Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing
The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituti...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 469; no. 4; pp. 967 - 977 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-291X 1090-2104 |
DOI | 10.1016/j.bbrc.2015.12.083 |
Cover
Loading…
Abstract | The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
•Human microbiome has emerged as a major player in regulating health and disease.•Accurate identification of microbes constituting the microbiome is major challenge.•We report comparative study of whole genome shotgun (WGS) and amplicon sequencing.•WGS enhances detection of bacterial species with high accuracy.•WGS increased detection of microbial diversity and prediction of putative genes. |
---|---|
AbstractList | The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 10(6) reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×10 6 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using whole genome shotgun sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1 × 106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that whole genome shotgun sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection. •Human microbiome has emerged as a major player in regulating health and disease.•Accurate identification of microbes constituting the microbiome is major challenge.•We report comparative study of whole genome shotgun (WGS) and amplicon sequencing.•WGS enhances detection of bacterial species with high accuracy.•WGS increased detection of microbial diversity and prediction of putative genes. |
Author | McGee, Halvor S. Rani, Asha Metwally, Ahmed Perkins, David L. Ranjan, Ravi |
AuthorAffiliation | 2 Department of Bioengineering, University of Illinois, Chicago, IL 60612 USA 1 Department of Medicine, University of Illinois, Chicago, IL 60612 USA 3 Department of Surgery, University of Illinois, Chicago, IL 60612 USA |
AuthorAffiliation_xml | – name: 2 Department of Bioengineering, University of Illinois, Chicago, IL 60612 USA – name: 1 Department of Medicine, University of Illinois, Chicago, IL 60612 USA – name: 3 Department of Surgery, University of Illinois, Chicago, IL 60612 USA |
Author_xml | – sequence: 1 givenname: Ravi orcidid: 0000-0002-8768-549X surname: Ranjan fullname: Ranjan, Ravi email: ranjan@uic.edu organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA – sequence: 2 givenname: Asha surname: Rani fullname: Rani, Asha email: asharani@uic.edu organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA – sequence: 3 givenname: Ahmed surname: Metwally fullname: Metwally, Ahmed email: ametwa2@uic.edu organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA – sequence: 4 givenname: Halvor S. surname: McGee fullname: McGee, Halvor S. email: hmcgee@uic.edu organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA – sequence: 5 givenname: David L. surname: Perkins fullname: Perkins, David L. email: perkinsd@uic.edu organization: Department of Medicine, University of Illinois, Chicago, IL 60612, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26718401$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1vEzEQtVARTQt_gAPaI5eEGXvX60UIKapoQarEAZC4IMvrHSeOdu2w3qTqv8chLQIOhZMP78Pz5s0ZOwkxEGPPERYIKF9tFm072gUHrBbIF6DEIzZDaGDOEcoTNgMAOecNfj1lZyltABBL2Txhp1zWqErAGfu2DKa_TT4V0RXTmorB2zG2Pg70ulh2exMms6Kf6M069lSsKGSsSOs4rXah2NOYdqlA-akww7b3NoYi0fcdBevD6il77Eyf6Nnde86-XL77fPF-fv3x6sPF8npuJYppjqJy3DnBO95waR3PUbhTwlWlUF2HJEFCyVUHpanKlkpHwnUgUVnXSt6Ic_b26LvdtQN1lsI0ml5vRz-Y8VZH4_WfSPBrvYp7XSoB0PBs8PLOYIx5-DTpwSdLfW8CxV3SqKqmrEWF8j-oWCtRqbr6N7WW-XOAWmTqi98T_Br9vqlMUEdCrielkZy2fjKTj4dAvtcI-nAUeqMPR6EPR6GR67zJLOV_Se_dHxS9OYoo97b3NOpkfW6VOj-SnXQX_UPyH8uJ0C0 |
CitedBy_id | crossref_primary_10_3389_fnut_2025_1508381 crossref_primary_10_1038_s41598_022_08797_7 crossref_primary_10_15171_mejdd_2020_157 crossref_primary_10_1080_09064710_2019_1637016 crossref_primary_10_1186_s12931_023_02434_1 crossref_primary_10_1038_s41598_023_32809_9 crossref_primary_10_1038_s43705_022_00162_z crossref_primary_10_1038_s43587_022_00287_9 crossref_primary_10_3389_fcimb_2020_00023 crossref_primary_10_1016_j_cveq_2023_03_004 crossref_primary_10_1016_j_jpsychires_2019_03_017 crossref_primary_10_1093_bib_bbaa157 crossref_primary_10_1016_j_ifset_2022_103084 crossref_primary_10_1007_s00253_018_9209_9 crossref_primary_10_1093_bioinformatics_bty830 crossref_primary_10_3390_ijms26072878 crossref_primary_10_3390_app10207367 crossref_primary_10_3390_microorganisms9020278 crossref_primary_10_1186_s13024_019_0352_2 crossref_primary_10_1016_j_tplants_2020_03_014 crossref_primary_10_1186_s13099_019_0331_8 crossref_primary_10_1186_s13073_021_01005_7 crossref_primary_10_1016_j_trim_2024_102170 crossref_primary_10_1111_cas_16410 crossref_primary_10_1007_s00203_020_01994_w crossref_primary_10_3390_ani15030410 crossref_primary_10_3390_medicina57030195 crossref_primary_10_1007_s10620_021_07245_2 crossref_primary_10_5423_PPJ_OA_03_2022_0026 crossref_primary_10_1186_s12906_021_03220_6 crossref_primary_10_3389_fmicb_2023_1158440 crossref_primary_10_3389_fncel_2024_1386205 crossref_primary_10_3390_microorganisms9071419 crossref_primary_10_1016_j_cbd_2021_100789 crossref_primary_10_1016_j_heliyon_2024_e34336 crossref_primary_10_12688_hrbopenres_13794_2 crossref_primary_10_12688_hrbopenres_13794_1 crossref_primary_10_1080_19490976_2019_1586037 crossref_primary_10_1177_0300060519853655 crossref_primary_10_3389_fgene_2023_1184473 crossref_primary_10_3389_fcimb_2020_00286 crossref_primary_10_1177_1352458520924594 crossref_primary_10_1038_s41598_024_81829_6 crossref_primary_10_1007_s00284_020_02163_4 crossref_primary_10_1016_j_scitotenv_2023_164057 crossref_primary_10_1371_journal_pone_0281245 crossref_primary_10_1016_j_mimet_2020_105856 crossref_primary_10_1007_s11912_024_01520_x crossref_primary_10_3389_fimmu_2023_1151527 crossref_primary_10_3390_antibiotics13111052 crossref_primary_10_1016_j_csbj_2023_11_047 crossref_primary_10_1080_07357907_2020_1732405 crossref_primary_10_1111_jam_15616 crossref_primary_10_1210_er_2017_00192 crossref_primary_10_1038_s41598_021_91615_3 crossref_primary_10_1007_s12264_021_00730_8 crossref_primary_10_1371_journal_pone_0280391 crossref_primary_10_7717_peerj_16770 crossref_primary_10_3389_fmicb_2019_00479 crossref_primary_10_1016_j_nbd_2019_104578 crossref_primary_10_1099_acmi_0_000865_v3 crossref_primary_10_3390_microorganisms11040833 crossref_primary_10_3389_fphar_2021_812830 crossref_primary_10_1126_science_aap9516 crossref_primary_10_1038_s41598_020_66607_4 crossref_primary_10_1177_1099800420903083 crossref_primary_10_1038_s41598_021_97007_x crossref_primary_10_3390_insects11080500 crossref_primary_10_3390_insects13080719 crossref_primary_10_1128_mSphere_00454_19 crossref_primary_10_3390_brainsci12060709 crossref_primary_10_1007_s00203_022_03073_8 crossref_primary_10_1016_j_ijporl_2018_07_024 crossref_primary_10_1111_1751_7915_14364 crossref_primary_10_1007_s00253_018_8976_7 crossref_primary_10_1016_j_csbj_2021_08_050 crossref_primary_10_1186_s42523_021_00113_4 crossref_primary_10_1016_j_critrevonc_2019_102841 crossref_primary_10_1186_s12859_022_04618_w crossref_primary_10_1186_s12866_022_02730_8 crossref_primary_10_3390_life12122081 crossref_primary_10_1016_j_freeradbiomed_2024_11_024 crossref_primary_10_3389_fgene_2019_01182 crossref_primary_10_1016_j_heliyon_2023_e19800 crossref_primary_10_1111_hel_12871 crossref_primary_10_2196_14529 crossref_primary_10_1024_1422_4917_a000928 crossref_primary_10_1016_j_polar_2024_101096 crossref_primary_10_1186_s12859_020_03737_6 crossref_primary_10_3389_fmicb_2022_1066995 crossref_primary_10_3390_biology11081114 crossref_primary_10_1038_s42003_022_03155_9 crossref_primary_10_1186_s12903_021_01719_5 crossref_primary_10_1186_s13071_016_1908_4 crossref_primary_10_1080_21645515_2018_1442970 crossref_primary_10_1007_s42995_024_00248_8 crossref_primary_10_1016_j_reval_2019_12_002 crossref_primary_10_1038_s41598_024_75309_0 crossref_primary_10_3389_fmicb_2023_1197970 crossref_primary_10_1016_j_scitotenv_2020_138259 crossref_primary_10_3390_metabo13010006 crossref_primary_10_3389_fmicb_2020_588545 crossref_primary_10_1002_jpn3_12053 crossref_primary_10_3389_fcvm_2018_00089 crossref_primary_10_3389_fmicb_2017_02029 crossref_primary_10_1186_s12866_021_02153_x crossref_primary_10_1136_archdischild_2021_322590 crossref_primary_10_3389_fimmu_2023_1072655 crossref_primary_10_1038_s41598_019_56065_y crossref_primary_10_1111_aos_14508 crossref_primary_10_1113_EP089919 crossref_primary_10_1016_j_rhisph_2020_100282 crossref_primary_10_1016_j_suronc_2021_101560 crossref_primary_10_1111_1365_2745_13165 crossref_primary_10_1038_s41598_023_38307_2 crossref_primary_10_1152_physrev_00018_2018 crossref_primary_10_1016_j_rdc_2025_01_002 crossref_primary_10_1128_spectrum_00837_22 crossref_primary_10_1111_vde_12408 crossref_primary_10_3390_microorganisms8101611 crossref_primary_10_1016_j_bbrep_2024_101717 crossref_primary_10_3390_microorganisms11122999 crossref_primary_10_12688_f1000research_16804_1 crossref_primary_10_12688_f1000research_16804_2 crossref_primary_10_12688_f1000research_16804_3 crossref_primary_10_12688_f1000research_16804_4 crossref_primary_10_1007_s11596_018_1969_z crossref_primary_10_1186_s13062_020_00287_y crossref_primary_10_1186_s40168_022_01233_y crossref_primary_10_1093_bfgp_elz017 crossref_primary_10_3390_applmicrobiol5010026 crossref_primary_10_1016_j_micres_2022_127244 crossref_primary_10_21603_2074_9414_2018_4_87_113 crossref_primary_10_3389_fmicb_2022_872825 crossref_primary_10_1093_carcin_bgz116 crossref_primary_10_1371_journal_pone_0223128 crossref_primary_10_1177_1535370219836739 crossref_primary_10_1038_s41598_021_84964_6 crossref_primary_10_3390_app11104628 crossref_primary_10_3389_fmicb_2021_673632 crossref_primary_10_3390_ijms22189700 crossref_primary_10_1016_j_ecolind_2019_105827 crossref_primary_10_1002_cam4_6503 crossref_primary_10_3390_microorganisms8071023 crossref_primary_10_1016_j_cmet_2024_12_004 crossref_primary_10_7717_peerj_9564 crossref_primary_10_1093_nargab_lqac050 crossref_primary_10_1080_20002297_2018_1557986 crossref_primary_10_3390_microorganisms12030510 crossref_primary_10_1016_j_forsciint_2024_112147 crossref_primary_10_3389_fmicb_2023_1202194 crossref_primary_10_1002_ece3_8281 crossref_primary_10_1080_00365521_2020_1748221 crossref_primary_10_1128_mbio_03175_21 crossref_primary_10_1128_JB_00572_17 crossref_primary_10_3390_genes12111728 crossref_primary_10_1214_21_AOAS1587 crossref_primary_10_1152_ajpcell_00454_2019 crossref_primary_10_1007_s42535_022_00447_7 crossref_primary_10_1016_j_margen_2016_09_002 crossref_primary_10_7717_peerj_16394 crossref_primary_10_1038_s41598_022_14785_8 crossref_primary_10_1094_PBIOMES_3_2 crossref_primary_10_3389_fvets_2021_778556 crossref_primary_10_1099_mgen_0_001284 crossref_primary_10_1126_sciadv_aba3760 crossref_primary_10_1016_j_watres_2017_02_057 crossref_primary_10_1111_cea_13444 crossref_primary_10_1038_s41598_019_50194_0 crossref_primary_10_1038_s41598_023_44981_z crossref_primary_10_1093_brain_awaa201 crossref_primary_10_1080_29933935_2025_2473450 crossref_primary_10_1186_s42523_021_00098_0 crossref_primary_10_1097_MD_0000000000035262 crossref_primary_10_1038_s41597_024_03518_3 crossref_primary_10_1007_s11882_017_0730_1 crossref_primary_10_1111_mec_16702 crossref_primary_10_1089_omi_2019_0073 crossref_primary_10_1080_14737159_2022_2071607 crossref_primary_10_1016_j_ijfoodmicro_2022_109781 crossref_primary_10_1038_s43705_021_00014_2 crossref_primary_10_1371_journal_ppat_1008524 crossref_primary_10_3390_nu14071405 crossref_primary_10_3389_fmolb_2023_1337373 crossref_primary_10_1242_dmm_048793 crossref_primary_10_36401_JIPO_20_17 crossref_primary_10_1016_j_watres_2023_120700 crossref_primary_10_1007_s12275_020_9525_5 crossref_primary_10_3390_ijms26051983 crossref_primary_10_1128_msystems_00840_24 crossref_primary_10_1093_femsec_fiaa173 crossref_primary_10_2217_fmb_2020_0269 crossref_primary_10_1038_s41575_020_0269_9 crossref_primary_10_1038_s41598_020_59747_0 crossref_primary_10_1016_j_cgh_2018_08_067 crossref_primary_10_5005_jp_journals_10006_2402 crossref_primary_10_1186_s13062_020_00284_1 crossref_primary_10_1038_s41419_021_03829_y crossref_primary_10_3390_microorganisms12112221 crossref_primary_10_1016_j_syapm_2023_126476 crossref_primary_10_1016_j_scitotenv_2023_166739 crossref_primary_10_1002_cam4_5323 crossref_primary_10_1186_s13099_023_00535_2 crossref_primary_10_1016_j_scitotenv_2022_159515 crossref_primary_10_3390_ijms26072939 crossref_primary_10_3390_microbiolres15040170 crossref_primary_10_3389_fmicb_2023_1066406 crossref_primary_10_3390_microorganisms11061481 crossref_primary_10_1016_j_ejca_2024_114235 crossref_primary_10_3389_fcell_2021_719072 crossref_primary_10_1007_s10552_021_01490_6 crossref_primary_10_3390_microbiolres16030071 crossref_primary_10_1111_jfs_12800 crossref_primary_10_3748_wjg_v26_i12_1262 crossref_primary_10_1111_mec_14860 crossref_primary_10_1128_mSystems_00032_16 crossref_primary_10_1371_journal_pone_0215918 crossref_primary_10_3389_fmicb_2022_1045096 crossref_primary_10_1016_j_mimet_2019_105739 crossref_primary_10_1007_s11926_022_01066_6 crossref_primary_10_1080_1745039X_2020_1726719 crossref_primary_10_1534_g3_120_401449 crossref_primary_10_1111_1365_2435_14650 crossref_primary_10_3389_fmed_2021_661203 crossref_primary_10_1016_j_csbj_2022_02_024 crossref_primary_10_3389_fcimb_2023_1161203 crossref_primary_10_5009_gnl220537 crossref_primary_10_3389_fmicb_2021_670336 crossref_primary_10_1097_HC9_0000000000000310 crossref_primary_10_1007_s00248_022_02168_5 crossref_primary_10_1371_journal_pone_0291406 crossref_primary_10_1111_apm_13032 crossref_primary_10_1172_jci_insight_152346 crossref_primary_10_1038_s41531_022_00351_6 crossref_primary_10_1038_s41598_020_77622_w crossref_primary_10_1093_humupd_dmy012 crossref_primary_10_1128_aem_02230_24 crossref_primary_10_2147_IJGM_S304339 crossref_primary_10_1038_s41598_023_42059_4 crossref_primary_10_3390_foods11213379 crossref_primary_10_2166_aqua_2024_154 crossref_primary_10_30802_AALAS_JAALAS_22_000068 crossref_primary_10_1093_bib_bbx154 crossref_primary_10_1111_are_15795 crossref_primary_10_3389_fmicb_2022_937666 crossref_primary_10_1038_srep33327 crossref_primary_10_48022_mbl_2210_10013 crossref_primary_10_1038_s41538_022_00150_6 crossref_primary_10_1093_bioinformatics_btz356 crossref_primary_10_1111_all_14624 crossref_primary_10_1186_s12903_023_03541_7 crossref_primary_10_2174_1389557522666220304230920 crossref_primary_10_3390_nu16244268 crossref_primary_10_1016_j_trsl_2016_08_008 crossref_primary_10_1093_humupd_dmy048 crossref_primary_10_3390_pathogens11111279 crossref_primary_10_1002_mbo3_1191 crossref_primary_10_3390_genes9010014 crossref_primary_10_1016_j_jaut_2019_02_004 crossref_primary_10_1186_s40168_022_01385_x crossref_primary_10_3389_fpsyt_2021_722335 crossref_primary_10_1016_j_trac_2023_117155 crossref_primary_10_1007_s10658_019_01850_8 crossref_primary_10_1038_s41598_021_98452_4 crossref_primary_10_3390_microorganisms8020308 crossref_primary_10_1371_journal_pone_0184566 crossref_primary_10_1021_acs_est_4c14471 crossref_primary_10_1093_femsec_fiad102 crossref_primary_10_1016_j_biotechadv_2019_02_013 crossref_primary_10_1093_ajh_hpaa022 crossref_primary_10_3390_d15101103 crossref_primary_10_1186_s42523_021_00106_3 crossref_primary_10_1016_j_anicom_2017_10_002 crossref_primary_10_1016_j_biopha_2022_113958 crossref_primary_10_1021_acsomega_4c09485 crossref_primary_10_1016_j_scitotenv_2022_157652 crossref_primary_10_1016_j_arr_2024_102466 crossref_primary_10_1016_j_still_2023_105809 crossref_primary_10_1007_s00414_021_02525_y crossref_primary_10_3390_microorganisms8122018 crossref_primary_10_1007_s11104_021_05143_0 crossref_primary_10_3390_ijms19092471 crossref_primary_10_1007_s10620_022_07812_1 crossref_primary_10_1186_s12866_019_1521_8 crossref_primary_10_1093_nutrit_nuae192 crossref_primary_10_1002_bmb_21706 crossref_primary_10_1007_s00335_021_09871_7 crossref_primary_10_1080_10934529_2020_1789409 crossref_primary_10_1016_j_nutres_2024_07_008 crossref_primary_10_3390_biology11111586 crossref_primary_10_1002_ajpa_25020 crossref_primary_10_22416_1382_4376_2022_32_2_19_34 crossref_primary_10_1111_lam_13587 crossref_primary_10_1038_s41417_024_00833_0 crossref_primary_10_1016_j_mimet_2020_106123 crossref_primary_10_1038_s41598_021_82449_0 crossref_primary_10_1093_rap_rkab063 crossref_primary_10_18700_jnc_220058 crossref_primary_10_3390_metabo12010065 crossref_primary_10_3390_v16010042 crossref_primary_10_3390_ani9030090 crossref_primary_10_1007_s12223_021_00926_5 crossref_primary_10_3389_fimmu_2021_764384 crossref_primary_10_1111_1462_2920_14652 crossref_primary_10_1128_AEM_00431_20 crossref_primary_10_1136_jitc_2022_005401 crossref_primary_10_3389_fcimb_2022_841465 crossref_primary_10_1007_s00203_021_02227_4 crossref_primary_10_1038_srep31731 crossref_primary_10_1093_femsec_fiae138 crossref_primary_10_1038_s42003_023_05150_0 crossref_primary_10_1016_j_canlet_2021_09_009 crossref_primary_10_1089_fpd_2022_0027 crossref_primary_10_1136_archdischild_2021_322861 crossref_primary_10_1186_s40168_023_01693_w crossref_primary_10_1016_j_earlhumdev_2019_104854 crossref_primary_10_3389_fvets_2020_601874 crossref_primary_10_1053_j_semperi_2017_07_010 crossref_primary_10_1080_10495398_2022_2078979 crossref_primary_10_3390_plants9081052 crossref_primary_10_1186_s13062_018_0215_8 crossref_primary_10_7717_peerj_5590 crossref_primary_10_3389_fonc_2024_1361879 crossref_primary_10_3389_fgene_2020_504354 crossref_primary_10_1097_MOL_0000000000000582 crossref_primary_10_1186_s12866_023_03084_5 crossref_primary_10_3390_biology9060136 crossref_primary_10_3390_genes11111374 crossref_primary_10_3390_nu16223806 crossref_primary_10_1128_Spectrum_01434_21 crossref_primary_10_1186_s12866_022_02451_y crossref_primary_10_3390_ani9010028 crossref_primary_10_1007_s00253_018_9464_9 crossref_primary_10_1136_archdischild_2019_316891 crossref_primary_10_1016_j_bpg_2017_09_009 crossref_primary_10_1371_journal_pone_0242880 crossref_primary_10_3389_fphar_2022_837500 crossref_primary_10_1016_j_aquaculture_2022_738026 crossref_primary_10_1016_j_heliyon_2024_e25186 crossref_primary_10_1111_vde_13250 crossref_primary_10_1016_j_humic_2021_100079 crossref_primary_10_7717_peerj_11648 crossref_primary_10_1055_a_1157_9257 crossref_primary_10_1094_PBIOMES_07_22_0044_MF crossref_primary_10_3390_su15032745 crossref_primary_10_1002_jmv_70027 crossref_primary_10_1016_j_phrs_2024_107231 crossref_primary_10_1039_D0FO00436G crossref_primary_10_1080_20002297_2024_2330867 crossref_primary_10_1111_eea_13333 crossref_primary_10_1128_spectrum_03617_23 crossref_primary_10_1038_s41598_024_56603_3 crossref_primary_10_1186_s40168_020_00806_z crossref_primary_10_3389_fcimb_2022_922753 crossref_primary_10_3390_plants10071423 crossref_primary_10_3390_jcm8111935 crossref_primary_10_1016_j_catena_2024_108637 crossref_primary_10_1016_j_tjnut_2023_11_001 crossref_primary_10_3389_fonc_2020_00179 crossref_primary_10_1186_s42523_019_0013_3 crossref_primary_10_3389_fenvc_2020_570326 crossref_primary_10_1128_mSphere_01325_20 crossref_primary_10_1089_ast_2018_1964 crossref_primary_10_1016_j_micpath_2024_107106 crossref_primary_10_1038_s41597_024_03286_0 crossref_primary_10_1080_13102818_2024_2361751 crossref_primary_10_1016_j_csbj_2021_12_035 crossref_primary_10_1099_acmi_0_000754_v3 crossref_primary_10_1002_dev_21819 crossref_primary_10_1016_j_bbcan_2020_188490 crossref_primary_10_1038_s41598_018_25514_5 crossref_primary_10_3389_fmicb_2024_1435834 crossref_primary_10_3892_etm_2024_12692 crossref_primary_10_4103_0973_1482_341139 crossref_primary_10_3390_nu15030689 crossref_primary_10_3390_microorganisms12112179 crossref_primary_10_1186_s12903_018_0595_2 crossref_primary_10_1002_pros_24276 crossref_primary_10_1016_S2665_9913_24_00334_5 crossref_primary_10_1186_s13059_019_1819_8 crossref_primary_10_1128_mSphere_00827_19 crossref_primary_10_1080_19490976_2022_2105096 crossref_primary_10_3390_w15020271 crossref_primary_10_1016_j_fbio_2021_101188 crossref_primary_10_1017_gmb_2023_3 crossref_primary_10_3390_ijms25073893 crossref_primary_10_3390_jcm11144119 crossref_primary_10_1016_j_fsigen_2020_102257 crossref_primary_10_1016_j_jare_2019_04_008 crossref_primary_10_1016_j_chom_2017_03_013 crossref_primary_10_1038_s41598_024_66753_z crossref_primary_10_4315_JFP_21_301 crossref_primary_10_1016_j_aquaculture_2022_738132 crossref_primary_10_1016_j_mimet_2021_106213 crossref_primary_10_1016_j_isci_2020_101223 crossref_primary_10_3390_life12111867 crossref_primary_10_15237_gida_GD20136 crossref_primary_10_1007_s12033_023_00839_3 crossref_primary_10_1007_s10329_018_0671_x crossref_primary_10_1016_j_marpolbul_2021_112085 crossref_primary_10_3390_plants12091852 crossref_primary_10_1016_j_mam_2022_101115 crossref_primary_10_1042_CS20171330 crossref_primary_10_1007_s00203_022_02969_9 crossref_primary_10_1111_hel_13071 crossref_primary_10_1113_EP091446 crossref_primary_10_1155_2018_6074918 crossref_primary_10_3390_antibiotics14030296 crossref_primary_10_1177_1352458518788974 crossref_primary_10_1099_mgen_0_000794 crossref_primary_10_3389_fmicb_2023_1167763 crossref_primary_10_1186_s12859_024_05918_z crossref_primary_10_1007_s00253_022_12083_x crossref_primary_10_1038_s41598_023_46062_7 crossref_primary_10_1094_PHYTO_12_16_0426_RVW crossref_primary_10_1016_j_biopha_2025_117905 crossref_primary_10_1038_s41575_024_00981_6 crossref_primary_10_3389_fmicb_2021_680622 crossref_primary_10_1080_19390211_2020_1814931 crossref_primary_10_1080_2162402X_2021_1988403 crossref_primary_10_1099_acmi_0_000104 crossref_primary_10_1016_j_csbj_2020_11_049 crossref_primary_10_1038_s41598_018_30932_6 crossref_primary_10_1038_s41598_019_38489_8 crossref_primary_10_3389_fimmu_2023_1188520 crossref_primary_10_1016_j_soard_2019_01_033 crossref_primary_10_3389_fcimb_2022_922554 crossref_primary_10_1007_s00248_021_01884_8 crossref_primary_10_1038_s41598_018_30735_9 crossref_primary_10_1111_jvim_16612 crossref_primary_10_1136_annrheumdis_2020_216972 crossref_primary_10_31146_1682_8658_ecg_199_3_125_133 crossref_primary_10_3390_ijms241411472 crossref_primary_10_4239_wjd_v10_i7_376 crossref_primary_10_22207_JPAM_11_4_36 crossref_primary_10_1371_journal_pone_0284031 crossref_primary_10_3389_fgene_2022_799615 crossref_primary_10_3389_fmed_2021_595522 crossref_primary_10_1016_j_healun_2018_04_007 crossref_primary_10_20517_mrr_2023_02 crossref_primary_10_1371_journal_pone_0227289 crossref_primary_10_3390_metabo14010014 crossref_primary_10_1371_journal_pone_0228496 crossref_primary_10_1111_odi_13883 crossref_primary_10_1186_s12890_023_02654_7 crossref_primary_10_1186_s12864_024_10621_7 crossref_primary_10_3389_fmicb_2024_1451054 crossref_primary_10_1186_s13040_021_00270_x crossref_primary_10_1016_j_plasmid_2018_08_002 crossref_primary_10_1186_s12864_021_07607_0 crossref_primary_10_1002_mnfr_201800512 crossref_primary_10_1161_CIRCGEN_119_002314 crossref_primary_10_3389_fmicb_2022_837396 crossref_primary_10_3389_fmicb_2022_912701 crossref_primary_10_3389_fmicb_2022_905050 crossref_primary_10_1038_s41598_017_06665_3 crossref_primary_10_1017_S1466252319000124 crossref_primary_10_3233_JPD_223461 crossref_primary_10_3389_fcimb_2021_745653 crossref_primary_10_3389_fevo_2023_1107463 crossref_primary_10_1136_annrheumdis_2019_215743 crossref_primary_10_1172_JCI154944 crossref_primary_10_1038_s41598_019_49468_4 crossref_primary_10_1038_s41467_022_28678_x crossref_primary_10_3389_fped_2019_00380 crossref_primary_10_3390_genes10030220 crossref_primary_10_3390_microorganisms11010139 crossref_primary_10_3390_genes10110900 crossref_primary_10_1134_S1062359022010150 crossref_primary_10_1111_imb_12567 crossref_primary_10_3389_fams_2022_884810 crossref_primary_10_7717_peerj_17805 crossref_primary_10_1089_omi_2018_0013 crossref_primary_10_1007_s11427_016_9296_5 crossref_primary_10_3389_fcimb_2021_695191 crossref_primary_10_3390_microorganisms12020284 crossref_primary_10_1111_bjd_18611 crossref_primary_10_1186_s12859_019_2623_x crossref_primary_10_4103_jomfp_jomfp_455_21 crossref_primary_10_1002_fsh_10379 crossref_primary_10_1016_j_celrep_2021_110113 crossref_primary_10_3390_biology10101027 crossref_primary_10_1016_j_neubiorev_2021_02_044 crossref_primary_10_1093_femsre_fuae021 crossref_primary_10_1007_s11912_024_01508_7 crossref_primary_10_3390_biology10101023 crossref_primary_10_1111_cts_13381 crossref_primary_10_1093_advances_nmab014 crossref_primary_10_1016_j_yjbinx_2019_100040 crossref_primary_10_1128_aem_00092_24 crossref_primary_10_1111_jam_14380 crossref_primary_10_3389_fmicb_2019_02257 crossref_primary_10_3390_genes10090637 crossref_primary_10_3390_ijms24065767 crossref_primary_10_3389_fnut_2023_1225120 crossref_primary_10_1172_JCI90596 crossref_primary_10_1016_j_cell_2019_07_016 crossref_primary_10_1016_j_jhazmat_2017_09_046 crossref_primary_10_1016_j_foodqual_2022_104790 crossref_primary_10_1016_j_neubiorev_2023_105296 crossref_primary_10_1016_j_blre_2024_101252 crossref_primary_10_1016_j_gpb_2021_08_009 crossref_primary_10_1002_mnfr_201600992 crossref_primary_10_1214_18_AOAS1229 crossref_primary_10_1016_S1773_035X_22_00136_8 crossref_primary_10_3389_fphar_2021_607197 crossref_primary_10_1093_femsle_fnae089 crossref_primary_10_1136_rmdopen_2023_003589 crossref_primary_10_20411_pai_v9i1_693 crossref_primary_10_1186_s42523_024_00293_9 crossref_primary_10_1007_s00203_023_03664_z crossref_primary_10_1371_journal_pcbi_1006693 crossref_primary_10_3389_fmicb_2016_00838 crossref_primary_10_1038_s41598_019_57367_x crossref_primary_10_1016_j_dsx_2024_103118 crossref_primary_10_1016_j_jneuroim_2020_577237 crossref_primary_10_1016_j_soard_2020_03_014 crossref_primary_10_1002_fsn3_4337 crossref_primary_10_3389_fmicb_2022_879260 crossref_primary_10_1177_1099800420941606 crossref_primary_10_1097_MIB_0000000000000875 crossref_primary_10_3389_fdata_2022_927520 crossref_primary_10_3390_ijms23169422 crossref_primary_10_1038_s41598_018_24280_8 crossref_primary_10_3390_ijms222011243 crossref_primary_10_1177_1099800418811639 crossref_primary_10_1186_s12859_024_05767_w crossref_primary_10_1016_j_apenergy_2019_04_074 crossref_primary_10_3390_microorganisms9040816 crossref_primary_10_1097_MOL_0000000000000308 crossref_primary_10_1038_s41598_021_96556_5 crossref_primary_10_3389_fcimb_2020_00188 crossref_primary_10_3390_app14209438 crossref_primary_10_1186_s13059_020_02037_9 crossref_primary_10_1136_gutjnl_2021_324767 crossref_primary_10_1016_j_ecoenv_2022_113448 crossref_primary_10_1038_s41598_021_89881_2 crossref_primary_10_1007_s00227_021_03893_0 crossref_primary_10_3390_foods11172575 crossref_primary_10_3389_fpls_2020_00646 crossref_primary_10_1371_journal_pone_0220961 crossref_primary_10_1136_jitc_2022_006533 crossref_primary_10_3390_ani13132235 crossref_primary_10_1111_exd_14398 crossref_primary_10_1099_jmm_0_001617 crossref_primary_10_1177_1040638720981019 crossref_primary_10_1016_j_psychres_2022_115005 crossref_primary_10_1128_mSystems_00317_20 crossref_primary_10_1167_iovs_62_10_8 crossref_primary_10_3389_fmicb_2024_1424795 crossref_primary_10_3390_genes11080878 crossref_primary_10_1038_s41598_021_91425_7 crossref_primary_10_1038_s41598_023_28969_3 crossref_primary_10_1016_j_trac_2017_06_001 crossref_primary_10_1094_PBIOMES_01_19_0004_R crossref_primary_10_1371_journal_pone_0236165 crossref_primary_10_1186_s13062_019_0251_z crossref_primary_10_1038_s41569_022_00825_3 crossref_primary_10_1111_jpn_14036 crossref_primary_10_1186_s40168_018_0437_0 crossref_primary_10_3390_ijms21082908 crossref_primary_10_1007_s00203_020_02157_7 crossref_primary_10_3389_fmicb_2024_1515258 crossref_primary_10_4103_sjg_sjg_221_24 crossref_primary_10_3389_fcell_2020_625330 crossref_primary_10_1002_mnfr_202300716 crossref_primary_10_1111_1462_2920_14824 crossref_primary_10_1038_s41575_020_0327_3 crossref_primary_10_3389_fmed_2023_1285753 crossref_primary_10_1186_s12859_024_05952_x crossref_primary_10_3389_fvets_2023_1050414 crossref_primary_10_1016_j_agee_2022_108193 crossref_primary_10_1016_j_fsigen_2020_102432 crossref_primary_10_1016_j_pnpbp_2024_111237 crossref_primary_10_2139_ssrn_4120133 crossref_primary_10_3390_ani8110211 crossref_primary_10_1186_s13020_024_00995_x crossref_primary_10_1111_1755_0998_13713 crossref_primary_10_1038_s41575_023_00867_z crossref_primary_10_1016_j_jcmgh_2020_08_008 crossref_primary_10_1016_j_mam_2019_05_001 crossref_primary_10_1097_MOU_0000000000000742 crossref_primary_10_1109_TBCAS_2023_3244570 crossref_primary_10_3389_fcimb_2020_585973 crossref_primary_10_3389_fphar_2020_594042 crossref_primary_10_1371_journal_pone_0228899 crossref_primary_10_1016_j_crmicr_2025_100362 crossref_primary_10_1007_s13671_018_0245_6 crossref_primary_10_1016_j_envres_2022_114847 |
Cites_doi | 10.1016/j.bpg.2013.03.003 10.1038/nature11053 10.1053/j.gastro.2012.06.031 10.1146/annurev.micro.57.030502.090759 10.1038/nrmicro3400 10.1186/1471-2105-9-386 10.1186/gb-2010-11-5-210 10.1093/nar/gku169 10.1093/nar/gks678 10.1038/nature08821 10.1038/nbt0514-401 10.1128/JB.00345-12 10.1371/journal.pone.0093827 10.1056/NEJMe1214816 10.1126/science.1124234 10.1016/B978-0-12-407863-5.00023-X 10.1128/AEM.01754-09 10.1038/nature11209 10.1038/nrg3182 10.1038/nature11234 10.1038/nrg3129 10.1093/nar/gkq275 10.1016/j.mib.2007.08.006 10.1093/nar/gkt1244 10.1146/annurev-pathol-011811-132421 10.1038/nrg3642 10.1038/nbt.2942 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7T7 8FD C1K FR3 P64 5PM |
DOI | 10.1016/j.bbrc.2015.12.083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 977 |
ExternalDocumentID | PMC4830092 26718401 10_1016_j_bbrc_2015_12_083 S0006291X15310883 |
Genre | Comparative Study Evaluation Studies Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI053878 – fundername: NHLBI NIH HHS grantid: R01 HL081663 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7T7 8FD C1K FR3 P64 5PM EFKBS |
ID | FETCH-LOGICAL-c613t-135f2ff32d2926cf20832f83f5438dd1e6060428d04a54be4fe3fd0618cfb6293 |
IEDL.DBID | .~1 |
ISSN | 0006-291X |
IngestDate | Thu Aug 21 14:04:46 EDT 2025 Fri Jul 11 01:20:57 EDT 2025 Fri Jul 11 10:56:19 EDT 2025 Fri Jul 11 15:39:42 EDT 2025 Wed Feb 19 02:00:28 EST 2025 Tue Jul 01 03:10:09 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Fri Feb 23 02:28:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 16S rRNA Metagenomics Microbiota Whole genome shotgun sequencing Next-generation sequencing Amplicon sequencing Microbiome |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c613t-135f2ff32d2926cf20832f83f5438dd1e6060428d04a54be4fe3fd0618cfb6293 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 ObjectType-Article-1 ObjectType-Feature-2 These authors contributed equally and considered as co-first authors. |
ORCID | 0000-0002-8768-549X |
PMID | 26718401 |
PQID | 1760920073 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830092 proquest_miscellaneous_1859473516 proquest_miscellaneous_1817835875 proquest_miscellaneous_1760920073 pubmed_primary_26718401 crossref_citationtrail_10_1016_j_bbrc_2015_12_083 crossref_primary_10_1016_j_bbrc_2015_12_083 elsevier_sciencedirect_doi_10_1016_j_bbrc_2015_12_083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-22 |
PublicationDateYYYYMMDD | 2016-01-22 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gill, Pop, Deboy, Eckburg, Turnbaugh, Samuel, Gordon, Relman, Fraser-Liggett, Nelson (bib8) 2006; 312 Sims, Sudbery, Ilott, Heger, Ponting (bib20) 2014; 15 Cho, Blaser (bib2) 2012; 13 Namiki, Hachiya, Tanaka, Sakakibara (bib24) 2012; 40 C.Human Microbiome Project (bib27) 2012; 486 Luo, Rodriguez, Konstantinidis (bib22) 2014; 42 Kuczynski, Lauber, Walters, Parfrey, Clemente, Gevers, Knight (bib10) 2012; 13 Lynch, Neufeld (bib9) 2015; 13 Konstantinidis, Stackebrandt (bib19) 2013 Kelly (bib3) 2013; 368 C Human Microbiome Project (bib14) 2012; 486 Poretsky, Rodriguez, Luo, Tsementzi, Konstantinidis (bib17) 2014; 9 Nichols, Cahoon, Trakhtenberg, Pham, Mehta, Belanger, Kanigan, Lewis, Epstein (bib13) 2010; 76 Luo, Rodriguez, Konstantinidis (bib21) 2013; 531 Vrieze, de Groot, Kootte, Knaapen, van Nood, Nieuwdorp (bib6) 2013; 27 Yatsunenko, Rey, Manary, Trehan, Dominguez-Bello, Contreras, Magris, Hidalgo, Baldassano, Anokhin, Heath, Warner, Reeder, Kuczynski, Caporaso, Lozupone, Lauber, Clemente, Knights, Knight, Gordon (bib7) 2012; 486 Stewart (bib12) 2012; 194 Rappe, Giovannoni (bib11) 2003; 57 Qin, Li, Raes, Arumugam, Burgdorf, Manichanh, Nielsen, Pons, Levenez, Yamada, Mende, Li, Xu, Li, Li, Cao, Wang, Liang, Zheng, Xie, Tap, Lepage, Bertalan, Batto, Hansen, Le Paslier, Linneberg, Nielsen, Pelletier, Renault, Sicheritz-Ponten, Turner, Zhu, Yu, Li, Jian, Zhou, Li, Zhang, Li, Qin, Yang, Wang, Brunak, Dore, Guarner, Kristiansen, Pedersen, Parkhill, Weissenbach, Meta, Bork, Ehrlich, Wang (bib15) 2010; 464 Kuczynski, Costello, Nemergut, Zaneveld, Lauber, Knights, Koren, Fierer, Kelley, Ley, Gordon, Knight (bib29) 2010; 11 Meyer, Paarmann, D'Souza, Olson, Glass, Kubal, Paczian, Rodriguez, Stevens, Wilke, Wilkening, Edwards (bib23) 2008; 9 Cole, Wang, Fish, Chai, McGarrell, Sun, Brown, Porras-Alfaro, Kuske, Tiedje (bib28) 2014; 42 Sanschagrin, Yergeau (bib16) 2014 Ratner (bib5) 2014; 32 Li, Jia, Cai, Zhong, Feng, Sunagawa, Arumugam, Kultima, Prifti, Nielsen, Juncker, Manichanh, Chen, Zhang, Levenez, Wang, Xu, Xiao, Liang, Zhang, Zhang, Chen, Zhao, Al-Aama, Edris, Yang, Wang, Hansen, Nielsen, Brunak, Kristiansen, Guarner, Pedersen, Dore, Ehrlich, Meta, Bork, Wang, Meta (bib26) 2014; 32 Konstantinidis, Tiedje (bib18) 2007; 10 Vrieze, Van Nood, Holleman, Salojarvi, Kootte, Bartelsman, Dallinga-Thie, Ackermans, Serlie, Oozeer, Derrien, Druesne, Van Hylckama Vlieg, Bloks, Groen, Heilig, Zoetendal, Stroes, de Vos, Hoekstra, Nieuwdorp (bib4) 2012; 143 Pflughoeft, Versalovic (bib1) 2012; 7 Zhu, Lomsadze, Borodovsky (bib25) 2010; 38 Li (10.1016/j.bbrc.2015.12.083_bib26) 2014; 32 Stewart (10.1016/j.bbrc.2015.12.083_bib12) 2012; 194 Yatsunenko (10.1016/j.bbrc.2015.12.083_bib7) 2012; 486 C Human Microbiome Project (10.1016/j.bbrc.2015.12.083_bib14) 2012; 486 Konstantinidis (10.1016/j.bbrc.2015.12.083_bib19) 2013 Pflughoeft (10.1016/j.bbrc.2015.12.083_bib1) 2012; 7 Namiki (10.1016/j.bbrc.2015.12.083_bib24) 2012; 40 Cole (10.1016/j.bbrc.2015.12.083_bib28) 2014; 42 Ratner (10.1016/j.bbrc.2015.12.083_bib5) 2014; 32 Cho (10.1016/j.bbrc.2015.12.083_bib2) 2012; 13 Luo (10.1016/j.bbrc.2015.12.083_bib22) 2014; 42 Zhu (10.1016/j.bbrc.2015.12.083_bib25) 2010; 38 Rappe (10.1016/j.bbrc.2015.12.083_bib11) 2003; 57 Gill (10.1016/j.bbrc.2015.12.083_bib8) 2006; 312 C.Human Microbiome Project (10.1016/j.bbrc.2015.12.083_bib27) 2012; 486 Vrieze (10.1016/j.bbrc.2015.12.083_bib4) 2012; 143 Qin (10.1016/j.bbrc.2015.12.083_bib15) 2010; 464 Luo (10.1016/j.bbrc.2015.12.083_bib21) 2013; 531 Vrieze (10.1016/j.bbrc.2015.12.083_bib6) 2013; 27 Nichols (10.1016/j.bbrc.2015.12.083_bib13) 2010; 76 Sanschagrin (10.1016/j.bbrc.2015.12.083_bib16) 2014 Lynch (10.1016/j.bbrc.2015.12.083_bib9) 2015; 13 Kuczynski (10.1016/j.bbrc.2015.12.083_bib10) 2012; 13 Konstantinidis (10.1016/j.bbrc.2015.12.083_bib18) 2007; 10 Poretsky (10.1016/j.bbrc.2015.12.083_bib17) 2014; 9 Meyer (10.1016/j.bbrc.2015.12.083_bib23) 2008; 9 Sims (10.1016/j.bbrc.2015.12.083_bib20) 2014; 15 Kuczynski (10.1016/j.bbrc.2015.12.083_bib29) 2010; 11 Kelly (10.1016/j.bbrc.2015.12.083_bib3) 2013; 368 22728514 - Gastroenterology. 2012 Oct;143(4):913-6.e7 24589583 - Nucleic Acids Res. 2014 Apr;42(8):e73 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155 22661685 - J Bacteriol. 2012 Aug;194(16):4151-60 21910623 - Annu Rev Pathol. 2012;7:99-122 17923431 - Curr Opin Microbiol. 2007 Oct;10(5):504-9 24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41 20403810 - Nucleic Acids Res. 2010 Jul;38(12):e132 25730701 - Nat Rev Microbiol. 2015 Apr;13(4):217-29 24288368 - Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 18803844 - BMC Bioinformatics. 2008;9:386 23323865 - N Engl J Med. 2013 Jan 31;368(5):474-5 24811495 - Nat Biotechnol. 2014 May;32(5):401-2 22179717 - Nat Rev Genet. 2012 Jan;13(1):47-58 22699609 - Nature. 2012 Jun 14;486(7402):207-14 14527284 - Annu Rev Microbiol. 2003;57:369-94 24060135 - Methods Enzymol. 2013;531:525-47 24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32 22699611 - Nature. 2012 Jun 14;486(7402):222-7 24714158 - PLoS One. 2014;9(4):e93827 20203603 - Nature. 2010 Mar 4;464(7285):59-65 22699610 - Nature. 2012 Jun 14;486(7402):215-21 22411464 - Nat Rev Genet. 2012 Apr;13(4):260-70 20441597 - Genome Biol. 2010;11(5):210 20173072 - Appl Environ Microbiol. 2010 Apr;76(8):2445-50 23768558 - Best Pract Res Clin Gastroenterol. 2013 Feb;27(1):127-37 25226019 - J Vis Exp. 2014;(90). doi: 10.3791/51709 16741115 - Science. 2006 Jun 2;312(5778):1355-9 |
References_xml | – volume: 32 start-page: 834 year: 2014 end-page: 841 ident: bib26 article-title: An integrated catalog of reference genes in the human gut microbiome publication-title: Nat. Biotechnol. – volume: 76 start-page: 2445 year: 2010 end-page: 2450 ident: bib13 article-title: Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species publication-title: Appl. Environ. Microbiol. – volume: 531 start-page: 525 year: 2013 end-page: 547 ident: bib21 article-title: A user's guide to quantitative and comparative analysis of metagenomic datasets publication-title: Methods Enzymol. – volume: 13 start-page: 47 year: 2012 end-page: 58 ident: bib10 article-title: Experimental and analytical tools for studying the human microbiome publication-title: Nat. Rev. Genet. – volume: 15 start-page: 121 year: 2014 end-page: 132 ident: bib20 article-title: Sequencing depth and coverage: key considerations in genomic analyses publication-title: Nat. Rev. Genet. – volume: 368 start-page: 474 year: 2013 end-page: 475 ident: bib3 article-title: Fecal microbiota transplantation — An old therapy comes of age publication-title: N. Engl. J. Med. – volume: 7 start-page: 99 year: 2012 end-page: 122 ident: bib1 article-title: Human microbiome in health and disease publication-title: Annu. Rev. Pathol. – volume: 27 start-page: 127 year: 2013 end-page: 137 ident: bib6 article-title: Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? publication-title: Best. Pract. Res. Clin. Gastroenterol. – volume: 38 start-page: e132 year: 2010 ident: bib25 article-title: Ab initio gene identification in metagenomic sequences publication-title: Nucleic Acids Res. – volume: 13 start-page: 217 year: 2015 end-page: 229 ident: bib9 article-title: Ecology and exploration of the rare biosphere publication-title: Nat. Rev. Microbiol. – volume: 486 start-page: 207 year: 2012 end-page: 214 ident: bib14 article-title: Structure, function and diversity of the healthy human microbiome publication-title: Nature – volume: 42 start-page: D633 year: 2014 end-page: D642 ident: bib28 article-title: Ribosomal database project: data and tools for high throughput rRNA analysis publication-title: Nucleic Acids Res. – volume: 486 start-page: 215 year: 2012 end-page: 221 ident: bib27 article-title: A framework for human microbiome research publication-title: Nature – volume: 312 start-page: 1355 year: 2006 end-page: 1359 ident: bib8 article-title: Metagenomic analysis of the human distal gut microbiome publication-title: Science – volume: 13 start-page: 260 year: 2012 end-page: 270 ident: bib2 article-title: The human microbiome: at the interface of health and disease publication-title: Nat. Rev. Genet. – volume: 143 start-page: 913 year: 2012 end-page: 916 e917 ident: bib4 article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome publication-title: Gastroenterology – volume: 11 start-page: 210 year: 2010 ident: bib29 article-title: Direct sequencing of the human microbiome readily reveals community differences publication-title: Genome Biol. – volume: 9 start-page: 386 year: 2008 ident: bib23 article-title: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes publication-title: BMC Bioinformatics – start-page: e51709 year: 2014 ident: bib16 article-title: Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons – volume: 10 start-page: 504 year: 2007 end-page: 509 ident: bib18 article-title: Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead publication-title: Curr. Opin. Microbiol. – volume: 57 start-page: 369 year: 2003 end-page: 394 ident: bib11 article-title: The uncultured microbial majority publication-title: Annu. Rev. Microbiol. – start-page: 229 year: 2013 end-page: 254 ident: bib19 article-title: Defining Taxonomic Ranks publication-title: The Prokaryotes – volume: 42 start-page: e73 year: 2014 ident: bib22 article-title: MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences publication-title: Nucleic Acids Res. – volume: 486 start-page: 222 year: 2012 end-page: 227 ident: bib7 article-title: Human gut microbiome viewed across age and geography publication-title: Nature – volume: 9 start-page: e93827 year: 2014 ident: bib17 article-title: Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics publication-title: PLoS One – volume: 32 start-page: 401 year: 2014 end-page: 402 ident: bib5 article-title: Fecal transplantation poses dilemma for FDA publication-title: Nat. Biotechnol. – volume: 40 start-page: e155 year: 2012 ident: bib24 article-title: MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads publication-title: Nucleic Acids Res. – volume: 464 start-page: 59 year: 2010 end-page: 65 ident: bib15 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature – volume: 194 start-page: 4151 year: 2012 end-page: 4160 ident: bib12 article-title: Growing unculturable bacteria publication-title: J. Bacteriol. – volume: 27 start-page: 127 year: 2013 ident: 10.1016/j.bbrc.2015.12.083_bib6 article-title: Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? publication-title: Best. Pract. Res. Clin. Gastroenterol. doi: 10.1016/j.bpg.2013.03.003 – volume: 486 start-page: 222 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib7 article-title: Human gut microbiome viewed across age and geography publication-title: Nature doi: 10.1038/nature11053 – volume: 143 start-page: 913 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib4 article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.06.031 – volume: 57 start-page: 369 year: 2003 ident: 10.1016/j.bbrc.2015.12.083_bib11 article-title: The uncultured microbial majority publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.090759 – volume: 13 start-page: 217 year: 2015 ident: 10.1016/j.bbrc.2015.12.083_bib9 article-title: Ecology and exploration of the rare biosphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3400 – volume: 9 start-page: 386 year: 2008 ident: 10.1016/j.bbrc.2015.12.083_bib23 article-title: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-386 – volume: 11 start-page: 210 year: 2010 ident: 10.1016/j.bbrc.2015.12.083_bib29 article-title: Direct sequencing of the human microbiome readily reveals community differences publication-title: Genome Biol. doi: 10.1186/gb-2010-11-5-210 – volume: 42 start-page: e73 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib22 article-title: MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku169 – volume: 40 start-page: e155 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib24 article-title: MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks678 – volume: 464 start-page: 59 year: 2010 ident: 10.1016/j.bbrc.2015.12.083_bib15 article-title: A human gut microbial gene catalogue established by metagenomic sequencing publication-title: Nature doi: 10.1038/nature08821 – volume: 32 start-page: 401 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib5 article-title: Fecal transplantation poses dilemma for FDA publication-title: Nat. Biotechnol. doi: 10.1038/nbt0514-401 – volume: 194 start-page: 4151 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib12 article-title: Growing unculturable bacteria publication-title: J. Bacteriol. doi: 10.1128/JB.00345-12 – volume: 9 start-page: e93827 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib17 article-title: Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics publication-title: PLoS One doi: 10.1371/journal.pone.0093827 – volume: 368 start-page: 474 year: 2013 ident: 10.1016/j.bbrc.2015.12.083_bib3 article-title: Fecal microbiota transplantation — An old therapy comes of age publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe1214816 – volume: 312 start-page: 1355 year: 2006 ident: 10.1016/j.bbrc.2015.12.083_bib8 article-title: Metagenomic analysis of the human distal gut microbiome publication-title: Science doi: 10.1126/science.1124234 – volume: 531 start-page: 525 year: 2013 ident: 10.1016/j.bbrc.2015.12.083_bib21 article-title: A user's guide to quantitative and comparative analysis of metagenomic datasets publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-407863-5.00023-X – volume: 76 start-page: 2445 year: 2010 ident: 10.1016/j.bbrc.2015.12.083_bib13 article-title: Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01754-09 – start-page: e51709 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib16 – volume: 486 start-page: 215 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib27 article-title: A framework for human microbiome research publication-title: Nature doi: 10.1038/nature11209 – volume: 13 start-page: 260 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib2 article-title: The human microbiome: at the interface of health and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3182 – volume: 486 start-page: 207 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib14 article-title: Structure, function and diversity of the healthy human microbiome publication-title: Nature doi: 10.1038/nature11234 – volume: 13 start-page: 47 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib10 article-title: Experimental and analytical tools for studying the human microbiome publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3129 – volume: 38 start-page: e132 year: 2010 ident: 10.1016/j.bbrc.2015.12.083_bib25 article-title: Ab initio gene identification in metagenomic sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq275 – volume: 10 start-page: 504 year: 2007 ident: 10.1016/j.bbrc.2015.12.083_bib18 article-title: Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2007.08.006 – start-page: 229 year: 2013 ident: 10.1016/j.bbrc.2015.12.083_bib19 article-title: Defining Taxonomic Ranks – volume: 42 start-page: D633 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib28 article-title: Ribosomal database project: data and tools for high throughput rRNA analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1244 – volume: 7 start-page: 99 year: 2012 ident: 10.1016/j.bbrc.2015.12.083_bib1 article-title: Human microbiome in health and disease publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011811-132421 – volume: 15 start-page: 121 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib20 article-title: Sequencing depth and coverage: key considerations in genomic analyses publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3642 – volume: 32 start-page: 834 year: 2014 ident: 10.1016/j.bbrc.2015.12.083_bib26 article-title: An integrated catalog of reference genes in the human gut microbiome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2942 – reference: 24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41 – reference: 24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32 – reference: 14527284 - Annu Rev Microbiol. 2003;57:369-94 – reference: 20441597 - Genome Biol. 2010;11(5):210 – reference: 18803844 - BMC Bioinformatics. 2008;9:386 – reference: 20173072 - Appl Environ Microbiol. 2010 Apr;76(8):2445-50 – reference: 22661685 - J Bacteriol. 2012 Aug;194(16):4151-60 – reference: 23323865 - N Engl J Med. 2013 Jan 31;368(5):474-5 – reference: 25226019 - J Vis Exp. 2014;(90). doi: 10.3791/51709 – reference: 24288368 - Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 – reference: 21910623 - Annu Rev Pathol. 2012;7:99-122 – reference: 22728514 - Gastroenterology. 2012 Oct;143(4):913-6.e7 – reference: 17923431 - Curr Opin Microbiol. 2007 Oct;10(5):504-9 – reference: 23768558 - Best Pract Res Clin Gastroenterol. 2013 Feb;27(1):127-37 – reference: 24811495 - Nat Biotechnol. 2014 May;32(5):401-2 – reference: 22411464 - Nat Rev Genet. 2012 Apr;13(4):260-70 – reference: 22699611 - Nature. 2012 Jun 14;486(7402):222-7 – reference: 16741115 - Science. 2006 Jun 2;312(5778):1355-9 – reference: 24060135 - Methods Enzymol. 2013;531:525-47 – reference: 20403810 - Nucleic Acids Res. 2010 Jul;38(12):e132 – reference: 22699610 - Nature. 2012 Jun 14;486(7402):215-21 – reference: 25730701 - Nat Rev Microbiol. 2015 Apr;13(4):217-29 – reference: 22821567 - Nucleic Acids Res. 2012 Nov 1;40(20):e155 – reference: 22699609 - Nature. 2012 Jun 14;486(7402):207-14 – reference: 24589583 - Nucleic Acids Res. 2014 Apr;42(8):e73 – reference: 22179717 - Nat Rev Genet. 2012 Jan;13(1):47-58 – reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65 – reference: 24714158 - PLoS One. 2014;9(4):e93827 |
SSID | ssj0011469 |
Score | 2.6550448 |
Snippet | The human microbiome has emerged as a major player in regulating human health and disease. Translational studies of the microbiome have the potential to... The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 967 |
SubjectTerms | 16S rRNA Amplicon sequencing Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Base Sequence Chromosome Mapping - methods DNA, Bacterial - genetics genes Humans Metagenome - genetics Metagenomics microbial detection Microbiome Microbiota Microbiota - genetics Molecular Sequence Data Next-generation sequencing prediction probiotics Reproducibility of Results ribosomal RNA RNA, Ribosomal, 16S - genetics Sensitivity and Specificity sequence analysis Sequence Analysis, DNA - methods translation (genetics) Whole genome shotgun sequencing |
Title | Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing |
URI | https://dx.doi.org/10.1016/j.bbrc.2015.12.083 https://www.ncbi.nlm.nih.gov/pubmed/26718401 https://www.proquest.com/docview/1760920073 https://www.proquest.com/docview/1817835875 https://www.proquest.com/docview/1859473516 https://pubmed.ncbi.nlm.nih.gov/PMC4830092 |
Volume | 469 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamIQQvE2z86IDJSIgXFFY7tuPsrVRMBcReYFJfkOXENuu0JtPaCvHC3747x6koiD7wliZnKfHZd-frd98R8srXsuDWYumWFJmwNdhB8PKZdsgeV7igYru3z2dqci4-TuV0h4z7WhiEVSbb39n0aK3TneM0m8fXsxnW-A4VL9kU9iyDvYKMn0IUuMrf_lrDPLDoNoXAKkPpVDjTYbyq6gZpDJmMKUGd_8s5_R18_omh_M0pnT4geymapKPuhR-SHd_sk4NRAyfp-U_6mkZ8Z0yc75O77_qre-O-y9sB-dazktA2UAgG6XzWUTPN_QmNLZeXYHHi0x_YSpciqevc08VFu_y-aiiiOlYLytQXaiM4vW1ogmeDU3xEzk_ffx1PstRyIavBr2Njehl4CDl3vOSqDhwmhQedByly7RzzCsl2uHZDYaWovAg-Dw5iAl2HCrSRPya7Tdv4p4SC3SxgrFLSeiFdqIIqlfSVDd5Z5_WAsH6uTZ34yLEtxpXpgWeXBvVjUD-GcQOvMiBv1mOuOzaOrdKyV6HZWFMG3MXWcS97fRvQBv6DYhvfrhaGFWpYYnZ3m4xmmE2Dc-A2GVliz2emBuRJt47W38NVgaduNiDFxgpbCyAh-OaTZnYRicGFzpFD6_A_v_sZuQ-_YoKJ8-dkd3mz8i8g5FpWR3FPHZE7ow-fJme355gsXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTmh7QbDx0fFlJMQLilY7sZPwViqmjm19YZP6gqwktrcimkxrK8R_z53jVBREH3iL4rNk--y78_nudwBvbSVTURSUuiWTKCkqlIOo5aPMEHpcapzy5d4uJmp8lXyeyukOjLpcGAqrDLK_leleWoc_x2E1j29nM8rxHSiR8ymeWY5nJb4Hu4ROJXuwOzw9G0_WjwkoDIIVrCLqEHJn2jCvsrwjJEMuvVcwi_-ln_62P_8Mo_xNL508hAfBoGTDdsyPYMfWB3A4rPEyPf_J3jEf4ul95wdw_2P3tTfqCr0dwtcOmIQ1jqE9yOazFp1pbj8wX3V5iULHt_6garqMcF3nli1umuX1qmYU2LFaMK6-sMLHpzc1CxHaqBcfw9XJp8vROApVF6IKVTvVppdOOBcLI3KhKidwUYTLYieTODOGW0V4OyIzg6SQSWkTZ2Nn0CzIKlciQ-In0Kub2j4DhqIzxb5KycIm0rjSqVxJWxbOmsLYrA-8W2tdBUhyqozxXXexZ9808UcTfzQXGofSh_frPrctIMdWatmxUG9sK40aY2u_Nx2_NXKDHlGK2jarheapGuTk4N1Gk3FyqOFVcBuNzKnsM1d9eNruo_V8hErp4s37kG7ssDUBYYJvttSzG48NnmQxwWgd_ee8X8Pe-PLiXJ-fTs6ewz62eH-TEC-gt7xb2ZdogS3LV-GE_QIUii8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+microbiome%3A+Advantages+of+whole+genome+shotgun+versus+16S+amplicon+sequencing&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Ranjan%2C+Ravi&rft.au=Rani%2C+Asha&rft.au=Metwally%2C+Ahmed&rft.au=McGee%2C+Halvor+S.&rft.date=2016-01-22&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=469&rft.issue=4&rft.spage=967&rft.epage=977&rft_id=info:doi/10.1016%2Fj.bbrc.2015.12.083&rft.externalDocID=S0006291X15310883 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |