Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic prog...
Saved in:
Published in | Physiological genomics Vol. 47; no. 3; pp. 45 - 57 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. |
---|---|
AbstractList | microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts ( day 0 ) into myotubes at 48 h intervals ( day 2, 4, 6, 8 , and 10 ). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4 , and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10 , respectively. At day 10 , 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > + or -1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. |
Author | Zierath, Juleen R Egan, Brendan Krook, Anna Sjögren, Rasmus J O Katayama, Mutsumi |
Author_xml | – sequence: 1 givenname: Rasmus J O surname: Sjögren fullname: Sjögren, Rasmus J O organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and – sequence: 2 givenname: Brendan surname: Egan fullname: Egan, Brendan organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and – sequence: 3 givenname: Mutsumi surname: Katayama fullname: Katayama, Mutsumi organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – sequence: 4 givenname: Juleen R surname: Zierath fullname: Zierath, Juleen R organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – sequence: 5 givenname: Anna surname: Krook fullname: Krook, Anna email: Anna.Krook@ki.se organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Anna.Krook@ki.se |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25547110$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280$$DView record from Swedish Publication Index |
BookMark | eNqNUl1rFDEUHaRiP_QvSPDJl1nzOcn6IJTiFxQFqc8hk7nZjTuTjMmMdX9G_3Gz7rZaQfAludycc-7N4ZxWRyEGqKoXBC8IEfTVuN5mH_sVhDh4mxcYYyYXFBP-qDohgpGa0kYelRovea0YJ8fVac7fcEFIJZ5Ux1QILgnBJ9XNFQxjTKZHJpi-6GYUHUpg_ZiiLe3Bf_l0Xg_lQPBzTJDL6IBGM02QQkal03k75UJZzb2ZYtqiANN1TJuMujn5sEKddw4ShMmbaUf2Aa3nwQSUN9DDtBsyZ9sDstD3-Wn12Jk-w7PDfVZ9fff26uJDffn5_ceL88vaNoRNNW-pw0xZiw0VnWpbJdWSceFUK4g0bglMUeYItB0o2bYdlo5SRphjjWyEZGdVvdfN1zDOrR6TH0za6mi8PrQ2pQItSIGTgl_-E1-86n6T7oiE4bIUVbhw3-y5BTBAZ4sXxfKHEg9egl_rVfyhOeONZE0ReHkQSPH7DHnSg887u0yAOGdNFFYNX1LyH9CmwZxJQXiBvt5DbYo5J3D3GxGsd1HTf0VN_4qa3kWtkJ__-ad76l222C1o2d18 |
CitedBy_id | crossref_primary_10_3390_ijms22168569 crossref_primary_10_3390_ijms22084204 crossref_primary_10_3390_ijms18040727 crossref_primary_10_1186_s12915_023_01755_3 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1111_apha_12681 crossref_primary_10_1021_acs_bioconjchem_8b00487 crossref_primary_10_1111_apha_14156 crossref_primary_10_1152_japplphysiol_00557_2022 crossref_primary_10_3390_biom11030472 crossref_primary_10_14814_phy2_13739 crossref_primary_10_1007_s11033_020_05421_7 crossref_primary_10_1021_acs_biomac_7b00406 crossref_primary_10_1186_s12864_016_2640_3 |
Cites_doi | 10.1093/nar/gkn923 10.1152/physiolgenomics.00093.2011 10.1038/nature07228 10.1186/1471-2164-10-218 10.1038/nrm3118 10.1182/blood-2008-09-178186 10.1016/S0888-7543(03)00104-6 10.1016/j.devcel.2009.10.013 10.1083/jcb.200603008 10.1093/molbev/mss125 10.1038/nature09267 10.1186/2044-5040-1-29 10.1371/journal.pone.0062757 10.1186/1471-213X-11-34 10.1152/ajpendo.00190.2006 10.1016/j.diff.2012.08.002 10.1186/gb-2004-5-3-r13 10.2174/156652411794859250 10.4161/cc.8.1.7292 10.1101/gad.198085.112 10.1073/pnas.1000300107 10.1007/s10038-008-0279-x 10.1111/j.1365-201X.2004.01259.x 10.1038/cdd.2013.62 10.1016/j.molcel.2012.05.046 10.1016/j.ceb.2009.01.029 10.1369/jhc.2010.956201 10.1038/nprot.2008.211 10.1158/0008-5472.CAN-04-0496 10.1016/j.ydbio.2007.08.032 10.1038/sj.onc.1210665 10.1038/nature02871 10.1371/journal.pone.0005745 10.1152/japplphysiol.01215.2007 10.1038/nmeth0609-397 10.4161/auto.7.11.17371 10.1016/j.molcel.2007.06.017 10.1152/physrev.00043.2011 10.1002/ijc.26218 10.1152/physiolgenomics.00136.2010 10.1038/cddis.2013.429 10.1073/pnas.0602831103 10.1038/embor.2008.73 10.1073/pnas.091062498 10.1074/jbc.M709614200 10.1083/jcb.200912093 10.1038/ncb1373 10.1093/bioinformatics/btm412 10.1186/1471-2164-14-265 10.1016/j.cell.2009.01.002 10.1093/nar/gkt525 10.1152/physiolgenomics.00052.2012 10.1083/jcb.201206033 10.1128/MCB.01009-10 10.1038/ng1725 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. – notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 8FD FR3 P64 RC3 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1152/physiolgenomics.00037.2014 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1531-2267 |
EndPage | 57 |
ExternalDocumentID | oai_swepub_ki_se_516571 oai_prod_swepub_kib_ki_se_130878280 10_1152_physiolgenomics_00037_2014 25547110 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .GJ 123 29O 2WC 39C 4.4 53G 5VS AAFWJ ABJNI ABKWE ACGFS ACPRK ADBBV ADFNX AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EMOBN F5P H13 ITBOX KQ8 NPM OK1 P2P R.V RAP RHF RHI RPRKH TR2 W8F WOQ XSW AAYXX CITATION 7X8 8FD FR3 P64 RC3 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c613t-4b2f038cc0a25d8bb8789345f8b517af9e3823f1ebde87bbd07f22313f3676573 |
ISSN | 1094-8341 1531-2267 |
IngestDate | Thu Nov 07 05:38:45 EST 2024 Wed Oct 30 04:59:41 EDT 2024 Tue Sep 17 21:12:25 EDT 2024 Tue Aug 27 04:29:14 EDT 2024 Fri Oct 25 05:32:31 EDT 2024 Thu Sep 12 19:29:23 EDT 2024 Sat Sep 28 07:56:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | miRNA differentiation skeletal muscle transcriptome satellite cells |
Language | English |
License | Copyright © 2015 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c613t-4b2f038cc0a25d8bb8789345f8b517af9e3823f1ebde87bbd07f22313f3676573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 R. J. O. Sjögren and B. Egan contributed equally to this work. |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280 |
PMID | 25547110 |
PQID | 1660437514 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_516571 swepub_primary_oai_prod_swepub_kib_ki_se_130878280 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4346736 proquest_miscellaneous_1808649216 proquest_miscellaneous_1660437514 crossref_primary_10_1152_physiolgenomics_00037_2014 pubmed_primary_25547110 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Physiological genomics |
PublicationTitleAlternate | Physiol Genomics |
PublicationYear | 2015 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | 23690952 - PLoS One. 2013;8(5):e62757 21041476 - Mol Cell Biol. 2011 Jan;31(1):203-14 21342132 - Curr Mol Med. 2011 Mar;11(2):93-109 23028144 - Genes Dev. 2012 Oct 1;26(19):2180-91 17637741 - Oncogene. 2008 Jan 17;27(4):528-39 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 19202128 - Blood. 2009 May 7;113(19):4586-94 16731620 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8721-6 22147266 - Physiol Genomics. 2012 Feb 1;44(2):183-97 19922871 - Dev Cell. 2009 Nov;17(5):662-73 16772322 - Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E937-46 18465083 - J Hum Genet. 2008;53(6):515-23 20644208 - J Histochem Cytochem. 2010 Nov;58(11):941-55 25200835 - J Cell Physiol. 2015 May;230(5):1003-12 15372042 - Nature. 2004 Sep 16;431(7006):350-5 17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7 21645416 - BMC Dev Biol. 2011;11:34 15030381 - Acta Physiol Scand. 2004 Apr;180(4):395-403 16380711 - Nat Genet. 2006 Feb;38(2):228-33 16489342 - Nat Cell Biol. 2006 Mar;8(3):278-84 21795860 - Autophagy. 2011 Nov;7(11):1384-6 18281287 - J Biol Chem. 2008 Apr 11;283(15):9836-43 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 23597168 - BMC Genomics. 2013;14:265 15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50 20566686 - J Cell Biol. 2010 Jun 28;189(7):1157-69 22522309 - Mol Biol Evol. 2012 Oct;29(10):3181-91 23303905 - Physiol Rev. 2013 Jan;93(1):23-67 23771142 - Nucleic Acids Res. 2013 Aug;41(15):e146 21602905 - Nat Rev Mol Cell Biol. 2011 Jun;12(6):349-61 20841498 - Physiol Genomics. 2011 May 1;43(10):621-30 20142475 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4218-23 23764775 - Cell Death Differ. 2013 Sep;20(9):1194-208 12837262 - Genomics. 2003 Aug;82(2):109-21 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 21902831 - Skelet Muscle. 2011 Sep 08;1:29 19435500 - BMC Genomics. 2009;10:218 20703300 - Nature. 2010 Aug 12;466(7308):835-40 18535625 - EMBO Rep. 2008 Jul;9(7):683-9 23023067 - Differentiation. 2012 Nov;84(4):314-21 16923828 - J Cell Biol. 2006 Aug 28;174(5):677-87 18436694 - J Appl Physiol (1985). 2008 Jun;104(6):1736-42 22968638 - Physiol Genomics. 2012 Nov 1;44(21):1042-51 19278845 - Curr Opin Cell Biol. 2009 Jun;21(3):461-9 19478799 - Nat Methods. 2009 Jun;6(6):397-8 19167326 - Cell. 2009 Jan 23;136(2):215-33 19478946 - PLoS One. 2009;4(5):e5745 19106613 - Cell Cycle. 2009 Jan 1;8(1):172-5 17936265 - Dev Biol. 2007 Nov 15;311(2):359-68 15003116 - Genome Biol. 2004;5(3):R13 24232094 - Cell Death Dis. 2013;4:e918 23027903 - J Cell Biol. 2012 Oct 1;199(1):77-95 21633953 - Int J Cancer. 2012 May 1;130(9):2044-53 18668040 - Nature. 2008 Sep 4;455(7209):58-63 22771117 - Mol Cell. 2012 Aug 10;47(3):457-68 19131956 - Nat Protoc. 2009;4(1):44-57 B20 B21 B22 Wei H (B52) B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B22 doi: 10.1093/nar/gkn923 – ident: B36 doi: 10.1152/physiolgenomics.00093.2011 – ident: B41 doi: 10.1038/nature07228 – ident: B51 doi: 10.1186/1471-2164-10-218 – ident: B7 doi: 10.1038/nrm3118 – ident: B57 doi: 10.1182/blood-2008-09-178186 – ident: B14 doi: 10.1016/S0888-7543(03)00104-6 – ident: B48 doi: 10.1016/j.devcel.2009.10.013 – ident: B24 doi: 10.1083/jcb.200603008 – ident: B49 doi: 10.1093/molbev/mss125 – ident: B20 doi: 10.1038/nature09267 – ident: B25 doi: 10.1186/2044-5040-1-29 – ident: B21 doi: 10.1371/journal.pone.0062757 – ident: B27 doi: 10.1186/1471-213X-11-34 – ident: B32 doi: 10.1152/ajpendo.00190.2006 – ident: B26 doi: 10.1016/j.diff.2012.08.002 – ident: B42 doi: 10.1186/gb-2004-5-3-r13 – ident: B54 doi: 10.2174/156652411794859250 – ident: B11 doi: 10.4161/cc.8.1.7292 – ident: B16 doi: 10.1101/gad.198085.112 – ident: B43 doi: 10.1073/pnas.1000300107 – ident: B52 publication-title: J Cell Physiol contributor: fullname: Wei H – ident: B40 doi: 10.1007/s10038-008-0279-x – ident: B1 doi: 10.1111/j.1365-201X.2004.01259.x – ident: B2 doi: 10.1038/cdd.2013.62 – ident: B44 doi: 10.1016/j.molcel.2012.05.046 – ident: B53 doi: 10.1016/j.ceb.2009.01.029 – ident: B6 doi: 10.1369/jhc.2010.956201 – ident: B23 doi: 10.1038/nprot.2008.211 – ident: B4 doi: 10.1158/0008-5472.CAN-04-0496 – ident: B31 doi: 10.1016/j.ydbio.2007.08.032 – ident: B12 doi: 10.1038/sj.onc.1210665 – ident: B3 doi: 10.1038/nature02871 – ident: B35 doi: 10.1371/journal.pone.0005745 – ident: B33 doi: 10.1152/japplphysiol.01215.2007 – ident: B39 doi: 10.1038/nmeth0609-397 – ident: B18 doi: 10.4161/auto.7.11.17371 – ident: B19 doi: 10.1016/j.molcel.2007.06.017 – ident: B56 doi: 10.1152/physrev.00043.2011 – ident: B28 doi: 10.1002/ijc.26218 – ident: B9 doi: 10.1152/physiolgenomics.00136.2010 – ident: B13 doi: 10.1038/cddis.2013.429 – ident: B37 doi: 10.1073/pnas.0602831103 – ident: B50 doi: 10.1038/embor.2008.73 – ident: B46 doi: 10.1073/pnas.091062498 – ident: B55 doi: 10.1074/jbc.M709614200 – ident: B45 doi: 10.1083/jcb.200912093 – ident: B30 doi: 10.1038/ncb1373 – ident: B38 doi: 10.1093/bioinformatics/btm412 – ident: B17 doi: 10.1186/1471-2164-14-265 – ident: B5 doi: 10.1016/j.cell.2009.01.002 – ident: B47 doi: 10.1093/nar/gkt525 – ident: B10 doi: 10.1152/physiolgenomics.00052.2012 – ident: B29 doi: 10.1083/jcb.201206033 – ident: B15 doi: 10.1128/MCB.01009-10 – ident: B8 doi: 10.1038/ng1725 |
SSID | ssj0014785 |
Score | 2.2390187 |
Snippet | microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental... |
SourceID | swepub pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 45 |
SubjectTerms | 3' Untranslated Regions - genetics Biomarkers - metabolism Cell Differentiation - genetics Cells, Cultured Gene Expression Profiling Gene Expression Regulation Gene Ontology Gene Regulatory Networks Humans Male Medicin och hälsovetenskap MicroRNAs - genetics MicroRNAs - metabolism Muscle Cells - cytology Muscle Cells - metabolism Muscle, Skeletal - cytology Real-Time Polymerase Chain Reaction Regulation of Gene Expression Reproducibility of Results RNA, Messenger - genetics RNA, Messenger - metabolism Time Factors |
Title | Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25547110 https://search.proquest.com/docview/1660437514 https://search.proquest.com/docview/1808649216 https://pubmed.ncbi.nlm.nih.gov/PMC4346736 http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIgQXBOW1vGQkxGWVEsd2kj22Fahq1SKWVuotSpykDdVmV032UP4Ff4TfyIwd59FtEXDYaJU4duL5Mh57Zj4T8t7jKg2SxHNUymJHCM6dROShEyuke-KM-9pdcHjk752I_VN5Ohr96kUtrepkS_24Ma_kf6QK50CumCX7D5JtK4UT8B_kC0eQMBz_TsaGVwqz_TtqEaSrwGEJ00KK2dG2M4cDMvmbiFdNpYqrgBXyA6SF0o4DvSE9uttLExZe2fxFu4FKbUSIyyNmW7_qAgYszKScryp4rAl6AKq-qatjS1vVilyw815k_bfv6KLf8c8ujd6bxRVUNNmffGlt_DOzNruDUbsdhg_iOr6K59rmPVzV0N1Fu_hdIEP0eZP2jdFns_6iBpNdVNdWZhUxc8A0DPqa2nBzNojkPbVrGCnXRwOJ7LJL87r2Pbc05w4G9Yn-TSDZ5VzjBCZZMGI3wbZDLm576Q6564FiQ4168LXzWokglA2xLTT98faGkYK6qWpoD61NctZjdQeMttoKOn5EHjbTF7ptsPiYjLJyk9wzG5pebZL7u3b_wCfkp0Unteiki5x26KQdOmmHTmrRSS06aYdOatFJDTrpNXTSoqQandSikxp0Uo3Op-Tk86fj3T2n2QDEUWBl1o5IvNzloVJu7Mk0TJIwAPNayDxMJAvifJqhFztnWZJmIWic1A1yMHcZz5GHUAb8GdkoF2X2glDFWMpxK4fcc0UaptPEZ3mqoIpYpm6uxoRbMURLw_MS6fmx9KJrcoy0HCOU45i8sxKLoHfxXeIyW6yqiPk-sobJP5YJ3dAXU4_5Y_LcSLlt28JjTIKB_NsCSAs_vFIW55oeXnCBwZpj4hmkDG8Bsyxqzl8U-IuqDH3a0LVeCM19uOGmtjyWlQx6lr289YlfkQfdF_2abNSXq-wNGO518lZ_Lb8B_1H9xw |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+analysis+of+reciprocal+miRNA-mRNA+expression+patterns+predicts+regulatory+networks+during+differentiation+in+human+skeletal+muscle+cells&rft.jtitle=Physiological+genomics&rft.au=Sj%C3%B6gren%2C+Rasmus+J+O&rft.au=Egan%2C+Brendan&rft.au=Katayama%2C+Mutsumi&rft.au=Zierath%2C+Juleen+R&rft.date=2015-03-01&rft.eissn=1531-2267&rft.volume=47&rft.issue=3&rft.spage=45&rft_id=info:doi/10.1152%2Fphysiolgenomics.00037.2014&rft_id=info%3Apmid%2F25547110&rft.externalDocID=25547110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon |