owUjJURRRSwZS1X5cmZjxgALiueAb5Myn-lxr9L3z94TdtcOLyMLsUiFr8OVncFbdjpVbQ1jtf015D52PywpwQypMFndqGJjtwn-NuJxjOfDZYBAoAbh-fLCg6DcLvTOX5ycDh6-hwH0gCsp8YvdCD3VsSX2fhwML6Ojs7lYd9Am9Nmam8hLHQhXJ4KHxw1t4IWTnKnDS-ZroXhVYJk9yRVHbnOYeTGqepAbZ_USgcKdAArXgcJYr3kLPB9rCFTdspSXT-rj8DKJ6U1ZF_0srHmCbXMmtLbnW2oGHvmauUpCXrQL_uoAVdBemqbJfwmBVxxznmCbgab6v9uBpyLIi0T9DgYWb8CVOTxq8_-k1W8gNfZ2__fxX205T1VvR_t791BF_3uy4B630abi69Le9cXdYvqXus9GB2ft7v-BtCkYHE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-based+meta-analysis+via+permutation+of+subject+images+%28PSI%29%3A+Theory+and+implementation+for+SDM&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Albajes-Eizagirre%2C+Anton&rft.au=Solanes%2C+Aleix&rft.au=Vieta%2C+Eduard&rft.au=Radua%2C+Joaquim&rft.date=2019-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=186&rft.spage=174&rft.epage=184&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.10.077&rft.externalDocID=S1053811918320585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon