Rational design of photocatalysts for ammonia production from water and nitrogen gas

Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In...

Full description

Saved in:
Bibliographic Details
Published inNano convergence Vol. 8; no. 1; pp. 22 - 12
Main Authors Choe, Seokwoo, Kim, Sung Min, Lee, Yeji, Seok, Jin, Jung, Jiyong, Lee, Jae Sung, Jang, Youn Jeong
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 02.08.2021
Springer Nature B.V
SpringerOpen
나노기술연구협의회
Subjects
Online AccessGet full text
ISSN2196-5404
2196-5404
DOI10.1186/s40580-021-00273-8

Cover

Abstract Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH 3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH 3 production and designing solar-driven chemical conversions.
AbstractList Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH 3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH 3 production and designing solar-driven chemical conversions. KCI Citation Count: 0
Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH 3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH 3 production and designing solar-driven chemical conversions.
Photocatalytic N reduction has emerged as one of the most attractive routes to produce NH as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH production and designing solar-driven chemical conversions.
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
Abstract Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
ArticleNumber 22
Author Seok, Jin
Lee, Yeji
Choe, Seokwoo
Lee, Jae Sung
Kim, Sung Min
Jang, Youn Jeong
Jung, Jiyong
Author_xml – sequence: 1
  givenname: Seokwoo
  surname: Choe
  fullname: Choe, Seokwoo
  organization: Department of Chemical Engineering, Hanyang University
– sequence: 2
  givenname: Sung Min
  surname: Kim
  fullname: Kim, Sung Min
  organization: Department of Chemical Engineering, Hanyang University
– sequence: 3
  givenname: Yeji
  surname: Lee
  fullname: Lee, Yeji
  organization: Department of Chemical Engineering, Hanyang University
– sequence: 4
  givenname: Jin
  surname: Seok
  fullname: Seok, Jin
  organization: Department of Chemical Engineering, Hanyang University
– sequence: 5
  givenname: Jiyong
  surname: Jung
  fullname: Jung, Jiyong
  organization: Department of Chemical Engineering, Hanyang University
– sequence: 6
  givenname: Jae Sung
  surname: Lee
  fullname: Lee, Jae Sung
  email: jlee1234@unist.ac.kr
  organization: Department of Energy and Chemical Engineering, Ulsan National Institute and Science and Technology
– sequence: 7
  givenname: Youn Jeong
  orcidid: 0000-0002-2400-0473
  surname: Jang
  fullname: Jang, Youn Jeong
  email: yjang53@hanyang.ac.kr
  organization: Department of Chemical Engineering, Hanyang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34338913$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811099$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9Uk1v1DAUtFARLUv_AAcUiQscAv5MnAtSVfGxUiWkajlbL46TepvYi-0U9d_j3ZTS9lAf_KznmfHYntfoyHlnEHpL8CdCZPU5ciwkLjElJca0ZqV8gU4oaapScMyPHqyP0WmMW4wxqSvGiXyFjhlnTDaEnaDNJSTrHYxFZ6IdXOH7Ynflk9eQYLyNKRa9DwVMk3cWil3w3az3jKIPfir-QDJ513WFsyn4wbhigPgGvexhjOb0rq7Qr29fN-c_youf39fnZxelrghLJTDWSgEVlT2uTIdrkFUnKCPSUFO1bd1J0dKayM6YSnKqOdS9rIER4CI32Ap9XHRd6NW1tsqDPdTBq-ugzi43a9U0DItaZOx6wXYetmoX7ATh9kA4NHwYFIRk9WiUEJK2huv8zoZTrhvakJ4xLTHNA9qs9WXR2s3tZDptXAowPhJ9vOPsVfZ0oyTLUlhmgQ93AsH_nk1MarJRm3EEZ_wcFRV7y1TiKkPfP4Fu_Rzyhy0ohhuS5xV699DRvZV_H50BdAHo4GMMpr-HEKz2gVJLoFQOlDoESu1tyickbdMhL_lWdnyeyhZqzOe4wYT_tp9h_QVyIN2K
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_177903
crossref_primary_10_3390_en16010027
crossref_primary_10_1038_s41598_024_71016_y
crossref_primary_10_1002_smll_202202252
crossref_primary_10_1016_j_jece_2024_112111
crossref_primary_10_3390_catal13050803
crossref_primary_10_1002_anie_202316973
crossref_primary_10_1002_ange_202204117
crossref_primary_10_1016_j_ijhydene_2024_11_201
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1016_j_apsusc_2024_161890
crossref_primary_10_1016_j_inoche_2024_113026
crossref_primary_10_1002_ece2_10
crossref_primary_10_1021_acsaem_2c01674
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1021_acsomega_4c03076
crossref_primary_10_1021_jacs_3c07768
crossref_primary_10_1016_j_cattod_2022_12_010
crossref_primary_10_1016_j_gee_2022_10_001
crossref_primary_10_1016_j_jallcom_2023_169589
crossref_primary_10_1002_anie_202204117
crossref_primary_10_1016_j_ceramint_2025_02_063
crossref_primary_10_1002_ange_202316973
crossref_primary_10_1039_D3RA05580A
crossref_primary_10_1039_D4NR03639E
crossref_primary_10_1016_j_apsusc_2023_156812
crossref_primary_10_1007_s11356_024_34978_0
Cites_doi 10.1186/s40580-019-0182-5
10.1016/j.apcatb.2013.07.047
10.1016/j.joule.2020.04.004
10.1002/advs.201802109
10.1021/acssuschemeng.7b02788
10.1021/acscatal.9b00358
10.1021/acssuschemeng.0c06775
10.1016/j.apsusc.2019.144202
10.1016/j.aquaculture.2015.07.022
10.1246/cl.1983.321
10.1016/j.apcatb.2019.05.005
10.1002/adma.201806482
10.1002/smtd.201800388
10.1016/j.jphotochemrev.2012.07.002
10.1021/acsnano.6b02965
10.1021/jacs.8b02076
10.1016/j.apcata.2016.10.017
10.1039/C8TA02161A
10.1039/C6CC04775K
10.1073/pnas.1817881116
10.1038/22672
10.1002/smtd.201800352
10.1016/j.apcatb.2016.07.025
10.1002/ejic.201900098
10.1016/j.apcatb.2017.07.013
10.1021/acsami.1c03698
10.1021/acs.chemmater.6b00460
10.1016/j.carbon.2017.07.014
10.1039/C5NR07380D
10.1002/chem.201603277
10.1002/solr.202000487
10.1021/acs.nanolett.8b03655
10.1002/adma.201701432
10.1021/acsenergylett.0c00711
10.1002/smll.201603301
10.1002/anie.201713229
10.1039/D0RA05779G
10.1007/s11426-018-9273-1
10.1002/adma.201703828
10.1016/j.apcatb.2016.08.002
10.1021/acsami.6b08129
10.1039/D0TA08678A
10.1021/acscatal.9b03246
10.1039/C5TA06540B
10.1021/acscatal.0c04864
10.1039/C6TA09275F
10.1039/C9TA10471B
10.1002/aenm.201702636
10.1002/anie.201703301
10.1021/jacs.9b07976
10.1002/jcc.21191
10.1038/s41586-019-1260-x
10.1039/C6CY00622A
10.1002/adma.201701774
10.1021/acs.jpclett.0c02480
10.1126/science.aar6611
10.1016/j.ijhydene.2014.04.121
10.1021/ja00464a015
10.1016/j.cej.2019.05.021
10.1021/acs.accounts.6b00523
10.1021/acs.jpcc.9b01471
10.1039/C6SC00389C
10.1039/D0TA08741F
10.1039/C7TA09350K
10.1016/j.enchem.2019.100013
10.1038/ngeo325
10.1039/D0TA02550J
10.1039/C9NR02279A
10.1021/acssuschemeng.8b06134
10.1021/j100281a031
10.1021/acsenergylett.9b01573
10.1021/jacs.8b03537
10.1007/978-1-4684-1806-4_4
10.1016/j.gee.2020.05.011
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
ACYCR
DOI 10.1186/s40580-021-00273-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2196-5404
EndPage 12
ExternalDocumentID oai_kci_go_kr_ARTI_9930575
oai_doaj_org_article_5582be4c118e424c9291f33c802222ab
PMC8329108
34338913
10_1186_s40580_021_00273_8
Genre Journal Article
Review
GrantInformation_xml – fundername: ministry of environment of korea
  grantid: the Graduate school of Post Plastic specialization of Korea Environmental Industry & Technology Institute
– fundername: National Research Foundation of Korea
  grantid: No. 2020R1G1A1100104
  funderid: http://dx.doi.org/10.13039/501100003725
– fundername: national research foundation of korea
  grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909
  funderid: http://dx.doi.org/10.13039/501100003725
– fundername: the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea
  grantid: No. 202100000000820
– fundername: hanyang university
  grantid: HY202000000002708
  funderid: http://dx.doi.org/10.13039/501100002380
– fundername: national research foundation of korea
  grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909
– fundername: National Research Foundation of Korea
  grantid: No. 2020R1G1A1100104
– fundername: hanyang university
  grantid: HY202000000002708
– fundername: ;
  grantid: No. 2020R1G1A1100104
– fundername: ;
  grantid: HY202000000002708
– fundername: ;
  grantid: No. 202100000000820
– fundername: ;
  grantid: the Graduate school of Post Plastic specialization of Korea Environmental Industry & Technology Institute
– fundername: ;
  grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARCSS
ASPBG
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
D1I
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KB.
KQ8
M~E
OK1
PDBOC
PGMZT
PIMPY
PROAC
RPM
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
AAYZJ
ACYCR
AFNRJ
AHBXF
AHSBF
EJD
ID FETCH-LOGICAL-c613t-a33b85a628f06ed07a86d52318e2e6bb7d85b2718dee6842c4a7f87a31a456843
IEDL.DBID C6C
ISSN 2196-5404
IngestDate Tue Nov 21 21:40:11 EST 2023
Wed Aug 27 01:29:07 EDT 2025
Thu Aug 21 14:05:40 EDT 2025
Fri Sep 05 11:08:44 EDT 2025
Fri Jul 25 11:19:48 EDT 2025
Mon Jul 21 05:24:45 EDT 2025
Tue Jul 01 01:41:57 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Fri Feb 21 02:47:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nitrogen
Ammonia
Photocatalyst
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-a33b85a628f06ed07a86d52318e2e6bb7d85b2718dee6842c4a7f87a31a456843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2400-0473
OpenAccessLink https://doi.org/10.1186/s40580-021-00273-8
PMID 34338913
PQID 2557309157
PQPubID 2034688
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9930575
doaj_primary_oai_doaj_org_article_5582be4c118e424c9291f33c802222ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8329108
proquest_miscellaneous_2557532806
proquest_journals_2557309157
pubmed_primary_34338913
crossref_primary_10_1186_s40580_021_00273_8
crossref_citationtrail_10_1186_s40580_021_00273_8
springer_journals_10_1186_s40580_021_00273_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-02
PublicationDateYYYYMMDD 2021-08-02
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-02
  day: 02
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: England
– name: Heidleberg
PublicationTitle Nano convergence
PublicationTitleAbbrev Nano Convergence
PublicationTitleAlternate Nano Converg
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
나노기술연구협의회
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
– name: 나노기술연구협의회
References Liu, Chen, Yao, Li, Cheema, Wang, Zhu (CR40) 2020; 10
Li, Wang, Vanka, Mu, Mi, Li (CR64) 2017; 56
Wei, Pu, Jin, Wessling (CR78) 2021; 13
Chen, Liu, Peng (CR23) 2021; 5
Li, Wang, Jiang, Sun, Zhang, Sun (CR62) 2016; 22
Zhang, Zhao, Shi, Zhang (CR24) 2019; 1
MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Vallana, Simonov (CR5) 2020; 4
Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (CR46) 2019; 31
Liu, Ai, Jiang (CR66) 2018; 6
Wu, Yu, Yang (CR31) 2017; 29
Ying, Chen, Zhang, Peng, Li (CR33) 2019; 254
Cao, Zhou, Gao, Chen, Jiang (CR65) 2017; 218
Yue, Yi, Wang, Zhang, Qiu (CR22) 2017; 13
Jang, Park, Kim, Choi, Choi, Lee (CR44) 2016; 28
Li, Wang, Guan, Zhang, Zhao, Zhai, Sun (CR45) 2020; 8
Dong, Ho, Wang (CR50) 2015; 3
Hao, Dong, Zhai, Ma, Wang, Zhang (CR70) 2016; 22
Zhao, Shi, Bian (CR26) 2019; 6
Schrauzer, Guth (CR9) 1977; 99
Kim, Jang, Choi, Lee, Kim, Park, Nam, Kim, Lee (CR43) 2018; 6
Xue, Chen, Yan, Hu, Zhang, Yang, Ma, Zhu, Jin (CR51) 2019; 11
Zhang, Yang, He, Zhang, Mi (CR10) 2020; 8
Huang, Liu, Pang, Zhang, Wang, Shen (CR32) 2020; 8
Huang, Liu, He (CR34) 2018; 61
Hu, Chen, Li, Li, Fan, Wang, Wang, Zheng, Wu (CR63) 2017; 201
Li, Huang, Low, Gao, Long, Xiong (CR48) 2019; 3
Lumley, Radmilovic, Jang, Lindberg, Choi (CR18) 2019; 141
Zhao, Zhao, Waterhouse (CR59) 2017; 29
Jang, Ryu, Hong, Park, Lee (CR75) 2016; 52
Li, Wang, Zhao, Yang, Li, Li, Yang, Ozin, Gong (CR68) 2018; 57
Cong, Chen, Xia, Ding, Zhang, Jin, Gao, Zhang (CR27) 2021; 9
Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (CR7) 2019; 3
Li, Li, Zhan, Zhang (CR37) 2017; 50
Li, Tang, Yao, Zheng, Qiao (CR29) 2019; 4
Lee, Na, Lee, Lee, Kim, Li, Yang, Ozin, Gong (CR73) 2019; 123
Jang, Choi (CR4) 2020; 8
Kani, Prajapati, Collins, Goodpaster, Singh (CR77) 2020; 10
Zhou, Boyd (CR71) 2016; 450
Zhang, Jalil, Wu (CR60) 2018; 140
Lashgari, Zeinalkhani (CR69) 2017; 529
Huang (CR38) 2009; 30
CR16
Zhao, Zhang, Zhu, Zhang, Tang, Tan, Wang (CR19) 2014; 144
CR15
Bhachu, Moniz, Sathasivam (CR36) 2016; 7
Xiao, Hu, Zhang, MacFarlane (CR53) 2017; 5
Li, Domen, Naito, Onishi, Tamaru (CR12) 1983; 12
CR14
Jang, Lindberg, Lumley, Choi (CR8) 2020; 5
Zhao, Zhou, Zhao, Du, Dou (CR13) 2020; 11
Liu, Wang, Wang (CR20) 2019; 7
Sun, An, Wang, Zhang, Liu (CR61) 2017; 5
Chen, Zhang, Wang (CR25) 2019; 116
Ryu, Jang, Choi, Kang, Park, Lee, Park (CR76) 2016; 8
Yang, Zhang, Ge, Lu, Chang, Xiao, Zhao, Ma, Chen (CR57) 2017; 124
Erisman, Sutton, Galloway, Klimont, Winiwarter (CR1) 2008; 1
Chen, Crooks, Seefeldt (CR3) 2018; 360
Liu, Wang, Jiang, Zhao, Jiang, Sun (CR39) 2019; 373
John, Lee, Sim (CR6) 2019; 6
Jang, Bhatt, Lee, Choi, Lee, Lee (CR42) 2018; 8
Ying, Chen, Peng, Li, Zhang (CR47) 2019; 2019
Jang, Jeong, Lee, Lee, Ko, Lee (CR74) 2016; 10
Li, Shang, Shi, Zhao, Zhang (CR54) 2016; 8
Sun, Li, Wang, Zhang, Sun (CR58) 2017; 200
Endoh, Leland, Bard (CR11) 1986; 90
Hu, Chen, Li, Zhao, Mao (CR35) 2016; 6
Yan, Wu, Han, Yu, Du (CR21) 2014; 39
Xue, Chen, Chen (CR49) 2018; 18
Wang, Hai, Ding, Chang, Xiang, Meng, Yang, Chen, Ye (CR56) 2017; 29
Zhang, Mohamed, Dillert, Bahnemann (CR17) 2012; 13
Smil (CR2) 1999; 400
Wang, Wei, Li, Hu, Zhang, Feng (CR67) 2017; 7
Yang, Guo, Jiang, Qin, Zhang, Lu, Wang, Yu (CR52) 2018; 140
Nielander, McEnaney, Schwalbe (CR30) 2019; 9
Anderson, Čolić, Yang (CR28) 2019; 570
Bai, Ye, Chen, Wang, Shi, Zhang, Chen (CR55) 2016; 8
Lin, Hu, Hu (CR72) 2020; 502
Shi, Zhao, Waterhouse, Zhang, Zhang (CR41) 2019; 9
S Liu (273_CR20) 2019; 7
Z Yan (273_CR21) 2014; 39
Y Zhao (273_CR26) 2019; 6
J Ryu (273_CR76) 2016; 8
L Li (273_CR64) 2017; 56
L Zhang (273_CR17) 2012; 13
YJ Jang (273_CR75) 2016; 52
YJ Jang (273_CR8) 2020; 5
WL Huang (273_CR38) 2009; 30
M Lashgari (273_CR69) 2017; 529
J John (273_CR6) 2019; 6
JW Erisman (273_CR1) 2008; 1
Y Zhao (273_CR59) 2017; 29
X Xue (273_CR51) 2019; 11
K Ithisuphalap (273_CR7) 2019; 3
S Cao (273_CR65) 2017; 218
C Xiao (273_CR53) 2017; 5
SZ Anderson (273_CR28) 2019; 570
JG Chen (273_CR3) 2018; 360
S Wang (273_CR56) 2017; 29
NC Kani (273_CR77) 2020; 10
Q Liu (273_CR66) 2018; 6
YJ Jang (273_CR4) 2020; 8
W Zhao (273_CR19) 2014; 144
Z Ying (273_CR47) 2019; 2019
273_CR14
DR MacFarlane (273_CR5) 2020; 4
G Zhang (273_CR10) 2020; 8
Y Zhao (273_CR13) 2020; 11
S Sun (273_CR61) 2017; 5
273_CR16
273_CR15
F Wu (273_CR31) 2017; 29
S Hu (273_CR35) 2016; 6
Y Hao (273_CR70) 2016; 22
MA Lumley (273_CR18) 2019; 141
G Dong (273_CR50) 2015; 3
X Xue (273_CR49) 2018; 18
V Smil (273_CR2) 1999; 400
S Hu (273_CR63) 2017; 201
S Liu (273_CR39) 2019; 373
J Li (273_CR45) 2020; 8
M Cong (273_CR27) 2021; 9
YJ Jang (273_CR42) 2018; 8
L Zhou (273_CR71) 2016; 450
Y Zhao (273_CR46) 2019; 31
Y Yang (273_CR52) 2018; 140
Y Lin (273_CR72) 2020; 502
Q Chen (273_CR25) 2019; 116
J Li (273_CR37) 2017; 50
X Wei (273_CR78) 2021; 13
DS Bhachu (273_CR36) 2016; 7
GN Schrauzer (273_CR9) 1977; 99
E Endoh (273_CR11) 1986; 90
R Liu (273_CR40) 2020; 10
JH Kim (273_CR43) 2018; 6
Y Bai (273_CR55) 2016; 8
N Zhang (273_CR60) 2018; 140
S Sun (273_CR58) 2017; 200
YJ Jang (273_CR44) 2016; 28
M Li (273_CR48) 2019; 3
P Huang (273_CR32) 2020; 8
C Li (273_CR68) 2018; 57
S Zhang (273_CR24) 2019; 1
S Chen (273_CR23) 2021; 5
YJ Jang (273_CR74) 2016; 10
X Yue (273_CR22) 2017; 13
X Li (273_CR62) 2016; 22
P Huang (273_CR34) 2018; 61
L Li (273_CR29) 2019; 4
Z Ying (273_CR33) 2019; 254
H Li (273_CR54) 2016; 8
JH Lee (273_CR73) 2019; 123
QS Li (273_CR12) 1983; 12
Y Yang (273_CR57) 2017; 124
R Shi (273_CR41) 2019; 9
Y Wang (273_CR67) 2017; 7
AC Nielander (273_CR30) 2019; 9
References_xml – volume: 6
  start-page: 15
  issue: 1
  year: 2019
  ident: CR6
  article-title: Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
  publication-title: Nano Converg.
  doi: 10.1186/s40580-019-0182-5
– volume: 144
  start-page: 468
  year: 2014
  ident: CR19
  article-title: Enhanced nitrogen photofixation on Fe-doped TiO with highly exposed (101) facets in the presence of ethanol as scavenger
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2013.07.047
– volume: 4
  start-page: 1186
  issue: 6
  year: 2020
  ident: CR5
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 6
  start-page: 1802109
  issue: 8
  year: 2019
  ident: CR26
  article-title: Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH production rates?
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802109
– volume: 5
  start-page: 10858
  issue: 11
  year: 2017
  ident: CR53
  article-title: Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02788
– volume: 9
  start-page: 5797
  issue: 7
  year: 2019
  ident: CR30
  article-title: A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00358
– volume: 8
  start-page: 18258
  issue: 49
  year: 2020
  ident: CR45
  article-title: Vacancy-enabled mesoporous TiO  modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance.
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c06775
– volume: 502
  start-page: 144202
  year: 2020
  ident: CR72
  article-title: Role of ZnO morphology in its reduction and photocatalysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144202
– volume: 450
  start-page: 187
  year: 2016
  ident: CR71
  article-title: Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2015.07.022
– ident: CR16
– volume: 12
  start-page: 321
  issue: 3
  year: 1983
  ident: CR12
  article-title: Photocatalytic synthesis and photodecomposition of ammonia over SrTiO and BaTiO based catalysts
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1983.321
– volume: 254
  start-page: 351
  year: 2019
  ident: CR33
  article-title: Efficiently enhanced N2 nbsp;photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.005
– volume: 31
  start-page: 1806482
  issue: 16
  year: 2019
  ident: CR46
  article-title: Tuning oxygen vacancies in ultrathin TiO  nanosheets to boost photocatalytic nitrogen fixation up to 700 nm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 3
  start-page: 1800388
  issue: 6
  year: 2019
  ident: CR48
  article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction
  publication-title: Small Methods
  doi: 10.1002/smtd.201800388
– volume: 13
  start-page: 263
  issue: 4
  year: 2012
  ident: CR17
  article-title: Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review
  publication-title: J. Photochem. Photobiol. C-Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2012.07.002
– volume: 10
  start-page: 6980
  issue: 7
  year: 2016
  ident: CR74
  article-title: Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02965
– volume: 140
  start-page: 9434
  issue: 30
  year: 2018
  ident: CR60
  article-title: Refining defect states in W O  by Mo doping: A strategy for tuning N  activation towards solar-driven nitrogen fixation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– volume: 529
  start-page: 91
  year: 2017
  ident: CR69
  article-title: Photocatalytic N  conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: a novel hydrogenation strategy and basic understanding of the phenomenon
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2016.10.017
– volume: 6
  start-page: 12693
  issue: 26
  year: 2018
  ident: CR43
  article-title: A multitude of modifications strategy of ZnFe O  nanorod photoanodes for enhanced photoelectrochemical water splitting activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02161A
– volume: 52
  start-page: 10221
  issue: 67
  year: 2016
  ident: CR75
  article-title: A multi-stacked hyperporous silicon flake for highly active solar hydrogen production
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04775K
– volume: 116
  start-page: 6635
  issue: 14
  year: 2019
  ident: CR25
  article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1817881116
– volume: 400
  start-page: 415
  issue: 6743
  year: 1999
  ident: CR2
  article-title: Detonator of the population explosion
  publication-title: Nature
  doi: 10.1038/22672
– volume: 3
  start-page: 1800352
  issue: 6
  year: 2019
  ident: CR7
  article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis
  publication-title: Small Methods
  doi: 10.1002/smtd.201800352
– volume: 200
  start-page: 323
  year: 2017
  ident: CR58
  article-title: Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.07.025
– volume: 2019
  start-page: 2182
  issue: 16
  year: 2019
  ident: CR47
  article-title: Fabrication of an Fe-doped SrTiO  photocatalyst with enhanced dinitrogen photofixation performance
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201900098
– volume: 218
  start-page: 600
  year: 2017
  ident: CR65
  article-title: All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga O /graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.07.013
– volume: 13
  start-page: 21411
  issue: 18
  year: 2021
  ident: CR78
  article-title: Efficient electrocatalytic N  reduction on three-phase interface coupled in a three-compartment flow reactor for the ambient NH  synthesis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03698
– volume: 28
  start-page: 6054
  issue: 17
  year: 2016
  ident: CR44
  article-title: Oxygen-intercalated CuFeO  photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production
  publication-title: Chem. Mat.
  doi: 10.1021/acs.chemmater.6b00460
– volume: 124
  start-page: 72
  year: 2017
  ident: CR57
  article-title: Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al O
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.014
– volume: 8
  start-page: 1986
  issue: 4
  year: 2016
  ident: CR54
  article-title: Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway
  publication-title: Nanoscale
  doi: 10.1039/C5NR07380D
– volume: 22
  start-page: 13819
  issue: 39
  year: 2016
  ident: CR62
  article-title: Efficient solar-driven nitrogen fixation over carbon–tungstic-acid hybrids
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201603277
– volume: 5
  start-page: 2000487
  issue: 2
  year: 2021
  ident: CR23
  article-title: Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000487
– volume: 18
  start-page: 7372
  issue: 11
  year: 2018
  ident: CR49
  article-title: Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03655
– volume: 29
  start-page: 1701432
  issue: 28
  year: 2017
  ident: CR31
  article-title: Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701432
– volume: 5
  start-page: 1834
  issue: 6
  year: 2020
  ident: CR8
  article-title: Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00711
– ident: CR15
– volume: 13
  start-page: 1603301
  issue: 14
  year: 2017
  ident: CR22
  article-title: Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting
  publication-title: Small
  doi: 10.1002/smll.201603301
– volume: 57
  start-page: 5278
  issue: 19
  year: 2018
  ident: CR68
  article-title: Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO  photoelectrodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713229
– volume: 10
  start-page: 29408
  issue: 49
  year: 2020
  ident: CR40
  article-title: Recent advancements in g-C N -based photocatalysts for photocatalytic CO  reduction: a mini review.
  publication-title: RSC Adv.
  doi: 10.1039/D0RA05779G
– volume: 61
  start-page: 1187
  issue: 9
  year: 2018
  ident: CR34
  article-title: Single atom accelerates ammonia photosynthesis
  publication-title: Sci. China-Chem.
  doi: 10.1007/s11426-018-9273-1
– volume: 29
  start-page: 1703828
  issue: 42
  year: 2017
  ident: CR59
  article-title: Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703828
– volume: 201
  start-page: 58
  year: 2017
  ident: CR63
  article-title: Fe  doping promoted N  photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.08.002
– volume: 8
  start-page: 27661
  issue: 41
  year: 2016
  ident: CR55
  article-title: Facet-dependent photocatalytic N  fixation of bismuth-rich Bi O I nanosheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08129
– volume: 8
  start-page: 22251
  issue: 42
  year: 2020
  ident: CR32
  article-title: Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08678A
– volume: 7
  start-page: 18099
  issue: 29
  year: 2017
  ident: CR67
  article-title: In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N photofixation ability under visible light
  publication-title: RCS Adv.
– volume: 9
  start-page: 9739
  issue: 11
  year: 2019
  ident: CR41
  article-title: Defect engineering in photocatalytic nitrogen fixation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 3
  start-page: 23435
  issue: 46
  year: 2015
  ident: CR50
  article-title: Wang, Selective photocatalytic N  fixation dependent on g-C N  induced by nitrogen vacancies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06540B
– volume: 10
  start-page: 14592
  issue: 24
  year: 2020
  ident: CR77
  article-title: Competing effects of pH, cation identity, H O saturation, and N  concentration on the activity and selectivity of electrochemical reduction of N  to NH  on electrodeposited Cu at ambient conditions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04864
– volume: 8
  start-page: 1
  issue: e248
  year: 2016
  ident: CR76
  article-title: All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution
  publication-title: NPG Asia Mater.
– volume: 5
  start-page: 201
  issue: 1
  year: 2017
  ident: CR61
  article-title: Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09275F
– volume: 8
  start-page: 334
  issue: 1
  year: 2020
  ident: CR10
  article-title: Constructing a tunable defect structure in TiO for photocatalytic nitrogen fixation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10471B
– volume: 8
  start-page: 1702636
  issue: 20
  year: 2018
  ident: CR42
  article-title: Metal-free artificial photosynthesis of carbon monoxide using N-doped ZnTe nanorod photocathode decorated with N-doped carbon electrocatalyst layer
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702636
– volume: 56
  start-page: 8701
  issue: 30
  year: 2017
  ident: CR64
  article-title: Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703301
– volume: 22
  start-page: 18722
  issue: 52
  year: 2016
  ident: CR70
  article-title: Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air
  publication-title: Chem. Eng. J
– ident: CR14
– volume: 141
  start-page: 18358
  issue: 46
  year: 2019
  ident: CR18
  article-title: Perspectives on the development of oxide-based photocathodes for solar fuel production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07976
– volume: 30
  start-page: 1882
  issue: 12
  year: 2009
  ident: CR38
  article-title: Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21191
– volume: 570
  start-page: 504
  issue: 7762
  year: 2019
  ident: CR28
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 6
  start-page: 5884
  issue: 15
  year: 2016
  ident: CR35
  article-title: Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00622A
– volume: 29
  start-page: 1701774
  issue: 31
  year: 2017
  ident: CR56
  article-title: Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701774
– volume: 11
  start-page: 9304
  issue: 21
  year: 2020
  ident: CR13
  article-title: Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02480
– volume: 360
  start-page: eaar6611
  issue: 6391
  year: 2018
  ident: CR3
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 39
  start-page: 13353
  issue: 25
  year: 2014
  ident: CR21
  article-title: Noble metal-free cobalt oxide (CoO ) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.04.121
– volume: 99
  start-page: 7189
  issue: 22
  year: 1977
  ident: CR9
  article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J Am Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 373
  start-page: 572
  year: 2019
  ident: CR39
  article-title: ynthesis of Fe O  loaded porous g-C N  photocatalyst for photocatalytic reduction of dinitrogen to ammonia
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.021
– volume: 50
  start-page: 112
  issue: 1
  year: 2017
  ident: CR37
  article-title: Solar water splitting and nitrogen fixation with layered bismuth oxyhalides
  publication-title: Accounts Chem. Res.
  doi: 10.1021/acs.accounts.6b00523
– volume: 123
  start-page: 14573
  issue: 23
  year: 2019
  ident: CR73
  article-title: Band gap narrowing of zinc orthogermanate by dimensional and defect modification
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01471
– volume: 7
  start-page: 4832
  issue: 8
  year: 2016
  ident: CR36
  article-title: Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00389C
– volume: 9
  start-page: 4673
  issue: 8
  year: 2021
  ident: CR27
  article-title: Selective nitrogen reduction to ammonia on iron porphyrin-based single-site metal–organic frameworks
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08741F
– volume: 6
  start-page: 4102
  issue: 9
  year: 2018
  ident: CR66
  article-title: MXene-derived TiO @C/g-C N  heterojunctions for highly efficient nitrogen photofixation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09350K
– volume: 1
  start-page: 100013
  issue: 2
  year: 2019
  ident: CR24
  article-title: Photocatalytic ammonia synthesis: recent progress and future
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100013
– volume: 1
  start-page: 636
  issue: 10
  year: 2008
  ident: CR1
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 8
  start-page: 13842
  issue: 27
  year: 2020
  ident: CR4
  article-title: Enabling electrochemical N reduction to NH in the low overpotential region using non-noble metal Bi electrodes via surface composition modification
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA02550J
– volume: 11
  start-page: 10439
  issue: 21
  year: 2019
  ident: CR51
  article-title: Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi MoO  and oxygen-vacancy-rich p-type BiOBr
  publication-title: Nanoscale
  doi: 10.1039/C9NR02279A
– volume: 7
  start-page: 6813
  issue: 7
  year: 2019
  ident: CR20
  article-title: Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO nanosheets
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06134
– volume: 90
  start-page: 6223
  issue: 23
  year: 1986
  ident: CR11
  article-title: Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide
  publication-title: J. Phys. Chem
  doi: 10.1021/j100281a031
– volume: 4
  start-page: 2111
  issue: 9
  year: 2019
  ident: CR29
  article-title: Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01573
– volume: 140
  start-page: 8497
  issue: 27
  year: 2018
  ident: CR52
  article-title: High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03537
– volume: 140
  start-page: 8497
  issue: 27
  year: 2018
  ident: 273_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03537
– volume: 7
  start-page: 4832
  issue: 8
  year: 2016
  ident: 273_CR36
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00389C
– volume: 123
  start-page: 14573
  issue: 23
  year: 2019
  ident: 273_CR73
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01471
– volume: 141
  start-page: 18358
  issue: 46
  year: 2019
  ident: 273_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07976
– volume: 6
  start-page: 15
  issue: 1
  year: 2019
  ident: 273_CR6
  publication-title: Nano Converg.
  doi: 10.1186/s40580-019-0182-5
– volume: 56
  start-page: 8701
  issue: 30
  year: 2017
  ident: 273_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703301
– volume: 12
  start-page: 321
  issue: 3
  year: 1983
  ident: 273_CR12
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1983.321
– volume: 18
  start-page: 7372
  issue: 11
  year: 2018
  ident: 273_CR49
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03655
– volume: 116
  start-page: 6635
  issue: 14
  year: 2019
  ident: 273_CR25
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1817881116
– volume: 6
  start-page: 1802109
  issue: 8
  year: 2019
  ident: 273_CR26
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802109
– volume: 10
  start-page: 6980
  issue: 7
  year: 2016
  ident: 273_CR74
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02965
– volume: 400
  start-page: 415
  issue: 6743
  year: 1999
  ident: 273_CR2
  publication-title: Nature
  doi: 10.1038/22672
– volume: 10
  start-page: 14592
  issue: 24
  year: 2020
  ident: 273_CR77
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04864
– volume: 9
  start-page: 5797
  issue: 7
  year: 2019
  ident: 273_CR30
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00358
– volume: 9
  start-page: 4673
  issue: 8
  year: 2021
  ident: 273_CR27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08741F
– volume: 8
  start-page: 18258
  issue: 49
  year: 2020
  ident: 273_CR45
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c06775
– ident: 273_CR16
  doi: 10.1007/978-1-4684-1806-4_4
– volume: 13
  start-page: 1603301
  issue: 14
  year: 2017
  ident: 273_CR22
  publication-title: Small
  doi: 10.1002/smll.201603301
– volume: 61
  start-page: 1187
  issue: 9
  year: 2018
  ident: 273_CR34
  publication-title: Sci. China-Chem.
  doi: 10.1007/s11426-018-9273-1
– volume: 5
  start-page: 1834
  issue: 6
  year: 2020
  ident: 273_CR8
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00711
– ident: 273_CR15
– volume: 9
  start-page: 9739
  issue: 11
  year: 2019
  ident: 273_CR41
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 6
  start-page: 4102
  issue: 9
  year: 2018
  ident: 273_CR66
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09350K
– volume: 8
  start-page: 1
  issue: e248
  year: 2016
  ident: 273_CR76
  publication-title: NPG Asia Mater.
– volume: 7
  start-page: 6813
  issue: 7
  year: 2019
  ident: 273_CR20
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06134
– volume: 8
  start-page: 27661
  issue: 41
  year: 2016
  ident: 273_CR55
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08129
– volume: 3
  start-page: 1800388
  issue: 6
  year: 2019
  ident: 273_CR48
  publication-title: Small Methods
  doi: 10.1002/smtd.201800388
– volume: 373
  start-page: 572
  year: 2019
  ident: 273_CR39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.021
– volume: 144
  start-page: 468
  year: 2014
  ident: 273_CR19
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2013.07.047
– volume: 4
  start-page: 1186
  issue: 6
  year: 2020
  ident: 273_CR5
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 8
  start-page: 1986
  issue: 4
  year: 2016
  ident: 273_CR54
  publication-title: Nanoscale
  doi: 10.1039/C5NR07380D
– volume: 502
  start-page: 144202
  year: 2020
  ident: 273_CR72
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144202
– volume: 2019
  start-page: 2182
  issue: 16
  year: 2019
  ident: 273_CR47
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201900098
– volume: 11
  start-page: 10439
  issue: 21
  year: 2019
  ident: 273_CR51
  publication-title: Nanoscale
  doi: 10.1039/C9NR02279A
– volume: 5
  start-page: 201
  issue: 1
  year: 2017
  ident: 273_CR61
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09275F
– volume: 22
  start-page: 18722
  issue: 52
  year: 2016
  ident: 273_CR70
  publication-title: Chem. Eng. J
– volume: 90
  start-page: 6223
  issue: 23
  year: 1986
  ident: 273_CR11
  publication-title: J. Phys. Chem
  doi: 10.1021/j100281a031
– volume: 124
  start-page: 72
  year: 2017
  ident: 273_CR57
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.014
– volume: 8
  start-page: 13842
  issue: 27
  year: 2020
  ident: 273_CR4
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA02550J
– volume: 4
  start-page: 2111
  issue: 9
  year: 2019
  ident: 273_CR29
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01573
– volume: 29
  start-page: 1701774
  issue: 31
  year: 2017
  ident: 273_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701774
– volume: 450
  start-page: 187
  year: 2016
  ident: 273_CR71
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2015.07.022
– volume: 52
  start-page: 10221
  issue: 67
  year: 2016
  ident: 273_CR75
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04775K
– volume: 22
  start-page: 13819
  issue: 39
  year: 2016
  ident: 273_CR62
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201603277
– volume: 13
  start-page: 263
  issue: 4
  year: 2012
  ident: 273_CR17
  publication-title: J. Photochem. Photobiol. C-Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2012.07.002
– volume: 28
  start-page: 6054
  issue: 17
  year: 2016
  ident: 273_CR44
  publication-title: Chem. Mat.
  doi: 10.1021/acs.chemmater.6b00460
– volume: 200
  start-page: 323
  year: 2017
  ident: 273_CR58
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.07.025
– volume: 3
  start-page: 23435
  issue: 46
  year: 2015
  ident: 273_CR50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06540B
– volume: 1
  start-page: 100013
  issue: 2
  year: 2019
  ident: 273_CR24
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100013
– volume: 29
  start-page: 1701432
  issue: 28
  year: 2017
  ident: 273_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701432
– volume: 10
  start-page: 29408
  issue: 49
  year: 2020
  ident: 273_CR40
  publication-title: RSC Adv.
  doi: 10.1039/D0RA05779G
– volume: 57
  start-page: 5278
  issue: 19
  year: 2018
  ident: 273_CR68
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713229
– volume: 6
  start-page: 12693
  issue: 26
  year: 2018
  ident: 273_CR43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02161A
– volume: 29
  start-page: 1703828
  issue: 42
  year: 2017
  ident: 273_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703828
– ident: 273_CR14
  doi: 10.1016/j.gee.2020.05.011
– volume: 6
  start-page: 5884
  issue: 15
  year: 2016
  ident: 273_CR35
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00622A
– volume: 140
  start-page: 9434
  issue: 30
  year: 2018
  ident: 273_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– volume: 5
  start-page: 2000487
  issue: 2
  year: 2021
  ident: 273_CR23
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000487
– volume: 8
  start-page: 334
  issue: 1
  year: 2020
  ident: 273_CR10
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10471B
– volume: 360
  start-page: eaar6611
  issue: 6391
  year: 2018
  ident: 273_CR3
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 8
  start-page: 22251
  issue: 42
  year: 2020
  ident: 273_CR32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08678A
– volume: 8
  start-page: 1702636
  issue: 20
  year: 2018
  ident: 273_CR42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702636
– volume: 7
  start-page: 18099
  issue: 29
  year: 2017
  ident: 273_CR67
  publication-title: RCS Adv.
– volume: 201
  start-page: 58
  year: 2017
  ident: 273_CR63
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.08.002
– volume: 1
  start-page: 636
  issue: 10
  year: 2008
  ident: 273_CR1
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 39
  start-page: 13353
  issue: 25
  year: 2014
  ident: 273_CR21
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.04.121
– volume: 13
  start-page: 21411
  issue: 18
  year: 2021
  ident: 273_CR78
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03698
– volume: 570
  start-page: 504
  issue: 7762
  year: 2019
  ident: 273_CR28
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 31
  start-page: 1806482
  issue: 16
  year: 2019
  ident: 273_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 30
  start-page: 1882
  issue: 12
  year: 2009
  ident: 273_CR38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21191
– volume: 3
  start-page: 1800352
  issue: 6
  year: 2019
  ident: 273_CR7
  publication-title: Small Methods
  doi: 10.1002/smtd.201800352
– volume: 254
  start-page: 351
  year: 2019
  ident: 273_CR33
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.05.005
– volume: 50
  start-page: 112
  issue: 1
  year: 2017
  ident: 273_CR37
  publication-title: Accounts Chem. Res.
  doi: 10.1021/acs.accounts.6b00523
– volume: 529
  start-page: 91
  year: 2017
  ident: 273_CR69
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2016.10.017
– volume: 218
  start-page: 600
  year: 2017
  ident: 273_CR65
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.07.013
– volume: 11
  start-page: 9304
  issue: 21
  year: 2020
  ident: 273_CR13
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02480
– volume: 99
  start-page: 7189
  issue: 22
  year: 1977
  ident: 273_CR9
  publication-title: J Am Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 5
  start-page: 10858
  issue: 11
  year: 2017
  ident: 273_CR53
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02788
SSID ssj0001763418
Score 2.319447
SecondaryResourceType review_article
Snippet Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a...
Photocatalytic N reduction has emerged as one of the most attractive routes to produce NH as a useful commodity for chemicals used in industries and as a...
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a...
Abstract Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and...
Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Ammonia
Chemistry and Materials Science
Materials Science
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nitrogen
Photocatalysis
Photocatalyst
Photocatalysts
Review
고분자공학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBA3sBq_kskREFVBggNqpd4sx492VZSsNqmq_nvGTnbZ5XnhtNLa1nrn4fnGY38m5JVqI2oZIuMuKKZ0sKyByjGneIgeEYLyaR_y85fq6ER9OtWnW099pTNhEz3wJLgDrUG0QTkEwkEJ5TCc8yilS1dEhbBtWn3LptxKpvLuCrqN4rC-JQPVwYC_CyVLJxIyhwuDnUiUCfsxvnSr-Dus-euRyZ_qpjkcHd4ht2ccSd9O879LboTuHrm1xS54nxx_nTf6qM_HNGgf6fK8H_u8ZXM9jANFxEptssSFpcuJ-xVH0HTnhF4hCsXWzlP0-lWPhkbP7PCAnBx-OH5_xOZHFJjDSD0yK2UL2lYCYlkFX9YWKo_ZJ4pThKptaw-6FRihfAipJueUrSPUVnKL2AqUfEj2ur4LjwnViY2ucTzwmEh5VBODtZZ7qL2OEURB-Fqgxs0M4-mhi28mZxpQmUkJBpVgshIMFOT1Zsxy4tf4a-93SU-bnokbO3-BFmNmizH_spiCvEQtmwu3yOPT51lvLlYGM4iPBvFagrAF2V8bgZm9ejCYfuGC2HBdF-TFphn9MRVZbBf6y6mPlqleXZBHk81spiuVzGXhgtQ71rTzf3ZbusV55vzGhReBHQrgzdrufkzrz_J68j_k9ZTcFNltAL1nn-yNq8vwDJHY2D7PTvcdGGcrig
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEHcwOo6tpPZEwLEUpDggFqpN8vxY7sqSpYkVcW_Z-wkuyyPnlaK7WzsmfF8nrE_E_JSVgGlDIFx6yWTyhs2h8IyK7kPDhGCdDEO-eVrcXQiP5-q0zHg1o3bKqc5MU3UrrExRn6I0BeVcc5V-Wb9g8Vbo2J2dbxC4zq5wdHTRD2HxcdtjAWNR3KYzspAcdjhv8OMxX0JicmFwY4_SrT96GXqNvwLcf69cfKP7GlySos75PaIJunbQfx3yTVf3yO3fuMYvE-Ov43hPurSZg3aBLo-a_omBW5-dn1HEbdSEzu4MnQ9MMBiCxpPntBLxKJYWjuKtt82qG50aboH5GTx4fj9ERuvUmAW_XXPjBAVKFPkEGaFd7PSQOFwDcrB576oqtKBqnL0U877mJmz0pQBSiO4QYQFUjwke3VT-8eEqshJN7fc8xCpeeQ8eGMMd1A6FQLkGeHTgGo78ozH6y6-67TegEIPQtAoBJ2EoCEjrzZt1gPLxpW130U5bWpGhuz0oGmXejQ4rRTklZcW3-FlLi3CQB6EsPFocZ6bKiMvUMr63K5S-_i7bPR5q3Ed8UkjaotANiMHkxLo0bY7vdXEjDzfFKNVxlSLqX1zMdRRImatM_Jo0JnN5wopUnI4I-WONu30Z7ekXp0l5m-cfhHe4QC8nvRu-1n_H6_9q3vxhNzMk0EA2sUB2evbC_8UkVZfPUvm9AvsFCQs
  priority: 102
  providerName: ProQuest
Title Rational design of photocatalysts for ammonia production from water and nitrogen gas
URI https://link.springer.com/article/10.1186/s40580-021-00273-8
https://www.ncbi.nlm.nih.gov/pubmed/34338913
https://www.proquest.com/docview/2557309157
https://www.proquest.com/docview/2557532806
https://pubmed.ncbi.nlm.nih.gov/PMC8329108
https://doaj.org/article/5582be4c118e424c9291f33c802222ab
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811099
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nano Convergence, 2021, 8(22), , pp.1-12
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7QUeEN8LjMog3iCijj_iPnbVyqjEhMYm7c1yHHurhpKqyYT23-_spN0KA4mnSPY5Snx3uZ_v7F8APvDCo5aVT6l1POXCmXSkpE0tp86XiBB4GfKQ347k4SmfnYmzniYnnIW5W7-nSn5uUFwN07CRIFKvpGoLdgRlMhZm5eQ2n4KOwqlanYu5d-hG7IkU_RhRqqW_D13-uUnyt0ppDEDTJ_C4R45k3Kn6KTxw1TN4dIdP8DmcHPepPVLGjRmk9mRxUbd1TNJcN21DEKMSE2xvbsiiY3vFESScMiG_EHdib1US9PNljaZFzk3zAk6nByeTw7T_bUJqMTa3qWGsUMLITPmhdOUwN0qWuN6kymVOFkVeKlFkGJNK50IVznKTe5UbRg2iKcXZS9iu6srtAhGBf25kqaM-0PDwkXfGGFqqvBTeqywBuppQbXtO8fBri586ri2U1J0SNCpBRyVolcDH9ZhFx6jxT-n9oKe1ZGDDjg1oJLp3Li2EygrHLd7D8YxbhHzUM2bDMeIsM0UC71HL-tLO4_hwPa_15VLjmuGrRoQWQGsCeysj0L0fNxoXXPgJHFGRJ_Bu3Y0eGMoqpnL1VScjWKhQJ_Cqs5n14zLOYiE4gXzDmjbeZ7Onml9Elm_81CKUwwn4tLK728f6-3y9_j_xN_Awiw6i0E_2YLtdXrm3iLLaYgBbavplADvj8ezHDK_7B0ffj7F1kvFBdL1BzF_cAB9MIsc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QPwMHEnY4BB8ATR6sRJ3AeEGGxq2VahqZP25jm-dNVQUppO0_4Uv5FjJ2kpl73tKVJsR_G5-fM5PscAb1hukcvchlQZFrLEyLDHUxUqRo3ViBCYdn7Iw2HaP2ZfT5KTNfjZ5sK4Y5WtTfSGWpfK-ci3EfqiMPZokn2c_gjdrVEuutpeoVGLxb65usQtW_Vh8AX5-zaK9nZHn_thc6tAqHDpmocyjnOeyDTitpsa3c0kTzVuxyg3kUnzPNM8ySM02doYF6RSTGaWZzKmEsEGZzF-9xasM5fR2oH1nd3ht6OlVwfVlVHeZufwdLvC-fJu6E5C-NoxIV9ZAf1FAbiuFTP7L4z791HNP-K1fhncuwcbDX4ln2qBuw9rpngAd3-ravgQRkeNg5FofzyElJZMz8p56V1FV9W8IoiUiXQknUgyrWvO4gjicl3IJaJfbC00QWszK1HAyVhWj-D4Rsj8GDpFWZinQBJXBa-nqKHWFQNiPWuklFTzTCfW8igA2hJUqKayubtg47vwOxyeipoJApkgPBMED-DdYsy0rutxbe8dx6dFT1eT278oZ2PRqLhIEh7lhin8hmERUwg8qY1j5ZKZo0jmAbxGLotzNfHj3XNcivOZwJ3LQCBOdNA5gK1WCERjTSqxlP0AXi2a0Q644I4sTHlR90liFycP4EktM4vfjVnsw9EBZCvStDKf1ZZicuZrjaPBR0CJBHjfyt3yt_5Pr83rZ_ESbvdHhwfiYDDcfwZ3Iq8cHHVkCzrz2YV5jjhvnr9olIvA6U3r8y_pWmGb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEJ4i6dpzEe0AIKEuXQoVQK_XmOn5sV0XJsklV9a_x6xg7yS7Lo7eeIsV2FHse_sYzngF4zguHVBYuptrymKdWxUOR6Vhzap1BhMCNP4f8sptt7_NPB-nBGvzs78L4sMpeJwZFbSrtz8g3EfoiMw4pGvCuC4v4ujV6M_sR-wpS3tPal9NoWWTHnp2i-Va_Hm8hrV8wNvqw93477ioMxBq3sSZWSVKIVGVMuEFmzSBXIjNomlFhmc2KIjciLRiqb2Otd1hprnIncpVQhcBD8AS_ewku50k-9IafGH1cnu-g4HIq-ns6ItusceZiEPuYiJBFJhYre2EoGYA7XDl3_0K7fwdt_uG5DRvi6AZc75Aseduy3k1Ys-UtuPZbfsPbsPetO2okJgSKkMqR2VHVVOHQ6KxuaoKYmSi_oFNFZm32WRxB_K0Xcoo4GFtLQ1DvzCtkdTJR9R3Yv5BFvgvrZVXa-0BSnw9vqKmlzqcF4kNnlVLUiNykzgkWAe0XVOoux7kvtfFdBltHZLIlgkQiyEAEKSJ4uRgzazN8nNv7nafToqfPzh1eVPOJ7IRdpqlgheUav2E54xohKHVJov21ZsZUEcEzpLI81tMw3j8nlTyeS7RhxhIRowfREWz0TCA7vVLLpRRE8HTRjBrBu3lUaauTtk-aeI95BPdanln8bsKT4JiOIF_hppX5rLaU06OQdRxVP0JLXIBXPd8tf-v_6_Xg_Fk8gSsoxfLzeHfnIVxlQTYEisgGrDfzE_sIAV9TPA6SReDwokX5F5sLZGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+photocatalysts+for+ammonia+production+from+water+and+nitrogen+gas&rft.jtitle=Nano+convergence&rft.au=Choe%2C+Seokwoo&rft.au=Kim%2C+Sung+Min&rft.au=Lee%2C+Yeji&rft.au=Seok%2C+Jin&rft.date=2021-08-02&rft.eissn=2196-5404&rft.volume=8&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs40580-021-00273-8&rft_id=info%3Apmid%2F34338913&rft.externalDocID=34338913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5404&client=summon