Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells

microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic prog...

Full description

Saved in:
Bibliographic Details
Published inPhysiological genomics Vol. 47; no. 3; pp. 45 - 57
Main Authors Sjögren, Rasmus J O, Egan, Brendan, Katayama, Mutsumi, Zierath, Juleen R, Krook, Anna
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.
AbstractList microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) &lt; 5%, fold change &gt; ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR &lt; 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts ( day 0 ) into myotubes at 48 h intervals ( day 2, 4, 6, 8 , and 10 ). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4 , and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10 , respectively. At day 10 , 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > + or -1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states.
Author Zierath, Juleen R
Egan, Brendan
Krook, Anna
Sjögren, Rasmus J O
Katayama, Mutsumi
Author_xml – sequence: 1
  givenname: Rasmus J O
  surname: Sjögren
  fullname: Sjögren, Rasmus J O
  organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
– sequence: 2
  givenname: Brendan
  surname: Egan
  fullname: Egan, Brendan
  organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
– sequence: 3
  givenname: Mutsumi
  surname: Katayama
  fullname: Katayama, Mutsumi
  organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
– sequence: 4
  givenname: Juleen R
  surname: Zierath
  fullname: Zierath, Juleen R
  organization: Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
– sequence: 5
  givenname: Anna
  surname: Krook
  fullname: Krook, Anna
  email: Anna.Krook@ki.se
  organization: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Anna.Krook@ki.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25547110$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280$$DView record from Swedish Publication Index
BookMark eNqNUl1rFDEUHaRiP_QvSPDJl1nzOcn6IJTiFxQFqc8hk7nZjTuTjMmMdX9G_3Gz7rZaQfAludycc-7N4ZxWRyEGqKoXBC8IEfTVuN5mH_sVhDh4mxcYYyYXFBP-qDohgpGa0kYelRovea0YJ8fVac7fcEFIJZ5Ux1QILgnBJ9XNFQxjTKZHJpi-6GYUHUpg_ZiiLe3Bf_l0Xg_lQPBzTJDL6IBGM02QQkal03k75UJZzb2ZYtqiANN1TJuMujn5sEKddw4ShMmbaUf2Aa3nwQSUN9DDtBsyZ9sDstD3-Wn12Jk-w7PDfVZ9fff26uJDffn5_ceL88vaNoRNNW-pw0xZiw0VnWpbJdWSceFUK4g0bglMUeYItB0o2bYdlo5SRphjjWyEZGdVvdfN1zDOrR6TH0za6mi8PrQ2pQItSIGTgl_-E1-86n6T7oiE4bIUVbhw3-y5BTBAZ4sXxfKHEg9egl_rVfyhOeONZE0ReHkQSPH7DHnSg887u0yAOGdNFFYNX1LyH9CmwZxJQXiBvt5DbYo5J3D3GxGsd1HTf0VN_4qa3kWtkJ__-ad76l222C1o2d18
CitedBy_id crossref_primary_10_3390_ijms22168569
crossref_primary_10_3390_ijms22084204
crossref_primary_10_3390_ijms18040727
crossref_primary_10_1186_s12915_023_01755_3
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1111_apha_12681
crossref_primary_10_1021_acs_bioconjchem_8b00487
crossref_primary_10_1111_apha_14156
crossref_primary_10_1152_japplphysiol_00557_2022
crossref_primary_10_3390_biom11030472
crossref_primary_10_14814_phy2_13739
crossref_primary_10_1007_s11033_020_05421_7
crossref_primary_10_1021_acs_biomac_7b00406
crossref_primary_10_1186_s12864_016_2640_3
Cites_doi 10.1093/nar/gkn923
10.1152/physiolgenomics.00093.2011
10.1038/nature07228
10.1186/1471-2164-10-218
10.1038/nrm3118
10.1182/blood-2008-09-178186
10.1016/S0888-7543(03)00104-6
10.1016/j.devcel.2009.10.013
10.1083/jcb.200603008
10.1093/molbev/mss125
10.1038/nature09267
10.1186/2044-5040-1-29
10.1371/journal.pone.0062757
10.1186/1471-213X-11-34
10.1152/ajpendo.00190.2006
10.1016/j.diff.2012.08.002
10.1186/gb-2004-5-3-r13
10.2174/156652411794859250
10.4161/cc.8.1.7292
10.1101/gad.198085.112
10.1073/pnas.1000300107
10.1007/s10038-008-0279-x
10.1111/j.1365-201X.2004.01259.x
10.1038/cdd.2013.62
10.1016/j.molcel.2012.05.046
10.1016/j.ceb.2009.01.029
10.1369/jhc.2010.956201
10.1038/nprot.2008.211
10.1158/0008-5472.CAN-04-0496
10.1016/j.ydbio.2007.08.032
10.1038/sj.onc.1210665
10.1038/nature02871
10.1371/journal.pone.0005745
10.1152/japplphysiol.01215.2007
10.1038/nmeth0609-397
10.4161/auto.7.11.17371
10.1016/j.molcel.2007.06.017
10.1152/physrev.00043.2011
10.1002/ijc.26218
10.1152/physiolgenomics.00136.2010
10.1038/cddis.2013.429
10.1073/pnas.0602831103
10.1038/embor.2008.73
10.1073/pnas.091062498
10.1074/jbc.M709614200
10.1083/jcb.200912093
10.1038/ncb1373
10.1093/bioinformatics/btm412
10.1186/1471-2164-14-265
10.1016/j.cell.2009.01.002
10.1093/nar/gkt525
10.1152/physiolgenomics.00052.2012
10.1083/jcb.201206033
10.1128/MCB.01009-10
10.1038/ng1725
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright © 2015 the American Physiological Society 2015 American Physiological Society
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
– notice: Copyright © 2015 the American Physiological Society 2015 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
8FD
FR3
P64
RC3
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1152/physiolgenomics.00037.2014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1531-2267
EndPage 57
ExternalDocumentID oai_swepub_ki_se_516571
oai_prod_swepub_kib_ki_se_130878280
10_1152_physiolgenomics_00037_2014
25547110
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
123
29O
2WC
39C
4.4
53G
5VS
AAFWJ
ABJNI
ABKWE
ACGFS
ACPRK
ADBBV
ADFNX
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
ITBOX
KQ8
NPM
OK1
P2P
R.V
RAP
RHF
RHI
RPRKH
TR2
W8F
WOQ
XSW
AAYXX
CITATION
7X8
8FD
FR3
P64
RC3
5PM
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c613t-4b2f038cc0a25d8bb8789345f8b517af9e3823f1ebde87bbd07f22313f3676573
ISSN 1094-8341
1531-2267
IngestDate Thu Nov 07 05:38:45 EST 2024
Wed Oct 30 04:59:41 EDT 2024
Tue Sep 17 21:12:25 EDT 2024
Tue Aug 27 04:29:14 EDT 2024
Fri Oct 25 05:32:31 EDT 2024
Thu Sep 12 19:29:23 EDT 2024
Sat Sep 28 07:56:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords miRNA
differentiation
skeletal muscle
transcriptome
satellite cells
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c613t-4b2f038cc0a25d8bb8789345f8b517af9e3823f1ebde87bbd07f22313f3676573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
R. J. O. Sjögren and B. Egan contributed equally to this work.
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280
PMID 25547110
PQID 1660437514
PQPubID 23479
PageCount 13
ParticipantIDs swepub_primary_oai_swepub_ki_se_516571
swepub_primary_oai_prod_swepub_kib_ki_se_130878280
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4346736
proquest_miscellaneous_1808649216
proquest_miscellaneous_1660437514
crossref_primary_10_1152_physiolgenomics_00037_2014
pubmed_primary_25547110
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Physiological genomics
PublicationTitleAlternate Physiol Genomics
PublicationYear 2015
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 23690952 - PLoS One. 2013;8(5):e62757
21041476 - Mol Cell Biol. 2011 Jan;31(1):203-14
21342132 - Curr Mol Med. 2011 Mar;11(2):93-109
23028144 - Genes Dev. 2012 Oct 1;26(19):2180-91
17637741 - Oncogene. 2008 Jan 17;27(4):528-39
17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
19202128 - Blood. 2009 May 7;113(19):4586-94
16731620 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8721-6
22147266 - Physiol Genomics. 2012 Feb 1;44(2):183-97
19922871 - Dev Cell. 2009 Nov;17(5):662-73
16772322 - Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E937-46
18465083 - J Hum Genet. 2008;53(6):515-23
20644208 - J Histochem Cytochem. 2010 Nov;58(11):941-55
25200835 - J Cell Physiol. 2015 May;230(5):1003-12
15372042 - Nature. 2004 Sep 16;431(7006):350-5
17720982 - Bioinformatics. 2007 Oct 15;23(20):2700-7
21645416 - BMC Dev Biol. 2011;11:34
15030381 - Acta Physiol Scand. 2004 Apr;180(4):395-403
16380711 - Nat Genet. 2006 Feb;38(2):228-33
16489342 - Nat Cell Biol. 2006 Mar;8(3):278-84
21795860 - Autophagy. 2011 Nov;7(11):1384-6
18281287 - J Biol Chem. 2008 Apr 11;283(15):9836-43
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
23597168 - BMC Genomics. 2013;14:265
15289330 - Cancer Res. 2004 Aug 1;64(15):5245-50
20566686 - J Cell Biol. 2010 Jun 28;189(7):1157-69
22522309 - Mol Biol Evol. 2012 Oct;29(10):3181-91
23303905 - Physiol Rev. 2013 Jan;93(1):23-67
23771142 - Nucleic Acids Res. 2013 Aug;41(15):e146
21602905 - Nat Rev Mol Cell Biol. 2011 Jun;12(6):349-61
20841498 - Physiol Genomics. 2011 May 1;43(10):621-30
20142475 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4218-23
23764775 - Cell Death Differ. 2013 Sep;20(9):1194-208
12837262 - Genomics. 2003 Aug;82(2):109-21
19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
21902831 - Skelet Muscle. 2011 Sep 08;1:29
19435500 - BMC Genomics. 2009;10:218
20703300 - Nature. 2010 Aug 12;466(7308):835-40
18535625 - EMBO Rep. 2008 Jul;9(7):683-9
23023067 - Differentiation. 2012 Nov;84(4):314-21
16923828 - J Cell Biol. 2006 Aug 28;174(5):677-87
18436694 - J Appl Physiol (1985). 2008 Jun;104(6):1736-42
22968638 - Physiol Genomics. 2012 Nov 1;44(21):1042-51
19278845 - Curr Opin Cell Biol. 2009 Jun;21(3):461-9
19478799 - Nat Methods. 2009 Jun;6(6):397-8
19167326 - Cell. 2009 Jan 23;136(2):215-33
19478946 - PLoS One. 2009;4(5):e5745
19106613 - Cell Cycle. 2009 Jan 1;8(1):172-5
17936265 - Dev Biol. 2007 Nov 15;311(2):359-68
15003116 - Genome Biol. 2004;5(3):R13
24232094 - Cell Death Dis. 2013;4:e918
23027903 - J Cell Biol. 2012 Oct 1;199(1):77-95
21633953 - Int J Cancer. 2012 May 1;130(9):2044-53
18668040 - Nature. 2008 Sep 4;455(7209):58-63
22771117 - Mol Cell. 2012 Aug 10;47(3):457-68
19131956 - Nat Protoc. 2009;4(1):44-57
B20
B21
B22
Wei H (B52)
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B15
B16
B17
B18
B19
References_xml – ident: B22
  doi: 10.1093/nar/gkn923
– ident: B36
  doi: 10.1152/physiolgenomics.00093.2011
– ident: B41
  doi: 10.1038/nature07228
– ident: B51
  doi: 10.1186/1471-2164-10-218
– ident: B7
  doi: 10.1038/nrm3118
– ident: B57
  doi: 10.1182/blood-2008-09-178186
– ident: B14
  doi: 10.1016/S0888-7543(03)00104-6
– ident: B48
  doi: 10.1016/j.devcel.2009.10.013
– ident: B24
  doi: 10.1083/jcb.200603008
– ident: B49
  doi: 10.1093/molbev/mss125
– ident: B20
  doi: 10.1038/nature09267
– ident: B25
  doi: 10.1186/2044-5040-1-29
– ident: B21
  doi: 10.1371/journal.pone.0062757
– ident: B27
  doi: 10.1186/1471-213X-11-34
– ident: B32
  doi: 10.1152/ajpendo.00190.2006
– ident: B26
  doi: 10.1016/j.diff.2012.08.002
– ident: B42
  doi: 10.1186/gb-2004-5-3-r13
– ident: B54
  doi: 10.2174/156652411794859250
– ident: B11
  doi: 10.4161/cc.8.1.7292
– ident: B16
  doi: 10.1101/gad.198085.112
– ident: B43
  doi: 10.1073/pnas.1000300107
– ident: B52
  publication-title: J Cell Physiol
  contributor:
    fullname: Wei H
– ident: B40
  doi: 10.1007/s10038-008-0279-x
– ident: B1
  doi: 10.1111/j.1365-201X.2004.01259.x
– ident: B2
  doi: 10.1038/cdd.2013.62
– ident: B44
  doi: 10.1016/j.molcel.2012.05.046
– ident: B53
  doi: 10.1016/j.ceb.2009.01.029
– ident: B6
  doi: 10.1369/jhc.2010.956201
– ident: B23
  doi: 10.1038/nprot.2008.211
– ident: B4
  doi: 10.1158/0008-5472.CAN-04-0496
– ident: B31
  doi: 10.1016/j.ydbio.2007.08.032
– ident: B12
  doi: 10.1038/sj.onc.1210665
– ident: B3
  doi: 10.1038/nature02871
– ident: B35
  doi: 10.1371/journal.pone.0005745
– ident: B33
  doi: 10.1152/japplphysiol.01215.2007
– ident: B39
  doi: 10.1038/nmeth0609-397
– ident: B18
  doi: 10.4161/auto.7.11.17371
– ident: B19
  doi: 10.1016/j.molcel.2007.06.017
– ident: B56
  doi: 10.1152/physrev.00043.2011
– ident: B28
  doi: 10.1002/ijc.26218
– ident: B9
  doi: 10.1152/physiolgenomics.00136.2010
– ident: B13
  doi: 10.1038/cddis.2013.429
– ident: B37
  doi: 10.1073/pnas.0602831103
– ident: B50
  doi: 10.1038/embor.2008.73
– ident: B46
  doi: 10.1073/pnas.091062498
– ident: B55
  doi: 10.1074/jbc.M709614200
– ident: B45
  doi: 10.1083/jcb.200912093
– ident: B30
  doi: 10.1038/ncb1373
– ident: B38
  doi: 10.1093/bioinformatics/btm412
– ident: B17
  doi: 10.1186/1471-2164-14-265
– ident: B5
  doi: 10.1016/j.cell.2009.01.002
– ident: B47
  doi: 10.1093/nar/gkt525
– ident: B10
  doi: 10.1152/physiolgenomics.00052.2012
– ident: B29
  doi: 10.1083/jcb.201206033
– ident: B15
  doi: 10.1128/MCB.01009-10
– ident: B8
  doi: 10.1038/ng1725
SSID ssj0014785
Score 2.2390187
Snippet microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 45
SubjectTerms 3' Untranslated Regions - genetics
Biomarkers - metabolism
Cell Differentiation - genetics
Cells, Cultured
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
Gene Regulatory Networks
Humans
Male
Medicin och hälsovetenskap
MicroRNAs - genetics
MicroRNAs - metabolism
Muscle Cells - cytology
Muscle Cells - metabolism
Muscle, Skeletal - cytology
Real-Time Polymerase Chain Reaction
Regulation of Gene Expression
Reproducibility of Results
RNA, Messenger - genetics
RNA, Messenger - metabolism
Time Factors
Title Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells
URI https://www.ncbi.nlm.nih.gov/pubmed/25547110
https://search.proquest.com/docview/1660437514
https://search.proquest.com/docview/1808649216
https://pubmed.ncbi.nlm.nih.gov/PMC4346736
http://kipublications.ki.se/Default.aspx?queryparsed=id:130878280
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIgQXBOW1vGQkxGWVEsd2kj22Fahq1SKWVuotSpykDdVmV032UP4Ff4TfyIwd59FtEXDYaJU4duL5Mh57Zj4T8t7jKg2SxHNUymJHCM6dROShEyuke-KM-9pdcHjk752I_VN5Ohr96kUtrepkS_24Ma_kf6QK50CumCX7D5JtK4UT8B_kC0eQMBz_TsaGVwqz_TtqEaSrwGEJ00KK2dG2M4cDMvmbiFdNpYqrgBXyA6SF0o4DvSE9uttLExZe2fxFu4FKbUSIyyNmW7_qAgYszKScryp4rAl6AKq-qatjS1vVilyw815k_bfv6KLf8c8ujd6bxRVUNNmffGlt_DOzNruDUbsdhg_iOr6K59rmPVzV0N1Fu_hdIEP0eZP2jdFns_6iBpNdVNdWZhUxc8A0DPqa2nBzNojkPbVrGCnXRwOJ7LJL87r2Pbc05w4G9Yn-TSDZ5VzjBCZZMGI3wbZDLm576Q6564FiQ4168LXzWokglA2xLTT98faGkYK6qWpoD61NctZjdQeMttoKOn5EHjbTF7ptsPiYjLJyk9wzG5pebZL7u3b_wCfkp0Unteiki5x26KQdOmmHTmrRSS06aYdOatFJDTrpNXTSoqQandSikxp0Uo3Op-Tk86fj3T2n2QDEUWBl1o5IvNzloVJu7Mk0TJIwAPNayDxMJAvifJqhFztnWZJmIWic1A1yMHcZz5GHUAb8GdkoF2X2glDFWMpxK4fcc0UaptPEZ3mqoIpYpm6uxoRbMURLw_MS6fmx9KJrcoy0HCOU45i8sxKLoHfxXeIyW6yqiPk-sobJP5YJ3dAXU4_5Y_LcSLlt28JjTIKB_NsCSAs_vFIW55oeXnCBwZpj4hmkDG8Bsyxqzl8U-IuqDH3a0LVeCM19uOGmtjyWlQx6lr289YlfkQfdF_2abNSXq-wNGO518lZ_Lb8B_1H9xw
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+analysis+of+reciprocal+miRNA-mRNA+expression+patterns+predicts+regulatory+networks+during+differentiation+in+human+skeletal+muscle+cells&rft.jtitle=Physiological+genomics&rft.au=Sj%C3%B6gren%2C+Rasmus+J+O&rft.au=Egan%2C+Brendan&rft.au=Katayama%2C+Mutsumi&rft.au=Zierath%2C+Juleen+R&rft.date=2015-03-01&rft.eissn=1531-2267&rft.volume=47&rft.issue=3&rft.spage=45&rft_id=info:doi/10.1152%2Fphysiolgenomics.00037.2014&rft_id=info%3Apmid%2F25547110&rft.externalDocID=25547110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon