Life Without Thyroid Hormone Receptor

Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphi...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 162; no. 4; p. 1
Main Author Shi, Yun-Bo
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
AbstractList Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier trans-genic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects ofT3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related dip-loid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings inTR knockout mice suggests both conservation and divergence inTR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development. Key Words: amphibian metamorphosis, Xenopus laevis, Xenopus tropicalis, thyroid hormone receptor, adult stem cells, histone modification
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier trans-genic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects ofT3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related dip-loid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings inTR knockout mice suggests both conservation and divergence inTR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Audience Academic
Author Shi, Yun-Bo
AuthorAffiliation Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD, USA
AuthorAffiliation_xml – name: Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD, USA
Author_xml – sequence: 1
  givenname: Yun-Bo
  orcidid: 0000-0002-6330-0639
  surname: Shi
  fullname: Shi, Yun-Bo
  email: Shi@helix.nih.gov
  organization: Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33558878$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1LHDEUxUNR6mr72kdZkIJ9GM3X5ONFELG1sFAolj6GTHLjRmYma2ZG8L9vlt1aldqSh5Dkd85NTu4-2ulTDwh9IPiEUIJPoffJ5dPmzjaYqjdoRjSvK0kk3kEzjAmrJKVyD-0Pw21Zcs7ZW7THWF0rJdUMfVzEAPOfcVymaZxfLx9yin5-lXJX6sy_g4PVmPI7tBtsO8D77XyAfny-vL64qhbfvny9OF9UThA2VryRVoRahdBwojyvrcUWtHM2KGG1J5J7TYnzVLEGIGBva8I8h8CpItqxA3S28V1NTQfeQT9m25pVjp3NDybZaJ6f9HFpbtK9kZpLKlkxON4a5HQ3wTCaLg4O2tb2kKbBUK6k5EpoWtCjF-htmnJfnmcYEVqUhKj4F0WVJqIWmDyhbmwLJvYhldu5dWlzLrQu3yA0L9TJX6gyPHTRlbxDLPvPBIdP43jM4ff3_XF0OQ1DhvCIEGzW_WE2_WG2_VEE_IXAxdGOMa3jjO3rsk8bWZpW_yvxC7BhzbM
CitedBy_id crossref_primary_10_1210_endocr_bqae137
crossref_primary_10_1186_s12864_024_11175_4
crossref_primary_10_1007_s11427_023_2621_7
crossref_primary_10_1016_j_isci_2023_106301
crossref_primary_10_3389_fevo_2021_735487
crossref_primary_10_3389_fcell_2024_1431173
crossref_primary_10_3389_fendo_2024_1360188
crossref_primary_10_3390_cells10030536
crossref_primary_10_3390_cells11101595
crossref_primary_10_1007_s00018_022_04503_y
crossref_primary_10_3390_ijms232213715
crossref_primary_10_1186_s13287_023_03336_1
crossref_primary_10_1016_j_bcp_2024_116645
crossref_primary_10_1186_s13578_023_00989_6
crossref_primary_10_1186_s13578_021_00627_z
crossref_primary_10_1016_j_ygcen_2022_114102
crossref_primary_10_1016_j_ygcen_2022_114179
crossref_primary_10_1089_thy_2022_0469
crossref_primary_10_3389_fendo_2023_1184013
crossref_primary_10_3390_cells14030150
crossref_primary_10_1111_dgd_12764
crossref_primary_10_1016_j_ygcen_2024_114645
crossref_primary_10_3390_ijms23031223
Cites_doi 10.1002/bies.950150404
10.1021/bi101762x
10.1016/S0021-9258(18)48346-9
10.1046/j.1432-0436.2002.700104.x
10.1089/105072503770867228
10.1016/1043-2760(95)00227-8
10.1186/s13578-020-00423-1
10.1089/thy.2019.0366
10.1210/en.2014-2016
10.1007/978-1-4613-3246-6
10.1210/me.2010-0269
10.1016/S0021-9258(18)48345-7
10.1210/en.2008-0751
10.1101/gad.9.21.2696
10.7150/ijbs.5109
10.1073/pnas.062413299
10.1186/s13578-020-00411-5
10.1074/jbc.M509593200
10.1016/B978-0-12-385979-2.00008-3
10.1016/0006-291X(91)91424-B
10.1089/thy.2018.0664
10.1128/MCB.00827-08
10.1128/MCB.23.19.6750-6758.2003
10.1016/S0305-0491(00)00198-X
10.1016/B978-0-12-455403-0.50015-3
10.1038/415549a
10.1210/en.2014-1554
10.1523/JNEUROSCI.21-24-09792.2001
10.1096/fj.201700131R
10.1089/thy.2019.0598
10.1074/jbc.M806548200
10.1089/105072502760143827
10.1016/j.mod.2007.03.006
10.1186/2045-3701-5-8
10.1128/MCB.17.8.4738
10.1001/archinte.160.4.526
10.1073/pnas.252774999
10.1007/BF02277051
10.1002/bies.950180509
10.1093/emboj/17.2.520
10.1016/S0016-5085(99)70501-9
10.1146/annurev.nu.15.070195.001403
10.1146/annurev.bi.63.070194.002315
10.1152/physrev.00030.2013
10.1093/emboj/16.11.3158
10.1016/0092-8674(95)90199-X
10.1073/pnas.1920086117
10.1038/sj.embor.embor908
10.1128/MCB.22.24.8527-8538.2002
10.1210/en.2016-1955
10.1111/dgd.12231
10.1016/B978-0-12-385979-2.00010-1
10.1016/B978-0-12-385979-2.00014-9
10.1152/physrev.2001.81.3.1097
10.1186/2045-3701-2-42
10.1093/emboj/18.3.623
10.1210/me.2012-1114
10.1016/j.ygcen.2005.07.009
10.1186/s13578-020-00429-9
10.1016/B978-0-12-385979-2.00005-8
10.3390/ijms19103284
10.1210/en.2016-1953
10.1016/j.bbagen.2012.04.020
10.1016/j.ygcen.2018.04.020
10.1210/en.2017-00601
10.1016/S0092-8674(02)00641-4
10.1096/fj.99-0943rev
10.1073/pnas.182430599
10.1002/stem.560
10.1007/s00441-016-2396-8
10.1016/j.ygcen.2019.03.006
10.1073/pnas.1215421109
10.1016/B978-0-12-385979-2.00009-5
10.1016/S0021-9258(19)85416-9
10.1128/MCB.25.13.5712-5724.2005
10.1177/2042018820917869
10.1016/S1043-2760(02)00043-7
10.1101/gad.4.11.1917
10.1073/pnas.87.18.7090
10.1016/S1043-2760(98)00026-5
10.1089/thy.2000.10.41
10.1128/MCB.26.8.3204-3214.2006
10.1186/2045-3701-1-37
10.1242/dev.099853
10.1074/jbc.M503999200
10.1002/dvg.22719
10.1186/s13578-015-0006-1
10.1101/gad.14.2.121
10.1016/S0955-0674(00)00209-X
10.1089/thy.1996.6.497
10.1101/gad.13.10.1329
10.1016/B978-0-12-385979-2.00006-X
10.1038/nrg2736
10.1210/me.2009-0135
10.1089/thy.2020.0022
10.1016/S1043-2760(00)00355-6
10.1074/jbc.270.31.18479
10.1210/en.2011-1736
10.1128/MCB.22.12.4043-4052.2002
10.1093/emboj/cdg219
10.1073/pnas.260141297
10.1186/2045-3701-3-21
10.1159/000469708
10.1210/me.2007-0492
10.1074/jbc.M607589200
10.1128/MCB.24.8.3337-3346.2004
10.1016/j.ydbio.2015.02.018
10.1073/pnas.191361698
10.1002/dvdy.10300
10.1146/annurev.physiol.62.1.439
10.1016/bs.ctdb.2017.01.001
10.1089/thy.1995.5.481
10.1126/science.218285
10.1210/en.2014-1439
10.1002/dvg.22720
10.1016/S0070-2153(08)60429-9
10.1128/MCB.24.20.9026-9037.2004
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of the Endocrine Society 2021. 2021
Published by Oxford University Press on behalf of the Endocrine Society 2021.
COPYRIGHT 2021 Oxford University Press
Copyright_xml – notice: Published by Oxford University Press on behalf of the Endocrine Society 2021. 2021
– notice: Published by Oxford University Press on behalf of the Endocrine Society 2021.
– notice: COPYRIGHT 2021 Oxford University Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7T5
7TM
7TO
7U7
8FD
C1K
FR3
H94
K9.
P64
7X8
5PM
DOI 10.1210/endocr/bqab028
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts

MEDLINE


MEDLINE - Academic

CrossRef
Oncogenes and Growth Factors Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1945-7170
ExternalDocumentID PMC7947273
A699013694
33558878
10_1210_endocr_bqab028
10.1210/endocr/bqab028
Genre Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: ;
GroupedDBID ---
-DZ
-~X
.55
.GJ
.XZ
08P
0R~
18M
1TH
29G
2WC
34G
354
39C
3O-
3V.
4.4
48X
53G
5GY
5RE
5RS
5YH
79B
8F7
AABZA
AACZT
AAIMJ
AAJQQ
AAKAS
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAYJJ
ABDFA
ABEFU
ABEJV
ABGNP
ABHFT
ABJNI
ABLJU
ABMNT
ABNHQ
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACPRK
ACUTJ
ACZBC
ADBBV
ADGKP
ADGZP
ADHKW
ADIYS
ADQBN
ADRTK
ADVEK
ADZCM
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFOFC
AFRAH
AFULF
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGUTN
AHMBA
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
APJGH
AQKUS
ARIXL
ATGXG
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BPHCQ
BSWAC
BTRTY
BVXVI
C1A
C45
CDBKE
CJ0
CS3
DAKXR
DIK
DU5
E3Z
EBS
EJD
EMOBN
ENERS
F5P
FA8
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HF~
HZ~
H~9
IAO
IH2
IHR
ITC
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LMP
M5~
MBLQV
MHKGH
MJL
MVM
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
ODMLO
OFXIZ
OHH
OHT
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
PQQKQ
PROAC
Q-A
REU
ROX
ROZ
TEORI
TJX
TLC
TMA
TR2
TWZ
UPT
VQP
VVN
W2D
W8F
WH7
WHG
WOQ
X52
X7M
XJT
XOL
YBU
YHG
YOC
YQI
YSK
YYP
ZCA
ZCG
ZGI
ZKB
ZXP
ZY1
AAYXX
ABXZS
ADNBA
AEMQT
AGORE
AHGBF
AJBYB
ALXQX
CITATION
NU-
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7T5
7TM
7TO
7U7
8FD
C1K
FR3
H94
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c613t-4b7a6f58ffb418d45aa0ae9ccaf86a9d174d921cd283beef0da513d4ef42819c3
ISSN 0013-7227
1945-7170
IngestDate Thu Aug 21 13:56:18 EDT 2025
Fri Jul 11 06:04:46 EDT 2025
Mon Jun 30 12:27:06 EDT 2025
Mon Jun 30 12:46:28 EDT 2025
Tue Jun 17 21:28:04 EDT 2025
Tue Jun 10 20:29:20 EDT 2025
Wed Feb 19 02:27:14 EST 2025
Thu Apr 24 23:10:09 EDT 2025
Tue Jul 01 04:35:50 EDT 2025
Fri Feb 07 10:35:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords amphibian metamorphosis
thyroid hormone receptor
histone modification
adult stem cells
Xenopus tropicalis
Xenopus laevis
Language English
License This work is written by (a) US Government employee(s) and is in the public domain in the US.
Published by Oxford University Press on behalf of the Endocrine Society 2021.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c613t-4b7a6f58ffb418d45aa0ae9ccaf86a9d174d921cd283beef0da513d4ef42819c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6330-0639
OpenAccessLink https://academic.oup.com/endo/article-pdf/162/4/bqab028/41807151/bqab028.pdf
PMID 33558878
PQID 2891656016
PQPubID 2046207
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7947273
proquest_miscellaneous_2487748692
proquest_journals_3169655826
proquest_journals_2891656016
gale_infotracmisc_A699013694
gale_infotracacademiconefile_A699013694
pubmed_primary_33558878
crossref_primary_10_1210_endocr_bqab028
crossref_citationtrail_10_1210_endocr_bqab028
oup_primary_10_1210_endocr_bqab028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
– name: Washington
PublicationTitle Endocrinology (Philadelphia)
PublicationTitleAlternate Endocrinology
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Paul (2021121711253124200_CIT0070) 2007; 282
Holzer (2021121711253124200_CIT0013) 2013; 103
Leloup (2021121711253124200_CIT0049) 1977; 284
Wen (2021121711253124200_CIT0076) 2017; 31
Forrest (2021121711253124200_CIT0021) 1994; 5
Tata (2021121711253124200_CIT0012) 1993; 15
Canaris (2021121711253124200_CIT0003) 2000; 160
McMenamin (2021121711253124200_CIT0116) 2013; 103
Morte (2021121711253124200_CIT0122) 2002; 99
Hsu (2021121711253124200_CIT0111) 1998; 9
Laudet (2021121711253124200_CIT0020) 2002
Gilbert (2021121711253124200_CIT0127) 1981
Sachs (2021121711253124200_CIT0096) 2015; 156
Ishizuya-Oka (2021121711253124200_CIT0108) 2011; 1
Forrest (2021121711253124200_CIT0112) 2000; 10
Burke (2021121711253124200_CIT0035) 2000; 14
Wang (2021121711253124200_CIT0088) 2015; 5
Sinha (2021121711253124200_CIT0011) 2019; 29
Demarest (2021121711253124200_CIT0042) 2002; 415
Gauthier (2021121711253124200_CIT0119) 1999; 18
Huang (2021121711253124200_CIT0040) 2003; 22
Das (2021121711253124200_CIT0061) 2002; 99
Tanizaki (2021121711253124200_CIT0102) 2021
Schreiber (2021121711253124200_CIT0062) 2001; 98
Hasebe (2021121711253124200_CIT0126) 2016; 365
Shi (2021121711253124200_CIT0019) 1996; 18
Hsia (2021121711253124200_CIT0081) 2002; 22
Matsuura (2021121711253124200_CIT0079) 2012; 153
Buchholz (2021121711253124200_CIT0064) 2004; 24
Flamant (2021121711253124200_CIT0121) 2002; 16
Mullur (2021121711253124200_CIT0005) 2014; 94
McKenna (2021121711253124200_CIT0045) 2009; 23
Shibata (2021121711253124200_CIT0100) 2020; 30
Davis (2021121711253124200_CIT0103) 1996; 6
Yaoita (2021121711253124200_CIT0051) 1990; 4
Hasebe (2021121711253124200_CIT0065) 2011; 29
Wang (2021121711253124200_CIT0028) 2008; 149
Teixeira (2021121711253124200_CIT0006) 2020; 11
Bilesimo (2021121711253124200_CIT0078) 2011; 25
Johnson (2021121711253124200_CIT0128) 2013; 103
Rusch (2021121711253124200_CIT0120) 2001; 21
McKenna (2021121711253124200_CIT0034) 2002; 108
Blitz (2021121711253124200_CIT0087) 2013; 51
Parkison (2021121711253124200_CIT0105) 1991; 179
Shi (2021121711253124200_CIT0107) 1996; 32
Buchholz (2021121711253124200_CIT0130) 2015; 408
Glass (2021121711253124200_CIT0037) 2000; 14
Nakajima (2021121711253124200_CIT0098) 2019; 277
Schreiber (2021121711253124200_CIT0060) 2003; 100
Porterfield (2021121711253124200_CIT0015) 1993; 14
Yaoita (2021121711253124200_CIT0027) 1990; 87
Shi (2021121711253124200_CIT0047) 2012; 2
Tsai (2021121711253124200_CIT0030) 1994; 63
Kress (2021121711253124200_CIT0125) 2009; 284
Gilbert (2021121711253124200_CIT0017) 1996
Paul (2021121711253124200_CIT0074) 2005; 280
Wong (2021121711253124200_CIT0052) 1995; 270
Tanizaki (2021121711253124200_CIT0077) 2020
Plateroti (2021121711253124200_CIT0123) 1999; 116
Lazar (2021121711253124200_CIT0022) 1993; 14
Grimaldi (2021121711253124200_CIT0046) 2013; 1830
Rachez (2021121711253124200_CIT0041) 2001; 13
Schreiber (2021121711253124200_CIT0115) 2013; 103
Wen (2021121711253124200_CIT0094) 2017; 158
Choi (2021121711253124200_CIT0090) 2015; 156
Liu (2021121711253124200_CIT0113) 2002; 70
Lei (2021121711253124200_CIT0084) 2013; 3
Kanamori (2021121711253124200_CIT0053) 1992; 267
Mangelsdorf (2021121711253124200_CIT0029) 1995; 83
Puzianowska-Kuznicka (2021121711253124200_CIT0056) 1997; 17
Grimaldi (2021121711253124200_CIT0066) 2013; 103
Buchholz (2021121711253124200_CIT0101) 2018; 265
Matsuda (2021121711253124200_CIT0069) 2009; 29
Buchholz (2021121711253124200_CIT0063) 2003; 23
Dodd (2021121711253124200_CIT0106) 1976
Lei (2021121711253124200_CIT0085) 2012; 109
Ito (2021121711253124200_CIT0038) 2001; 12
Paul (2021121711253124200_CIT0071) 2005; 25
Jones (2021121711253124200_CIT0036) 2003; 274
Nakajima (2021121711253124200_CIT0059) 2003; 227
Göthe (2021121711253124200_CIT0118) 1999; 13
Wong (2021121711253124200_CIT0031) 1995; 9
Wang (2021121711253124200_CIT0054) 1993; 268
Wong (2021121711253124200_CIT0033) 1998; 17
Bao (2021121711253124200_CIT0109) 2020; 10
Nakayama (2021121711253124200_CIT0086) 2013; 51
Han (2021121711253124200_CIT0114) 2020; 30
Shi (2021121711253124200_CIT0016) 1999
Silva (2021121711253124200_CIT0008) 1995; 5
Gudernatsch (2021121711253124200_CIT0018) 1912; 35
Plateroti (2021121711253124200_CIT0124) 2006; 26
Franklyn (2021121711253124200_CIT0007) 1996; 7
Buchholz (2021121711253124200_CIT0067) 2006; 145
Buchholz (2021121711253124200_CIT0058) 2005; 280
Sachs (2021121711253124200_CIT0057) 2000; 97
Yen (2021121711253124200_CIT0002) 2001; 81
Choi (2021121711253124200_CIT0089) 2017; 158
Shibata (2021121711253124200_CIT0099) 2020; 10
Oppenheimer (2021121711253124200_CIT0001) 1979; 203
Guo (2021121711253124200_CIT0083) 2014; 141
Wen (2021121711253124200_CIT0093) 2015; 156
O’Malley (2021121711253124200_CIT0043) 2012; 26
Sachs (2021121711253124200_CIT0073) 2002; 22
Yen (2021121711253124200_CIT0097) 2015; 5
Davis (2021121711253124200_CIT0104) 2002; 12
Bulynko (2021121711253124200_CIT0044) 2011; 50
Sato (2021121711253124200_CIT0068) 2007; 124
Volkov (2021121711253124200_CIT0117) 2020; 117
Singh (2021121711253124200_CIT0004) 2018; 19
Zhang (2021121711253124200_CIT0039) 2000; 62
Perissi (2021121711253124200_CIT0048) 2010; 11
Havis (2021121711253124200_CIT0075) 2003; 4
Shi (2021121711253124200_CIT0026) 1992; 267
Tomita (2021121711253124200_CIT0072) 2004; 24
Heimeier (2021121711253124200_CIT0082) 2008; 22
Flamant (2021121711253124200_CIT0025) 2003; 14
Nakajima (2021121711253124200_CIT0092) 2018; 159
Jones (2021121711253124200_CIT0024) 2003; 13
Elinson (2021121711253124200_CIT0129) 2013; 103
Janssen (2021121711253124200_CIT0010) 2017; 6
Flamant (2021121711253124200_CIT0023) 2017; 125
Na (2021121711253124200_CIT0080) 2020; 10
Wen (2021121711253124200_CIT0095) 2016; 58
Hetzel (2021121711253124200_CIT0014) 1989
Freake (2021121711253124200_CIT0009) 1995; 15
Nieuwkoop (2021121711253124200_CIT0050)
Sakane (2021121711253124200_CIT0091) 2018; 7
Sachs (2021121711253124200_CIT0055) 2000; 126
Sun (2021121711253124200_CIT0110) 2012; 8
Wong (2021121711253124200_CIT0032) 1997; 16
References_xml – volume: 15
  start-page: 239
  issue: 4
  year: 1993
  ident: 2021121711253124200_CIT0012
  article-title: Gene expression during metamorphosis: an ideal model for post-embryonic development
  publication-title: Bioessays.
  doi: 10.1002/bies.950150404
– volume: 50
  start-page: 313
  issue: 3
  year: 2011
  ident: 2021121711253124200_CIT0044
  article-title: Nuclear receptor coactivators: structural and functional biochemistry
  publication-title: Biochemistry.
  doi: 10.1021/bi101762x
– volume: 267
  start-page: 739
  issue: 2
  year: 1992
  ident: 2021121711253124200_CIT0053
  article-title: The regulation of thyroid hormone receptor beta genes by thyroid hormone in Xenopus laevis
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(18)48346-9
– volume: 70
  start-page: 36
  issue: 1
  year: 2002
  ident: 2021121711253124200_CIT0113
  article-title: Thyroid hormones are important for embryonic to larval transitory phase in zebrafish
  publication-title: Differentiation.
  doi: 10.1046/j.1432-0436.2002.700104.x
– volume: 13
  start-page: 1057
  issue: 11
  year: 2003
  ident: 2021121711253124200_CIT0024
  article-title: The thyroid hormone receptor beta gene: structure and functions in the brain and sensory systems
  publication-title: Thyroid.
  doi: 10.1089/105072503770867228
– volume: 284
  start-page: 2261
  year: 1977
  ident: 2021121711253124200_CIT0049
  article-title: La triiodothyronine: hormone de la métamorphose des amphibiens
  publication-title: CR Acad Sci.
– volume: 7
  start-page: 50
  issue: 2
  year: 1996
  ident: 2021121711253124200_CIT0007
  article-title: Thyroid disease: effects on cardiovascular function
  publication-title: Trends Endocrinol Metab.
  doi: 10.1016/1043-2760(95)00227-8
– volume: 10
  start-page: 60
  year: 2020
  ident: 2021121711253124200_CIT0080
  article-title: Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-020-00423-1
– volume: 30
  start-page: 300
  issue: 2
  year: 2020
  ident: 2021121711253124200_CIT0100
  article-title: Organ-specific requirements for thyroid hormone receptor ensure temporal coordination of tissue-specific transformations and completion of Xenopus metamorphosis
  publication-title: Thyroid.
  doi: 10.1089/thy.2019.0366
– volume: 156
  start-page: 409
  issue: 2
  year: 2015
  ident: 2021121711253124200_CIT0096
  article-title: Unliganded thyroid hormone receptor function: amphibian metamorphosis got TALENs
  publication-title: Endocrinology.
  doi: 10.1210/en.2014-2016
– volume-title: Metamorphosis: A Problem in Developmental Biology
  year: 1981
  ident: 2021121711253124200_CIT0127
  doi: 10.1007/978-1-4613-3246-6
– volume: 25
  start-page: 225
  issue: 2
  year: 2011
  ident: 2021121711253124200_CIT0078
  article-title: Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses
  publication-title: Mol Endocrinol.
  doi: 10.1210/me.2010-0269
– volume: 267
  start-page: 733
  issue: 2
  year: 1992
  ident: 2021121711253124200_CIT0026
  article-title: Genomic organization and alternative promoter usage of the two thyroid hormone receptor beta genes in Xenopus laevis
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(18)48345-7
– volume: 149
  start-page: 5610
  issue: 11
  year: 2008
  ident: 2021121711253124200_CIT0028
  article-title: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis
  publication-title: Endocrinology.
  doi: 10.1210/en.2008-0751
– volume: 9
  start-page: 2696
  issue: 21
  year: 1995
  ident: 2021121711253124200_CIT0031
  article-title: A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.21.2696
– volume: 8
  start-page: 1217
  issue: 8
  year: 2012
  ident: 2021121711253124200_CIT0110
  article-title: Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations
  publication-title: Int J Biol Sci.
  doi: 10.7150/ijbs.5109
– volume: 99
  start-page: 3985
  issue: 6
  year: 2002
  ident: 2021121711253124200_CIT0122
  article-title: Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.062413299
– volume: 10
  start-page: 46
  year: 2020
  ident: 2021121711253124200_CIT0099
  article-title: Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-020-00411-5
– volume: 280
  start-page: 41222
  issue: 50
  year: 2005
  ident: 2021121711253124200_CIT0058
  article-title: Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M509593200
– volume: 103
  start-page: 229
  year: 2013
  ident: 2021121711253124200_CIT0128
  article-title: Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00008-3
– volume: 179
  start-page: 668
  issue: 1
  year: 1991
  ident: 2021121711253124200_CIT0105
  article-title: The monomer of pyruvate kinase, subtype M1, is both a kinase and a cytosolic thyroid hormone binding protein
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/0006-291X(91)91424-B
– volume: 29
  start-page: 1173
  issue: 9
  year: 2019
  ident: 2021121711253124200_CIT0011
  article-title: Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists
  publication-title: Thyroid.
  doi: 10.1089/thy.2018.0664
– volume: 29
  start-page: 745
  issue: 3
  year: 2009
  ident: 2021121711253124200_CIT0069
  article-title: Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.00827-08
– volume: 274
  start-page: 237
  year: 2003
  ident: 2021121711253124200_CIT0036
  article-title: N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors
  publication-title: Curr Top Microbiol Immunol.
– volume: 23
  start-page: 6750
  issue: 19
  year: 2003
  ident: 2021121711253124200_CIT0063
  article-title: A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.23.19.6750-6758.2003
– volume: 126
  start-page: 199
  issue: 2
  year: 2000
  ident: 2021121711253124200_CIT0055
  article-title: Dual functions of thyroid hormone receptors during Xenopus development
  publication-title: Comp Biochem Physiol B Biochem Mol Biol.
  doi: 10.1016/S0305-0491(00)00198-X
– start-page: 467
  volume-title: Physiology of the Amphibia
  year: 1976
  ident: 2021121711253124200_CIT0106
  article-title: The biology of metamorphosis
  doi: 10.1016/B978-0-12-455403-0.50015-3
– volume: 415
  start-page: 549
  issue: 6871
  year: 2002
  ident: 2021121711253124200_CIT0042
  article-title: Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators
  publication-title: Nature.
  doi: 10.1038/415549a
– volume: 156
  start-page: 735
  issue: 2
  year: 2015
  ident: 2021121711253124200_CIT0090
  article-title: Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis
  publication-title: Endocrinology.
  doi: 10.1210/en.2014-1554
– volume: 21
  start-page: 9792
  issue: 24
  year: 2001
  ident: 2021121711253124200_CIT0120
  article-title: Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.21-24-09792.2001
– volume-title: Amphibian Metamorphosis: From Morphology to Molecular Biology
  year: 1999
  ident: 2021121711253124200_CIT0016
– volume: 31
  start-page: 4821
  issue: 11
  year: 2017
  ident: 2021121711253124200_CIT0076
  article-title: Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development
  publication-title: Faseb J.
  doi: 10.1096/fj.201700131R
– volume: 30
  start-page: 314
  issue: 2
  year: 2020
  ident: 2021121711253124200_CIT0114
  article-title: Generation of novel genetic models to dissect resistance to thyroid hormone receptor α in Zebrafish
  publication-title: Thyroid.
  doi: 10.1089/thy.2019.0598
– volume: 284
  start-page: 1234
  issue: 2
  year: 2009
  ident: 2021121711253124200_CIT0125
  article-title: The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M806548200
– volume: 12
  start-page: 459
  issue: 6
  year: 2002
  ident: 2021121711253124200_CIT0104
  article-title: Nongenomic actions of thyroid hormone on the heart
  publication-title: Thyroid.
  doi: 10.1089/105072502760143827
– volume: 124
  start-page: 476
  issue: 6
  year: 2007
  ident: 2021121711253124200_CIT0068
  article-title: A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis
  publication-title: Mech Dev.
  doi: 10.1016/j.mod.2007.03.006
– volume: 5
  start-page: 8
  year: 2015
  ident: 2021121711253124200_CIT0097
  article-title: Unliganded TRs regulate growth and developmental timing during early embryogenesis: evidence for a dual function mechanism of TR action
  publication-title: Cell Biosci.
  doi: 10.1186/2045-3701-5-8
– volume: 17
  start-page: 4738
  issue: 8
  year: 1997
  ident: 2021121711253124200_CIT0056
  article-title: Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.17.8.4738
– volume: 160
  start-page: 526
  issue: 4
  year: 2000
  ident: 2021121711253124200_CIT0003
  article-title: The Colorado thyroid disease prevalence study
  publication-title: Arch Intern Med.
  doi: 10.1001/archinte.160.4.526
– volume: 100
  start-page: 1769
  issue: 4
  year: 2003
  ident: 2021121711253124200_CIT0060
  article-title: Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.252774999
– volume: 35
  start-page: 457
  year: 1912
  ident: 2021121711253124200_CIT0018
  article-title: Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation: a contribution to the knowledge of organs with internal secretion
  publication-title: Arch Entwicklungsmech Org.
  doi: 10.1007/BF02277051
– volume: 18
  start-page: 391
  issue: 5
  year: 1996
  ident: 2021121711253124200_CIT0019
  article-title: Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors
  publication-title: Bioessays.
  doi: 10.1002/bies.950180509
– volume: 17
  start-page: 520
  issue: 2
  year: 1998
  ident: 2021121711253124200_CIT0033
  article-title: Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase
  publication-title: Embo J.
  doi: 10.1093/emboj/17.2.520
– volume: 116
  start-page: 1367
  issue: 6
  year: 1999
  ident: 2021121711253124200_CIT0123
  article-title: Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development
  publication-title: Gastroenterology.
  doi: 10.1016/S0016-5085(99)70501-9
– volume: 15
  start-page: 263
  year: 1995
  ident: 2021121711253124200_CIT0009
  article-title: Thermogenesis and thyroid function
  publication-title: Annu Rev Nutr.
  doi: 10.1146/annurev.nu.15.070195.001403
– volume: 14
  start-page: 184
  issue: 2
  year: 1993
  ident: 2021121711253124200_CIT0022
  article-title: Thyroid hormone receptors: multiple forms, multiple possibilities
  publication-title: Endocr Rev.
– volume: 63
  start-page: 451
  year: 1994
  ident: 2021121711253124200_CIT0030
  article-title: Molecular mechanisms of action of steroid/thyroid receptor superfamily members
  publication-title: Annu Rev Biochem.
  doi: 10.1146/annurev.bi.63.070194.002315
– volume: 94
  start-page: 355
  issue: 2
  year: 2014
  ident: 2021121711253124200_CIT0005
  article-title: Thyroid hormone regulation of metabolism
  publication-title: Physiol Rev.
  doi: 10.1152/physrev.00030.2013
– volume: 16
  start-page: 3158
  issue: 11
  year: 1997
  ident: 2021121711253124200_CIT0032
  article-title: Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation
  publication-title: Embo J.
  doi: 10.1093/emboj/16.11.3158
– volume: 83
  start-page: 835
  issue: 6
  year: 1995
  ident: 2021121711253124200_CIT0029
  article-title: The nuclear receptor superfamily: the second decade
  publication-title: Cell.
  doi: 10.1016/0092-8674(95)90199-X
– volume: 117
  start-page: 15262
  issue: 26
  year: 2020
  ident: 2021121711253124200_CIT0117
  article-title: Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1920086117
– volume: 4
  start-page: 883
  issue: 9
  year: 2003
  ident: 2021121711253124200_CIT0075
  article-title: Metamorphic T3-response genes have specific co-regulator requirements
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.embor908
– volume-title: The Nuclear Receptor FactsBook
  year: 2002
  ident: 2021121711253124200_CIT0020
– volume: 22
  start-page: 8527
  issue: 24
  year: 2002
  ident: 2021121711253124200_CIT0073
  article-title: Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.22.24.8527-8538.2002
– volume: 158
  start-page: 1623
  issue: 6
  year: 2017
  ident: 2021121711253124200_CIT0089
  article-title: Growth, Development, and Intestinal Remodeling Occurs in the Absence of Thyroid Hormone Receptor α in Tadpoles of Xenopus tropicalis
  publication-title: Endocrinology.
  doi: 10.1210/en.2016-1955
– volume: 58
  start-page: 106
  issue: 1
  year: 2016
  ident: 2021121711253124200_CIT0095
  article-title: Regulation of growth rate and developmental timing by Xenopus thyroid hormone receptor α
  publication-title: Dev Growth Differ.
  doi: 10.1111/dgd.12231
– volume: 103
  start-page: 277
  year: 2013
  ident: 2021121711253124200_CIT0066
  article-title: High-throughput sequencing will metamorphose the analysis of thyroid hormone receptor function during amphibian development
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00010-1
– volume: 16
  start-page: 24
  issue: 1
  year: 2002
  ident: 2021121711253124200_CIT0121
  article-title: Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene
  publication-title: Mol Endocrinol.
– volume: 103
  start-page: 397
  year: 2013
  ident: 2021121711253124200_CIT0013
  article-title: Thyroid hormones and postembryonic development in amniotes
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00014-9
– volume: 81
  start-page: 1097
  issue: 3
  year: 2001
  ident: 2021121711253124200_CIT0002
  article-title: Physiological and molecular basis of thyroid hormone action
  publication-title: Physiol Rev.
  doi: 10.1152/physrev.2001.81.3.1097
– volume: 2
  start-page: 42
  issue: 1
  year: 2012
  ident: 2021121711253124200_CIT0047
  article-title: Thyroid hormone receptor actions on transcription in amphibia: the roles of histone modification and chromatin disruption
  publication-title: Cell Biosci.
  doi: 10.1186/2045-3701-2-42
– volume: 18
  start-page: 623
  issue: 3
  year: 1999
  ident: 2021121711253124200_CIT0119
  article-title: Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development
  publication-title: Embo J.
  doi: 10.1093/emboj/18.3.623
– volume: 5
  start-page: 167
  issue: 2
  year: 1994
  ident: 2021121711253124200_CIT0021
  article-title: The erbA/thyroid hormone receptor genes in development of the central nervous system
  publication-title: Semin Cancer Biol.
– volume: 26
  start-page: 1646
  issue: 10
  year: 2012
  ident: 2021121711253124200_CIT0043
  article-title: Minireview: nuclear receptor and coregulator proteomics–2012 and beyond
  publication-title: Mol Endocrinol.
  doi: 10.1210/me.2012-1114
– volume: 145
  start-page: 1
  issue: 1
  year: 2006
  ident: 2021121711253124200_CIT0067
  article-title: Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog
  publication-title: Gen Comp Endocrinol.
  doi: 10.1016/j.ygcen.2005.07.009
– volume: 10
  start-page: 66
  year: 2020
  ident: 2021121711253124200_CIT0109
  article-title: Intestinal homeostasis: a communication between life and death
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-020-00429-9
– volume: 103
  start-page: 127
  year: 2013
  ident: 2021121711253124200_CIT0116
  article-title: Metamorphosis in teleosts
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00005-8
– volume: 19
  issue: 10
  year: 2018
  ident: 2021121711253124200_CIT0004
  article-title: Novel transcriptional mechanisms for regulating metabolism by thyroid hormone
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms19103284
– volume: 158
  start-page: 1985
  issue: 6
  year: 2017
  ident: 2021121711253124200_CIT0094
  article-title: Thyroid hormone receptor α controls developmental timing and regulates the rate and coordination of tissue-specific metamorphosis in Xenopus tropicalis
  publication-title: Endocrinology.
  doi: 10.1210/en.2016-1953
– volume: 1830
  start-page: 3882
  issue: 7
  year: 2013
  ident: 2021121711253124200_CIT0046
  article-title: Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbagen.2012.04.020
– volume: 265
  start-page: 214
  year: 2018
  ident: 2021121711253124200_CIT0101
  article-title: Dual function model revised by thyroid hormone receptor alpha knockout frogs
  publication-title: Gen Comp Endocrinol.
  doi: 10.1016/j.ygcen.2018.04.020
– volume: 159
  start-page: 733
  issue: 2
  year: 2018
  ident: 2021121711253124200_CIT0092
  article-title: Thyroid hormone receptor α- and β-knockout Xenopus tropicalis tadpoles reveal subtype-specific roles during development
  publication-title: Endocrinology.
  doi: 10.1210/en.2017-00601
– volume: 108
  start-page: 465
  issue: 4
  year: 2002
  ident: 2021121711253124200_CIT0034
  article-title: Combinatorial control of gene expression by nuclear receptors and coregulators
  publication-title: Cell.
  doi: 10.1016/S0092-8674(02)00641-4
– volume: 14
  start-page: 1876
  issue: 13
  year: 2000
  ident: 2021121711253124200_CIT0035
  article-title: Co-repressors 2000
  publication-title: Faseb J.
  doi: 10.1096/fj.99-0943rev
– volume: 99
  start-page: 12230
  issue: 19
  year: 2002
  ident: 2021121711253124200_CIT0061
  article-title: Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.182430599
– volume: 29
  start-page: 154
  issue: 1
  year: 2011
  ident: 2021121711253124200_CIT0065
  article-title: Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine
  publication-title: Stem Cells.
  doi: 10.1002/stem.560
– volume: 365
  start-page: 309
  issue: 2
  year: 2016
  ident: 2021121711253124200_CIT0126
  article-title: Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-016-2396-8
– volume: 277
  start-page: 66
  year: 2019
  ident: 2021121711253124200_CIT0098
  article-title: A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis
  publication-title: Gen Comp Endocrinol.
  doi: 10.1016/j.ygcen.2019.03.006
– volume: 109
  start-page: 17484
  issue: 43
  year: 2012
  ident: 2021121711253124200_CIT0085
  article-title: Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs)
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1215421109
– volume: 103
  start-page: 259
  year: 2013
  ident: 2021121711253124200_CIT0129
  article-title: Metamorphosis in a frog that does not have a tadpole
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00009-5
– volume: 268
  start-page: 16270
  issue: 22
  year: 1993
  ident: 2021121711253124200_CIT0054
  article-title: Thyroid hormone-induced gene expression program for amphibian tail resorption
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(19)85416-9
– volume: 25
  start-page: 5712
  issue: 13
  year: 2005
  ident: 2021121711253124200_CIT0071
  article-title: Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.25.13.5712-5724.2005
– volume: 11
  start-page: 2042018820917869
  year: 2020
  ident: 2021121711253124200_CIT0006
  article-title: The role of thyroid hormone in metabolism and metabolic syndrome
  publication-title: Ther Adv Endocrinol Metab.
  doi: 10.1177/2042018820917869
– volume: 14
  start-page: 85
  issue: 2
  year: 2003
  ident: 2021121711253124200_CIT0025
  article-title: Thyroid hormone receptors: lessons from knockout and knock-in mutant mice
  publication-title: Trends Endocrinol Metab.
  doi: 10.1016/S1043-2760(02)00043-7
– volume: 4
  start-page: 1917
  issue: 11
  year: 1990
  ident: 2021121711253124200_CIT0051
  article-title: A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.4.11.1917
– volume: 87
  start-page: 7090
  issue: 18
  year: 1990
  ident: 2021121711253124200_CIT0027
  article-title: Xenopus laevis alpha and beta thyroid hormone receptors
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.87.18.7090
– volume: 9
  start-page: 103
  issue: 3
  year: 1998
  ident: 2021121711253124200_CIT0111
  article-title: Thyroid hormone receptor gene knockouts
  publication-title: Trends Endocrinol Metab.
  doi: 10.1016/S1043-2760(98)00026-5
– volume: 10
  start-page: 41
  issue: 1
  year: 2000
  ident: 2021121711253124200_CIT0112
  article-title: Functions of thyroid hormone receptors in mice
  publication-title: Thyroid.
  doi: 10.1089/thy.2000.10.41
– volume: 26
  start-page: 3204
  issue: 8
  year: 2006
  ident: 2021121711253124200_CIT0124
  article-title: Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.26.8.3204-3214.2006
– volume-title: Metamorphosis: Post-Embryonic Reprogramming of Gene Expression in Amphibian and Insect Cells
  year: 1996
  ident: 2021121711253124200_CIT0017
– volume: 1
  start-page: 37
  year: 2011
  ident: 2021121711253124200_CIT0108
  article-title: Evolutionary insights into postembryonic development of adult intestinal stem cells
  publication-title: Cell Biosci.
  doi: 10.1186/2045-3701-1-37
– volume: 141
  start-page: 707
  issue: 3
  year: 2014
  ident: 2021121711253124200_CIT0083
  article-title: Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis
  publication-title: Development.
  doi: 10.1242/dev.099853
– volume: 280
  start-page: 27165
  issue: 29
  year: 2005
  ident: 2021121711253124200_CIT0074
  article-title: Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M503999200
– volume: 51
  start-page: 827
  issue: 12
  year: 2013
  ident: 2021121711253124200_CIT0087
  article-title: Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system
  publication-title: Genesis.
  doi: 10.1002/dvg.22719
– volume: 5
  start-page: 15
  year: 2015
  ident: 2021121711253124200_CIT0088
  article-title: Targeted gene disruption in Xenopus laevis using CRISPR/Cas9
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-015-0006-1
– volume: 14
  start-page: 121
  issue: 2
  year: 2000
  ident: 2021121711253124200_CIT0037
  article-title: The coregulator exchange in transcriptional functions of nuclear receptors
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.2.121
– volume: 13
  start-page: 274
  issue: 3
  year: 2001
  ident: 2021121711253124200_CIT0041
  article-title: Mediator complexes and transcription
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/S0955-0674(00)00209-X
– volume: 6
  start-page: 497
  issue: 5
  year: 1996
  ident: 2021121711253124200_CIT0103
  article-title: Nongenomic actions of thyroid hormone
  publication-title: Thyroid.
  doi: 10.1089/thy.1996.6.497
– volume: 13
  start-page: 1329
  issue: 10
  year: 1999
  ident: 2021121711253124200_CIT0118
  article-title: Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.10.1329
– volume: 103
  start-page: 167
  year: 2013
  ident: 2021121711253124200_CIT0115
  article-title: Flatfish: an asymmetric perspective on metamorphosis
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/B978-0-12-385979-2.00006-X
– volume: 11
  start-page: 109
  issue: 2
  year: 2010
  ident: 2021121711253124200_CIT0048
  article-title: Deconstructing repression: evolving models of co-repressor action
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg2736
– volume: 14
  start-page: 94
  issue: 1
  year: 1993
  ident: 2021121711253124200_CIT0015
  article-title: The role of thyroid hormones in prenatal and neonatal neurological development–current perspectives
  publication-title: Endocr Rev.
– volume: 23
  start-page: 740
  issue: 6
  year: 2009
  ident: 2021121711253124200_CIT0045
  article-title: Minireview: evolution of NURSA, the nuclear receptor signaling atlas
  publication-title: Mol Endocrinol.
  doi: 10.1210/me.2009-0135
– year: 2021
  ident: 2021121711253124200_CIT0102
  article-title: Analysis of thyroid hormone receptor α knockout tadpoles reveals that the activation of cell cycle program is involved in thyroid hormone-induced larval epithelial cell death and adult intestinal stem cell development during Xenopus tropicalis metamorphosis
  publication-title: Thyroid.
  doi: 10.1089/thy.2020.0022
– volume: 12
  start-page: 127
  issue: 3
  year: 2001
  ident: 2021121711253124200_CIT0038
  article-title: The TRAP/SMCC/Mediator complex and thyroid hormone receptor function
  publication-title: Trends Endocrinol Metab.
  doi: 10.1016/S1043-2760(00)00355-6
– volume: 270
  start-page: 18479
  issue: 31
  year: 1995
  ident: 2021121711253124200_CIT0052
  article-title: Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.270.31.18479
– volume: 153
  start-page: 961
  issue: 2
  year: 2012
  ident: 2021121711253124200_CIT0079
  article-title: Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development
  publication-title: Endocrinology.
  doi: 10.1210/en.2011-1736
– volume: 22
  start-page: 4043
  issue: 12
  year: 2002
  ident: 2021121711253124200_CIT0081
  article-title: Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.22.12.4043-4052.2002
– volume: 22
  start-page: 2146
  issue: 9
  year: 2003
  ident: 2021121711253124200_CIT0040
  article-title: A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription
  publication-title: Embo J.
  doi: 10.1093/emboj/cdg219
– volume: 97
  start-page: 13138
  issue: 24
  year: 2000
  ident: 2021121711253124200_CIT0057
  article-title: Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.260141297
– volume: 3
  start-page: 21
  issue: 1
  year: 2013
  ident: 2021121711253124200_CIT0084
  article-title: Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos
  publication-title: Cell Biosci.
  doi: 10.1186/2045-3701-3-21
– volume: 6
  start-page: 130
  issue: 3
  year: 2017
  ident: 2021121711253124200_CIT0010
  article-title: Cardiac thyroid hormone metabolism and heart failure
  publication-title: Eur Thyroid J.
  doi: 10.1159/000469708
– volume: 22
  start-page: 1065
  issue: 5
  year: 2008
  ident: 2021121711253124200_CIT0082
  article-title: Participation of Brahma-related gene 1 (BRG1)-associated factor 57 and BRG1-containing chromatin remodeling complexes in thyroid hormone-dependent gene activation during vertebrate development
  publication-title: Mol Endocrinol.
  doi: 10.1210/me.2007-0492
– volume-title: Normal table of Xenopus laevis
  ident: 2021121711253124200_CIT0050
– volume: 282
  start-page: 7472
  issue: 10
  year: 2007
  ident: 2021121711253124200_CIT0070
  article-title: SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M607589200
– volume: 24
  start-page: 3337
  issue: 8
  year: 2004
  ident: 2021121711253124200_CIT0072
  article-title: Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.24.8.3337-3346.2004
– volume: 408
  start-page: 188
  issue: 2
  year: 2015
  ident: 2021121711253124200_CIT0130
  article-title: More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology
  publication-title: Dev Biol.
  doi: 10.1016/j.ydbio.2015.02.018
– volume: 98
  start-page: 10739
  issue: 19
  year: 2001
  ident: 2021121711253124200_CIT0062
  article-title: Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.191361698
– volume-title: The Story of Iodine Deficiency: An International Challenge in Nutrition.
  year: 1989
  ident: 2021121711253124200_CIT0014
– volume: 227
  start-page: 246
  issue: 2
  year: 2003
  ident: 2021121711253124200_CIT0059
  article-title: Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis
  publication-title: Dev Dyn.
  doi: 10.1002/dvdy.10300
– volume: 62
  start-page: 439
  year: 2000
  ident: 2021121711253124200_CIT0039
  article-title: The mechanism of action of thyroid hormones
  publication-title: Annu Rev Physiol.
  doi: 10.1146/annurev.physiol.62.1.439
– volume: 125
  start-page: 303
  year: 2017
  ident: 2021121711253124200_CIT0023
  article-title: Genetic investigation of thyroid hormone receptor function in the developing and adult brain
  publication-title: Curr Top Dev Biol.
  doi: 10.1016/bs.ctdb.2017.01.001
– volume: 5
  start-page: 481
  issue: 6
  year: 1995
  ident: 2021121711253124200_CIT0008
  article-title: Thyroid hormone control of thermogenesis and energy balance
  publication-title: Thyroid.
  doi: 10.1089/thy.1995.5.481
– volume: 203
  start-page: 971
  issue: 4384
  year: 1979
  ident: 2021121711253124200_CIT0001
  article-title: Thyroid hormone action at the cellular level
  publication-title: Science.
  doi: 10.1126/science.218285
– year: 2020
  ident: 2021121711253124200_CIT0077
  article-title: A role of endogenous histone acetyltransferase steroid hormone receptor coactivator (SRC) 3 in thyroid hormone signaling during Xenopus intestinal metamorphosis
  publication-title: Thyroid.
– volume: 156
  start-page: 721
  issue: 2
  year: 2015
  ident: 2021121711253124200_CIT0093
  article-title: Unliganded thyroid hormone receptor α controls developmental timing in Xenopus tropicalis
  publication-title: Endocrinology.
  doi: 10.1210/en.2014-1439
– volume: 51
  start-page: 835
  issue: 12
  year: 2013
  ident: 2021121711253124200_CIT0086
  article-title: Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis
  publication-title: Genesis.
  doi: 10.1002/dvg.22720
– volume: 32
  start-page: 205
  year: 1996
  ident: 2021121711253124200_CIT0107
  article-title: Biphasic intestinal development in amphibians: Embryogensis and remodeling during metamorphosis
  publication-title: Current Topics in Develop Biol.
  doi: 10.1016/S0070-2153(08)60429-9
– volume: 24
  start-page: 9026
  issue: 20
  year: 2004
  ident: 2021121711253124200_CIT0064
  article-title: Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.24.20.9026-9037.2004
– volume: 7
  issue: 1
  year: 2018
  ident: 2021121711253124200_CIT0091
  article-title: Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas
  publication-title: Biol Open.
SSID ssj0014443
Score 2.486534
SecondaryResourceType review_article
Snippet Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Amphibians
Analysis
Animals
Degeneration
Diploids
Divergence
Endocrinology
Frogs
Gene Expression Regulation, Developmental
Gene silencing
Genes
Genetic modification
Genome editing
Hormones
Humans
Lethality
Mammals
Mammals - genetics
Mammals - growth & development
Mammals - metabolism
Metabolism
Metamorphosis
Metamorphosis, Biological
Mini-Reviews
Neonates
Organs
Receptors
Receptors, Thyroid Hormone - genetics
Receptors, Thyroid Hormone - metabolism
Thyroid
Thyroid gland
Tissues
Triiodothyronine
Triiodothyronine - metabolism
Vertebrates
Title Life Without Thyroid Hormone Receptor
URI https://www.ncbi.nlm.nih.gov/pubmed/33558878
https://www.proquest.com/docview/2891656016
https://www.proquest.com/docview/3169655826
https://www.proquest.com/docview/2487748692
https://pubmed.ncbi.nlm.nih.gov/PMC7947273
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSFUvCFoeCwsKiMehStkkjuMcFwSsEOXCVlpOkZ_alWiyLNlD-fXMOE6aVFvxuERWxrGt-Wxnxp4HIS9AqJCGpUnIlQUFRRkeCmlZiDdK2qCzpguSdPqFzc7op0W6uMy26rxLanmifu30K_kfVOEd4Ipesv-AbNcovIAy4AtPQBief4Xx55U1sK7rJRoXz5cXm2qlj2cghVYlpmNAi5VqMzh7L3UF20Rzlo7CJZ6nYKDI9RKNZrtDga8u1e_xt20Zvq36BwNx1LMnMc1mltM0BHVtMtjtWNyDle7cRUENdPzEIUFB_hBy0rhw95i6PndcTTA-O2_S8FyJXN2SbpJbMQjxmF_i46IzwAFNjiY-jCb6ETXdvfGdHZD99vOBxOD_mwNnxJ5OcNW0tScrzO-Q217ID6YNYnfJDVMekqNpKerq_CJ4FTizW4fBIdk_9dYNR-Ql4hl4PAOPZ-DxDFo875GzD-_n72ahT2MRKpCV6pDKTDCbcmsljbimqRATYXJYOpYzkWvQCXUeR0qDpCeNsRMt0ijR1FiKt5wquU_2SujnIQniRBubyTSRIJXl1PDYpCYXkTIZF6CJj0jYsqpQPsY7phr5XqCuB1wuGi4Xnssj8rqrv26im1xfEzlfIPjQohLeewPGhQHEiinDC9aE5XRExoOasF2pAfk5YPfH3sYttIVfbz-LmOcuVFTEdpKTiOUMZkwM5GcdGXtHM8LSVFtoAtTzjHKWxyPyoJko3Uja6TYi2WAKdRUwEPuQUq6WLiA7_NNQDXh0bZuPycHlCh2TvXqzNU9AmK3lU7cmfgMZXaA5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+Without+Thyroid+Hormone+Receptor&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Shi%2C+Yun-Bo&rft.date=2021-04-01&rft.eissn=1945-7170&rft.volume=162&rft.issue=4&rft_id=info:doi/10.1210%2Fendocr%2Fbqab028&rft_id=info%3Apmid%2F33558878&rft.externalDocID=33558878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon