Life Without Thyroid Hormone Receptor
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphi...
Saved in:
Published in | Endocrinology (Philadelphia) Vol. 162; no. 4; p. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. |
---|---|
AbstractList | Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier trans-genic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects ofT3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related dip-loid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings inTR knockout mice suggests both conservation and divergence inTR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. Key Words: amphibian metamorphosis, Xenopus laevis, Xenopus tropicalis, thyroid hormone receptor, adult stem cells, histone modification Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier trans-genic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects ofT3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related dip-loid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings inTR knockout mice suggests both conservation and divergence inTR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. |
Audience | Academic |
Author | Shi, Yun-Bo |
AuthorAffiliation | Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD, USA |
AuthorAffiliation_xml | – name: Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD, USA |
Author_xml | – sequence: 1 givenname: Yun-Bo orcidid: 0000-0002-6330-0639 surname: Shi fullname: Shi, Yun-Bo email: Shi@helix.nih.gov organization: Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33558878$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1LHDEUxUNR6mr72kdZkIJ9GM3X5ONFELG1sFAolj6GTHLjRmYma2ZG8L9vlt1aldqSh5Dkd85NTu4-2ulTDwh9IPiEUIJPoffJ5dPmzjaYqjdoRjSvK0kk3kEzjAmrJKVyD-0Pw21Zcs7ZW7THWF0rJdUMfVzEAPOfcVymaZxfLx9yin5-lXJX6sy_g4PVmPI7tBtsO8D77XyAfny-vL64qhbfvny9OF9UThA2VryRVoRahdBwojyvrcUWtHM2KGG1J5J7TYnzVLEGIGBva8I8h8CpItqxA3S28V1NTQfeQT9m25pVjp3NDybZaJ6f9HFpbtK9kZpLKlkxON4a5HQ3wTCaLg4O2tb2kKbBUK6k5EpoWtCjF-htmnJfnmcYEVqUhKj4F0WVJqIWmDyhbmwLJvYhldu5dWlzLrQu3yA0L9TJX6gyPHTRlbxDLPvPBIdP43jM4ff3_XF0OQ1DhvCIEGzW_WE2_WG2_VEE_IXAxdGOMa3jjO3rsk8bWZpW_yvxC7BhzbM |
CitedBy_id | crossref_primary_10_1210_endocr_bqae137 crossref_primary_10_1186_s12864_024_11175_4 crossref_primary_10_1007_s11427_023_2621_7 crossref_primary_10_1016_j_isci_2023_106301 crossref_primary_10_3389_fevo_2021_735487 crossref_primary_10_3389_fcell_2024_1431173 crossref_primary_10_3389_fendo_2024_1360188 crossref_primary_10_3390_cells10030536 crossref_primary_10_3390_cells11101595 crossref_primary_10_1007_s00018_022_04503_y crossref_primary_10_3390_ijms232213715 crossref_primary_10_1186_s13287_023_03336_1 crossref_primary_10_1016_j_bcp_2024_116645 crossref_primary_10_1186_s13578_023_00989_6 crossref_primary_10_1186_s13578_021_00627_z crossref_primary_10_1016_j_ygcen_2022_114102 crossref_primary_10_1016_j_ygcen_2022_114179 crossref_primary_10_1089_thy_2022_0469 crossref_primary_10_3389_fendo_2023_1184013 crossref_primary_10_3390_cells14030150 crossref_primary_10_1111_dgd_12764 crossref_primary_10_1016_j_ygcen_2024_114645 crossref_primary_10_3390_ijms23031223 |
Cites_doi | 10.1002/bies.950150404 10.1021/bi101762x 10.1016/S0021-9258(18)48346-9 10.1046/j.1432-0436.2002.700104.x 10.1089/105072503770867228 10.1016/1043-2760(95)00227-8 10.1186/s13578-020-00423-1 10.1089/thy.2019.0366 10.1210/en.2014-2016 10.1007/978-1-4613-3246-6 10.1210/me.2010-0269 10.1016/S0021-9258(18)48345-7 10.1210/en.2008-0751 10.1101/gad.9.21.2696 10.7150/ijbs.5109 10.1073/pnas.062413299 10.1186/s13578-020-00411-5 10.1074/jbc.M509593200 10.1016/B978-0-12-385979-2.00008-3 10.1016/0006-291X(91)91424-B 10.1089/thy.2018.0664 10.1128/MCB.00827-08 10.1128/MCB.23.19.6750-6758.2003 10.1016/S0305-0491(00)00198-X 10.1016/B978-0-12-455403-0.50015-3 10.1038/415549a 10.1210/en.2014-1554 10.1523/JNEUROSCI.21-24-09792.2001 10.1096/fj.201700131R 10.1089/thy.2019.0598 10.1074/jbc.M806548200 10.1089/105072502760143827 10.1016/j.mod.2007.03.006 10.1186/2045-3701-5-8 10.1128/MCB.17.8.4738 10.1001/archinte.160.4.526 10.1073/pnas.252774999 10.1007/BF02277051 10.1002/bies.950180509 10.1093/emboj/17.2.520 10.1016/S0016-5085(99)70501-9 10.1146/annurev.nu.15.070195.001403 10.1146/annurev.bi.63.070194.002315 10.1152/physrev.00030.2013 10.1093/emboj/16.11.3158 10.1016/0092-8674(95)90199-X 10.1073/pnas.1920086117 10.1038/sj.embor.embor908 10.1128/MCB.22.24.8527-8538.2002 10.1210/en.2016-1955 10.1111/dgd.12231 10.1016/B978-0-12-385979-2.00010-1 10.1016/B978-0-12-385979-2.00014-9 10.1152/physrev.2001.81.3.1097 10.1186/2045-3701-2-42 10.1093/emboj/18.3.623 10.1210/me.2012-1114 10.1016/j.ygcen.2005.07.009 10.1186/s13578-020-00429-9 10.1016/B978-0-12-385979-2.00005-8 10.3390/ijms19103284 10.1210/en.2016-1953 10.1016/j.bbagen.2012.04.020 10.1016/j.ygcen.2018.04.020 10.1210/en.2017-00601 10.1016/S0092-8674(02)00641-4 10.1096/fj.99-0943rev 10.1073/pnas.182430599 10.1002/stem.560 10.1007/s00441-016-2396-8 10.1016/j.ygcen.2019.03.006 10.1073/pnas.1215421109 10.1016/B978-0-12-385979-2.00009-5 10.1016/S0021-9258(19)85416-9 10.1128/MCB.25.13.5712-5724.2005 10.1177/2042018820917869 10.1016/S1043-2760(02)00043-7 10.1101/gad.4.11.1917 10.1073/pnas.87.18.7090 10.1016/S1043-2760(98)00026-5 10.1089/thy.2000.10.41 10.1128/MCB.26.8.3204-3214.2006 10.1186/2045-3701-1-37 10.1242/dev.099853 10.1074/jbc.M503999200 10.1002/dvg.22719 10.1186/s13578-015-0006-1 10.1101/gad.14.2.121 10.1016/S0955-0674(00)00209-X 10.1089/thy.1996.6.497 10.1101/gad.13.10.1329 10.1016/B978-0-12-385979-2.00006-X 10.1038/nrg2736 10.1210/me.2009-0135 10.1089/thy.2020.0022 10.1016/S1043-2760(00)00355-6 10.1074/jbc.270.31.18479 10.1210/en.2011-1736 10.1128/MCB.22.12.4043-4052.2002 10.1093/emboj/cdg219 10.1073/pnas.260141297 10.1186/2045-3701-3-21 10.1159/000469708 10.1210/me.2007-0492 10.1074/jbc.M607589200 10.1128/MCB.24.8.3337-3346.2004 10.1016/j.ydbio.2015.02.018 10.1073/pnas.191361698 10.1002/dvdy.10300 10.1146/annurev.physiol.62.1.439 10.1016/bs.ctdb.2017.01.001 10.1089/thy.1995.5.481 10.1126/science.218285 10.1210/en.2014-1439 10.1002/dvg.22720 10.1016/S0070-2153(08)60429-9 10.1128/MCB.24.20.9026-9037.2004 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of the Endocrine Society 2021. 2021 Published by Oxford University Press on behalf of the Endocrine Society 2021. COPYRIGHT 2021 Oxford University Press |
Copyright_xml | – notice: Published by Oxford University Press on behalf of the Endocrine Society 2021. 2021 – notice: Published by Oxford University Press on behalf of the Endocrine Society 2021. – notice: COPYRIGHT 2021 Oxford University Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7T5 7TM 7TO 7U7 8FD C1K FR3 H94 K9. P64 7X8 5PM |
DOI | 10.1210/endocr/bqab028 |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE MEDLINE - Academic CrossRef Oncogenes and Growth Factors Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1945-7170 |
ExternalDocumentID | PMC7947273 A699013694 33558878 10_1210_endocr_bqab028 10.1210/endocr/bqab028 |
Genre | Journal Article Research Support, N.I.H., Intramural Review |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -DZ -~X .55 .GJ .XZ 08P 0R~ 18M 1TH 29G 2WC 34G 354 39C 3O- 3V. 4.4 48X 53G 5GY 5RE 5RS 5YH 79B 8F7 AABZA AACZT AAIMJ AAJQQ AAKAS AAPGJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAYJJ ABDFA ABEFU ABEJV ABGNP ABHFT ABJNI ABLJU ABMNT ABNHQ ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACPRK ACUTJ ACZBC ADBBV ADGKP ADGZP ADHKW ADIYS ADQBN ADRTK ADVEK ADZCM AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFOFC AFRAH AFULF AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT APJGH AQKUS ARIXL ATGXG BAWUL BAYMD BCRHZ BENPR BEYMZ BPHCQ BSWAC BTRTY BVXVI C1A C45 CDBKE CJ0 CS3 DAKXR DIK DU5 E3Z EBS EJD EMOBN ENERS F5P FA8 FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HF~ HZ~ H~9 IAO IH2 IHR ITC J5H KBUDW KOP KQ8 KSI KSN L7B LMP M5~ MBLQV MHKGH MJL MVM NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH ODMLO OFXIZ OHH OHT OJZSN OK1 OPAEJ OVD OVIDX P2P PQQKQ PROAC Q-A REU ROX ROZ TEORI TJX TLC TMA TR2 TWZ UPT VQP VVN W2D W8F WH7 WHG WOQ X52 X7M XJT XOL YBU YHG YOC YQI YSK YYP ZCA ZCG ZGI ZKB ZXP ZY1 AAYXX ABXZS ADNBA AEMQT AGORE AHGBF AJBYB ALXQX CITATION NU- CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7T5 7TM 7TO 7U7 8FD C1K FR3 H94 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c613t-4b7a6f58ffb418d45aa0ae9ccaf86a9d174d921cd283beef0da513d4ef42819c3 |
ISSN | 0013-7227 1945-7170 |
IngestDate | Thu Aug 21 13:56:18 EDT 2025 Fri Jul 11 06:04:46 EDT 2025 Mon Jun 30 12:27:06 EDT 2025 Mon Jun 30 12:46:28 EDT 2025 Tue Jun 17 21:28:04 EDT 2025 Tue Jun 10 20:29:20 EDT 2025 Wed Feb 19 02:27:14 EST 2025 Thu Apr 24 23:10:09 EDT 2025 Tue Jul 01 04:35:50 EDT 2025 Fri Feb 07 10:35:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | amphibian metamorphosis thyroid hormone receptor histone modification adult stem cells Xenopus tropicalis Xenopus laevis |
Language | English |
License | This work is written by (a) US Government employee(s) and is in the public domain in the US. Published by Oxford University Press on behalf of the Endocrine Society 2021. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c613t-4b7a6f58ffb418d45aa0ae9ccaf86a9d174d921cd283beef0da513d4ef42819c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6330-0639 |
OpenAccessLink | https://academic.oup.com/endo/article-pdf/162/4/bqab028/41807151/bqab028.pdf |
PMID | 33558878 |
PQID | 2891656016 |
PQPubID | 2046207 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7947273 proquest_miscellaneous_2487748692 proquest_journals_3169655826 proquest_journals_2891656016 gale_infotracmisc_A699013694 gale_infotracacademiconefile_A699013694 pubmed_primary_33558878 crossref_primary_10_1210_endocr_bqab028 crossref_citationtrail_10_1210_endocr_bqab028 oup_primary_10_1210_endocr_bqab028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: United States – name: Washington |
PublicationTitle | Endocrinology (Philadelphia) |
PublicationTitleAlternate | Endocrinology |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Paul (2021121711253124200_CIT0070) 2007; 282 Holzer (2021121711253124200_CIT0013) 2013; 103 Leloup (2021121711253124200_CIT0049) 1977; 284 Wen (2021121711253124200_CIT0076) 2017; 31 Forrest (2021121711253124200_CIT0021) 1994; 5 Tata (2021121711253124200_CIT0012) 1993; 15 Canaris (2021121711253124200_CIT0003) 2000; 160 McMenamin (2021121711253124200_CIT0116) 2013; 103 Morte (2021121711253124200_CIT0122) 2002; 99 Hsu (2021121711253124200_CIT0111) 1998; 9 Laudet (2021121711253124200_CIT0020) 2002 Gilbert (2021121711253124200_CIT0127) 1981 Sachs (2021121711253124200_CIT0096) 2015; 156 Ishizuya-Oka (2021121711253124200_CIT0108) 2011; 1 Forrest (2021121711253124200_CIT0112) 2000; 10 Burke (2021121711253124200_CIT0035) 2000; 14 Wang (2021121711253124200_CIT0088) 2015; 5 Sinha (2021121711253124200_CIT0011) 2019; 29 Demarest (2021121711253124200_CIT0042) 2002; 415 Gauthier (2021121711253124200_CIT0119) 1999; 18 Huang (2021121711253124200_CIT0040) 2003; 22 Das (2021121711253124200_CIT0061) 2002; 99 Tanizaki (2021121711253124200_CIT0102) 2021 Schreiber (2021121711253124200_CIT0062) 2001; 98 Hasebe (2021121711253124200_CIT0126) 2016; 365 Shi (2021121711253124200_CIT0019) 1996; 18 Hsia (2021121711253124200_CIT0081) 2002; 22 Matsuura (2021121711253124200_CIT0079) 2012; 153 Buchholz (2021121711253124200_CIT0064) 2004; 24 Flamant (2021121711253124200_CIT0121) 2002; 16 Mullur (2021121711253124200_CIT0005) 2014; 94 McKenna (2021121711253124200_CIT0045) 2009; 23 Shibata (2021121711253124200_CIT0100) 2020; 30 Davis (2021121711253124200_CIT0103) 1996; 6 Yaoita (2021121711253124200_CIT0051) 1990; 4 Hasebe (2021121711253124200_CIT0065) 2011; 29 Wang (2021121711253124200_CIT0028) 2008; 149 Teixeira (2021121711253124200_CIT0006) 2020; 11 Bilesimo (2021121711253124200_CIT0078) 2011; 25 Johnson (2021121711253124200_CIT0128) 2013; 103 Rusch (2021121711253124200_CIT0120) 2001; 21 McKenna (2021121711253124200_CIT0034) 2002; 108 Blitz (2021121711253124200_CIT0087) 2013; 51 Parkison (2021121711253124200_CIT0105) 1991; 179 Shi (2021121711253124200_CIT0107) 1996; 32 Buchholz (2021121711253124200_CIT0130) 2015; 408 Glass (2021121711253124200_CIT0037) 2000; 14 Nakajima (2021121711253124200_CIT0098) 2019; 277 Schreiber (2021121711253124200_CIT0060) 2003; 100 Porterfield (2021121711253124200_CIT0015) 1993; 14 Yaoita (2021121711253124200_CIT0027) 1990; 87 Shi (2021121711253124200_CIT0047) 2012; 2 Tsai (2021121711253124200_CIT0030) 1994; 63 Kress (2021121711253124200_CIT0125) 2009; 284 Gilbert (2021121711253124200_CIT0017) 1996 Paul (2021121711253124200_CIT0074) 2005; 280 Wong (2021121711253124200_CIT0052) 1995; 270 Tanizaki (2021121711253124200_CIT0077) 2020 Plateroti (2021121711253124200_CIT0123) 1999; 116 Lazar (2021121711253124200_CIT0022) 1993; 14 Grimaldi (2021121711253124200_CIT0046) 2013; 1830 Rachez (2021121711253124200_CIT0041) 2001; 13 Schreiber (2021121711253124200_CIT0115) 2013; 103 Wen (2021121711253124200_CIT0094) 2017; 158 Choi (2021121711253124200_CIT0090) 2015; 156 Liu (2021121711253124200_CIT0113) 2002; 70 Lei (2021121711253124200_CIT0084) 2013; 3 Kanamori (2021121711253124200_CIT0053) 1992; 267 Mangelsdorf (2021121711253124200_CIT0029) 1995; 83 Puzianowska-Kuznicka (2021121711253124200_CIT0056) 1997; 17 Grimaldi (2021121711253124200_CIT0066) 2013; 103 Buchholz (2021121711253124200_CIT0101) 2018; 265 Matsuda (2021121711253124200_CIT0069) 2009; 29 Buchholz (2021121711253124200_CIT0063) 2003; 23 Dodd (2021121711253124200_CIT0106) 1976 Lei (2021121711253124200_CIT0085) 2012; 109 Ito (2021121711253124200_CIT0038) 2001; 12 Paul (2021121711253124200_CIT0071) 2005; 25 Jones (2021121711253124200_CIT0036) 2003; 274 Nakajima (2021121711253124200_CIT0059) 2003; 227 Göthe (2021121711253124200_CIT0118) 1999; 13 Wong (2021121711253124200_CIT0031) 1995; 9 Wang (2021121711253124200_CIT0054) 1993; 268 Wong (2021121711253124200_CIT0033) 1998; 17 Bao (2021121711253124200_CIT0109) 2020; 10 Nakayama (2021121711253124200_CIT0086) 2013; 51 Han (2021121711253124200_CIT0114) 2020; 30 Shi (2021121711253124200_CIT0016) 1999 Silva (2021121711253124200_CIT0008) 1995; 5 Gudernatsch (2021121711253124200_CIT0018) 1912; 35 Plateroti (2021121711253124200_CIT0124) 2006; 26 Franklyn (2021121711253124200_CIT0007) 1996; 7 Buchholz (2021121711253124200_CIT0067) 2006; 145 Buchholz (2021121711253124200_CIT0058) 2005; 280 Sachs (2021121711253124200_CIT0057) 2000; 97 Yen (2021121711253124200_CIT0002) 2001; 81 Choi (2021121711253124200_CIT0089) 2017; 158 Shibata (2021121711253124200_CIT0099) 2020; 10 Oppenheimer (2021121711253124200_CIT0001) 1979; 203 Guo (2021121711253124200_CIT0083) 2014; 141 Wen (2021121711253124200_CIT0093) 2015; 156 O’Malley (2021121711253124200_CIT0043) 2012; 26 Sachs (2021121711253124200_CIT0073) 2002; 22 Yen (2021121711253124200_CIT0097) 2015; 5 Davis (2021121711253124200_CIT0104) 2002; 12 Bulynko (2021121711253124200_CIT0044) 2011; 50 Sato (2021121711253124200_CIT0068) 2007; 124 Volkov (2021121711253124200_CIT0117) 2020; 117 Singh (2021121711253124200_CIT0004) 2018; 19 Zhang (2021121711253124200_CIT0039) 2000; 62 Perissi (2021121711253124200_CIT0048) 2010; 11 Havis (2021121711253124200_CIT0075) 2003; 4 Shi (2021121711253124200_CIT0026) 1992; 267 Tomita (2021121711253124200_CIT0072) 2004; 24 Heimeier (2021121711253124200_CIT0082) 2008; 22 Flamant (2021121711253124200_CIT0025) 2003; 14 Nakajima (2021121711253124200_CIT0092) 2018; 159 Jones (2021121711253124200_CIT0024) 2003; 13 Elinson (2021121711253124200_CIT0129) 2013; 103 Janssen (2021121711253124200_CIT0010) 2017; 6 Flamant (2021121711253124200_CIT0023) 2017; 125 Na (2021121711253124200_CIT0080) 2020; 10 Wen (2021121711253124200_CIT0095) 2016; 58 Hetzel (2021121711253124200_CIT0014) 1989 Freake (2021121711253124200_CIT0009) 1995; 15 Nieuwkoop (2021121711253124200_CIT0050) Sakane (2021121711253124200_CIT0091) 2018; 7 Sachs (2021121711253124200_CIT0055) 2000; 126 Sun (2021121711253124200_CIT0110) 2012; 8 Wong (2021121711253124200_CIT0032) 1997; 16 |
References_xml | – volume: 15 start-page: 239 issue: 4 year: 1993 ident: 2021121711253124200_CIT0012 article-title: Gene expression during metamorphosis: an ideal model for post-embryonic development publication-title: Bioessays. doi: 10.1002/bies.950150404 – volume: 50 start-page: 313 issue: 3 year: 2011 ident: 2021121711253124200_CIT0044 article-title: Nuclear receptor coactivators: structural and functional biochemistry publication-title: Biochemistry. doi: 10.1021/bi101762x – volume: 267 start-page: 739 issue: 2 year: 1992 ident: 2021121711253124200_CIT0053 article-title: The regulation of thyroid hormone receptor beta genes by thyroid hormone in Xenopus laevis publication-title: J Biol Chem. doi: 10.1016/S0021-9258(18)48346-9 – volume: 70 start-page: 36 issue: 1 year: 2002 ident: 2021121711253124200_CIT0113 article-title: Thyroid hormones are important for embryonic to larval transitory phase in zebrafish publication-title: Differentiation. doi: 10.1046/j.1432-0436.2002.700104.x – volume: 13 start-page: 1057 issue: 11 year: 2003 ident: 2021121711253124200_CIT0024 article-title: The thyroid hormone receptor beta gene: structure and functions in the brain and sensory systems publication-title: Thyroid. doi: 10.1089/105072503770867228 – volume: 284 start-page: 2261 year: 1977 ident: 2021121711253124200_CIT0049 article-title: La triiodothyronine: hormone de la métamorphose des amphibiens publication-title: CR Acad Sci. – volume: 7 start-page: 50 issue: 2 year: 1996 ident: 2021121711253124200_CIT0007 article-title: Thyroid disease: effects on cardiovascular function publication-title: Trends Endocrinol Metab. doi: 10.1016/1043-2760(95)00227-8 – volume: 10 start-page: 60 year: 2020 ident: 2021121711253124200_CIT0080 article-title: Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis publication-title: Cell Biosci. doi: 10.1186/s13578-020-00423-1 – volume: 30 start-page: 300 issue: 2 year: 2020 ident: 2021121711253124200_CIT0100 article-title: Organ-specific requirements for thyroid hormone receptor ensure temporal coordination of tissue-specific transformations and completion of Xenopus metamorphosis publication-title: Thyroid. doi: 10.1089/thy.2019.0366 – volume: 156 start-page: 409 issue: 2 year: 2015 ident: 2021121711253124200_CIT0096 article-title: Unliganded thyroid hormone receptor function: amphibian metamorphosis got TALENs publication-title: Endocrinology. doi: 10.1210/en.2014-2016 – volume-title: Metamorphosis: A Problem in Developmental Biology year: 1981 ident: 2021121711253124200_CIT0127 doi: 10.1007/978-1-4613-3246-6 – volume: 25 start-page: 225 issue: 2 year: 2011 ident: 2021121711253124200_CIT0078 article-title: Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses publication-title: Mol Endocrinol. doi: 10.1210/me.2010-0269 – volume: 267 start-page: 733 issue: 2 year: 1992 ident: 2021121711253124200_CIT0026 article-title: Genomic organization and alternative promoter usage of the two thyroid hormone receptor beta genes in Xenopus laevis publication-title: J Biol Chem. doi: 10.1016/S0021-9258(18)48345-7 – volume: 149 start-page: 5610 issue: 11 year: 2008 ident: 2021121711253124200_CIT0028 article-title: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis publication-title: Endocrinology. doi: 10.1210/en.2008-0751 – volume: 9 start-page: 2696 issue: 21 year: 1995 ident: 2021121711253124200_CIT0031 article-title: A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor publication-title: Genes Dev. doi: 10.1101/gad.9.21.2696 – volume: 8 start-page: 1217 issue: 8 year: 2012 ident: 2021121711253124200_CIT0110 article-title: Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations publication-title: Int J Biol Sci. doi: 10.7150/ijbs.5109 – volume: 99 start-page: 3985 issue: 6 year: 2002 ident: 2021121711253124200_CIT0122 article-title: Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.062413299 – volume: 10 start-page: 46 year: 2020 ident: 2021121711253124200_CIT0099 article-title: Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis publication-title: Cell Biosci. doi: 10.1186/s13578-020-00411-5 – volume: 280 start-page: 41222 issue: 50 year: 2005 ident: 2021121711253124200_CIT0058 article-title: Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation publication-title: J Biol Chem. doi: 10.1074/jbc.M509593200 – volume: 103 start-page: 229 year: 2013 ident: 2021121711253124200_CIT0128 article-title: Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00008-3 – volume: 179 start-page: 668 issue: 1 year: 1991 ident: 2021121711253124200_CIT0105 article-title: The monomer of pyruvate kinase, subtype M1, is both a kinase and a cytosolic thyroid hormone binding protein publication-title: Biochem Biophys Res Commun. doi: 10.1016/0006-291X(91)91424-B – volume: 29 start-page: 1173 issue: 9 year: 2019 ident: 2021121711253124200_CIT0011 article-title: Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists publication-title: Thyroid. doi: 10.1089/thy.2018.0664 – volume: 29 start-page: 745 issue: 3 year: 2009 ident: 2021121711253124200_CIT0069 article-title: Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis publication-title: Mol Cell Biol. doi: 10.1128/MCB.00827-08 – volume: 274 start-page: 237 year: 2003 ident: 2021121711253124200_CIT0036 article-title: N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors publication-title: Curr Top Microbiol Immunol. – volume: 23 start-page: 6750 issue: 19 year: 2003 ident: 2021121711253124200_CIT0063 article-title: A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes publication-title: Mol Cell Biol. doi: 10.1128/MCB.23.19.6750-6758.2003 – volume: 126 start-page: 199 issue: 2 year: 2000 ident: 2021121711253124200_CIT0055 article-title: Dual functions of thyroid hormone receptors during Xenopus development publication-title: Comp Biochem Physiol B Biochem Mol Biol. doi: 10.1016/S0305-0491(00)00198-X – start-page: 467 volume-title: Physiology of the Amphibia year: 1976 ident: 2021121711253124200_CIT0106 article-title: The biology of metamorphosis doi: 10.1016/B978-0-12-455403-0.50015-3 – volume: 415 start-page: 549 issue: 6871 year: 2002 ident: 2021121711253124200_CIT0042 article-title: Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators publication-title: Nature. doi: 10.1038/415549a – volume: 156 start-page: 735 issue: 2 year: 2015 ident: 2021121711253124200_CIT0090 article-title: Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis publication-title: Endocrinology. doi: 10.1210/en.2014-1554 – volume: 21 start-page: 9792 issue: 24 year: 2001 ident: 2021121711253124200_CIT0120 article-title: Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.21-24-09792.2001 – volume-title: Amphibian Metamorphosis: From Morphology to Molecular Biology year: 1999 ident: 2021121711253124200_CIT0016 – volume: 31 start-page: 4821 issue: 11 year: 2017 ident: 2021121711253124200_CIT0076 article-title: Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development publication-title: Faseb J. doi: 10.1096/fj.201700131R – volume: 30 start-page: 314 issue: 2 year: 2020 ident: 2021121711253124200_CIT0114 article-title: Generation of novel genetic models to dissect resistance to thyroid hormone receptor α in Zebrafish publication-title: Thyroid. doi: 10.1089/thy.2019.0598 – volume: 284 start-page: 1234 issue: 2 year: 2009 ident: 2021121711253124200_CIT0125 article-title: The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine publication-title: J Biol Chem. doi: 10.1074/jbc.M806548200 – volume: 12 start-page: 459 issue: 6 year: 2002 ident: 2021121711253124200_CIT0104 article-title: Nongenomic actions of thyroid hormone on the heart publication-title: Thyroid. doi: 10.1089/105072502760143827 – volume: 124 start-page: 476 issue: 6 year: 2007 ident: 2021121711253124200_CIT0068 article-title: A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis publication-title: Mech Dev. doi: 10.1016/j.mod.2007.03.006 – volume: 5 start-page: 8 year: 2015 ident: 2021121711253124200_CIT0097 article-title: Unliganded TRs regulate growth and developmental timing during early embryogenesis: evidence for a dual function mechanism of TR action publication-title: Cell Biosci. doi: 10.1186/2045-3701-5-8 – volume: 17 start-page: 4738 issue: 8 year: 1997 ident: 2021121711253124200_CIT0056 article-title: Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis publication-title: Mol Cell Biol. doi: 10.1128/MCB.17.8.4738 – volume: 160 start-page: 526 issue: 4 year: 2000 ident: 2021121711253124200_CIT0003 article-title: The Colorado thyroid disease prevalence study publication-title: Arch Intern Med. doi: 10.1001/archinte.160.4.526 – volume: 100 start-page: 1769 issue: 4 year: 2003 ident: 2021121711253124200_CIT0060 article-title: Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.252774999 – volume: 35 start-page: 457 year: 1912 ident: 2021121711253124200_CIT0018 article-title: Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation: a contribution to the knowledge of organs with internal secretion publication-title: Arch Entwicklungsmech Org. doi: 10.1007/BF02277051 – volume: 18 start-page: 391 issue: 5 year: 1996 ident: 2021121711253124200_CIT0019 article-title: Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors publication-title: Bioessays. doi: 10.1002/bies.950180509 – volume: 17 start-page: 520 issue: 2 year: 1998 ident: 2021121711253124200_CIT0033 article-title: Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase publication-title: Embo J. doi: 10.1093/emboj/17.2.520 – volume: 116 start-page: 1367 issue: 6 year: 1999 ident: 2021121711253124200_CIT0123 article-title: Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development publication-title: Gastroenterology. doi: 10.1016/S0016-5085(99)70501-9 – volume: 15 start-page: 263 year: 1995 ident: 2021121711253124200_CIT0009 article-title: Thermogenesis and thyroid function publication-title: Annu Rev Nutr. doi: 10.1146/annurev.nu.15.070195.001403 – volume: 14 start-page: 184 issue: 2 year: 1993 ident: 2021121711253124200_CIT0022 article-title: Thyroid hormone receptors: multiple forms, multiple possibilities publication-title: Endocr Rev. – volume: 63 start-page: 451 year: 1994 ident: 2021121711253124200_CIT0030 article-title: Molecular mechanisms of action of steroid/thyroid receptor superfamily members publication-title: Annu Rev Biochem. doi: 10.1146/annurev.bi.63.070194.002315 – volume: 94 start-page: 355 issue: 2 year: 2014 ident: 2021121711253124200_CIT0005 article-title: Thyroid hormone regulation of metabolism publication-title: Physiol Rev. doi: 10.1152/physrev.00030.2013 – volume: 16 start-page: 3158 issue: 11 year: 1997 ident: 2021121711253124200_CIT0032 article-title: Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation publication-title: Embo J. doi: 10.1093/emboj/16.11.3158 – volume: 83 start-page: 835 issue: 6 year: 1995 ident: 2021121711253124200_CIT0029 article-title: The nuclear receptor superfamily: the second decade publication-title: Cell. doi: 10.1016/0092-8674(95)90199-X – volume: 117 start-page: 15262 issue: 26 year: 2020 ident: 2021121711253124200_CIT0117 article-title: Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1920086117 – volume: 4 start-page: 883 issue: 9 year: 2003 ident: 2021121711253124200_CIT0075 article-title: Metamorphic T3-response genes have specific co-regulator requirements publication-title: EMBO Rep. doi: 10.1038/sj.embor.embor908 – volume-title: The Nuclear Receptor FactsBook year: 2002 ident: 2021121711253124200_CIT0020 – volume: 22 start-page: 8527 issue: 24 year: 2002 ident: 2021121711253124200_CIT0073 article-title: Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development publication-title: Mol Cell Biol. doi: 10.1128/MCB.22.24.8527-8538.2002 – volume: 158 start-page: 1623 issue: 6 year: 2017 ident: 2021121711253124200_CIT0089 article-title: Growth, Development, and Intestinal Remodeling Occurs in the Absence of Thyroid Hormone Receptor α in Tadpoles of Xenopus tropicalis publication-title: Endocrinology. doi: 10.1210/en.2016-1955 – volume: 58 start-page: 106 issue: 1 year: 2016 ident: 2021121711253124200_CIT0095 article-title: Regulation of growth rate and developmental timing by Xenopus thyroid hormone receptor α publication-title: Dev Growth Differ. doi: 10.1111/dgd.12231 – volume: 103 start-page: 277 year: 2013 ident: 2021121711253124200_CIT0066 article-title: High-throughput sequencing will metamorphose the analysis of thyroid hormone receptor function during amphibian development publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00010-1 – volume: 16 start-page: 24 issue: 1 year: 2002 ident: 2021121711253124200_CIT0121 article-title: Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene publication-title: Mol Endocrinol. – volume: 103 start-page: 397 year: 2013 ident: 2021121711253124200_CIT0013 article-title: Thyroid hormones and postembryonic development in amniotes publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00014-9 – volume: 81 start-page: 1097 issue: 3 year: 2001 ident: 2021121711253124200_CIT0002 article-title: Physiological and molecular basis of thyroid hormone action publication-title: Physiol Rev. doi: 10.1152/physrev.2001.81.3.1097 – volume: 2 start-page: 42 issue: 1 year: 2012 ident: 2021121711253124200_CIT0047 article-title: Thyroid hormone receptor actions on transcription in amphibia: the roles of histone modification and chromatin disruption publication-title: Cell Biosci. doi: 10.1186/2045-3701-2-42 – volume: 18 start-page: 623 issue: 3 year: 1999 ident: 2021121711253124200_CIT0119 article-title: Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development publication-title: Embo J. doi: 10.1093/emboj/18.3.623 – volume: 5 start-page: 167 issue: 2 year: 1994 ident: 2021121711253124200_CIT0021 article-title: The erbA/thyroid hormone receptor genes in development of the central nervous system publication-title: Semin Cancer Biol. – volume: 26 start-page: 1646 issue: 10 year: 2012 ident: 2021121711253124200_CIT0043 article-title: Minireview: nuclear receptor and coregulator proteomics–2012 and beyond publication-title: Mol Endocrinol. doi: 10.1210/me.2012-1114 – volume: 145 start-page: 1 issue: 1 year: 2006 ident: 2021121711253124200_CIT0067 article-title: Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog publication-title: Gen Comp Endocrinol. doi: 10.1016/j.ygcen.2005.07.009 – volume: 10 start-page: 66 year: 2020 ident: 2021121711253124200_CIT0109 article-title: Intestinal homeostasis: a communication between life and death publication-title: Cell Biosci. doi: 10.1186/s13578-020-00429-9 – volume: 103 start-page: 127 year: 2013 ident: 2021121711253124200_CIT0116 article-title: Metamorphosis in teleosts publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00005-8 – volume: 19 issue: 10 year: 2018 ident: 2021121711253124200_CIT0004 article-title: Novel transcriptional mechanisms for regulating metabolism by thyroid hormone publication-title: Int J Mol Sci. doi: 10.3390/ijms19103284 – volume: 158 start-page: 1985 issue: 6 year: 2017 ident: 2021121711253124200_CIT0094 article-title: Thyroid hormone receptor α controls developmental timing and regulates the rate and coordination of tissue-specific metamorphosis in Xenopus tropicalis publication-title: Endocrinology. doi: 10.1210/en.2016-1953 – volume: 1830 start-page: 3882 issue: 7 year: 2013 ident: 2021121711253124200_CIT0046 article-title: Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbagen.2012.04.020 – volume: 265 start-page: 214 year: 2018 ident: 2021121711253124200_CIT0101 article-title: Dual function model revised by thyroid hormone receptor alpha knockout frogs publication-title: Gen Comp Endocrinol. doi: 10.1016/j.ygcen.2018.04.020 – volume: 159 start-page: 733 issue: 2 year: 2018 ident: 2021121711253124200_CIT0092 article-title: Thyroid hormone receptor α- and β-knockout Xenopus tropicalis tadpoles reveal subtype-specific roles during development publication-title: Endocrinology. doi: 10.1210/en.2017-00601 – volume: 108 start-page: 465 issue: 4 year: 2002 ident: 2021121711253124200_CIT0034 article-title: Combinatorial control of gene expression by nuclear receptors and coregulators publication-title: Cell. doi: 10.1016/S0092-8674(02)00641-4 – volume: 14 start-page: 1876 issue: 13 year: 2000 ident: 2021121711253124200_CIT0035 article-title: Co-repressors 2000 publication-title: Faseb J. doi: 10.1096/fj.99-0943rev – volume: 99 start-page: 12230 issue: 19 year: 2002 ident: 2021121711253124200_CIT0061 article-title: Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.182430599 – volume: 29 start-page: 154 issue: 1 year: 2011 ident: 2021121711253124200_CIT0065 article-title: Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine publication-title: Stem Cells. doi: 10.1002/stem.560 – volume: 365 start-page: 309 issue: 2 year: 2016 ident: 2021121711253124200_CIT0126 article-title: Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2396-8 – volume: 277 start-page: 66 year: 2019 ident: 2021121711253124200_CIT0098 article-title: A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis publication-title: Gen Comp Endocrinol. doi: 10.1016/j.ygcen.2019.03.006 – volume: 109 start-page: 17484 issue: 43 year: 2012 ident: 2021121711253124200_CIT0085 article-title: Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs) publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1215421109 – volume: 103 start-page: 259 year: 2013 ident: 2021121711253124200_CIT0129 article-title: Metamorphosis in a frog that does not have a tadpole publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00009-5 – volume: 268 start-page: 16270 issue: 22 year: 1993 ident: 2021121711253124200_CIT0054 article-title: Thyroid hormone-induced gene expression program for amphibian tail resorption publication-title: J Biol Chem. doi: 10.1016/S0021-9258(19)85416-9 – volume: 25 start-page: 5712 issue: 13 year: 2005 ident: 2021121711253124200_CIT0071 article-title: Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis publication-title: Mol Cell Biol. doi: 10.1128/MCB.25.13.5712-5724.2005 – volume: 11 start-page: 2042018820917869 year: 2020 ident: 2021121711253124200_CIT0006 article-title: The role of thyroid hormone in metabolism and metabolic syndrome publication-title: Ther Adv Endocrinol Metab. doi: 10.1177/2042018820917869 – volume: 14 start-page: 85 issue: 2 year: 2003 ident: 2021121711253124200_CIT0025 article-title: Thyroid hormone receptors: lessons from knockout and knock-in mutant mice publication-title: Trends Endocrinol Metab. doi: 10.1016/S1043-2760(02)00043-7 – volume: 4 start-page: 1917 issue: 11 year: 1990 ident: 2021121711253124200_CIT0051 article-title: A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis publication-title: Genes Dev. doi: 10.1101/gad.4.11.1917 – volume: 87 start-page: 7090 issue: 18 year: 1990 ident: 2021121711253124200_CIT0027 article-title: Xenopus laevis alpha and beta thyroid hormone receptors publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.87.18.7090 – volume: 9 start-page: 103 issue: 3 year: 1998 ident: 2021121711253124200_CIT0111 article-title: Thyroid hormone receptor gene knockouts publication-title: Trends Endocrinol Metab. doi: 10.1016/S1043-2760(98)00026-5 – volume: 10 start-page: 41 issue: 1 year: 2000 ident: 2021121711253124200_CIT0112 article-title: Functions of thyroid hormone receptors in mice publication-title: Thyroid. doi: 10.1089/thy.2000.10.41 – volume: 26 start-page: 3204 issue: 8 year: 2006 ident: 2021121711253124200_CIT0124 article-title: Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells publication-title: Mol Cell Biol. doi: 10.1128/MCB.26.8.3204-3214.2006 – volume-title: Metamorphosis: Post-Embryonic Reprogramming of Gene Expression in Amphibian and Insect Cells year: 1996 ident: 2021121711253124200_CIT0017 – volume: 1 start-page: 37 year: 2011 ident: 2021121711253124200_CIT0108 article-title: Evolutionary insights into postembryonic development of adult intestinal stem cells publication-title: Cell Biosci. doi: 10.1186/2045-3701-1-37 – volume: 141 start-page: 707 issue: 3 year: 2014 ident: 2021121711253124200_CIT0083 article-title: Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis publication-title: Development. doi: 10.1242/dev.099853 – volume: 280 start-page: 27165 issue: 29 year: 2005 ident: 2021121711253124200_CIT0074 article-title: Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development publication-title: J Biol Chem. doi: 10.1074/jbc.M503999200 – volume: 51 start-page: 827 issue: 12 year: 2013 ident: 2021121711253124200_CIT0087 article-title: Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system publication-title: Genesis. doi: 10.1002/dvg.22719 – volume: 5 start-page: 15 year: 2015 ident: 2021121711253124200_CIT0088 article-title: Targeted gene disruption in Xenopus laevis using CRISPR/Cas9 publication-title: Cell Biosci. doi: 10.1186/s13578-015-0006-1 – volume: 14 start-page: 121 issue: 2 year: 2000 ident: 2021121711253124200_CIT0037 article-title: The coregulator exchange in transcriptional functions of nuclear receptors publication-title: Genes Dev. doi: 10.1101/gad.14.2.121 – volume: 13 start-page: 274 issue: 3 year: 2001 ident: 2021121711253124200_CIT0041 article-title: Mediator complexes and transcription publication-title: Curr Opin Cell Biol. doi: 10.1016/S0955-0674(00)00209-X – volume: 6 start-page: 497 issue: 5 year: 1996 ident: 2021121711253124200_CIT0103 article-title: Nongenomic actions of thyroid hormone publication-title: Thyroid. doi: 10.1089/thy.1996.6.497 – volume: 13 start-page: 1329 issue: 10 year: 1999 ident: 2021121711253124200_CIT0118 article-title: Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation publication-title: Genes Dev. doi: 10.1101/gad.13.10.1329 – volume: 103 start-page: 167 year: 2013 ident: 2021121711253124200_CIT0115 article-title: Flatfish: an asymmetric perspective on metamorphosis publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-385979-2.00006-X – volume: 11 start-page: 109 issue: 2 year: 2010 ident: 2021121711253124200_CIT0048 article-title: Deconstructing repression: evolving models of co-repressor action publication-title: Nat Rev Genet. doi: 10.1038/nrg2736 – volume: 14 start-page: 94 issue: 1 year: 1993 ident: 2021121711253124200_CIT0015 article-title: The role of thyroid hormones in prenatal and neonatal neurological development–current perspectives publication-title: Endocr Rev. – volume: 23 start-page: 740 issue: 6 year: 2009 ident: 2021121711253124200_CIT0045 article-title: Minireview: evolution of NURSA, the nuclear receptor signaling atlas publication-title: Mol Endocrinol. doi: 10.1210/me.2009-0135 – year: 2021 ident: 2021121711253124200_CIT0102 article-title: Analysis of thyroid hormone receptor α knockout tadpoles reveals that the activation of cell cycle program is involved in thyroid hormone-induced larval epithelial cell death and adult intestinal stem cell development during Xenopus tropicalis metamorphosis publication-title: Thyroid. doi: 10.1089/thy.2020.0022 – volume: 12 start-page: 127 issue: 3 year: 2001 ident: 2021121711253124200_CIT0038 article-title: The TRAP/SMCC/Mediator complex and thyroid hormone receptor function publication-title: Trends Endocrinol Metab. doi: 10.1016/S1043-2760(00)00355-6 – volume: 270 start-page: 18479 issue: 31 year: 1995 ident: 2021121711253124200_CIT0052 article-title: Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors publication-title: J Biol Chem. doi: 10.1074/jbc.270.31.18479 – volume: 153 start-page: 961 issue: 2 year: 2012 ident: 2021121711253124200_CIT0079 article-title: Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development publication-title: Endocrinology. doi: 10.1210/en.2011-1736 – volume: 22 start-page: 4043 issue: 12 year: 2002 ident: 2021121711253124200_CIT0081 article-title: Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor publication-title: Mol Cell Biol. doi: 10.1128/MCB.22.12.4043-4052.2002 – volume: 22 start-page: 2146 issue: 9 year: 2003 ident: 2021121711253124200_CIT0040 article-title: A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription publication-title: Embo J. doi: 10.1093/emboj/cdg219 – volume: 97 start-page: 13138 issue: 24 year: 2000 ident: 2021121711253124200_CIT0057 article-title: Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.260141297 – volume: 3 start-page: 21 issue: 1 year: 2013 ident: 2021121711253124200_CIT0084 article-title: Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos publication-title: Cell Biosci. doi: 10.1186/2045-3701-3-21 – volume: 6 start-page: 130 issue: 3 year: 2017 ident: 2021121711253124200_CIT0010 article-title: Cardiac thyroid hormone metabolism and heart failure publication-title: Eur Thyroid J. doi: 10.1159/000469708 – volume: 22 start-page: 1065 issue: 5 year: 2008 ident: 2021121711253124200_CIT0082 article-title: Participation of Brahma-related gene 1 (BRG1)-associated factor 57 and BRG1-containing chromatin remodeling complexes in thyroid hormone-dependent gene activation during vertebrate development publication-title: Mol Endocrinol. doi: 10.1210/me.2007-0492 – volume-title: Normal table of Xenopus laevis ident: 2021121711253124200_CIT0050 – volume: 282 start-page: 7472 issue: 10 year: 2007 ident: 2021121711253124200_CIT0070 article-title: SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis publication-title: J Biol Chem. doi: 10.1074/jbc.M607589200 – volume: 24 start-page: 3337 issue: 8 year: 2004 ident: 2021121711253124200_CIT0072 article-title: Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development publication-title: Mol Cell Biol. doi: 10.1128/MCB.24.8.3337-3346.2004 – volume: 408 start-page: 188 issue: 2 year: 2015 ident: 2021121711253124200_CIT0130 article-title: More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology publication-title: Dev Biol. doi: 10.1016/j.ydbio.2015.02.018 – volume: 98 start-page: 10739 issue: 19 year: 2001 ident: 2021121711253124200_CIT0062 article-title: Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.191361698 – volume-title: The Story of Iodine Deficiency: An International Challenge in Nutrition. year: 1989 ident: 2021121711253124200_CIT0014 – volume: 227 start-page: 246 issue: 2 year: 2003 ident: 2021121711253124200_CIT0059 article-title: Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis publication-title: Dev Dyn. doi: 10.1002/dvdy.10300 – volume: 62 start-page: 439 year: 2000 ident: 2021121711253124200_CIT0039 article-title: The mechanism of action of thyroid hormones publication-title: Annu Rev Physiol. doi: 10.1146/annurev.physiol.62.1.439 – volume: 125 start-page: 303 year: 2017 ident: 2021121711253124200_CIT0023 article-title: Genetic investigation of thyroid hormone receptor function in the developing and adult brain publication-title: Curr Top Dev Biol. doi: 10.1016/bs.ctdb.2017.01.001 – volume: 5 start-page: 481 issue: 6 year: 1995 ident: 2021121711253124200_CIT0008 article-title: Thyroid hormone control of thermogenesis and energy balance publication-title: Thyroid. doi: 10.1089/thy.1995.5.481 – volume: 203 start-page: 971 issue: 4384 year: 1979 ident: 2021121711253124200_CIT0001 article-title: Thyroid hormone action at the cellular level publication-title: Science. doi: 10.1126/science.218285 – year: 2020 ident: 2021121711253124200_CIT0077 article-title: A role of endogenous histone acetyltransferase steroid hormone receptor coactivator (SRC) 3 in thyroid hormone signaling during Xenopus intestinal metamorphosis publication-title: Thyroid. – volume: 156 start-page: 721 issue: 2 year: 2015 ident: 2021121711253124200_CIT0093 article-title: Unliganded thyroid hormone receptor α controls developmental timing in Xenopus tropicalis publication-title: Endocrinology. doi: 10.1210/en.2014-1439 – volume: 51 start-page: 835 issue: 12 year: 2013 ident: 2021121711253124200_CIT0086 article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis publication-title: Genesis. doi: 10.1002/dvg.22720 – volume: 32 start-page: 205 year: 1996 ident: 2021121711253124200_CIT0107 article-title: Biphasic intestinal development in amphibians: Embryogensis and remodeling during metamorphosis publication-title: Current Topics in Develop Biol. doi: 10.1016/S0070-2153(08)60429-9 – volume: 24 start-page: 9026 issue: 20 year: 2004 ident: 2021121711253124200_CIT0064 article-title: Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis publication-title: Mol Cell Biol. doi: 10.1128/MCB.24.20.9026-9037.2004 – volume: 7 issue: 1 year: 2018 ident: 2021121711253124200_CIT0091 article-title: Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas publication-title: Biol Open. |
SSID | ssj0014443 |
Score | 2.486534 |
SecondaryResourceType | review_article |
Snippet | Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the... |
SourceID | pubmedcentral proquest gale pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Amphibians Analysis Animals Degeneration Diploids Divergence Endocrinology Frogs Gene Expression Regulation, Developmental Gene silencing Genes Genetic modification Genome editing Hormones Humans Lethality Mammals Mammals - genetics Mammals - growth & development Mammals - metabolism Metabolism Metamorphosis Metamorphosis, Biological Mini-Reviews Neonates Organs Receptors Receptors, Thyroid Hormone - genetics Receptors, Thyroid Hormone - metabolism Thyroid Thyroid gland Tissues Triiodothyronine Triiodothyronine - metabolism Vertebrates |
Title | Life Without Thyroid Hormone Receptor |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33558878 https://www.proquest.com/docview/2891656016 https://www.proquest.com/docview/3169655826 https://www.proquest.com/docview/2487748692 https://pubmed.ncbi.nlm.nih.gov/PMC7947273 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSFUvCFoeCwsKiMehStkkjuMcFwSsEOXCVlpOkZ_alWiyLNlD-fXMOE6aVFvxuERWxrGt-Wxnxp4HIS9AqJCGpUnIlQUFRRkeCmlZiDdK2qCzpguSdPqFzc7op0W6uMy26rxLanmifu30K_kfVOEd4Ipesv-AbNcovIAy4AtPQBief4Xx55U1sK7rJRoXz5cXm2qlj2cghVYlpmNAi5VqMzh7L3UF20Rzlo7CJZ6nYKDI9RKNZrtDga8u1e_xt20Zvq36BwNx1LMnMc1mltM0BHVtMtjtWNyDle7cRUENdPzEIUFB_hBy0rhw95i6PndcTTA-O2_S8FyJXN2SbpJbMQjxmF_i46IzwAFNjiY-jCb6ETXdvfGdHZD99vOBxOD_mwNnxJ5OcNW0tScrzO-Q217ID6YNYnfJDVMekqNpKerq_CJ4FTizW4fBIdk_9dYNR-Ql4hl4PAOPZ-DxDFo875GzD-_n72ahT2MRKpCV6pDKTDCbcmsljbimqRATYXJYOpYzkWvQCXUeR0qDpCeNsRMt0ijR1FiKt5wquU_2SujnIQniRBubyTSRIJXl1PDYpCYXkTIZF6CJj0jYsqpQPsY7phr5XqCuB1wuGi4Xnssj8rqrv26im1xfEzlfIPjQohLeewPGhQHEiinDC9aE5XRExoOasF2pAfk5YPfH3sYttIVfbz-LmOcuVFTEdpKTiOUMZkwM5GcdGXtHM8LSVFtoAtTzjHKWxyPyoJko3Uja6TYi2WAKdRUwEPuQUq6WLiA7_NNQDXh0bZuPycHlCh2TvXqzNU9AmK3lU7cmfgMZXaA5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+Without+Thyroid+Hormone+Receptor&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Shi%2C+Yun-Bo&rft.date=2021-04-01&rft.eissn=1945-7170&rft.volume=162&rft.issue=4&rft_id=info:doi/10.1210%2Fendocr%2Fbqab028&rft_id=info%3Apmid%2F33558878&rft.externalDocID=33558878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon |