Rational design of photocatalysts for ammonia production from water and nitrogen gas
Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In...
Saved in:
Published in | Nano convergence Vol. 8; no. 1; pp. 22 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
02.08.2021
Springer Nature B.V SpringerOpen 나노기술연구협의회 |
Subjects | |
Online Access | Get full text |
ISSN | 2196-5404 2196-5404 |
DOI | 10.1186/s40580-021-00273-8 |
Cover
Abstract | Photocatalytic N
2
reduction has emerged as one of the most attractive routes to produce NH
3
as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH
3
production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH
3
production and designing solar-driven chemical conversions. |
---|---|
AbstractList | Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH 3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH 3 production and designing solar-driven chemical conversions. KCI Citation Count: 0 Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH 3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH 3 production and designing solar-driven chemical conversions. Photocatalytic N reduction has emerged as one of the most attractive routes to produce NH as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH production and designing solar-driven chemical conversions. Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions. Abstract Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions. Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions. |
ArticleNumber | 22 |
Author | Seok, Jin Lee, Yeji Choe, Seokwoo Lee, Jae Sung Kim, Sung Min Jang, Youn Jeong Jung, Jiyong |
Author_xml | – sequence: 1 givenname: Seokwoo surname: Choe fullname: Choe, Seokwoo organization: Department of Chemical Engineering, Hanyang University – sequence: 2 givenname: Sung Min surname: Kim fullname: Kim, Sung Min organization: Department of Chemical Engineering, Hanyang University – sequence: 3 givenname: Yeji surname: Lee fullname: Lee, Yeji organization: Department of Chemical Engineering, Hanyang University – sequence: 4 givenname: Jin surname: Seok fullname: Seok, Jin organization: Department of Chemical Engineering, Hanyang University – sequence: 5 givenname: Jiyong surname: Jung fullname: Jung, Jiyong organization: Department of Chemical Engineering, Hanyang University – sequence: 6 givenname: Jae Sung surname: Lee fullname: Lee, Jae Sung email: jlee1234@unist.ac.kr organization: Department of Energy and Chemical Engineering, Ulsan National Institute and Science and Technology – sequence: 7 givenname: Youn Jeong orcidid: 0000-0002-2400-0473 surname: Jang fullname: Jang, Youn Jeong email: yjang53@hanyang.ac.kr organization: Department of Chemical Engineering, Hanyang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34338913$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811099$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9Uk1v1DAUtFARLUv_AAcUiQscAv5MnAtSVfGxUiWkajlbL46TepvYi-0U9d_j3ZTS9lAf_KznmfHYntfoyHlnEHpL8CdCZPU5ciwkLjElJca0ZqV8gU4oaapScMyPHqyP0WmMW4wxqSvGiXyFjhlnTDaEnaDNJSTrHYxFZ6IdXOH7Ynflk9eQYLyNKRa9DwVMk3cWil3w3az3jKIPfir-QDJ513WFsyn4wbhigPgGvexhjOb0rq7Qr29fN-c_youf39fnZxelrghLJTDWSgEVlT2uTIdrkFUnKCPSUFO1bd1J0dKayM6YSnKqOdS9rIER4CI32Ap9XHRd6NW1tsqDPdTBq-ugzi43a9U0DItaZOx6wXYetmoX7ATh9kA4NHwYFIRk9WiUEJK2huv8zoZTrhvakJ4xLTHNA9qs9WXR2s3tZDptXAowPhJ9vOPsVfZ0oyTLUlhmgQ93AsH_nk1MarJRm3EEZ_wcFRV7y1TiKkPfP4Fu_Rzyhy0ohhuS5xV699DRvZV_H50BdAHo4GMMpr-HEKz2gVJLoFQOlDoESu1tyickbdMhL_lWdnyeyhZqzOe4wYT_tp9h_QVyIN2K |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_177903 crossref_primary_10_3390_en16010027 crossref_primary_10_1038_s41598_024_71016_y crossref_primary_10_1002_smll_202202252 crossref_primary_10_1016_j_jece_2024_112111 crossref_primary_10_3390_catal13050803 crossref_primary_10_1002_anie_202316973 crossref_primary_10_1002_ange_202204117 crossref_primary_10_1016_j_ijhydene_2024_11_201 crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1016_j_apsusc_2024_161890 crossref_primary_10_1016_j_inoche_2024_113026 crossref_primary_10_1002_ece2_10 crossref_primary_10_1021_acsaem_2c01674 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1021_acsomega_4c03076 crossref_primary_10_1021_jacs_3c07768 crossref_primary_10_1016_j_cattod_2022_12_010 crossref_primary_10_1016_j_gee_2022_10_001 crossref_primary_10_1016_j_jallcom_2023_169589 crossref_primary_10_1002_anie_202204117 crossref_primary_10_1016_j_ceramint_2025_02_063 crossref_primary_10_1002_ange_202316973 crossref_primary_10_1039_D3RA05580A crossref_primary_10_1039_D4NR03639E crossref_primary_10_1016_j_apsusc_2023_156812 crossref_primary_10_1007_s11356_024_34978_0 |
Cites_doi | 10.1186/s40580-019-0182-5 10.1016/j.apcatb.2013.07.047 10.1016/j.joule.2020.04.004 10.1002/advs.201802109 10.1021/acssuschemeng.7b02788 10.1021/acscatal.9b00358 10.1021/acssuschemeng.0c06775 10.1016/j.apsusc.2019.144202 10.1016/j.aquaculture.2015.07.022 10.1246/cl.1983.321 10.1016/j.apcatb.2019.05.005 10.1002/adma.201806482 10.1002/smtd.201800388 10.1016/j.jphotochemrev.2012.07.002 10.1021/acsnano.6b02965 10.1021/jacs.8b02076 10.1016/j.apcata.2016.10.017 10.1039/C8TA02161A 10.1039/C6CC04775K 10.1073/pnas.1817881116 10.1038/22672 10.1002/smtd.201800352 10.1016/j.apcatb.2016.07.025 10.1002/ejic.201900098 10.1016/j.apcatb.2017.07.013 10.1021/acsami.1c03698 10.1021/acs.chemmater.6b00460 10.1016/j.carbon.2017.07.014 10.1039/C5NR07380D 10.1002/chem.201603277 10.1002/solr.202000487 10.1021/acs.nanolett.8b03655 10.1002/adma.201701432 10.1021/acsenergylett.0c00711 10.1002/smll.201603301 10.1002/anie.201713229 10.1039/D0RA05779G 10.1007/s11426-018-9273-1 10.1002/adma.201703828 10.1016/j.apcatb.2016.08.002 10.1021/acsami.6b08129 10.1039/D0TA08678A 10.1021/acscatal.9b03246 10.1039/C5TA06540B 10.1021/acscatal.0c04864 10.1039/C6TA09275F 10.1039/C9TA10471B 10.1002/aenm.201702636 10.1002/anie.201703301 10.1021/jacs.9b07976 10.1002/jcc.21191 10.1038/s41586-019-1260-x 10.1039/C6CY00622A 10.1002/adma.201701774 10.1021/acs.jpclett.0c02480 10.1126/science.aar6611 10.1016/j.ijhydene.2014.04.121 10.1021/ja00464a015 10.1016/j.cej.2019.05.021 10.1021/acs.accounts.6b00523 10.1021/acs.jpcc.9b01471 10.1039/C6SC00389C 10.1039/D0TA08741F 10.1039/C7TA09350K 10.1016/j.enchem.2019.100013 10.1038/ngeo325 10.1039/D0TA02550J 10.1039/C9NR02279A 10.1021/acssuschemeng.8b06134 10.1021/j100281a031 10.1021/acsenergylett.9b01573 10.1021/jacs.8b03537 10.1007/978-1-4684-1806-4_4 10.1016/j.gee.2020.05.011 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA ACYCR |
DOI | 10.1186/s40580-021-00273-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2196-5404 |
EndPage | 12 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9930575 oai_doaj_org_article_5582be4c118e424c9291f33c802222ab PMC8329108 34338913 10_1186_s40580_021_00273_8 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ministry of environment of korea grantid: the Graduate school of Post Plastic specialization of Korea Environmental Industry & Technology Institute – fundername: National Research Foundation of Korea grantid: No. 2020R1G1A1100104 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: national research foundation of korea grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea grantid: No. 202100000000820 – fundername: hanyang university grantid: HY202000000002708 funderid: http://dx.doi.org/10.13039/501100002380 – fundername: national research foundation of korea grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909 – fundername: National Research Foundation of Korea grantid: No. 2020R1G1A1100104 – fundername: hanyang university grantid: HY202000000002708 – fundername: ; grantid: No. 2020R1G1A1100104 – fundername: ; grantid: HY202000000002708 – fundername: ; grantid: No. 202100000000820 – fundername: ; grantid: the Graduate school of Post Plastic specialization of Korea Environmental Industry & Technology Institute – fundername: ; grantid: No. 2019M1A2A2065612, No. 2018R1A2A1A05077909 |
GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU D1I EBLON EBS GROUPED_DOAJ HCIFZ HYE IAO ITC KB. KQ8 M~E OK1 PDBOC PGMZT PIMPY PROAC RPM RSV SOJ AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM AAYZJ ACYCR AFNRJ AHBXF AHSBF EJD |
ID | FETCH-LOGICAL-c613t-a33b85a628f06ed07a86d52318e2e6bb7d85b2718dee6842c4a7f87a31a456843 |
IEDL.DBID | C6C |
ISSN | 2196-5404 |
IngestDate | Tue Nov 21 21:40:11 EST 2023 Wed Aug 27 01:29:07 EDT 2025 Thu Aug 21 14:05:40 EDT 2025 Fri Sep 05 11:08:44 EDT 2025 Fri Jul 25 11:19:48 EDT 2025 Mon Jul 21 05:24:45 EDT 2025 Tue Jul 01 01:41:57 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Fri Feb 21 02:47:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nitrogen Ammonia Photocatalyst |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c613t-a33b85a628f06ed07a86d52318e2e6bb7d85b2718dee6842c4a7f87a31a456843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2400-0473 |
OpenAccessLink | https://doi.org/10.1186/s40580-021-00273-8 |
PMID | 34338913 |
PQID | 2557309157 |
PQPubID | 2034688 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9930575 doaj_primary_oai_doaj_org_article_5582be4c118e424c9291f33c802222ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_8329108 proquest_miscellaneous_2557532806 proquest_journals_2557309157 pubmed_primary_34338913 crossref_primary_10_1186_s40580_021_00273_8 crossref_citationtrail_10_1186_s40580_021_00273_8 springer_journals_10_1186_s40580_021_00273_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-02 |
PublicationDateYYYYMMDD | 2021-08-02 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: England – name: Heidleberg |
PublicationTitle | Nano convergence |
PublicationTitleAbbrev | Nano Convergence |
PublicationTitleAlternate | Nano Converg |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen 나노기술연구협의회 |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen – name: 나노기술연구협의회 |
References | Liu, Chen, Yao, Li, Cheema, Wang, Zhu (CR40) 2020; 10 Li, Wang, Vanka, Mu, Mi, Li (CR64) 2017; 56 Wei, Pu, Jin, Wessling (CR78) 2021; 13 Chen, Liu, Peng (CR23) 2021; 5 Li, Wang, Jiang, Sun, Zhang, Sun (CR62) 2016; 22 Zhang, Zhao, Shi, Zhang (CR24) 2019; 1 MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Vallana, Simonov (CR5) 2020; 4 Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (CR46) 2019; 31 Liu, Ai, Jiang (CR66) 2018; 6 Wu, Yu, Yang (CR31) 2017; 29 Ying, Chen, Zhang, Peng, Li (CR33) 2019; 254 Cao, Zhou, Gao, Chen, Jiang (CR65) 2017; 218 Yue, Yi, Wang, Zhang, Qiu (CR22) 2017; 13 Jang, Park, Kim, Choi, Choi, Lee (CR44) 2016; 28 Li, Wang, Guan, Zhang, Zhao, Zhai, Sun (CR45) 2020; 8 Dong, Ho, Wang (CR50) 2015; 3 Hao, Dong, Zhai, Ma, Wang, Zhang (CR70) 2016; 22 Zhao, Shi, Bian (CR26) 2019; 6 Schrauzer, Guth (CR9) 1977; 99 Kim, Jang, Choi, Lee, Kim, Park, Nam, Kim, Lee (CR43) 2018; 6 Xue, Chen, Yan, Hu, Zhang, Yang, Ma, Zhu, Jin (CR51) 2019; 11 Zhang, Yang, He, Zhang, Mi (CR10) 2020; 8 Huang, Liu, Pang, Zhang, Wang, Shen (CR32) 2020; 8 Huang, Liu, He (CR34) 2018; 61 Hu, Chen, Li, Li, Fan, Wang, Wang, Zheng, Wu (CR63) 2017; 201 Li, Huang, Low, Gao, Long, Xiong (CR48) 2019; 3 Lumley, Radmilovic, Jang, Lindberg, Choi (CR18) 2019; 141 Zhao, Zhao, Waterhouse (CR59) 2017; 29 Jang, Ryu, Hong, Park, Lee (CR75) 2016; 52 Li, Wang, Zhao, Yang, Li, Li, Yang, Ozin, Gong (CR68) 2018; 57 Cong, Chen, Xia, Ding, Zhang, Jin, Gao, Zhang (CR27) 2021; 9 Ithisuphalap, Zhang, Guo, Yang, Yang, Wu (CR7) 2019; 3 Li, Li, Zhan, Zhang (CR37) 2017; 50 Li, Tang, Yao, Zheng, Qiao (CR29) 2019; 4 Lee, Na, Lee, Lee, Kim, Li, Yang, Ozin, Gong (CR73) 2019; 123 Jang, Choi (CR4) 2020; 8 Kani, Prajapati, Collins, Goodpaster, Singh (CR77) 2020; 10 Zhou, Boyd (CR71) 2016; 450 Zhang, Jalil, Wu (CR60) 2018; 140 Lashgari, Zeinalkhani (CR69) 2017; 529 Huang (CR38) 2009; 30 CR16 Zhao, Zhang, Zhu, Zhang, Tang, Tan, Wang (CR19) 2014; 144 CR15 Bhachu, Moniz, Sathasivam (CR36) 2016; 7 Xiao, Hu, Zhang, MacFarlane (CR53) 2017; 5 Li, Domen, Naito, Onishi, Tamaru (CR12) 1983; 12 CR14 Jang, Lindberg, Lumley, Choi (CR8) 2020; 5 Zhao, Zhou, Zhao, Du, Dou (CR13) 2020; 11 Liu, Wang, Wang (CR20) 2019; 7 Sun, An, Wang, Zhang, Liu (CR61) 2017; 5 Chen, Zhang, Wang (CR25) 2019; 116 Ryu, Jang, Choi, Kang, Park, Lee, Park (CR76) 2016; 8 Yang, Zhang, Ge, Lu, Chang, Xiao, Zhao, Ma, Chen (CR57) 2017; 124 Erisman, Sutton, Galloway, Klimont, Winiwarter (CR1) 2008; 1 Chen, Crooks, Seefeldt (CR3) 2018; 360 Liu, Wang, Jiang, Zhao, Jiang, Sun (CR39) 2019; 373 John, Lee, Sim (CR6) 2019; 6 Jang, Bhatt, Lee, Choi, Lee, Lee (CR42) 2018; 8 Ying, Chen, Peng, Li, Zhang (CR47) 2019; 2019 Jang, Jeong, Lee, Lee, Ko, Lee (CR74) 2016; 10 Li, Shang, Shi, Zhao, Zhang (CR54) 2016; 8 Sun, Li, Wang, Zhang, Sun (CR58) 2017; 200 Endoh, Leland, Bard (CR11) 1986; 90 Hu, Chen, Li, Zhao, Mao (CR35) 2016; 6 Yan, Wu, Han, Yu, Du (CR21) 2014; 39 Xue, Chen, Chen (CR49) 2018; 18 Wang, Hai, Ding, Chang, Xiang, Meng, Yang, Chen, Ye (CR56) 2017; 29 Zhang, Mohamed, Dillert, Bahnemann (CR17) 2012; 13 Smil (CR2) 1999; 400 Wang, Wei, Li, Hu, Zhang, Feng (CR67) 2017; 7 Yang, Guo, Jiang, Qin, Zhang, Lu, Wang, Yu (CR52) 2018; 140 Nielander, McEnaney, Schwalbe (CR30) 2019; 9 Anderson, Čolić, Yang (CR28) 2019; 570 Bai, Ye, Chen, Wang, Shi, Zhang, Chen (CR55) 2016; 8 Lin, Hu, Hu (CR72) 2020; 502 Shi, Zhao, Waterhouse, Zhang, Zhang (CR41) 2019; 9 S Liu (273_CR20) 2019; 7 Z Yan (273_CR21) 2014; 39 Y Zhao (273_CR26) 2019; 6 J Ryu (273_CR76) 2016; 8 L Li (273_CR64) 2017; 56 L Zhang (273_CR17) 2012; 13 YJ Jang (273_CR75) 2016; 52 YJ Jang (273_CR8) 2020; 5 WL Huang (273_CR38) 2009; 30 M Lashgari (273_CR69) 2017; 529 J John (273_CR6) 2019; 6 JW Erisman (273_CR1) 2008; 1 Y Zhao (273_CR59) 2017; 29 X Xue (273_CR51) 2019; 11 K Ithisuphalap (273_CR7) 2019; 3 S Cao (273_CR65) 2017; 218 C Xiao (273_CR53) 2017; 5 SZ Anderson (273_CR28) 2019; 570 JG Chen (273_CR3) 2018; 360 S Wang (273_CR56) 2017; 29 NC Kani (273_CR77) 2020; 10 Q Liu (273_CR66) 2018; 6 YJ Jang (273_CR4) 2020; 8 W Zhao (273_CR19) 2014; 144 Z Ying (273_CR47) 2019; 2019 273_CR14 DR MacFarlane (273_CR5) 2020; 4 G Zhang (273_CR10) 2020; 8 Y Zhao (273_CR13) 2020; 11 S Sun (273_CR61) 2017; 5 273_CR16 273_CR15 F Wu (273_CR31) 2017; 29 S Hu (273_CR35) 2016; 6 Y Hao (273_CR70) 2016; 22 MA Lumley (273_CR18) 2019; 141 G Dong (273_CR50) 2015; 3 X Xue (273_CR49) 2018; 18 V Smil (273_CR2) 1999; 400 S Hu (273_CR63) 2017; 201 S Liu (273_CR39) 2019; 373 J Li (273_CR45) 2020; 8 M Cong (273_CR27) 2021; 9 YJ Jang (273_CR42) 2018; 8 L Zhou (273_CR71) 2016; 450 Y Zhao (273_CR46) 2019; 31 Y Yang (273_CR52) 2018; 140 Y Lin (273_CR72) 2020; 502 Q Chen (273_CR25) 2019; 116 J Li (273_CR37) 2017; 50 X Wei (273_CR78) 2021; 13 DS Bhachu (273_CR36) 2016; 7 GN Schrauzer (273_CR9) 1977; 99 E Endoh (273_CR11) 1986; 90 R Liu (273_CR40) 2020; 10 JH Kim (273_CR43) 2018; 6 Y Bai (273_CR55) 2016; 8 N Zhang (273_CR60) 2018; 140 S Sun (273_CR58) 2017; 200 YJ Jang (273_CR44) 2016; 28 M Li (273_CR48) 2019; 3 P Huang (273_CR32) 2020; 8 C Li (273_CR68) 2018; 57 S Zhang (273_CR24) 2019; 1 S Chen (273_CR23) 2021; 5 YJ Jang (273_CR74) 2016; 10 X Yue (273_CR22) 2017; 13 X Li (273_CR62) 2016; 22 P Huang (273_CR34) 2018; 61 L Li (273_CR29) 2019; 4 Z Ying (273_CR33) 2019; 254 H Li (273_CR54) 2016; 8 JH Lee (273_CR73) 2019; 123 QS Li (273_CR12) 1983; 12 Y Yang (273_CR57) 2017; 124 R Shi (273_CR41) 2019; 9 Y Wang (273_CR67) 2017; 7 AC Nielander (273_CR30) 2019; 9 |
References_xml | – volume: 6 start-page: 15 issue: 1 year: 2019 ident: CR6 article-title: Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions publication-title: Nano Converg. doi: 10.1186/s40580-019-0182-5 – volume: 144 start-page: 468 year: 2014 ident: CR19 article-title: Enhanced nitrogen photofixation on Fe-doped TiO with highly exposed (101) facets in the presence of ethanol as scavenger publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2013.07.047 – volume: 4 start-page: 1186 issue: 6 year: 2020 ident: CR5 article-title: A roadmap to the ammonia economy publication-title: Joule doi: 10.1016/j.joule.2020.04.004 – volume: 6 start-page: 1802109 issue: 8 year: 2019 ident: CR26 article-title: Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH production rates? publication-title: Adv. Sci. doi: 10.1002/advs.201802109 – volume: 5 start-page: 10858 issue: 11 year: 2017 ident: CR53 article-title: Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02788 – volume: 9 start-page: 5797 issue: 7 year: 2019 ident: CR30 article-title: A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques publication-title: ACS Catal. doi: 10.1021/acscatal.9b00358 – volume: 8 start-page: 18258 issue: 49 year: 2020 ident: CR45 article-title: Vacancy-enabled mesoporous TiO modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c06775 – volume: 502 start-page: 144202 year: 2020 ident: CR72 article-title: Role of ZnO morphology in its reduction and photocatalysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144202 – volume: 450 start-page: 187 year: 2016 ident: CR71 article-title: Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture publication-title: Aquaculture doi: 10.1016/j.aquaculture.2015.07.022 – ident: CR16 – volume: 12 start-page: 321 issue: 3 year: 1983 ident: CR12 article-title: Photocatalytic synthesis and photodecomposition of ammonia over SrTiO and BaTiO based catalysts publication-title: Chem. Lett. doi: 10.1246/cl.1983.321 – volume: 254 start-page: 351 year: 2019 ident: CR33 article-title: Efficiently enhanced N2 nbsp;photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.005 – volume: 31 start-page: 1806482 issue: 16 year: 2019 ident: CR46 article-title: Tuning oxygen vacancies in ultrathin TiO nanosheets to boost photocatalytic nitrogen fixation up to 700 nm publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 3 start-page: 1800388 issue: 6 year: 2019 ident: CR48 article-title: Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction publication-title: Small Methods doi: 10.1002/smtd.201800388 – volume: 13 start-page: 263 issue: 4 year: 2012 ident: CR17 article-title: Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review publication-title: J. Photochem. Photobiol. C-Photochem. Rev. doi: 10.1016/j.jphotochemrev.2012.07.002 – volume: 10 start-page: 6980 issue: 7 year: 2016 ident: CR74 article-title: Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem publication-title: ACS Nano doi: 10.1021/acsnano.6b02965 – volume: 140 start-page: 9434 issue: 30 year: 2018 ident: CR60 article-title: Refining defect states in W O by Mo doping: A strategy for tuning N activation towards solar-driven nitrogen fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 529 start-page: 91 year: 2017 ident: CR69 article-title: Photocatalytic N conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: a novel hydrogenation strategy and basic understanding of the phenomenon publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2016.10.017 – volume: 6 start-page: 12693 issue: 26 year: 2018 ident: CR43 article-title: A multitude of modifications strategy of ZnFe O nanorod photoanodes for enhanced photoelectrochemical water splitting activity publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02161A – volume: 52 start-page: 10221 issue: 67 year: 2016 ident: CR75 article-title: A multi-stacked hyperporous silicon flake for highly active solar hydrogen production publication-title: Chem. Commun. doi: 10.1039/C6CC04775K – volume: 116 start-page: 6635 issue: 14 year: 2019 ident: CR25 article-title: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1817881116 – volume: 400 start-page: 415 issue: 6743 year: 1999 ident: CR2 article-title: Detonator of the population explosion publication-title: Nature doi: 10.1038/22672 – volume: 3 start-page: 1800352 issue: 6 year: 2019 ident: CR7 article-title: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis publication-title: Small Methods doi: 10.1002/smtd.201800352 – volume: 200 start-page: 323 year: 2017 ident: CR58 article-title: Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.07.025 – volume: 2019 start-page: 2182 issue: 16 year: 2019 ident: CR47 article-title: Fabrication of an Fe-doped SrTiO photocatalyst with enhanced dinitrogen photofixation performance publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201900098 – volume: 218 start-page: 600 year: 2017 ident: CR65 article-title: All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga O /graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.07.013 – volume: 13 start-page: 21411 issue: 18 year: 2021 ident: CR78 article-title: Efficient electrocatalytic N reduction on three-phase interface coupled in a three-compartment flow reactor for the ambient NH synthesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03698 – volume: 28 start-page: 6054 issue: 17 year: 2016 ident: CR44 article-title: Oxygen-intercalated CuFeO photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production publication-title: Chem. Mat. doi: 10.1021/acs.chemmater.6b00460 – volume: 124 start-page: 72 year: 2017 ident: CR57 article-title: Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al O publication-title: Carbon doi: 10.1016/j.carbon.2017.07.014 – volume: 8 start-page: 1986 issue: 4 year: 2016 ident: CR54 article-title: Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway publication-title: Nanoscale doi: 10.1039/C5NR07380D – volume: 22 start-page: 13819 issue: 39 year: 2016 ident: CR62 article-title: Efficient solar-driven nitrogen fixation over carbon–tungstic-acid hybrids publication-title: Chem. Eur. J. doi: 10.1002/chem.201603277 – volume: 5 start-page: 2000487 issue: 2 year: 2021 ident: CR23 article-title: Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors publication-title: Sol. RRL doi: 10.1002/solr.202000487 – volume: 18 start-page: 7372 issue: 11 year: 2018 ident: CR49 article-title: Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03655 – volume: 29 start-page: 1701432 issue: 28 year: 2017 ident: CR31 article-title: Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system publication-title: Adv. Mater. doi: 10.1002/adma.201701432 – volume: 5 start-page: 1834 issue: 6 year: 2020 ident: CR8 article-title: Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00711 – ident: CR15 – volume: 13 start-page: 1603301 issue: 14 year: 2017 ident: CR22 article-title: Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting publication-title: Small doi: 10.1002/smll.201603301 – volume: 57 start-page: 5278 issue: 19 year: 2018 ident: CR68 article-title: Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO photoelectrodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201713229 – volume: 10 start-page: 29408 issue: 49 year: 2020 ident: CR40 article-title: Recent advancements in g-C N -based photocatalysts for photocatalytic CO reduction: a mini review. publication-title: RSC Adv. doi: 10.1039/D0RA05779G – volume: 61 start-page: 1187 issue: 9 year: 2018 ident: CR34 article-title: Single atom accelerates ammonia photosynthesis publication-title: Sci. China-Chem. doi: 10.1007/s11426-018-9273-1 – volume: 29 start-page: 1703828 issue: 42 year: 2017 ident: CR59 article-title: Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation publication-title: Adv. Mater. doi: 10.1002/adma.201703828 – volume: 201 start-page: 58 year: 2017 ident: CR63 article-title: Fe doping promoted N photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.08.002 – volume: 8 start-page: 27661 issue: 41 year: 2016 ident: CR55 article-title: Facet-dependent photocatalytic N fixation of bismuth-rich Bi O I nanosheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08129 – volume: 8 start-page: 22251 issue: 42 year: 2020 ident: CR32 article-title: Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08678A – volume: 7 start-page: 18099 issue: 29 year: 2017 ident: CR67 article-title: In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N photofixation ability under visible light publication-title: RCS Adv. – volume: 9 start-page: 9739 issue: 11 year: 2019 ident: CR41 article-title: Defect engineering in photocatalytic nitrogen fixation publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 3 start-page: 23435 issue: 46 year: 2015 ident: CR50 article-title: Wang, Selective photocatalytic N fixation dependent on g-C N induced by nitrogen vacancies publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 10 start-page: 14592 issue: 24 year: 2020 ident: CR77 article-title: Competing effects of pH, cation identity, H O saturation, and N concentration on the activity and selectivity of electrochemical reduction of N to NH on electrodeposited Cu at ambient conditions publication-title: ACS Catal. doi: 10.1021/acscatal.0c04864 – volume: 8 start-page: 1 issue: e248 year: 2016 ident: CR76 article-title: All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution publication-title: NPG Asia Mater. – volume: 5 start-page: 201 issue: 1 year: 2017 ident: CR61 article-title: Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09275F – volume: 8 start-page: 334 issue: 1 year: 2020 ident: CR10 article-title: Constructing a tunable defect structure in TiO for photocatalytic nitrogen fixation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10471B – volume: 8 start-page: 1702636 issue: 20 year: 2018 ident: CR42 article-title: Metal-free artificial photosynthesis of carbon monoxide using N-doped ZnTe nanorod photocathode decorated with N-doped carbon electrocatalyst layer publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702636 – volume: 56 start-page: 8701 issue: 30 year: 2017 ident: CR64 article-title: Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703301 – volume: 22 start-page: 18722 issue: 52 year: 2016 ident: CR70 article-title: Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air publication-title: Chem. Eng. J – ident: CR14 – volume: 141 start-page: 18358 issue: 46 year: 2019 ident: CR18 article-title: Perspectives on the development of oxide-based photocathodes for solar fuel production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07976 – volume: 30 start-page: 1882 issue: 12 year: 2009 ident: CR38 article-title: Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21191 – volume: 570 start-page: 504 issue: 7762 year: 2019 ident: CR28 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 6 start-page: 5884 issue: 15 year: 2016 ident: CR35 article-title: Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00622A – volume: 29 start-page: 1701774 issue: 31 year: 2017 ident: CR56 article-title: Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water publication-title: Adv. Mater. doi: 10.1002/adma.201701774 – volume: 11 start-page: 9304 issue: 21 year: 2020 ident: CR13 article-title: Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02480 – volume: 360 start-page: eaar6611 issue: 6391 year: 2018 ident: CR3 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 39 start-page: 13353 issue: 25 year: 2014 ident: CR21 article-title: Noble metal-free cobalt oxide (CoO ) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.04.121 – volume: 99 start-page: 7189 issue: 22 year: 1977 ident: CR9 article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J Am Chem. Soc. doi: 10.1021/ja00464a015 – volume: 373 start-page: 572 year: 2019 ident: CR39 article-title: ynthesis of Fe O loaded porous g-C N photocatalyst for photocatalytic reduction of dinitrogen to ammonia publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.021 – volume: 50 start-page: 112 issue: 1 year: 2017 ident: CR37 article-title: Solar water splitting and nitrogen fixation with layered bismuth oxyhalides publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.6b00523 – volume: 123 start-page: 14573 issue: 23 year: 2019 ident: CR73 article-title: Band gap narrowing of zinc orthogermanate by dimensional and defect modification publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01471 – volume: 7 start-page: 4832 issue: 8 year: 2016 ident: CR36 article-title: Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity publication-title: Chem. Sci. doi: 10.1039/C6SC00389C – volume: 9 start-page: 4673 issue: 8 year: 2021 ident: CR27 article-title: Selective nitrogen reduction to ammonia on iron porphyrin-based single-site metal–organic frameworks publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08741F – volume: 6 start-page: 4102 issue: 9 year: 2018 ident: CR66 article-title: MXene-derived TiO @C/g-C N heterojunctions for highly efficient nitrogen photofixation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09350K – volume: 1 start-page: 100013 issue: 2 year: 2019 ident: CR24 article-title: Photocatalytic ammonia synthesis: recent progress and future publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100013 – volume: 1 start-page: 636 issue: 10 year: 2008 ident: CR1 article-title: How a century of ammonia synthesis changed the world publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 8 start-page: 13842 issue: 27 year: 2020 ident: CR4 article-title: Enabling electrochemical N reduction to NH in the low overpotential region using non-noble metal Bi electrodes via surface composition modification publication-title: J Mater Chem A doi: 10.1039/D0TA02550J – volume: 11 start-page: 10439 issue: 21 year: 2019 ident: CR51 article-title: Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi MoO and oxygen-vacancy-rich p-type BiOBr publication-title: Nanoscale doi: 10.1039/C9NR02279A – volume: 7 start-page: 6813 issue: 7 year: 2019 ident: CR20 article-title: Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO nanosheets publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06134 – volume: 90 start-page: 6223 issue: 23 year: 1986 ident: CR11 article-title: Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide publication-title: J. Phys. Chem doi: 10.1021/j100281a031 – volume: 4 start-page: 2111 issue: 9 year: 2019 ident: CR29 article-title: Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01573 – volume: 140 start-page: 8497 issue: 27 year: 2018 ident: CR52 article-title: High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03537 – volume: 140 start-page: 8497 issue: 27 year: 2018 ident: 273_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03537 – volume: 7 start-page: 4832 issue: 8 year: 2016 ident: 273_CR36 publication-title: Chem. Sci. doi: 10.1039/C6SC00389C – volume: 123 start-page: 14573 issue: 23 year: 2019 ident: 273_CR73 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01471 – volume: 141 start-page: 18358 issue: 46 year: 2019 ident: 273_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07976 – volume: 6 start-page: 15 issue: 1 year: 2019 ident: 273_CR6 publication-title: Nano Converg. doi: 10.1186/s40580-019-0182-5 – volume: 56 start-page: 8701 issue: 30 year: 2017 ident: 273_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703301 – volume: 12 start-page: 321 issue: 3 year: 1983 ident: 273_CR12 publication-title: Chem. Lett. doi: 10.1246/cl.1983.321 – volume: 18 start-page: 7372 issue: 11 year: 2018 ident: 273_CR49 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03655 – volume: 116 start-page: 6635 issue: 14 year: 2019 ident: 273_CR25 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1817881116 – volume: 6 start-page: 1802109 issue: 8 year: 2019 ident: 273_CR26 publication-title: Adv. Sci. doi: 10.1002/advs.201802109 – volume: 10 start-page: 6980 issue: 7 year: 2016 ident: 273_CR74 publication-title: ACS Nano doi: 10.1021/acsnano.6b02965 – volume: 400 start-page: 415 issue: 6743 year: 1999 ident: 273_CR2 publication-title: Nature doi: 10.1038/22672 – volume: 10 start-page: 14592 issue: 24 year: 2020 ident: 273_CR77 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04864 – volume: 9 start-page: 5797 issue: 7 year: 2019 ident: 273_CR30 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00358 – volume: 9 start-page: 4673 issue: 8 year: 2021 ident: 273_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08741F – volume: 8 start-page: 18258 issue: 49 year: 2020 ident: 273_CR45 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c06775 – ident: 273_CR16 doi: 10.1007/978-1-4684-1806-4_4 – volume: 13 start-page: 1603301 issue: 14 year: 2017 ident: 273_CR22 publication-title: Small doi: 10.1002/smll.201603301 – volume: 61 start-page: 1187 issue: 9 year: 2018 ident: 273_CR34 publication-title: Sci. China-Chem. doi: 10.1007/s11426-018-9273-1 – volume: 5 start-page: 1834 issue: 6 year: 2020 ident: 273_CR8 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00711 – ident: 273_CR15 – volume: 9 start-page: 9739 issue: 11 year: 2019 ident: 273_CR41 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 6 start-page: 4102 issue: 9 year: 2018 ident: 273_CR66 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09350K – volume: 8 start-page: 1 issue: e248 year: 2016 ident: 273_CR76 publication-title: NPG Asia Mater. – volume: 7 start-page: 6813 issue: 7 year: 2019 ident: 273_CR20 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06134 – volume: 8 start-page: 27661 issue: 41 year: 2016 ident: 273_CR55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08129 – volume: 3 start-page: 1800388 issue: 6 year: 2019 ident: 273_CR48 publication-title: Small Methods doi: 10.1002/smtd.201800388 – volume: 373 start-page: 572 year: 2019 ident: 273_CR39 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.021 – volume: 144 start-page: 468 year: 2014 ident: 273_CR19 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2013.07.047 – volume: 4 start-page: 1186 issue: 6 year: 2020 ident: 273_CR5 publication-title: Joule doi: 10.1016/j.joule.2020.04.004 – volume: 8 start-page: 1986 issue: 4 year: 2016 ident: 273_CR54 publication-title: Nanoscale doi: 10.1039/C5NR07380D – volume: 502 start-page: 144202 year: 2020 ident: 273_CR72 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144202 – volume: 2019 start-page: 2182 issue: 16 year: 2019 ident: 273_CR47 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201900098 – volume: 11 start-page: 10439 issue: 21 year: 2019 ident: 273_CR51 publication-title: Nanoscale doi: 10.1039/C9NR02279A – volume: 5 start-page: 201 issue: 1 year: 2017 ident: 273_CR61 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09275F – volume: 22 start-page: 18722 issue: 52 year: 2016 ident: 273_CR70 publication-title: Chem. Eng. J – volume: 90 start-page: 6223 issue: 23 year: 1986 ident: 273_CR11 publication-title: J. Phys. Chem doi: 10.1021/j100281a031 – volume: 124 start-page: 72 year: 2017 ident: 273_CR57 publication-title: Carbon doi: 10.1016/j.carbon.2017.07.014 – volume: 8 start-page: 13842 issue: 27 year: 2020 ident: 273_CR4 publication-title: J Mater Chem A doi: 10.1039/D0TA02550J – volume: 4 start-page: 2111 issue: 9 year: 2019 ident: 273_CR29 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01573 – volume: 29 start-page: 1701774 issue: 31 year: 2017 ident: 273_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.201701774 – volume: 450 start-page: 187 year: 2016 ident: 273_CR71 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2015.07.022 – volume: 52 start-page: 10221 issue: 67 year: 2016 ident: 273_CR75 publication-title: Chem. Commun. doi: 10.1039/C6CC04775K – volume: 22 start-page: 13819 issue: 39 year: 2016 ident: 273_CR62 publication-title: Chem. Eur. J. doi: 10.1002/chem.201603277 – volume: 13 start-page: 263 issue: 4 year: 2012 ident: 273_CR17 publication-title: J. Photochem. Photobiol. C-Photochem. Rev. doi: 10.1016/j.jphotochemrev.2012.07.002 – volume: 28 start-page: 6054 issue: 17 year: 2016 ident: 273_CR44 publication-title: Chem. Mat. doi: 10.1021/acs.chemmater.6b00460 – volume: 200 start-page: 323 year: 2017 ident: 273_CR58 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.07.025 – volume: 3 start-page: 23435 issue: 46 year: 2015 ident: 273_CR50 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 1 start-page: 100013 issue: 2 year: 2019 ident: 273_CR24 publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100013 – volume: 29 start-page: 1701432 issue: 28 year: 2017 ident: 273_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201701432 – volume: 10 start-page: 29408 issue: 49 year: 2020 ident: 273_CR40 publication-title: RSC Adv. doi: 10.1039/D0RA05779G – volume: 57 start-page: 5278 issue: 19 year: 2018 ident: 273_CR68 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201713229 – volume: 6 start-page: 12693 issue: 26 year: 2018 ident: 273_CR43 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02161A – volume: 29 start-page: 1703828 issue: 42 year: 2017 ident: 273_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201703828 – ident: 273_CR14 doi: 10.1016/j.gee.2020.05.011 – volume: 6 start-page: 5884 issue: 15 year: 2016 ident: 273_CR35 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00622A – volume: 140 start-page: 9434 issue: 30 year: 2018 ident: 273_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 5 start-page: 2000487 issue: 2 year: 2021 ident: 273_CR23 publication-title: Sol. RRL doi: 10.1002/solr.202000487 – volume: 8 start-page: 334 issue: 1 year: 2020 ident: 273_CR10 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10471B – volume: 360 start-page: eaar6611 issue: 6391 year: 2018 ident: 273_CR3 publication-title: Science doi: 10.1126/science.aar6611 – volume: 8 start-page: 22251 issue: 42 year: 2020 ident: 273_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08678A – volume: 8 start-page: 1702636 issue: 20 year: 2018 ident: 273_CR42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702636 – volume: 7 start-page: 18099 issue: 29 year: 2017 ident: 273_CR67 publication-title: RCS Adv. – volume: 201 start-page: 58 year: 2017 ident: 273_CR63 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.08.002 – volume: 1 start-page: 636 issue: 10 year: 2008 ident: 273_CR1 publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 39 start-page: 13353 issue: 25 year: 2014 ident: 273_CR21 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.04.121 – volume: 13 start-page: 21411 issue: 18 year: 2021 ident: 273_CR78 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03698 – volume: 570 start-page: 504 issue: 7762 year: 2019 ident: 273_CR28 publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 31 start-page: 1806482 issue: 16 year: 2019 ident: 273_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 30 start-page: 1882 issue: 12 year: 2009 ident: 273_CR38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21191 – volume: 3 start-page: 1800352 issue: 6 year: 2019 ident: 273_CR7 publication-title: Small Methods doi: 10.1002/smtd.201800352 – volume: 254 start-page: 351 year: 2019 ident: 273_CR33 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.05.005 – volume: 50 start-page: 112 issue: 1 year: 2017 ident: 273_CR37 publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.6b00523 – volume: 529 start-page: 91 year: 2017 ident: 273_CR69 publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2016.10.017 – volume: 218 start-page: 600 year: 2017 ident: 273_CR65 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.07.013 – volume: 11 start-page: 9304 issue: 21 year: 2020 ident: 273_CR13 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02480 – volume: 99 start-page: 7189 issue: 22 year: 1977 ident: 273_CR9 publication-title: J Am Chem. Soc. doi: 10.1021/ja00464a015 – volume: 5 start-page: 10858 issue: 11 year: 2017 ident: 273_CR53 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02788 |
SSID | ssj0001763418 |
Score | 2.319447 |
SecondaryResourceType | review_article |
Snippet | Photocatalytic N
2
reduction has emerged as one of the most attractive routes to produce NH
3
as a useful commodity for chemicals used in industries and as a... Photocatalytic N reduction has emerged as one of the most attractive routes to produce NH as a useful commodity for chemicals used in industries and as a... Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a... Abstract Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and... Photocatalytic N 2 reduction has emerged as one of the most attractive routes to produce NH 3 as a useful commodity for chemicals used in industries and as a... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22 |
SubjectTerms | Ammonia Chemistry and Materials Science Materials Science Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nitrogen Photocatalysis Photocatalyst Photocatalysts Review 고분자공학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBA3sBq_kskREFVBggNqpd4sx492VZSsNqmq_nvGTnbZ5XnhtNLa1nrn4fnGY38m5JVqI2oZIuMuKKZ0sKyByjGneIgeEYLyaR_y85fq6ER9OtWnW099pTNhEz3wJLgDrUG0QTkEwkEJ5TCc8yilS1dEhbBtWn3LptxKpvLuCrqN4rC-JQPVwYC_CyVLJxIyhwuDnUiUCfsxvnSr-Dus-euRyZ_qpjkcHd4ht2ccSd9O879LboTuHrm1xS54nxx_nTf6qM_HNGgf6fK8H_u8ZXM9jANFxEptssSFpcuJ-xVH0HTnhF4hCsXWzlP0-lWPhkbP7PCAnBx-OH5_xOZHFJjDSD0yK2UL2lYCYlkFX9YWKo_ZJ4pThKptaw-6FRihfAipJueUrSPUVnKL2AqUfEj2ur4LjwnViY2ucTzwmEh5VBODtZZ7qL2OEURB-Fqgxs0M4-mhi28mZxpQmUkJBpVgshIMFOT1Zsxy4tf4a-93SU-bnokbO3-BFmNmizH_spiCvEQtmwu3yOPT51lvLlYGM4iPBvFagrAF2V8bgZm9ejCYfuGC2HBdF-TFphn9MRVZbBf6y6mPlqleXZBHk81spiuVzGXhgtQ71rTzf3ZbusV55vzGhReBHQrgzdrufkzrz_J68j_k9ZTcFNltAL1nn-yNq8vwDJHY2D7PTvcdGGcrig priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEHcwOo6tpPZEwLEUpDggFqpN8vxY7sqSpYkVcW_Z-wkuyyPnlaK7WzsmfF8nrE_E_JSVgGlDIFx6yWTyhs2h8IyK7kPDhGCdDEO-eVrcXQiP5-q0zHg1o3bKqc5MU3UrrExRn6I0BeVcc5V-Wb9g8Vbo2J2dbxC4zq5wdHTRD2HxcdtjAWNR3KYzspAcdjhv8OMxX0JicmFwY4_SrT96GXqNvwLcf69cfKP7GlySos75PaIJunbQfx3yTVf3yO3fuMYvE-Ov43hPurSZg3aBLo-a_omBW5-dn1HEbdSEzu4MnQ9MMBiCxpPntBLxKJYWjuKtt82qG50aboH5GTx4fj9ERuvUmAW_XXPjBAVKFPkEGaFd7PSQOFwDcrB576oqtKBqnL0U877mJmz0pQBSiO4QYQFUjwke3VT-8eEqshJN7fc8xCpeeQ8eGMMd1A6FQLkGeHTgGo78ozH6y6-67TegEIPQtAoBJ2EoCEjrzZt1gPLxpW130U5bWpGhuz0oGmXejQ4rRTklZcW3-FlLi3CQB6EsPFocZ6bKiMvUMr63K5S-_i7bPR5q3Ed8UkjaotANiMHkxLo0bY7vdXEjDzfFKNVxlSLqX1zMdRRImatM_Jo0JnN5wopUnI4I-WONu30Z7ekXp0l5m-cfhHe4QC8nvRu-1n_H6_9q3vxhNzMk0EA2sUB2evbC_8UkVZfPUvm9AvsFCQs priority: 102 providerName: ProQuest |
Title | Rational design of photocatalysts for ammonia production from water and nitrogen gas |
URI | https://link.springer.com/article/10.1186/s40580-021-00273-8 https://www.ncbi.nlm.nih.gov/pubmed/34338913 https://www.proquest.com/docview/2557309157 https://www.proquest.com/docview/2557532806 https://pubmed.ncbi.nlm.nih.gov/PMC8329108 https://doaj.org/article/5582be4c118e424c9291f33c802222ab https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002811099 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nano Convergence, 2021, 8(22), , pp.1-12 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7QUeEN8LjMog3iCijj_iPnbVyqjEhMYm7c1yHHurhpKqyYT23-_spN0KA4mnSPY5Snx3uZ_v7F8APvDCo5aVT6l1POXCmXSkpE0tp86XiBB4GfKQ347k4SmfnYmzniYnnIW5W7-nSn5uUFwN07CRIFKvpGoLdgRlMhZm5eQ2n4KOwqlanYu5d-hG7IkU_RhRqqW_D13-uUnyt0ppDEDTJ_C4R45k3Kn6KTxw1TN4dIdP8DmcHPepPVLGjRmk9mRxUbd1TNJcN21DEKMSE2xvbsiiY3vFESScMiG_EHdib1US9PNljaZFzk3zAk6nByeTw7T_bUJqMTa3qWGsUMLITPmhdOUwN0qWuN6kymVOFkVeKlFkGJNK50IVznKTe5UbRg2iKcXZS9iu6srtAhGBf25kqaM-0PDwkXfGGFqqvBTeqywBuppQbXtO8fBri586ri2U1J0SNCpBRyVolcDH9ZhFx6jxT-n9oKe1ZGDDjg1oJLp3Li2EygrHLd7D8YxbhHzUM2bDMeIsM0UC71HL-tLO4_hwPa_15VLjmuGrRoQWQGsCeysj0L0fNxoXXPgJHFGRJ_Bu3Y0eGMoqpnL1VScjWKhQJ_Cqs5n14zLOYiE4gXzDmjbeZ7Onml9Elm_81CKUwwn4tLK728f6-3y9_j_xN_Awiw6i0E_2YLtdXrm3iLLaYgBbavplADvj8ezHDK_7B0ffj7F1kvFBdL1BzF_cAB9MIsc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QPwMHEnY4BB8ATR6sRJ3AeEGGxq2VahqZP25jm-dNVQUppO0_4Uv5FjJ2kpl73tKVJsR_G5-fM5PscAb1hukcvchlQZFrLEyLDHUxUqRo3ViBCYdn7Iw2HaP2ZfT5KTNfjZ5sK4Y5WtTfSGWpfK-ci3EfqiMPZokn2c_gjdrVEuutpeoVGLxb65usQtW_Vh8AX5-zaK9nZHn_thc6tAqHDpmocyjnOeyDTitpsa3c0kTzVuxyg3kUnzPNM8ySM02doYF6RSTGaWZzKmEsEGZzF-9xasM5fR2oH1nd3ht6OlVwfVlVHeZufwdLvC-fJu6E5C-NoxIV9ZAf1FAbiuFTP7L4z791HNP-K1fhncuwcbDX4ln2qBuw9rpngAd3-ravgQRkeNg5FofzyElJZMz8p56V1FV9W8IoiUiXQknUgyrWvO4gjicl3IJaJfbC00QWszK1HAyVhWj-D4Rsj8GDpFWZinQBJXBa-nqKHWFQNiPWuklFTzTCfW8igA2hJUqKayubtg47vwOxyeipoJApkgPBMED-DdYsy0rutxbe8dx6dFT1eT278oZ2PRqLhIEh7lhin8hmERUwg8qY1j5ZKZo0jmAbxGLotzNfHj3XNcivOZwJ3LQCBOdNA5gK1WCERjTSqxlP0AXi2a0Q644I4sTHlR90liFycP4EktM4vfjVnsw9EBZCvStDKf1ZZicuZrjaPBR0CJBHjfyt3yt_5Pr83rZ_ESbvdHhwfiYDDcfwZ3Iq8cHHVkCzrz2YV5jjhvnr9olIvA6U3r8y_pWmGb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEJ4i6dpzEe0AIKEuXQoVQK_XmOn5sV0XJsklV9a_x6xg7yS7Lo7eeIsV2FHse_sYzngF4zguHVBYuptrymKdWxUOR6Vhzap1BhMCNP4f8sptt7_NPB-nBGvzs78L4sMpeJwZFbSrtz8g3EfoiMw4pGvCuC4v4ujV6M_sR-wpS3tPal9NoWWTHnp2i-Va_Hm8hrV8wNvqw93477ioMxBq3sSZWSVKIVGVMuEFmzSBXIjNomlFhmc2KIjciLRiqb2Otd1hprnIncpVQhcBD8AS_ewku50k-9IafGH1cnu-g4HIq-ns6ItusceZiEPuYiJBFJhYre2EoGYA7XDl3_0K7fwdt_uG5DRvi6AZc75Aseduy3k1Ys-UtuPZbfsPbsPetO2okJgSKkMqR2VHVVOHQ6KxuaoKYmSi_oFNFZm32WRxB_K0Xcoo4GFtLQ1DvzCtkdTJR9R3Yv5BFvgvrZVXa-0BSnw9vqKmlzqcF4kNnlVLUiNykzgkWAe0XVOoux7kvtfFdBltHZLIlgkQiyEAEKSJ4uRgzazN8nNv7nafToqfPzh1eVPOJ7IRdpqlgheUav2E54xohKHVJov21ZsZUEcEzpLI81tMw3j8nlTyeS7RhxhIRowfREWz0TCA7vVLLpRRE8HTRjBrBu3lUaauTtk-aeI95BPdanln8bsKT4JiOIF_hppX5rLaU06OQdRxVP0JLXIBXPd8tf-v_6_Xg_Fk8gSsoxfLzeHfnIVxlQTYEisgGrDfzE_sIAV9TPA6SReDwokX5F5sLZGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+photocatalysts+for+ammonia+production+from+water+and+nitrogen+gas&rft.jtitle=Nano+convergence&rft.au=Choe%2C+Seokwoo&rft.au=Kim%2C+Sung+Min&rft.au=Lee%2C+Yeji&rft.au=Seok%2C+Jin&rft.date=2021-08-02&rft.eissn=2196-5404&rft.volume=8&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1186%2Fs40580-021-00273-8&rft_id=info%3Apmid%2F34338913&rft.externalDocID=34338913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-5404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-5404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-5404&client=summon |