Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing

The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituti...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 469; no. 4; pp. 967 - 977
Main Authors Ranjan, Ravi, Rani, Asha, Metwally, Ahmed, McGee, Halvor S., Perkins, David L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.01.2016
Subjects
Online AccessGet full text
ISSN0006-291X
1090-2104
DOI10.1016/j.bbrc.2015.12.083

Cover

Loading…
Abstract The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. •Human microbiome has emerged as a major player in regulating health and disease.•Accurate identification of microbes constituting the microbiome is major challenge.•We report comparative study of whole genome shotgun (WGS) and amplicon sequencing.•WGS enhances detection of bacterial species with high accuracy.•WGS increased detection of microbial diversity and prediction of putative genes.
AbstractList The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 10(6) reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×10 6 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. •Human microbiome has emerged as a major player in regulating health and disease.•Accurate identification of microbes constituting the microbiome is major challenge.•We report comparative study of whole genome shotgun (WGS) and amplicon sequencing.•WGS enhances detection of bacterial species with high accuracy.•WGS increased detection of microbial diversity and prediction of putative genes.
Author McGee, Halvor S.
Rani, Asha
Metwally, Ahmed
Perkins, David L.
Ranjan, Ravi
AuthorAffiliation 2 Department of Bioengineering, University of Illinois, Chicago, IL 60612 USA
1 Department of Medicine, University of Illinois, Chicago, IL 60612 USA
3 Department of Surgery, University of Illinois, Chicago, IL 60612 USA
AuthorAffiliation_xml – name: 2 Department of Bioengineering, University of Illinois, Chicago, IL 60612 USA
– name: 1 Department of Medicine, University of Illinois, Chicago, IL 60612 USA
– name: 3 Department of Surgery, University of Illinois, Chicago, IL 60612 USA
Author_xml – sequence: 1
  givenname: Ravi
  orcidid: 0000-0002-8768-549X
  surname: Ranjan
  fullname: Ranjan, Ravi
  email: ranjan@uic.edu
  organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA
– sequence: 2
  givenname: Asha
  surname: Rani
  fullname: Rani, Asha
  email: asharani@uic.edu
  organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA
– sequence: 3
  givenname: Ahmed
  surname: Metwally
  fullname: Metwally, Ahmed
  email: ametwa2@uic.edu
  organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA
– sequence: 4
  givenname: Halvor S.
  surname: McGee
  fullname: McGee, Halvor S.
  email: hmcgee@uic.edu
  organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA
– sequence: 5
  givenname: David L.
  surname: Perkins
  fullname: Perkins, David L.
  email: perkinsd@uic.edu
  organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26718401$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1vEzEQtVARTQt_gAPaI5eEGXvX60UIKapoQarEAZC4IMvrHSeOdu2w3qTqv8chLQIOhZMP78Pz5s0ZOwkxEGPPERYIKF9tFm072gUHrBbIF6DEIzZDaGDOEcoTNgMAOecNfj1lZyltABBL2Txhp1zWqErAGfu2DKa_TT4V0RXTmorB2zG2Pg70ulh2exMms6Kf6M069lSsKGSsSOs4rXah2NOYdqlA-akww7b3NoYi0fcdBevD6il77Eyf6Nnde86-XL77fPF-fv3x6sPF8npuJYppjqJy3DnBO95waR3PUbhTwlWlUF2HJEFCyVUHpanKlkpHwnUgUVnXSt6Ic_b26LvdtQN1lsI0ml5vRz-Y8VZH4_WfSPBrvYp7XSoB0PBs8PLOYIx5-DTpwSdLfW8CxV3SqKqmrEWF8j-oWCtRqbr6N7WW-XOAWmTqi98T_Br9vqlMUEdCrielkZy2fjKTj4dAvtcI-nAUeqMPR6EPR6GR67zJLOV_Se_dHxS9OYoo97b3NOpkfW6VOj-SnXQX_UPyH8uJ0C0
CitedBy_id crossref_primary_10_3389_fnut_2025_1508381
crossref_primary_10_1038_s41598_022_08797_7
crossref_primary_10_15171_mejdd_2020_157
crossref_primary_10_1080_09064710_2019_1637016
crossref_primary_10_1186_s12931_023_02434_1
crossref_primary_10_1038_s41598_023_32809_9
crossref_primary_10_1038_s43705_022_00162_z
crossref_primary_10_1038_s43587_022_00287_9
crossref_primary_10_3389_fcimb_2020_00023
crossref_primary_10_1016_j_cveq_2023_03_004
crossref_primary_10_1016_j_jpsychires_2019_03_017
crossref_primary_10_1093_bib_bbaa157
crossref_primary_10_1016_j_ifset_2022_103084
crossref_primary_10_1007_s00253_018_9209_9
crossref_primary_10_1093_bioinformatics_bty830
crossref_primary_10_3390_ijms26072878
crossref_primary_10_3390_app10207367
crossref_primary_10_3390_microorganisms9020278
crossref_primary_10_1186_s13024_019_0352_2
crossref_primary_10_1016_j_tplants_2020_03_014
crossref_primary_10_1186_s13099_019_0331_8
crossref_primary_10_1186_s13073_021_01005_7
crossref_primary_10_1016_j_trim_2024_102170
crossref_primary_10_1111_cas_16410
crossref_primary_10_1007_s00203_020_01994_w
crossref_primary_10_3390_ani15030410
crossref_primary_10_3390_medicina57030195
crossref_primary_10_1007_s10620_021_07245_2
crossref_primary_10_5423_PPJ_OA_03_2022_0026
crossref_primary_10_1186_s12906_021_03220_6
crossref_primary_10_3389_fmicb_2023_1158440
crossref_primary_10_3389_fncel_2024_1386205
crossref_primary_10_3390_microorganisms9071419
crossref_primary_10_1016_j_cbd_2021_100789
crossref_primary_10_1016_j_heliyon_2024_e34336
crossref_primary_10_12688_hrbopenres_13794_2
crossref_primary_10_12688_hrbopenres_13794_1
crossref_primary_10_1080_19490976_2019_1586037
crossref_primary_10_1177_0300060519853655
crossref_primary_10_3389_fgene_2023_1184473
crossref_primary_10_3389_fcimb_2020_00286
crossref_primary_10_1177_1352458520924594
crossref_primary_10_1038_s41598_024_81829_6
crossref_primary_10_1007_s00284_020_02163_4
crossref_primary_10_1016_j_scitotenv_2023_164057
crossref_primary_10_1371_journal_pone_0281245
crossref_primary_10_1016_j_mimet_2020_105856
crossref_primary_10_1007_s11912_024_01520_x
crossref_primary_10_3389_fimmu_2023_1151527
crossref_primary_10_3390_antibiotics13111052
crossref_primary_10_1016_j_csbj_2023_11_047
crossref_primary_10_1080_07357907_2020_1732405
crossref_primary_10_1111_jam_15616
crossref_primary_10_1210_er_2017_00192
crossref_primary_10_1038_s41598_021_91615_3
crossref_primary_10_1007_s12264_021_00730_8
crossref_primary_10_1371_journal_pone_0280391
crossref_primary_10_7717_peerj_16770
crossref_primary_10_3389_fmicb_2019_00479
crossref_primary_10_1016_j_nbd_2019_104578
crossref_primary_10_1099_acmi_0_000865_v3
crossref_primary_10_3390_microorganisms11040833
crossref_primary_10_3389_fphar_2021_812830
crossref_primary_10_1126_science_aap9516
crossref_primary_10_1038_s41598_020_66607_4
crossref_primary_10_1177_1099800420903083
crossref_primary_10_1038_s41598_021_97007_x
crossref_primary_10_3390_insects11080500
crossref_primary_10_3390_insects13080719
crossref_primary_10_1128_mSphere_00454_19
crossref_primary_10_3390_brainsci12060709
crossref_primary_10_1007_s00203_022_03073_8
crossref_primary_10_1016_j_ijporl_2018_07_024
crossref_primary_10_1111_1751_7915_14364
crossref_primary_10_1007_s00253_018_8976_7
crossref_primary_10_1016_j_csbj_2021_08_050
crossref_primary_10_1186_s42523_021_00113_4
crossref_primary_10_1016_j_critrevonc_2019_102841
crossref_primary_10_1186_s12859_022_04618_w
crossref_primary_10_1186_s12866_022_02730_8
crossref_primary_10_3390_life12122081
crossref_primary_10_1016_j_freeradbiomed_2024_11_024
crossref_primary_10_3389_fgene_2019_01182
crossref_primary_10_1016_j_heliyon_2023_e19800
crossref_primary_10_1111_hel_12871
crossref_primary_10_2196_14529
crossref_primary_10_1024_1422_4917_a000928
crossref_primary_10_1016_j_polar_2024_101096
crossref_primary_10_1186_s12859_020_03737_6
crossref_primary_10_3389_fmicb_2022_1066995
crossref_primary_10_3390_biology11081114
crossref_primary_10_1038_s42003_022_03155_9
crossref_primary_10_1186_s12903_021_01719_5
crossref_primary_10_1186_s13071_016_1908_4
crossref_primary_10_1080_21645515_2018_1442970
crossref_primary_10_1007_s42995_024_00248_8
crossref_primary_10_1016_j_reval_2019_12_002
crossref_primary_10_1038_s41598_024_75309_0
crossref_primary_10_3389_fmicb_2023_1197970
crossref_primary_10_1016_j_scitotenv_2020_138259
crossref_primary_10_3390_metabo13010006
crossref_primary_10_3389_fmicb_2020_588545
crossref_primary_10_1002_jpn3_12053
crossref_primary_10_3389_fcvm_2018_00089
crossref_primary_10_3389_fmicb_2017_02029
crossref_primary_10_1186_s12866_021_02153_x
crossref_primary_10_1136_archdischild_2021_322590
crossref_primary_10_3389_fimmu_2023_1072655
crossref_primary_10_1038_s41598_019_56065_y
crossref_primary_10_1111_aos_14508
crossref_primary_10_1113_EP089919
crossref_primary_10_1016_j_rhisph_2020_100282
crossref_primary_10_1016_j_suronc_2021_101560
crossref_primary_10_1111_1365_2745_13165
crossref_primary_10_1038_s41598_023_38307_2
crossref_primary_10_1152_physrev_00018_2018
crossref_primary_10_1016_j_rdc_2025_01_002
crossref_primary_10_1128_spectrum_00837_22
crossref_primary_10_1111_vde_12408
crossref_primary_10_3390_microorganisms8101611
crossref_primary_10_1016_j_bbrep_2024_101717
crossref_primary_10_3390_microorganisms11122999
crossref_primary_10_12688_f1000research_16804_1
crossref_primary_10_12688_f1000research_16804_2
crossref_primary_10_12688_f1000research_16804_3
crossref_primary_10_12688_f1000research_16804_4
crossref_primary_10_1007_s11596_018_1969_z
crossref_primary_10_1186_s13062_020_00287_y
crossref_primary_10_1186_s40168_022_01233_y
crossref_primary_10_1093_bfgp_elz017
crossref_primary_10_3390_applmicrobiol5010026
crossref_primary_10_1016_j_micres_2022_127244
crossref_primary_10_21603_2074_9414_2018_4_87_113
crossref_primary_10_3389_fmicb_2022_872825
crossref_primary_10_1093_carcin_bgz116
crossref_primary_10_1371_journal_pone_0223128
crossref_primary_10_1177_1535370219836739
crossref_primary_10_1038_s41598_021_84964_6
crossref_primary_10_3390_app11104628
crossref_primary_10_3389_fmicb_2021_673632
crossref_primary_10_3390_ijms22189700
crossref_primary_10_1016_j_ecolind_2019_105827
crossref_primary_10_1002_cam4_6503
crossref_primary_10_3390_microorganisms8071023
crossref_primary_10_1016_j_cmet_2024_12_004
crossref_primary_10_7717_peerj_9564
crossref_primary_10_1093_nargab_lqac050
crossref_primary_10_1080_20002297_2018_1557986
crossref_primary_10_3390_microorganisms12030510
crossref_primary_10_1016_j_forsciint_2024_112147
crossref_primary_10_3389_fmicb_2023_1202194
crossref_primary_10_1002_ece3_8281
crossref_primary_10_1080_00365521_2020_1748221
crossref_primary_10_1128_mbio_03175_21
crossref_primary_10_1128_JB_00572_17
crossref_primary_10_3390_genes12111728
crossref_primary_10_1214_21_AOAS1587
crossref_primary_10_1152_ajpcell_00454_2019
crossref_primary_10_1007_s42535_022_00447_7
crossref_primary_10_1016_j_margen_2016_09_002
crossref_primary_10_7717_peerj_16394
crossref_primary_10_1038_s41598_022_14785_8
crossref_primary_10_1094_PBIOMES_3_2
crossref_primary_10_3389_fvets_2021_778556
crossref_primary_10_1099_mgen_0_001284
crossref_primary_10_1126_sciadv_aba3760
crossref_primary_10_1016_j_watres_2017_02_057
crossref_primary_10_1111_cea_13444
crossref_primary_10_1038_s41598_019_50194_0
crossref_primary_10_1038_s41598_023_44981_z
crossref_primary_10_1093_brain_awaa201
crossref_primary_10_1080_29933935_2025_2473450
crossref_primary_10_1186_s42523_021_00098_0
crossref_primary_10_1097_MD_0000000000035262
crossref_primary_10_1038_s41597_024_03518_3
crossref_primary_10_1007_s11882_017_0730_1
crossref_primary_10_1111_mec_16702
crossref_primary_10_1089_omi_2019_0073
crossref_primary_10_1080_14737159_2022_2071607
crossref_primary_10_1016_j_ijfoodmicro_2022_109781
crossref_primary_10_1038_s43705_021_00014_2
crossref_primary_10_1371_journal_ppat_1008524
crossref_primary_10_3390_nu14071405
crossref_primary_10_3389_fmolb_2023_1337373
crossref_primary_10_1242_dmm_048793
crossref_primary_10_36401_JIPO_20_17
crossref_primary_10_1016_j_watres_2023_120700
crossref_primary_10_1007_s12275_020_9525_5
crossref_primary_10_3390_ijms26051983
crossref_primary_10_1128_msystems_00840_24
crossref_primary_10_1093_femsec_fiaa173
crossref_primary_10_2217_fmb_2020_0269
crossref_primary_10_1038_s41575_020_0269_9
crossref_primary_10_1038_s41598_020_59747_0
crossref_primary_10_1016_j_cgh_2018_08_067
crossref_primary_10_5005_jp_journals_10006_2402
crossref_primary_10_1186_s13062_020_00284_1
crossref_primary_10_1038_s41419_021_03829_y
crossref_primary_10_3390_microorganisms12112221
crossref_primary_10_1016_j_syapm_2023_126476
crossref_primary_10_1016_j_scitotenv_2023_166739
crossref_primary_10_1002_cam4_5323
crossref_primary_10_1186_s13099_023_00535_2
crossref_primary_10_1016_j_scitotenv_2022_159515
crossref_primary_10_3390_ijms26072939
crossref_primary_10_3390_microbiolres15040170
crossref_primary_10_3389_fmicb_2023_1066406
crossref_primary_10_3390_microorganisms11061481
crossref_primary_10_1016_j_ejca_2024_114235
crossref_primary_10_3389_fcell_2021_719072
crossref_primary_10_1007_s10552_021_01490_6
crossref_primary_10_3390_microbiolres16030071
crossref_primary_10_1111_jfs_12800
crossref_primary_10_3748_wjg_v26_i12_1262
crossref_primary_10_1111_mec_14860
crossref_primary_10_1128_mSystems_00032_16
crossref_primary_10_1371_journal_pone_0215918
crossref_primary_10_3389_fmicb_2022_1045096
crossref_primary_10_1016_j_mimet_2019_105739
crossref_primary_10_1007_s11926_022_01066_6
crossref_primary_10_1080_1745039X_2020_1726719
crossref_primary_10_1534_g3_120_401449
crossref_primary_10_1111_1365_2435_14650
crossref_primary_10_3389_fmed_2021_661203
crossref_primary_10_1016_j_csbj_2022_02_024
crossref_primary_10_3389_fcimb_2023_1161203
crossref_primary_10_5009_gnl220537
crossref_primary_10_3389_fmicb_2021_670336
crossref_primary_10_1097_HC9_0000000000000310
crossref_primary_10_1007_s00248_022_02168_5
crossref_primary_10_1371_journal_pone_0291406
crossref_primary_10_1111_apm_13032
crossref_primary_10_1172_jci_insight_152346
crossref_primary_10_1038_s41531_022_00351_6
crossref_primary_10_1038_s41598_020_77622_w
crossref_primary_10_1093_humupd_dmy012
crossref_primary_10_1128_aem_02230_24
crossref_primary_10_2147_IJGM_S304339
crossref_primary_10_1038_s41598_023_42059_4
crossref_primary_10_3390_foods11213379
crossref_primary_10_2166_aqua_2024_154
crossref_primary_10_30802_AALAS_JAALAS_22_000068
crossref_primary_10_1093_bib_bbx154
crossref_primary_10_1111_are_15795
crossref_primary_10_3389_fmicb_2022_937666
crossref_primary_10_1038_srep33327
crossref_primary_10_48022_mbl_2210_10013
crossref_primary_10_1038_s41538_022_00150_6
crossref_primary_10_1093_bioinformatics_btz356
crossref_primary_10_1111_all_14624
crossref_primary_10_1186_s12903_023_03541_7
crossref_primary_10_2174_1389557522666220304230920
crossref_primary_10_3390_nu16244268
crossref_primary_10_1016_j_trsl_2016_08_008
crossref_primary_10_1093_humupd_dmy048
crossref_primary_10_3390_pathogens11111279
crossref_primary_10_1002_mbo3_1191
crossref_primary_10_3390_genes9010014
crossref_primary_10_1016_j_jaut_2019_02_004
crossref_primary_10_1186_s40168_022_01385_x
crossref_primary_10_3389_fpsyt_2021_722335
crossref_primary_10_1016_j_trac_2023_117155
crossref_primary_10_1007_s10658_019_01850_8
crossref_primary_10_1038_s41598_021_98452_4
crossref_primary_10_3390_microorganisms8020308
crossref_primary_10_1371_journal_pone_0184566
crossref_primary_10_1021_acs_est_4c14471
crossref_primary_10_1093_femsec_fiad102
crossref_primary_10_1016_j_biotechadv_2019_02_013
crossref_primary_10_1093_ajh_hpaa022
crossref_primary_10_3390_d15101103
crossref_primary_10_1186_s42523_021_00106_3
crossref_primary_10_1016_j_anicom_2017_10_002
crossref_primary_10_1016_j_biopha_2022_113958
crossref_primary_10_1021_acsomega_4c09485
crossref_primary_10_1016_j_scitotenv_2022_157652
crossref_primary_10_1016_j_arr_2024_102466
crossref_primary_10_1016_j_still_2023_105809
crossref_primary_10_1007_s00414_021_02525_y
crossref_primary_10_3390_microorganisms8122018
crossref_primary_10_1007_s11104_021_05143_0
crossref_primary_10_3390_ijms19092471
crossref_primary_10_1007_s10620_022_07812_1
crossref_primary_10_1186_s12866_019_1521_8
crossref_primary_10_1093_nutrit_nuae192
crossref_primary_10_1002_bmb_21706
crossref_primary_10_1007_s00335_021_09871_7
crossref_primary_10_1080_10934529_2020_1789409
crossref_primary_10_1016_j_nutres_2024_07_008
crossref_primary_10_3390_biology11111586
crossref_primary_10_1002_ajpa_25020
crossref_primary_10_22416_1382_4376_2022_32_2_19_34
crossref_primary_10_1111_lam_13587
crossref_primary_10_1038_s41417_024_00833_0
crossref_primary_10_1016_j_mimet_2020_106123
crossref_primary_10_1038_s41598_021_82449_0
crossref_primary_10_1093_rap_rkab063
crossref_primary_10_18700_jnc_220058
crossref_primary_10_3390_metabo12010065
crossref_primary_10_3390_v16010042
crossref_primary_10_3390_ani9030090
crossref_primary_10_1007_s12223_021_00926_5
crossref_primary_10_3389_fimmu_2021_764384
crossref_primary_10_1111_1462_2920_14652
crossref_primary_10_1128_AEM_00431_20
crossref_primary_10_1136_jitc_2022_005401
crossref_primary_10_3389_fcimb_2022_841465
crossref_primary_10_1007_s00203_021_02227_4
crossref_primary_10_1038_srep31731
crossref_primary_10_1093_femsec_fiae138
crossref_primary_10_1038_s42003_023_05150_0
crossref_primary_10_1016_j_canlet_2021_09_009
crossref_primary_10_1089_fpd_2022_0027
crossref_primary_10_1136_archdischild_2021_322861
crossref_primary_10_1186_s40168_023_01693_w
crossref_primary_10_1016_j_earlhumdev_2019_104854
crossref_primary_10_3389_fvets_2020_601874
crossref_primary_10_1053_j_semperi_2017_07_010
crossref_primary_10_1080_10495398_2022_2078979
crossref_primary_10_3390_plants9081052
crossref_primary_10_1186_s13062_018_0215_8
crossref_primary_10_7717_peerj_5590
crossref_primary_10_3389_fonc_2024_1361879
crossref_primary_10_3389_fgene_2020_504354
crossref_primary_10_1097_MOL_0000000000000582
crossref_primary_10_1186_s12866_023_03084_5
crossref_primary_10_3390_biology9060136
crossref_primary_10_3390_genes11111374
crossref_primary_10_3390_nu16223806
crossref_primary_10_1128_Spectrum_01434_21
crossref_primary_10_1186_s12866_022_02451_y
crossref_primary_10_3390_ani9010028
crossref_primary_10_1007_s00253_018_9464_9
crossref_primary_10_1136_archdischild_2019_316891
crossref_primary_10_1016_j_bpg_2017_09_009
crossref_primary_10_1371_journal_pone_0242880
crossref_primary_10_3389_fphar_2022_837500
crossref_primary_10_1016_j_aquaculture_2022_738026
crossref_primary_10_1016_j_heliyon_2024_e25186
crossref_primary_10_1111_vde_13250
crossref_primary_10_1016_j_humic_2021_100079
crossref_primary_10_7717_peerj_11648
crossref_primary_10_1055_a_1157_9257
crossref_primary_10_1094_PBIOMES_07_22_0044_MF
crossref_primary_10_3390_su15032745
crossref_primary_10_1002_jmv_70027
crossref_primary_10_1016_j_phrs_2024_107231
crossref_primary_10_1039_D0FO00436G
crossref_primary_10_1080_20002297_2024_2330867
crossref_primary_10_1111_eea_13333
crossref_primary_10_1128_spectrum_03617_23
crossref_primary_10_1038_s41598_024_56603_3
crossref_primary_10_1186_s40168_020_00806_z
crossref_primary_10_3389_fcimb_2022_922753
crossref_primary_10_3390_plants10071423
crossref_primary_10_3390_jcm8111935
crossref_primary_10_1016_j_catena_2024_108637
crossref_primary_10_1016_j_tjnut_2023_11_001
crossref_primary_10_3389_fonc_2020_00179
crossref_primary_10_1186_s42523_019_0013_3
crossref_primary_10_3389_fenvc_2020_570326
crossref_primary_10_1128_mSphere_01325_20
crossref_primary_10_1089_ast_2018_1964
crossref_primary_10_1016_j_micpath_2024_107106
crossref_primary_10_1038_s41597_024_03286_0
crossref_primary_10_1080_13102818_2024_2361751
crossref_primary_10_1016_j_csbj_2021_12_035
crossref_primary_10_1099_acmi_0_000754_v3
crossref_primary_10_1002_dev_21819
crossref_primary_10_1016_j_bbcan_2020_188490
crossref_primary_10_1038_s41598_018_25514_5
crossref_primary_10_3389_fmicb_2024_1435834
crossref_primary_10_3892_etm_2024_12692
crossref_primary_10_4103_0973_1482_341139
crossref_primary_10_3390_nu15030689
crossref_primary_10_3390_microorganisms12112179
crossref_primary_10_1186_s12903_018_0595_2
crossref_primary_10_1002_pros_24276
crossref_primary_10_1016_S2665_9913_24_00334_5
crossref_primary_10_1186_s13059_019_1819_8
crossref_primary_10_1128_mSphere_00827_19
crossref_primary_10_1080_19490976_2022_2105096
crossref_primary_10_3390_w15020271
crossref_primary_10_1016_j_fbio_2021_101188
crossref_primary_10_1017_gmb_2023_3
crossref_primary_10_3390_ijms25073893
crossref_primary_10_3390_jcm11144119
crossref_primary_10_1016_j_fsigen_2020_102257
crossref_primary_10_1016_j_jare_2019_04_008
crossref_primary_10_1016_j_chom_2017_03_013
crossref_primary_10_1038_s41598_024_66753_z
crossref_primary_10_4315_JFP_21_301
crossref_primary_10_1016_j_aquaculture_2022_738132
crossref_primary_10_1016_j_mimet_2021_106213
crossref_primary_10_1016_j_isci_2020_101223
crossref_primary_10_3390_life12111867
crossref_primary_10_15237_gida_GD20136
crossref_primary_10_1007_s12033_023_00839_3
crossref_primary_10_1007_s10329_018_0671_x
crossref_primary_10_1016_j_marpolbul_2021_112085
crossref_primary_10_3390_plants12091852
crossref_primary_10_1016_j_mam_2022_101115
crossref_primary_10_1042_CS20171330
crossref_primary_10_1007_s00203_022_02969_9
crossref_primary_10_1111_hel_13071
crossref_primary_10_1113_EP091446
crossref_primary_10_1155_2018_6074918
crossref_primary_10_3390_antibiotics14030296
crossref_primary_10_1177_1352458518788974
crossref_primary_10_1099_mgen_0_000794
crossref_primary_10_3389_fmicb_2023_1167763
crossref_primary_10_1186_s12859_024_05918_z
crossref_primary_10_1007_s00253_022_12083_x
crossref_primary_10_1038_s41598_023_46062_7
crossref_primary_10_1094_PHYTO_12_16_0426_RVW
crossref_primary_10_1016_j_biopha_2025_117905
crossref_primary_10_1038_s41575_024_00981_6
crossref_primary_10_3389_fmicb_2021_680622
crossref_primary_10_1080_19390211_2020_1814931
crossref_primary_10_1080_2162402X_2021_1988403
crossref_primary_10_1099_acmi_0_000104
crossref_primary_10_1016_j_csbj_2020_11_049
crossref_primary_10_1038_s41598_018_30932_6
crossref_primary_10_1038_s41598_019_38489_8
crossref_primary_10_3389_fimmu_2023_1188520
crossref_primary_10_1016_j_soard_2019_01_033
crossref_primary_10_3389_fcimb_2022_922554
crossref_primary_10_1007_s00248_021_01884_8
crossref_primary_10_1038_s41598_018_30735_9
crossref_primary_10_1111_jvim_16612
crossref_primary_10_1136_annrheumdis_2020_216972
crossref_primary_10_31146_1682_8658_ecg_199_3_125_133
crossref_primary_10_3390_ijms241411472
crossref_primary_10_4239_wjd_v10_i7_376
crossref_primary_10_22207_JPAM_11_4_36
crossref_primary_10_1371_journal_pone_0284031
crossref_primary_10_3389_fgene_2022_799615
crossref_primary_10_3389_fmed_2021_595522
crossref_primary_10_1016_j_healun_2018_04_007
crossref_primary_10_20517_mrr_2023_02
crossref_primary_10_1371_journal_pone_0227289
crossref_primary_10_3390_metabo14010014
crossref_primary_10_1371_journal_pone_0228496
crossref_primary_10_1111_odi_13883
crossref_primary_10_1186_s12890_023_02654_7
crossref_primary_10_1186_s12864_024_10621_7
crossref_primary_10_3389_fmicb_2024_1451054
crossref_primary_10_1186_s13040_021_00270_x
crossref_primary_10_1016_j_plasmid_2018_08_002
crossref_primary_10_1186_s12864_021_07607_0
crossref_primary_10_1002_mnfr_201800512
crossref_primary_10_1161_CIRCGEN_119_002314
crossref_primary_10_3389_fmicb_2022_837396
crossref_primary_10_3389_fmicb_2022_912701
crossref_primary_10_3389_fmicb_2022_905050
crossref_primary_10_1038_s41598_017_06665_3
crossref_primary_10_1017_S1466252319000124
crossref_primary_10_3233_JPD_223461
crossref_primary_10_3389_fcimb_2021_745653
crossref_primary_10_3389_fevo_2023_1107463
crossref_primary_10_1136_annrheumdis_2019_215743
crossref_primary_10_1172_JCI154944
crossref_primary_10_1038_s41598_019_49468_4
crossref_primary_10_1038_s41467_022_28678_x
crossref_primary_10_3389_fped_2019_00380
crossref_primary_10_3390_genes10030220
crossref_primary_10_3390_microorganisms11010139
crossref_primary_10_3390_genes10110900
crossref_primary_10_1134_S1062359022010150
crossref_primary_10_1111_imb_12567
crossref_primary_10_3389_fams_2022_884810
crossref_primary_10_7717_peerj_17805
crossref_primary_10_1089_omi_2018_0013
crossref_primary_10_1007_s11427_016_9296_5
crossref_primary_10_3389_fcimb_2021_695191
crossref_primary_10_3390_microorganisms12020284
crossref_primary_10_1111_bjd_18611
crossref_primary_10_1186_s12859_019_2623_x
crossref_primary_10_4103_jomfp_jomfp_455_21
crossref_primary_10_1002_fsh_10379
crossref_primary_10_1016_j_celrep_2021_110113
crossref_primary_10_3390_biology10101027
crossref_primary_10_1016_j_neubiorev_2021_02_044
crossref_primary_10_1093_femsre_fuae021
crossref_primary_10_1007_s11912_024_01508_7
crossref_primary_10_3390_biology10101023
crossref_primary_10_1111_cts_13381
crossref_primary_10_1093_advances_nmab014
crossref_primary_10_1016_j_yjbinx_2019_100040
crossref_primary_10_1128_aem_00092_24
crossref_primary_10_1111_jam_14380
crossref_primary_10_3389_fmicb_2019_02257
crossref_primary_10_3390_genes10090637
crossref_primary_10_3390_ijms24065767
crossref_primary_10_3389_fnut_2023_1225120
crossref_primary_10_1172_JCI90596
crossref_primary_10_1016_j_cell_2019_07_016
crossref_primary_10_1016_j_jhazmat_2017_09_046
crossref_primary_10_1016_j_foodqual_2022_104790
crossref_primary_10_1016_j_neubiorev_2023_105296
crossref_primary_10_1016_j_blre_2024_101252
crossref_primary_10_1016_j_gpb_2021_08_009
crossref_primary_10_1002_mnfr_201600992
crossref_primary_10_1214_18_AOAS1229
crossref_primary_10_1016_S1773_035X_22_00136_8
crossref_primary_10_3389_fphar_2021_607197
crossref_primary_10_1093_femsle_fnae089
crossref_primary_10_1136_rmdopen_2023_003589
crossref_primary_10_20411_pai_v9i1_693
crossref_primary_10_1186_s42523_024_00293_9
crossref_primary_10_1007_s00203_023_03664_z
crossref_primary_10_1371_journal_pcbi_1006693
crossref_primary_10_3389_fmicb_2016_00838
crossref_primary_10_1038_s41598_019_57367_x
crossref_primary_10_1016_j_dsx_2024_103118
crossref_primary_10_1016_j_jneuroim_2020_577237
crossref_primary_10_1016_j_soard_2020_03_014
crossref_primary_10_1002_fsn3_4337
crossref_primary_10_3389_fmicb_2022_879260
crossref_primary_10_1177_1099800420941606
crossref_primary_10_1097_MIB_0000000000000875
crossref_primary_10_3389_fdata_2022_927520
crossref_primary_10_3390_ijms23169422
crossref_primary_10_1038_s41598_018_24280_8
crossref_primary_10_3390_ijms222011243
crossref_primary_10_1177_1099800418811639
crossref_primary_10_1186_s12859_024_05767_w
crossref_primary_10_1016_j_apenergy_2019_04_074
crossref_primary_10_3390_microorganisms9040816
crossref_primary_10_1097_MOL_0000000000000308
crossref_primary_10_1038_s41598_021_96556_5
crossref_primary_10_3389_fcimb_2020_00188
crossref_primary_10_3390_app14209438
crossref_primary_10_1186_s13059_020_02037_9
crossref_primary_10_1136_gutjnl_2021_324767
crossref_primary_10_1016_j_ecoenv_2022_113448
crossref_primary_10_1038_s41598_021_89881_2
crossref_primary_10_1007_s00227_021_03893_0
crossref_primary_10_3390_foods11172575
crossref_primary_10_3389_fpls_2020_00646
crossref_primary_10_1371_journal_pone_0220961
crossref_primary_10_1136_jitc_2022_006533
crossref_primary_10_3390_ani13132235
crossref_primary_10_1111_exd_14398
crossref_primary_10_1099_jmm_0_001617
crossref_primary_10_1177_1040638720981019
crossref_primary_10_1016_j_psychres_2022_115005
crossref_primary_10_1128_mSystems_00317_20
crossref_primary_10_1167_iovs_62_10_8
crossref_primary_10_3389_fmicb_2024_1424795
crossref_primary_10_3390_genes11080878
crossref_primary_10_1038_s41598_021_91425_7
crossref_primary_10_1038_s41598_023_28969_3
crossref_primary_10_1016_j_trac_2017_06_001
crossref_primary_10_1094_PBIOMES_01_19_0004_R
crossref_primary_10_1371_journal_pone_0236165
crossref_primary_10_1186_s13062_019_0251_z
crossref_primary_10_1038_s41569_022_00825_3
crossref_primary_10_1111_jpn_14036
crossref_primary_10_1186_s40168_018_0437_0
crossref_primary_10_3390_ijms21082908
crossref_primary_10_1007_s00203_020_02157_7
crossref_primary_10_3389_fmicb_2024_1515258
crossref_primary_10_4103_sjg_sjg_221_24
crossref_primary_10_3389_fcell_2020_625330
crossref_primary_10_1002_mnfr_202300716
crossref_primary_10_1111_1462_2920_14824
crossref_primary_10_1038_s41575_020_0327_3
crossref_primary_10_3389_fmed_2023_1285753
crossref_primary_10_1186_s12859_024_05952_x
crossref_primary_10_3389_fvets_2023_1050414
crossref_primary_10_1016_j_agee_2022_108193
crossref_primary_10_1016_j_fsigen_2020_102432
crossref_primary_10_1016_j_pnpbp_2024_111237
crossref_primary_10_2139_ssrn_4120133
crossref_primary_10_3390_ani8110211
crossref_primary_10_1186_s13020_024_00995_x
crossref_primary_10_1111_1755_0998_13713
crossref_primary_10_1038_s41575_023_00867_z
crossref_primary_10_1016_j_jcmgh_2020_08_008
crossref_primary_10_1016_j_mam_2019_05_001
crossref_primary_10_1097_MOU_0000000000000742
crossref_primary_10_1109_TBCAS_2023_3244570
crossref_primary_10_3389_fcimb_2020_585973
crossref_primary_10_3389_fphar_2020_594042
crossref_primary_10_1371_journal_pone_0228899
crossref_primary_10_1016_j_crmicr_2025_100362
crossref_primary_10_1007_s13671_018_0245_6
crossref_primary_10_1016_j_envres_2022_114847
Cites_doi 10.1016/j.bpg.2013.03.003
10.1038/nature11053
10.1053/j.gastro.2012.06.031
10.1146/annurev.micro.57.030502.090759
10.1038/nrmicro3400
10.1186/1471-2105-9-386
10.1186/gb-2010-11-5-210
10.1093/nar/gku169
10.1093/nar/gks678
10.1038/nature08821
10.1038/nbt0514-401
10.1128/JB.00345-12
10.1371/journal.pone.0093827
10.1056/NEJMe1214816
10.1126/science.1124234
10.1016/B978-0-12-407863-5.00023-X
10.1128/AEM.01754-09
10.1038/nature11209
10.1038/nrg3182
10.1038/nature11234
10.1038/nrg3129
10.1093/nar/gkq275
10.1016/j.mib.2007.08.006
10.1093/nar/gkt1244
10.1146/annurev-pathol-011811-132421
10.1038/nrg3642
10.1038/nbt.2942
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7T7
8FD
C1K
FR3
P64
5PM
DOI 10.1016/j.bbrc.2015.12.083
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
MEDLINE - Academic

Engineering Research Database
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 977
ExternalDocumentID PMC4830092
26718401
10_1016_j_bbrc_2015_12_083
S0006291X15310883
Genre Comparative Study
Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI053878
– fundername: NHLBI NIH HHS
  grantid: R01 HL081663
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7T7
8FD
C1K
FR3
P64
5PM
EFKBS
ID FETCH-LOGICAL-c613t-135f2ff32d2926cf20832f83f5438dd1e6060428d04a54be4fe3fd0618cfb6293
IEDL.DBID .~1
ISSN 0006-291X
IngestDate Thu Aug 21 14:04:46 EDT 2025
Fri Jul 11 01:20:57 EDT 2025
Fri Jul 11 10:56:19 EDT 2025
Fri Jul 11 15:39:42 EDT 2025
Wed Feb 19 02:00:28 EST 2025
Tue Jul 01 03:10:09 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Fri Feb 23 02:28:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 16S rRNA
Metagenomics
Microbiota
Whole genome shotgun sequencing
Next-generation sequencing
Amplicon sequencing
Microbiome
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-135f2ff32d2926cf20832f83f5438dd1e6060428d04a54be4fe3fd0618cfb6293
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally and considered as co-first authors.
ORCID 0000-0002-8768-549X
PMID 26718401
PQID 1760920073
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830092
proquest_miscellaneous_1859473516
proquest_miscellaneous_1817835875
proquest_miscellaneous_1760920073
pubmed_primary_26718401
crossref_citationtrail_10_1016_j_bbrc_2015_12_083
crossref_primary_10_1016_j_bbrc_2015_12_083
elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_12_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-22
PublicationDateYYYYMMDD 2016-01-22
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gill, Pop, Deboy, Eckburg, Turnbaugh, Samuel, Gordon, Relman, Fraser-Liggett, Nelson (bib8) 2006; 312
Sims, Sudbery, Ilott, Heger, Ponting (bib20) 2014; 15
Cho, Blaser (bib2) 2012; 13
Namiki, Hachiya, Tanaka, Sakakibara (bib24) 2012; 40
C.Human Microbiome Project (bib27) 2012; 486
Luo, Rodriguez, Konstantinidis (bib22) 2014; 42
Kuczynski, Lauber, Walters, Parfrey, Clemente, Gevers, Knight (bib10) 2012; 13
Lynch, Neufeld (bib9) 2015; 13
Konstantinidis, Stackebrandt (bib19) 2013
Kelly (bib3) 2013; 368
C Human Microbiome Project (bib14) 2012; 486
Poretsky, Rodriguez, Luo, Tsementzi, Konstantinidis (bib17) 2014; 9
Nichols, Cahoon, Trakhtenberg, Pham, Mehta, Belanger, Kanigan, Lewis, Epstein (bib13) 2010; 76
Luo, Rodriguez, Konstantinidis (bib21) 2013; 531
Vrieze, de Groot, Kootte, Knaapen, van Nood, Nieuwdorp (bib6) 2013; 27
Yatsunenko, Rey, Manary, Trehan, Dominguez-Bello, Contreras, Magris, Hidalgo, Baldassano, Anokhin, Heath, Warner, Reeder, Kuczynski, Caporaso, Lozupone, Lauber, Clemente, Knights, Knight, Gordon (bib7) 2012; 486
Stewart (bib12) 2012; 194
Rappe, Giovannoni (bib11) 2003; 57
Qin, Li, Raes, Arumugam, Burgdorf, Manichanh, Nielsen, Pons, Levenez, Yamada, Mende, Li, Xu, Li, Li, Cao, Wang, Liang, Zheng, Xie, Tap, Lepage, Bertalan, Batto, Hansen, Le Paslier, Linneberg, Nielsen, Pelletier, Renault, Sicheritz-Ponten, Turner, Zhu, Yu, Li, Jian, Zhou, Li, Zhang, Li, Qin, Yang, Wang, Brunak, Dore, Guarner, Kristiansen, Pedersen, Parkhill, Weissenbach, Meta, Bork, Ehrlich, Wang (bib15) 2010; 464
Kuczynski, Costello, Nemergut, Zaneveld, Lauber, Knights, Koren, Fierer, Kelley, Ley, Gordon, Knight (bib29) 2010; 11
Meyer, Paarmann, D'Souza, Olson, Glass, Kubal, Paczian, Rodriguez, Stevens, Wilke, Wilkening, Edwards (bib23) 2008; 9
Cole, Wang, Fish, Chai, McGarrell, Sun, Brown, Porras-Alfaro, Kuske, Tiedje (bib28) 2014; 42
Sanschagrin, Yergeau (bib16) 2014
Ratner (bib5) 2014; 32
Li, Jia, Cai, Zhong, Feng, Sunagawa, Arumugam, Kultima, Prifti, Nielsen, Juncker, Manichanh, Chen, Zhang, Levenez, Wang, Xu, Xiao, Liang, Zhang, Zhang, Chen, Zhao, Al-Aama, Edris, Yang, Wang, Hansen, Nielsen, Brunak, Kristiansen, Guarner, Pedersen, Dore, Ehrlich, Meta, Bork, Wang, Meta (bib26) 2014; 32
Konstantinidis, Tiedje (bib18) 2007; 10
Vrieze, Van Nood, Holleman, Salojarvi, Kootte, Bartelsman, Dallinga-Thie, Ackermans, Serlie, Oozeer, Derrien, Druesne, Van Hylckama Vlieg, Bloks, Groen, Heilig, Zoetendal, Stroes, de Vos, Hoekstra, Nieuwdorp (bib4) 2012; 143
Pflughoeft, Versalovic (bib1) 2012; 7
Zhu, Lomsadze, Borodovsky (bib25) 2010; 38
Li (10.1016/j.bbrc.2015.12.083_bib26) 2014; 32
Stewart (10.1016/j.bbrc.2015.12.083_bib12) 2012; 194
Yatsunenko (10.1016/j.bbrc.2015.12.083_bib7) 2012; 486
C Human Microbiome Project (10.1016/j.bbrc.2015.12.083_bib14) 2012; 486
Konstantinidis (10.1016/j.bbrc.2015.12.083_bib19) 2013
Pflughoeft (10.1016/j.bbrc.2015.12.083_bib1) 2012; 7
Namiki (10.1016/j.bbrc.2015.12.083_bib24) 2012; 40
Cole (10.1016/j.bbrc.2015.12.083_bib28) 2014; 42
Ratner (10.1016/j.bbrc.2015.12.083_bib5) 2014; 32
Cho (10.1016/j.bbrc.2015.12.083_bib2) 2012; 13
Luo (10.1016/j.bbrc.2015.12.083_bib22) 2014; 42
Zhu (10.1016/j.bbrc.2015.12.083_bib25) 2010; 38
Rappe (10.1016/j.bbrc.2015.12.083_bib11) 2003; 57
Gill (10.1016/j.bbrc.2015.12.083_bib8) 2006; 312
C.Human Microbiome Project (10.1016/j.bbrc.2015.12.083_bib27) 2012; 486
Vrieze (10.1016/j.bbrc.2015.12.083_bib4) 2012; 143
Qin (10.1016/j.bbrc.2015.12.083_bib15) 2010; 464
Luo (10.1016/j.bbrc.2015.12.083_bib21) 2013; 531
Vrieze (10.1016/j.bbrc.2015.12.083_bib6) 2013; 27
Nichols (10.1016/j.bbrc.2015.12.083_bib13) 2010; 76
Sanschagrin (10.1016/j.bbrc.2015.12.083_bib16) 2014
Lynch (10.1016/j.bbrc.2015.12.083_bib9) 2015; 13
Kuczynski (10.1016/j.bbrc.2015.12.083_bib10) 2012; 13
Konstantinidis (10.1016/j.bbrc.2015.12.083_bib18) 2007; 10
Poretsky (10.1016/j.bbrc.2015.12.083_bib17) 2014; 9
Meyer (10.1016/j.bbrc.2015.12.083_bib23) 2008; 9
Sims (10.1016/j.bbrc.2015.12.083_bib20) 2014; 15
Kuczynski (10.1016/j.bbrc.2015.12.083_bib29) 2010; 11
Kelly (10.1016/j.bbrc.2015.12.083_bib3) 2013; 368
22728514 - Gastroenterology. 2012 Oct;143(4):913-6.e7
24589583 - Nucleic Acids Res. 2014 Apr;42(8):e73
22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155
22661685 - J Bacteriol. 2012 Aug;194(16):4151-60
21910623 - Annu Rev Pathol. 2012;7:99-122
17923431 - Curr Opin Microbiol. 2007 Oct;10(5):504-9
24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41
20403810 - Nucleic Acids Res. 2010 Jul;38(12):e132
25730701 - Nat Rev Microbiol. 2015 Apr;13(4):217-29
24288368 - Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42
18803844 - BMC Bioinformatics. 2008;9:386
23323865 - N Engl J Med. 2013 Jan 31;368(5):474-5
24811495 - Nat Biotechnol. 2014 May;32(5):401-2
22179717 - Nat Rev Genet. 2012 Jan;13(1):47-58
22699609 - Nature. 2012 Jun 14;486(7402):207-14
14527284 - Annu Rev Microbiol. 2003;57:369-94
24060135 - Methods Enzymol. 2013;531:525-47
24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32
22699611 - Nature. 2012 Jun 14;486(7402):222-7
24714158 - PLoS One. 2014;9(4):e93827
20203603 - Nature. 2010 Mar 4;464(7285):59-65
22699610 - Nature. 2012 Jun 14;486(7402):215-21
22411464 - Nat Rev Genet. 2012 Apr;13(4):260-70
20441597 - Genome Biol. 2010;11(5):210
20173072 - Appl Environ Microbiol. 2010 Apr;76(8):2445-50
23768558 - Best Pract Res Clin Gastroenterol. 2013 Feb;27(1):127-37
25226019 - J Vis Exp. 2014;(90). doi: 10.3791/51709
16741115 - Science. 2006 Jun 2;312(5778):1355-9
References_xml – volume: 32
  start-page: 834
  year: 2014
  end-page: 841
  ident: bib26
  article-title: An integrated catalog of reference genes in the human gut microbiome
  publication-title: Nat. Biotechnol.
– volume: 76
  start-page: 2445
  year: 2010
  end-page: 2450
  ident: bib13
  article-title: Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species
  publication-title: Appl. Environ. Microbiol.
– volume: 531
  start-page: 525
  year: 2013
  end-page: 547
  ident: bib21
  article-title: A user's guide to quantitative and comparative analysis of metagenomic datasets
  publication-title: Methods Enzymol.
– volume: 13
  start-page: 47
  year: 2012
  end-page: 58
  ident: bib10
  article-title: Experimental and analytical tools for studying the human microbiome
  publication-title: Nat. Rev. Genet.
– volume: 15
  start-page: 121
  year: 2014
  end-page: 132
  ident: bib20
  article-title: Sequencing depth and coverage: key considerations in genomic analyses
  publication-title: Nat. Rev. Genet.
– volume: 368
  start-page: 474
  year: 2013
  end-page: 475
  ident: bib3
  article-title: Fecal microbiota transplantation — An old therapy comes of age
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 99
  year: 2012
  end-page: 122
  ident: bib1
  article-title: Human microbiome in health and disease
  publication-title: Annu. Rev. Pathol.
– volume: 27
  start-page: 127
  year: 2013
  end-page: 137
  ident: bib6
  article-title: Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?
  publication-title: Best. Pract. Res. Clin. Gastroenterol.
– volume: 38
  start-page: e132
  year: 2010
  ident: bib25
  article-title: Ab initio gene identification in metagenomic sequences
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 217
  year: 2015
  end-page: 229
  ident: bib9
  article-title: Ecology and exploration of the rare biosphere
  publication-title: Nat. Rev. Microbiol.
– volume: 486
  start-page: 207
  year: 2012
  end-page: 214
  ident: bib14
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
– volume: 42
  start-page: D633
  year: 2014
  end-page: D642
  ident: bib28
  article-title: Ribosomal database project: data and tools for high throughput rRNA analysis
  publication-title: Nucleic Acids Res.
– volume: 486
  start-page: 215
  year: 2012
  end-page: 221
  ident: bib27
  article-title: A framework for human microbiome research
  publication-title: Nature
– volume: 312
  start-page: 1355
  year: 2006
  end-page: 1359
  ident: bib8
  article-title: Metagenomic analysis of the human distal gut microbiome
  publication-title: Science
– volume: 13
  start-page: 260
  year: 2012
  end-page: 270
  ident: bib2
  article-title: The human microbiome: at the interface of health and disease
  publication-title: Nat. Rev. Genet.
– volume: 143
  start-page: 913
  year: 2012
  end-page: 916 e917
  ident: bib4
  article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
  publication-title: Gastroenterology
– volume: 11
  start-page: 210
  year: 2010
  ident: bib29
  article-title: Direct sequencing of the human microbiome readily reveals community differences
  publication-title: Genome Biol.
– volume: 9
  start-page: 386
  year: 2008
  ident: bib23
  article-title: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes
  publication-title: BMC Bioinformatics
– start-page: e51709
  year: 2014
  ident: bib16
  article-title: Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons
– volume: 10
  start-page: 504
  year: 2007
  end-page: 509
  ident: bib18
  article-title: Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead
  publication-title: Curr. Opin. Microbiol.
– volume: 57
  start-page: 369
  year: 2003
  end-page: 394
  ident: bib11
  article-title: The uncultured microbial majority
  publication-title: Annu. Rev. Microbiol.
– start-page: 229
  year: 2013
  end-page: 254
  ident: bib19
  article-title: Defining Taxonomic Ranks
  publication-title: The Prokaryotes
– volume: 42
  start-page: e73
  year: 2014
  ident: bib22
  article-title: MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences
  publication-title: Nucleic Acids Res.
– volume: 486
  start-page: 222
  year: 2012
  end-page: 227
  ident: bib7
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
– volume: 9
  start-page: e93827
  year: 2014
  ident: bib17
  article-title: Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics
  publication-title: PLoS One
– volume: 32
  start-page: 401
  year: 2014
  end-page: 402
  ident: bib5
  article-title: Fecal transplantation poses dilemma for FDA
  publication-title: Nat. Biotechnol.
– volume: 40
  start-page: e155
  year: 2012
  ident: bib24
  article-title: MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads
  publication-title: Nucleic Acids Res.
– volume: 464
  start-page: 59
  year: 2010
  end-page: 65
  ident: bib15
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
– volume: 194
  start-page: 4151
  year: 2012
  end-page: 4160
  ident: bib12
  article-title: Growing unculturable bacteria
  publication-title: J. Bacteriol.
– volume: 27
  start-page: 127
  year: 2013
  ident: 10.1016/j.bbrc.2015.12.083_bib6
  article-title: Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?
  publication-title: Best. Pract. Res. Clin. Gastroenterol.
  doi: 10.1016/j.bpg.2013.03.003
– volume: 486
  start-page: 222
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib7
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 143
  start-page: 913
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib4
  article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.06.031
– volume: 57
  start-page: 369
  year: 2003
  ident: 10.1016/j.bbrc.2015.12.083_bib11
  article-title: The uncultured microbial majority
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.090759
– volume: 13
  start-page: 217
  year: 2015
  ident: 10.1016/j.bbrc.2015.12.083_bib9
  article-title: Ecology and exploration of the rare biosphere
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3400
– volume: 9
  start-page: 386
  year: 2008
  ident: 10.1016/j.bbrc.2015.12.083_bib23
  article-title: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-386
– volume: 11
  start-page: 210
  year: 2010
  ident: 10.1016/j.bbrc.2015.12.083_bib29
  article-title: Direct sequencing of the human microbiome readily reveals community differences
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-5-210
– volume: 42
  start-page: e73
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib22
  article-title: MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku169
– volume: 40
  start-page: e155
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib24
  article-title: MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks678
– volume: 464
  start-page: 59
  year: 2010
  ident: 10.1016/j.bbrc.2015.12.083_bib15
  article-title: A human gut microbial gene catalogue established by metagenomic sequencing
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 32
  start-page: 401
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib5
  article-title: Fecal transplantation poses dilemma for FDA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0514-401
– volume: 194
  start-page: 4151
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib12
  article-title: Growing unculturable bacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00345-12
– volume: 9
  start-page: e93827
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib17
  article-title: Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093827
– volume: 368
  start-page: 474
  year: 2013
  ident: 10.1016/j.bbrc.2015.12.083_bib3
  article-title: Fecal microbiota transplantation — An old therapy comes of age
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe1214816
– volume: 312
  start-page: 1355
  year: 2006
  ident: 10.1016/j.bbrc.2015.12.083_bib8
  article-title: Metagenomic analysis of the human distal gut microbiome
  publication-title: Science
  doi: 10.1126/science.1124234
– volume: 531
  start-page: 525
  year: 2013
  ident: 10.1016/j.bbrc.2015.12.083_bib21
  article-title: A user's guide to quantitative and comparative analysis of metagenomic datasets
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-407863-5.00023-X
– volume: 76
  start-page: 2445
  year: 2010
  ident: 10.1016/j.bbrc.2015.12.083_bib13
  article-title: Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01754-09
– start-page: e51709
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib16
– volume: 486
  start-page: 215
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib27
  article-title: A framework for human microbiome research
  publication-title: Nature
  doi: 10.1038/nature11209
– volume: 13
  start-page: 260
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib2
  article-title: The human microbiome: at the interface of health and disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3182
– volume: 486
  start-page: 207
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib14
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 13
  start-page: 47
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib10
  article-title: Experimental and analytical tools for studying the human microbiome
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3129
– volume: 38
  start-page: e132
  year: 2010
  ident: 10.1016/j.bbrc.2015.12.083_bib25
  article-title: Ab initio gene identification in metagenomic sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq275
– volume: 10
  start-page: 504
  year: 2007
  ident: 10.1016/j.bbrc.2015.12.083_bib18
  article-title: Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2007.08.006
– start-page: 229
  year: 2013
  ident: 10.1016/j.bbrc.2015.12.083_bib19
  article-title: Defining Taxonomic Ranks
– volume: 42
  start-page: D633
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib28
  article-title: Ribosomal database project: data and tools for high throughput rRNA analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1244
– volume: 7
  start-page: 99
  year: 2012
  ident: 10.1016/j.bbrc.2015.12.083_bib1
  article-title: Human microbiome in health and disease
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011811-132421
– volume: 15
  start-page: 121
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib20
  article-title: Sequencing depth and coverage: key considerations in genomic analyses
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3642
– volume: 32
  start-page: 834
  year: 2014
  ident: 10.1016/j.bbrc.2015.12.083_bib26
  article-title: An integrated catalog of reference genes in the human gut microbiome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2942
– reference: 24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41
– reference: 24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32
– reference: 14527284 - Annu Rev Microbiol. 2003;57:369-94
– reference: 20441597 - Genome Biol. 2010;11(5):210
– reference: 18803844 - BMC Bioinformatics. 2008;9:386
– reference: 20173072 - Appl Environ Microbiol. 2010 Apr;76(8):2445-50
– reference: 22661685 - J Bacteriol. 2012 Aug;194(16):4151-60
– reference: 23323865 - N Engl J Med. 2013 Jan 31;368(5):474-5
– reference: 25226019 - J Vis Exp. 2014;(90). doi: 10.3791/51709
– reference: 24288368 - Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42
– reference: 21910623 - Annu Rev Pathol. 2012;7:99-122
– reference: 22728514 - Gastroenterology. 2012 Oct;143(4):913-6.e7
– reference: 17923431 - Curr Opin Microbiol. 2007 Oct;10(5):504-9
– reference: 23768558 - Best Pract Res Clin Gastroenterol. 2013 Feb;27(1):127-37
– reference: 24811495 - Nat Biotechnol. 2014 May;32(5):401-2
– reference: 22411464 - Nat Rev Genet. 2012 Apr;13(4):260-70
– reference: 22699611 - Nature. 2012 Jun 14;486(7402):222-7
– reference: 16741115 - Science. 2006 Jun 2;312(5778):1355-9
– reference: 24060135 - Methods Enzymol. 2013;531:525-47
– reference: 20403810 - Nucleic Acids Res. 2010 Jul;38(12):e132
– reference: 22699610 - Nature. 2012 Jun 14;486(7402):215-21
– reference: 25730701 - Nat Rev Microbiol. 2015 Apr;13(4):217-29
– reference: 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155
– reference: 22699609 - Nature. 2012 Jun 14;486(7402):207-14
– reference: 24589583 - Nucleic Acids Res. 2014 Apr;42(8):e73
– reference: 22179717 - Nat Rev Genet. 2012 Jan;13(1):47-58
– reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65
– reference: 24714158 - PLoS One. 2014;9(4):e93827
SSID ssj0011469
Score 2.6550448
Snippet The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to...
The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 967
SubjectTerms 16S rRNA
Amplicon sequencing
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Base Sequence
Chromosome Mapping - methods
DNA, Bacterial - genetics
genes
Humans
Metagenome - genetics
Metagenomics
microbial detection
Microbiome
Microbiota
Microbiota - genetics
Molecular Sequence Data
Next-generation sequencing
prediction
probiotics
Reproducibility of Results
ribosomal RNA
RNA, Ribosomal, 16S - genetics
Sensitivity and Specificity
sequence analysis
Sequence Analysis, DNA - methods
translation (genetics)
Whole genome shotgun sequencing
Title Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing
URI https://dx.doi.org/10.1016/j.bbrc.2015.12.083
https://www.ncbi.nlm.nih.gov/pubmed/26718401
https://www.proquest.com/docview/1760920073
https://www.proquest.com/docview/1817835875
https://www.proquest.com/docview/1859473516
https://pubmed.ncbi.nlm.nih.gov/PMC4830092
Volume 469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQQvE2z86IDJSIgXFFY7tuPsrVRMBcReYFJfkOXENuu0JtPaCvHC3747x6koiD7wliZnKfHZd-frd98R8srXsuDWYumWFJmwNdhB8PKZdsgeV7igYru3z2dqci4-TuV0h4z7WhiEVSbb39n0aK3TneM0m8fXsxnW-A4VL9kU9iyDvYKMn0IUuMrf_lrDPLDoNoXAKkPpVDjTYbyq6gZpDJmMKUGd_8s5_R18_omh_M0pnT4geymapKPuhR-SHd_sk4NRAyfp-U_6mkZ8Z0yc75O77_qre-O-y9sB-dazktA2UAgG6XzWUTPN_QmNLZeXYHHi0x_YSpciqevc08VFu_y-aiiiOlYLytQXaiM4vW1ogmeDU3xEzk_ffx1PstRyIavBr2Njehl4CDl3vOSqDhwmhQedByly7RzzCsl2uHZDYaWovAg-Dw5iAl2HCrSRPya7Tdv4p4SC3SxgrFLSeiFdqIIqlfSVDd5Z5_WAsH6uTZ34yLEtxpXpgWeXBvVjUD-GcQOvMiBv1mOuOzaOrdKyV6HZWFMG3MXWcS97fRvQBv6DYhvfrhaGFWpYYnZ3m4xmmE2Dc-A2GVliz2emBuRJt47W38NVgaduNiDFxgpbCyAh-OaTZnYRicGFzpFD6_A_v_sZuQ-_YoKJ8-dkd3mz8i8g5FpWR3FPHZE7ow-fJme355gsXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTmh7QbDx0fFlJMQLilY7sZPwViqmjm19YZP6gqwktrcimkxrK8R_z53jVBREH3iL4rNk--y78_nudwBvbSVTURSUuiWTKCkqlIOo5aPMEHpcapzy5d4uJmp8lXyeyukOjLpcGAqrDLK_leleWoc_x2E1j29nM8rxHSiR8ymeWY5nJb4Hu4ROJXuwOzw9G0_WjwkoDIIVrCLqEHJn2jCvsrwjJEMuvVcwi_-ln_62P_8Mo_xNL508hAfBoGTDdsyPYMfWB3A4rPEyPf_J3jEf4ul95wdw_2P3tTfqCr0dwtcOmIQ1jqE9yOazFp1pbj8wX3V5iULHt_6garqMcF3nli1umuX1qmYU2LFaMK6-sMLHpzc1CxHaqBcfw9XJp8vROApVF6IKVTvVppdOOBcLI3KhKidwUYTLYieTODOGW0V4OyIzg6SQSWkTZ2Nn0CzIKlciQ-In0Kub2j4DhqIzxb5KycIm0rjSqVxJWxbOmsLYrA-8W2tdBUhyqozxXXexZ9808UcTfzQXGofSh_frPrctIMdWatmxUG9sK40aY2u_Nx2_NXKDHlGK2jarheapGuTk4N1Gk3FyqOFVcBuNzKnsM1d9eNruo_V8hErp4s37kG7ssDUBYYJvttSzG48NnmQxwWgd_ee8X8Pe-PLiXJ-fTs6ewz62eH-TEC-gt7xb2ZdogS3LV-GE_QIUii8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+microbiome%3A+Advantages+of+whole+genome+shotgun+versus+16S+amplicon+sequencing&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Ranjan%2C+Ravi&rft.au=Rani%2C+Asha&rft.au=Metwally%2C+Ahmed&rft.au=McGee%2C+Halvor+S.&rft.date=2016-01-22&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=469&rft.issue=4&rft.spage=967&rft.epage=977&rft_id=info:doi/10.1016%2Fj.bbrc.2015.12.083&rft.externalDocID=S0006291X15310883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon