Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina
Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety thresho...
Saved in:
Published in | EMBO molecular medicine Vol. 8; no. 11; pp. 1248 - 1264 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2016
EMBO Press Wiley Open Access John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind
rd1
mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Synopsis
A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems.
The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind
rd1
mice, using light intensities below the safety limit for the human retina.
Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected
ex vivo
with viral vectors encoding ReaChR.
The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina.
Graphical Abstract
A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. |
---|---|
AbstractList | Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Synopsis
A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems.
The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind rd1 mice, using light intensities below the safety limit for the human retina.
Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected ex vivo with viral vectors encoding ReaChR.
The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina.
A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina.Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV-and lentivirus-mediated optogenetic spike responses in ganglion cells of the post-mortem human retina. Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Synopsis A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind rd1 mice, using light intensities below the safety limit for the human retina. Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected ex vivo with viral vectors encoding ReaChR. The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina. Graphical Abstract A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. Abstract Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV ‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV ‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. |
Author | Marre, Olivier Chaffiol, Antoine Macé, Emilie Lampič, Maruša Dalkara, Deniz Sengupta, Abhishek Forster, Valérie Caplette, Romain Lin, John Y Desrosiers, Mélissa Sahel, José‐Alain Picaud, Serge Duebel, Jens |
AuthorAffiliation | 4 School of Medicine University of Tasmania Hobart Tasmania Australia 2 Sorbonne Universités UPMC Univ Paris 06 UMR_S 968 Institut de la Vision Paris France 6 Present address: Unit on Retinal Neurophysiology National Eye Institute and Graduate Partnerships Program National Institutes of Health Bethesda MD USA 3 CNRS UMR_7210 Paris France 1 INSERM U968 Paris France 5 Hôpital des Quinze‐Vingts Paris France |
AuthorAffiliation_xml | – name: 3 CNRS UMR_7210 Paris France – name: 1 INSERM U968 Paris France – name: 5 Hôpital des Quinze‐Vingts Paris France – name: 2 Sorbonne Universités UPMC Univ Paris 06 UMR_S 968 Institut de la Vision Paris France – name: 4 School of Medicine University of Tasmania Hobart Tasmania Australia – name: 6 Present address: Unit on Retinal Neurophysiology National Eye Institute and Graduate Partnerships Program National Institutes of Health Bethesda MD USA |
Author_xml | – sequence: 1 givenname: Abhishek surname: Sengupta fullname: Sengupta, Abhishek organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210, Unit on Retinal Neurophysiology, National Eye Institute and Graduate Partnerships Program, National Institutes of Health – sequence: 2 givenname: Antoine surname: Chaffiol fullname: Chaffiol, Antoine organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 3 givenname: Emilie surname: Macé fullname: Macé, Emilie organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 4 givenname: Romain surname: Caplette fullname: Caplette, Romain organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 5 givenname: Mélissa surname: Desrosiers fullname: Desrosiers, Mélissa organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 6 givenname: Maruša surname: Lampič fullname: Lampič, Maruša organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 7 givenname: Valérie surname: Forster fullname: Forster, Valérie organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 8 givenname: Olivier surname: Marre fullname: Marre, Olivier organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 9 givenname: John Y surname: Lin fullname: Lin, John Y organization: School of Medicine, University of Tasmania – sequence: 10 givenname: José‐Alain surname: Sahel fullname: Sahel, José‐Alain organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210, Hôpital des Quinze‐Vingts – sequence: 11 givenname: Serge surname: Picaud fullname: Picaud, Serge organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 12 givenname: Deniz surname: Dalkara fullname: Dalkara, Deniz email: deniz.dalkara@gmail.com organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 – sequence: 13 givenname: Jens orcidid: 0000-0002-9906-5597 surname: Duebel fullname: Duebel, Jens email: jens.duebel@inserm.fr organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27679671$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-01375637$$DView record in HAL |
BookMark | eNqFUstu1DAUjVARfcCaHYrEBqROazvxiwVSVRVaaUZICNaW4zgTjxJ7sJOi7vgEvpEv4c6jQztSxcb2vfecc30fx9mBD95m2WuMzjAllJzbvu_PCMIUUSbls-wIc8onJRPlwe7N2WF2nNICIUYZFi-yQ8IZl4zjoyx9tfWfX79T65rB1rlptfe2i22owzI5n6fB9WOnBxd8Hm0aAhx55-btsDKXwSewAVd1ztd574w9zXtt9I_RAmBwXp_mGiLt2Gu_9bzMnje6S_bV9j7Jvn-6-nZ5PZl--XxzeTGdGIYLOWEGVboyRGKkG0R4WTWiocLAkwhJKqaJplI0nDChbVVCnBdGorquaiQNKk6ym41uHfRCLaPrdbxTQTu1doQ4VzoOznRWcVoKCaKsNry0hRZVoZmRkJfVFZMVaH3caC3Hqre1sX6Iunsk-jjiXavm4VZRJKHtAgTebwTaPdr1xVStfAgXnLKC32LAvtsmiwEamQbVu2Rs12lvw5gUFgWDqsuSAfTtHnQRxuihrYpAlyRMeY168_D3u_z3ewAAugGYGFKKtlHGDeupQzGuUxip9b6p1b6p3b4B73yPdy_9NOPDhvHTdfbuf3B1NZvNHpLRhpyA5-c2_qv2qXx_AYUA-zM |
CitedBy_id | crossref_primary_10_3788_LOP231425 crossref_primary_10_1101_cshperspect_a041304 crossref_primary_10_1371_journal_pone_0200107 crossref_primary_10_1021_acsabm_4c00435 crossref_primary_10_1016_j_preteyeres_2019_07_004 crossref_primary_10_1101_cshperspect_a041660 crossref_primary_10_1002_cne_24838 crossref_primary_10_1088_2057_1976_ab90a1 crossref_primary_10_15252_embr_202051866 crossref_primary_10_3390_genes10090654 crossref_primary_10_1142_S0129065720500458 crossref_primary_10_3389_fnmol_2022_1068185 crossref_primary_10_1117_1_NPh_4_4_041505 crossref_primary_10_1089_hum_2018_009 crossref_primary_10_1016_j_ymthe_2017_07_011 crossref_primary_10_1038_s43586_022_00136_4 crossref_primary_10_1186_s42234_018_0013_8 crossref_primary_10_3389_fncel_2023_1236826 crossref_primary_10_3389_fnins_2017_00521 crossref_primary_10_1167_tvst_11_5_24 crossref_primary_10_3389_fnins_2022_966772 crossref_primary_10_1088_1741_2552_ac1175 crossref_primary_10_1016_j_neures_2017_07_001 crossref_primary_10_1016_j_preteyeres_2021_100975 crossref_primary_10_1016_j_isci_2022_105866 crossref_primary_10_15252_emmm_201911618 crossref_primary_10_1089_hum_2017_164 crossref_primary_10_1080_17469899_2019_1699406 crossref_primary_10_1007_s11825_017_0135_5 crossref_primary_10_1049_htl_2019_0114 crossref_primary_10_1038_s41467_020_15317_6 crossref_primary_10_1016_j_cub_2022_12_026 crossref_primary_10_1088_1741_2552_aa795e crossref_primary_10_1016_j_coph_2022_102259 crossref_primary_10_1038_s41598_021_91972_z crossref_primary_10_1134_S0006297919050031 crossref_primary_10_1126_science_abc2294 crossref_primary_10_1126_scitranslmed_aau6447 crossref_primary_10_1038_s41684_018_0003_1 crossref_primary_10_3390_bioengineering11050487 crossref_primary_10_1002_adom_202200877 crossref_primary_10_1016_j_neuroscience_2020_09_022 crossref_primary_10_1016_j_preteyeres_2022_101065 crossref_primary_10_1016_j_cub_2023_08_044 crossref_primary_10_1016_j_mcn_2020_103523 crossref_primary_10_1038_s41434_022_00380_z crossref_primary_10_1016_j_isci_2025_112106 crossref_primary_10_1016_j_omtm_2023_09_003 crossref_primary_10_1152_physrev_00035_2019 crossref_primary_10_1016_j_exer_2018_09_003 crossref_primary_10_1146_annurev_genom_083118_015043 crossref_primary_10_1042_CS20160492 crossref_primary_10_1007_s11055_019_00714_2 crossref_primary_10_1113_JP282076 crossref_primary_10_3389_fnana_2022_1099348 crossref_primary_10_1016_j_lfs_2017_11_010 crossref_primary_10_1038_s41598_024_62558_2 crossref_primary_10_1016_j_bpj_2020_06_031 crossref_primary_10_1038_s41551_021_00836_4 crossref_primary_10_1016_j_bpj_2017_02_001 crossref_primary_10_3389_fnins_2017_00161 crossref_primary_10_1016_j_preteyeres_2022_101089 crossref_primary_10_3389_fnins_2023_1221316 crossref_primary_10_3389_fddev_2023_934394 crossref_primary_10_1016_j_ajo_2021_04_013 crossref_primary_10_1016_j_omtm_2022_03_003 crossref_primary_10_1016_j_pbiomolbio_2019_08_013 crossref_primary_10_3389_fncel_2018_00316 crossref_primary_10_1016_j_ymthe_2025_01_030 crossref_primary_10_1038_s41598_023_34687_7 crossref_primary_10_3390_ijms232315041 crossref_primary_10_1063_1_5084197 crossref_primary_10_3389_fnins_2020_570909 crossref_primary_10_1016_j_ymthe_2019_04_002 crossref_primary_10_1097_IIO_0000000000000383 crossref_primary_10_1093_hmg_ddx185 crossref_primary_10_1111_ceo_13434 crossref_primary_10_1109_TBCAS_2019_2951298 crossref_primary_10_1167_tvst_11_1_18 crossref_primary_10_1371_journal_pone_0311102 crossref_primary_10_3390_biom12020269 crossref_primary_10_1038_s41598_022_23572_4 crossref_primary_10_1172_jci_insight_96029 crossref_primary_10_1038_s41467_019_12330_2 crossref_primary_10_1016_j_exer_2020_108330 crossref_primary_10_1002_ajmg_c_31842 crossref_primary_10_1038_s42003_020_01594_w crossref_primary_10_1073_pnas_1902292116 crossref_primary_10_1016_j_bbrc_2019_12_117 crossref_primary_10_1016_j_celrep_2020_107934 crossref_primary_10_1038_gt_2017_63 crossref_primary_10_4155_fmc_2018_0315 crossref_primary_10_1167_tvst_8_2_7 crossref_primary_10_3389_fnins_2017_00663 crossref_primary_10_1016_j_cobeha_2019_10_003 crossref_primary_10_3390_ijms222111542 crossref_primary_10_1016_j_ymthe_2025_02_011 crossref_primary_10_1371_journal_pcbi_1007857 crossref_primary_10_1016_j_jacep_2017_12_006 crossref_primary_10_1016_j_isci_2023_107716 crossref_primary_10_1002_lsm_23463 crossref_primary_10_1038_s41434_024_00485_7 crossref_primary_10_1038_s41467_019_09124_x crossref_primary_10_3389_fnins_2018_00789 crossref_primary_10_1051_medsci_2020095 crossref_primary_10_1360_SSV_2021_0114 crossref_primary_10_2174_0929867328666211129122908 crossref_primary_10_3390_ijms21020522 crossref_primary_10_1016_j_preteyeres_2022_101153 crossref_primary_10_1080_14712598_2022_2072208 crossref_primary_10_1134_S0022093022060011 crossref_primary_10_1016_j_omtm_2020_05_009 crossref_primary_10_1134_S1062360420010063 |
Cites_doi | 10.1038/nn.2120 10.1007/BF00919652 10.1038/mt.2009.181 10.1073/pnas.1936192100 10.1167/iovs.10-6250 10.1074/jbc.M111.325969 10.1016/j.neuron.2006.02.026 10.1002/jgm.788 10.1088/1741-2560/6/3/035007 10.1016/j.conb.2006.12.002 10.1016/j.neuron.2014.04.044 10.1038/nmeth.2836 10.1074/jbc.270.32.18825 10.1523/JNEUROSCI.13-12-05334.1993 10.1016/j.tibtech.2013.07.001 10.1152/physrev.00021.2004 10.1126/science.1190897 10.1006/abbi.2001.2492 10.1016/j.neuron.2012.05.022 10.1097/HP.0b013e3182983fd4 10.1111/cge.12165 10.1038/nn.3502 10.1073/pnas.89.20.9666 10.1016/j.preteyeres.2011.11.001 10.1038/nn.2117 10.1038/mt.2011.69 10.1371/journal.pbio.1002143 10.1038/nchembio.1114 10.1038/nm.3851 10.1016/j.cub.2015.07.029 10.1113/jphysiol.2008.156638 10.1364/AO.34.004912 10.1089/hum.2010.157 10.1038/mt.2014.81 10.1016/j.exer.2009.12.006 10.1085/jgp.200609490 10.1073/pnas.0806114105 10.1002/cne.903380211 10.1016/j.survophthal.2006.06.009 10.1523/JNEUROSCI.4438-13.2014 10.1523/JNEUROSCI.4417-09.2010 10.15252/emmm.201404077 10.1371/journal.pone.0062097 10.1002/cne.902330107 10.1038/mt.2015.121 10.1016/j.exer.2016.03.018 10.1523/JNEUROSCI.5138-07.2008 10.1016/S0014-2999(03)01274-3 10.1016/j.ophtha.2011.09.028 10.1038/mt.2014.154 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2016 2016 The Authors. Published under the terms of the CC BY 4.0 license 2016 The Authors. Published under the terms of the CC BY 4.0 license. 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2016 – notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.15252/emmm.201505699 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Abhishek Sengupta et al |
EISSN | 1757-4684 |
EndPage | 1264 |
ExternalDocumentID | oai_doaj_org_article_754898926dc74e3a8b3a6c9af06db69b PMC5090658 oai_HAL_hal_01375637v1 27679671 10_15252_emmm_201505699 EMMM201505699 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR‐10‐LABX‐65 funderid: 10.13039/501100001665 – fundername: Centre National de la Recherche Scientifique funderid: 10.13039/501100004794 – fundername: Pierre et Marie Curie University funderid: 10.13039/501100005737 – fundername: Institut National de la Santé et de la Recherche Médicale funderid: 10.13039/501100001677 – fundername: European Research Council (ERC) grantid: 309776 funderid: 10.13039/501100000781 – fundername: European Research Council (ERC) funderid: 309776 – fundername: Institut National de la Santé et de la Recherche Médicale – fundername: Centre National de la Recherche Scientifique – fundername: Agence Nationale de la Recherche funderid: ANR‐10‐LABX‐65 – fundername: Pierre et Marie Curie University – fundername: European Research Council grantid: 309776 – fundername: Agence Nationale de la Recherche grantid: ANR‐10‐LABX‐65 – fundername: European Research Council (ERC) grantid: 309776 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAJSJ AAMMB AAZKR ABOCM ABUWG ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AFBPY AFKRA AGXDD AHMBA AIAGR AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M48 M7P NNB O9- OIG OK1 OVD P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ AAHHS ABJNI ACCFJ ADPDF ADZOD AEEZP AEQDE AFZJQ AIWBW AJBDE EBLON GODZA H13 M~E OVEED RHF AASML AAYXX CITATION NAO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c6139-6c0babc2910af0274bf8f58c0272892b6a2a598f7268aeb44bf73c90ddbd09c03 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:25:01 EDT 2025 Thu Aug 21 18:26:18 EDT 2025 Fri Jun 13 07:03:26 EDT 2025 Fri Jul 11 01:32:32 EDT 2025 Wed Aug 13 06:51:18 EDT 2025 Mon Jul 21 06:01:37 EDT 2025 Tue Jul 01 01:52:59 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Wed Jan 22 16:26:43 EST 2025 Sat Aug 09 01:12:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | primate vision restoration channelrhodopsin retina optogenetics Gene Therapy & Genetic Disease |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors. Published under the terms of the CC BY 4.0 license. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6139-6c0babc2910af0274bf8f58c0272892b6a2a598f7268aeb44bf73c90ddbd09c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0002-9906-5597 0000-0003-4112-9321 0000-0002-4831-1153 0000-0002-0090-6190 0000-0002-0548-5145 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201505699 |
PMID | 27679671 |
PQID | 2289996746 |
PQPubID | 866378 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_754898926dc74e3a8b3a6c9af06db69b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5090658 hal_primary_oai_HAL_hal_01375637v1 proquest_miscellaneous_1836726446 proquest_journals_2289996746 pubmed_primary_27679671 crossref_citationtrail_10_15252_emmm_201505699 crossref_primary_10_15252_emmm_201505699 wiley_primary_10_15252_emmm_201505699_EMMM201505699 springer_journals_10_15252_emmm_201505699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK EMBO Press Wiley Open Access John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: Wiley Open Access – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2012; 287 1995; 34 2000; 41 2011; 52 2008; 105 2008; 586 2013; 8 2011; 19 2014; 22 2013; 9 1993; 338 2013; 16 2002; 43 2008; 28 2011; 22 2006; 127 2014; 6 1992; 89 2010; 30 2014; 11 2009; 17 2016; 150 2007; 17 2015; 13 2006; 50 2010; 329 2006; 51 2013; 105 2013; 84 2005; 85 1978; 17 2008; 11 2014; 83 2012; 31 2012; 75 1995; 270 2006; 114 2015; 23 1993; 13 2015; 25 2001; 393 2013; 31 2015; 21 1985; 233 2005; 7 2009; 6 2010; 90 2003; 463 1993; 231 2003; 100 2014; 34 2012; 119 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Sparrow JR (e_1_2_9_46_1) 2002; 43 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 Ham WT (e_1_2_9_18_1) 1978; 17 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Sparrow JR (e_1_2_9_45_1) 2000; 41 e_1_2_9_26_1 e_1_2_9_49_1 European Commission (e_1_2_9_15_1) 2006; 114 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 51 start-page: 461 year: 2006 end-page: 481 article-title: Photochemical damage of the retina publication-title: Surv Ophthalmol – volume: 17 start-page: 87 year: 2007 end-page: 94 article-title: New optical tools for controlling neuronal activity publication-title: Curr Opin Neurobiol – volume: 13 start-page: 5334 year: 1993 end-page: 5355 article-title: The mosaic of midget ganglion cells in the human retina publication-title: J Neurosci – volume: 84 start-page: 175 year: 2013 end-page: 182 article-title: Retinal optogenetic therapies: clinical criteria for candidacy publication-title: Clin Genet – volume: 270 start-page: 18825 year: 1995 end-page: 18830 article-title: Blue light‐induced reactivity of retinal age pigment. In vitro generation of oxygen‐reactive species publication-title: J Biol Chem – volume: 287 start-page: 20888 year: 2012 end-page: 20897 article-title: Melanopsin is highly resistant to light and chemical bleaching in vivo publication-title: J Biol Chem – volume: 50 start-page: 23 year: 2006 end-page: 33 article-title: Ectopic expression of a microbial‐type rhodopsin restores visual responses in mice with photoreceptor degeneration publication-title: Neuron – volume: 16 start-page: 1499 year: 2013 end-page: 1508 article-title: ReaChR: a red‐shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation publication-title: Nat Neurosci – volume: 11 start-page: 631 year: 2008 end-page: 633 article-title: Red‐shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri publication-title: Nat Neurosci – volume: 83 start-page: 87 year: 2014 end-page: 92 article-title: High‐fidelity reproduction of spatiotemporal visual signals for retinal prosthesis publication-title: Neuron – volume: 338 start-page: 289 year: 1993 end-page: 303 article-title: Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus publication-title: J Comp Neurol – volume: 11 start-page: 338 year: 2014 end-page: 346 article-title: Independent optical excitation of distinct neural populations publication-title: Nat Methods – volume: 150 start-page: 149 year: 2016 end-page: 165 article-title: Retinal remodeling in human retinitis pigmentosa publication-title: Exp Eye Res – volume: 28 start-page: 4446 year: 2008 end-page: 4456 article-title: High‐resolution electrical stimulation of primate retina for epiretinal implant design publication-title: J Neurosci – volume: 90 start-page: 429 year: 2010 end-page: 436 article-title: Channelrhodopsin‐2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats publication-title: Exp Eye Res – volume: 23 start-page: 1562 year: 2015 end-page: 1571 article-title: Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity publication-title: Mol Ther – volume: 19 start-page: 1220 year: 2011 end-page: 1229 article-title: Virally delivered channelrhodopsin‐2 safely and effectively restores visual function in multiple mouse models of blindness publication-title: Mol Ther – volume: 105 start-page: 16009 year: 2008 end-page: 16014 article-title: Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin publication-title: Proc Natl Acad Sci USA – volume: 463 start-page: 55 year: 2003 end-page: 65 article-title: The mouse light/dark box test publication-title: Eur J Pharmacol – volume: 233 start-page: 115 year: 1985 end-page: 132 article-title: Parasol and midget ganglion cells of the human retina publication-title: J Comp Neurol – volume: 31 start-page: 562 year: 2013 end-page: 571 article-title: Visual prostheses for the blind publication-title: Trends Biotechnol – volume: 34 start-page: 6596 year: 2014 end-page: 6605 article-title: Imaging light responses of foveal ganglion cells in the living macaque eye publication-title: J Neurosci – volume: 119 start-page: 779 year: 2012 end-page: 788 article-title: Interim results from the international trial of Second Sight's visual prosthesis publication-title: Ophthalmology – volume: 105 start-page: 74 year: 2013 end-page: 96 article-title: ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation publication-title: Health Phys – volume: 17 start-page: 1029 year: 1978 end-page: 1035 article-title: Histologic analysis of photochemical lesions produced in rhesus retina by short‐wave‐length light publication-title: Invest Ophthalmol Vis Sci – volume: 89 start-page: 9666 year: 1992 end-page: 9670 article-title: Dendritic field size and morphology of midget and parasol ganglion cells of the human retina publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 38 year: 2006 end-page: 59 article-title: Directive 2006/25/EC of the European Parliament and of the Council (artificial optical radiation) publication-title: Off J Eur Union – volume: 586 start-page: 4377 year: 2008 end-page: 4384 article-title: Functional circuitry of visual adaptation in the retina publication-title: J Physiol – volume: 100 start-page: 13940 year: 2003 end-page: 13945 article-title: Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel publication-title: Proc Natl Acad Sci USA – volume: 43 start-page: 1222 year: 2002 end-page: 1227 article-title: Involvement of oxidative mechanisms in blue‐light‐induced damage to A2E‐laden RPE publication-title: Invest Ophthalmol Vis Sci – volume: 17 start-page: 2096 year: 2009 end-page: 2102 article-title: Inner limiting membrane barriers to AAV‐mediated retinal transduction from the vitreous publication-title: Mol Ther – volume: 6 start-page: 035007 year: 2009 article-title: Optobionic vision–a new genetically enhanced light on retinal prosthesis publication-title: J Neural Eng – volume: 34 start-page: 4912 year: 1995 end-page: 4922 article-title: Optical radiation hazards analysis of ultraviolet headlamps publication-title: Appl Opt – volume: 22 start-page: 1434 year: 2014 end-page: 1440 article-title: Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin‐1 publication-title: Mol Ther – volume: 127 start-page: 359 year: 2006 end-page: 374 article-title: Physiological features of the S‐ and M‐cone photoreceptors of wild‐type mice from single‐cell recordings publication-title: J Gen Physiol – volume: 6 start-page: 1175 year: 2014 end-page: 1190 article-title: Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno‐associated virus capsid and promoter publication-title: EMBO Mol Med – volume: 13 start-page: e1002143 year: 2015 article-title: Restoring the ON switch in blind retinas: Opto‐mGluR6, a next‐generation. Cell‐tailored optogenetic tool publication-title: PLoS Biol – volume: 75 start-page: 271 year: 2012 end-page: 282 article-title: Photochemical restoration of visual responses in blind mice publication-title: Neuron – volume: 21 start-page: 476 year: 2015 end-page: 482 article-title: Photovoltaic restoration of sight with high visual acuity publication-title: Nat Med – volume: 85 start-page: 845 year: 2005 end-page: 881 article-title: The retinal pigment epithelium in visual function publication-title: Physiol Rev – volume: 7 start-page: 1367 year: 2005 end-page: 1374 article-title: Retinal cell type expression specificity of HIV‐1‐derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter publication-title: J Gene Med – volume: 231 start-page: 416 year: 1993 end-page: 423 article-title: Inhibition of cytochrome oxidase and blue‐light damage in rat retina publication-title: Graefe's Arch Clin Exp Ophthalmol – volume: 329 start-page: 413 year: 2010 end-page: 417 article-title: Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa publication-title: Science – volume: 23 start-page: 7 year: 2015 end-page: 16 article-title: Targeting channelrhodopsin‐2 to ON‐bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice publication-title: Mol Ther – volume: 31 start-page: 28 year: 2012 end-page: 42 article-title: The susceptibility of the retina to photochemical damage from visible light publication-title: Prog Retin Eye Res – volume: 22 start-page: 587 year: 2011 end-page: 593 article-title: Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes publication-title: Hum Gene Ther – volume: 11 start-page: 667 year: 2008 end-page: 675 article-title: Light‐activated channels targeted to ON bipolar cells restore visual function in retinal degeneration publication-title: Nat Neurosci – volume: 25 start-page: 2111 year: 2015 end-page: 2122 article-title: Restoration of vision with ectopic expression of human rod opsin publication-title: Curr Biol – volume: 393 start-page: 316 year: 2001 end-page: 320 article-title: Retinyl palmitate and the blue‐light‐induced phototoxicity of human ocular lipofuscin publication-title: Arch Biochem Biophys – volume: 8 start-page: e62097 year: 2013 article-title: Targeting photoreceptors via intravitreal delivery using novel, capsid‐mutated AAV vectors publication-title: PLoS One – volume: 41 start-page: 1981 year: 2000 end-page: 1989 article-title: The lipofuscin fluorophore A2E mediates blue light‐induced damage to retinal pigmented epithelial cells publication-title: Invest Ophthalmol Vis Sci – volume: 52 start-page: 2775 year: 2011 end-page: 2783 article-title: Intravitreal injection of AAV2 transduces macaque inner retina publication-title: Invest Ophthalmol Vis Sci – volume: 30 start-page: 8745 year: 2010 end-page: 8758 article-title: Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells publication-title: J Neurosci – volume: 9 start-page: 30 year: 2013 end-page: 36 article-title: Identification of DES1 as a vitamin A isomerase in Muller glial cells of the retina publication-title: Nat Chem Biol – ident: e_1_2_9_55_1 doi: 10.1038/nn.2120 – ident: e_1_2_9_7_1 doi: 10.1007/BF00919652 – ident: e_1_2_9_11_1 doi: 10.1038/mt.2009.181 – ident: e_1_2_9_35_1 doi: 10.1073/pnas.1936192100 – ident: e_1_2_9_53_1 doi: 10.1167/iovs.10-6250 – ident: e_1_2_9_42_1 doi: 10.1074/jbc.M111.325969 – ident: e_1_2_9_3_1 doi: 10.1016/j.neuron.2006.02.026 – ident: e_1_2_9_2_1 doi: 10.1002/jgm.788 – ident: e_1_2_9_12_1 doi: 10.1088/1741-2560/6/3/035007 – ident: e_1_2_9_19_1 doi: 10.1016/j.conb.2006.12.002 – ident: e_1_2_9_24_1 doi: 10.1016/j.neuron.2014.04.044 – ident: e_1_2_9_28_1 doi: 10.1038/nmeth.2836 – ident: e_1_2_9_40_1 doi: 10.1074/jbc.270.32.18825 – ident: e_1_2_9_10_1 doi: 10.1523/JNEUROSCI.13-12-05334.1993 – ident: e_1_2_9_43_1 doi: 10.1016/j.tibtech.2013.07.001 – ident: e_1_2_9_47_1 doi: 10.1152/physrev.00021.2004 – ident: e_1_2_9_5_1 doi: 10.1126/science.1190897 – ident: e_1_2_9_30_1 doi: 10.1006/abbi.2001.2492 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuron.2012.05.022 – ident: e_1_2_9_22_1 doi: 10.1097/HP.0b013e3182983fd4 – volume: 41 start-page: 1981 year: 2000 ident: e_1_2_9_45_1 article-title: The lipofuscin fluorophore A2E mediates blue light‐induced damage to retinal pigmented epithelial cells publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_9_23_1 doi: 10.1111/cge.12165 – ident: e_1_2_9_32_1 doi: 10.1038/nn.3502 – ident: e_1_2_9_9_1 doi: 10.1073/pnas.89.20.9666 – ident: e_1_2_9_21_1 doi: 10.1016/j.preteyeres.2011.11.001 – ident: e_1_2_9_29_1 doi: 10.1038/nn.2117 – ident: e_1_2_9_14_1 doi: 10.1038/mt.2011.69 – volume: 114 start-page: 38 year: 2006 ident: e_1_2_9_15_1 article-title: Directive 2006/25/EC of the European Parliament and of the Council (artificial optical radiation) publication-title: Off J Eur Union – ident: e_1_2_9_52_1 doi: 10.1371/journal.pbio.1002143 – ident: e_1_2_9_27_1 doi: 10.1038/nchembio.1114 – ident: e_1_2_9_33_1 doi: 10.1038/nm.3851 – ident: e_1_2_9_6_1 doi: 10.1016/j.cub.2015.07.029 – ident: e_1_2_9_13_1 doi: 10.1113/jphysiol.2008.156638 – volume: 17 start-page: 1029 year: 1978 ident: e_1_2_9_18_1 article-title: Histologic analysis of photochemical lesions produced in rhesus retina by short‐wave‐length light publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_9_44_1 doi: 10.1364/AO.34.004912 – ident: e_1_2_9_16_1 doi: 10.1089/hum.2010.157 – ident: e_1_2_9_50_1 doi: 10.1038/mt.2014.81 – ident: e_1_2_9_49_1 doi: 10.1016/j.exer.2009.12.006 – ident: e_1_2_9_36_1 doi: 10.1085/jgp.200609490 – ident: e_1_2_9_31_1 doi: 10.1073/pnas.0806114105 – ident: e_1_2_9_39_1 doi: 10.1002/cne.903380211 – ident: e_1_2_9_51_1 doi: 10.1016/j.survophthal.2006.06.009 – ident: e_1_2_9_54_1 doi: 10.1523/JNEUROSCI.4438-13.2014 – ident: e_1_2_9_48_1 doi: 10.1523/JNEUROSCI.4417-09.2010 – ident: e_1_2_9_8_1 doi: 10.15252/emmm.201404077 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0062097 – ident: e_1_2_9_38_1 doi: 10.1002/cne.902330107 – ident: e_1_2_9_17_1 doi: 10.1038/mt.2015.121 – ident: e_1_2_9_25_1 doi: 10.1016/j.exer.2016.03.018 – ident: e_1_2_9_41_1 doi: 10.1523/JNEUROSCI.5138-07.2008 – ident: e_1_2_9_4_1 doi: 10.1016/S0014-2999(03)01274-3 – ident: e_1_2_9_20_1 doi: 10.1016/j.ophtha.2011.09.028 – ident: e_1_2_9_34_1 doi: 10.1038/mt.2014.154 – volume: 43 start-page: 1222 year: 2002 ident: e_1_2_9_46_1 article-title: Involvement of oxidative mechanisms in blue‐light‐induced damage to A2E‐laden RPE publication-title: Invest Ophthalmol Vis Sci |
SSID | ssj0065618 |
Score | 2.5025558 |
Snippet | Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss... Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss... Abstract Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1248 |
SubjectTerms | Animals channelrhodopsin Cortex Dependovirus - genetics EMBO16 EMBO27 Experiments Genetic Therapy - methods Genetic Vectors Human health and pathology Humans Lentivirus - genetics Life Sciences Light Macaca Membranes Mice Microscopy optogenetics Photoreceptors Phototherapy - methods primate Research Article Retina Retina - physiology Retinal degeneration Retinal Degeneration - therapy Retinal ganglion cells Rhodopsin - genetics Rhodopsin - metabolism Sensory Organs Transduction, Genetic Treatment Outcome vision restoration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJRAXBOWVtiCDOIDU0MTP-FhQqxViOSAq9WbZjqNdaTetNi1Sb_wEfiO_hBknm7Kqql64rR_rOOOx55vY_oaQd4qXDXg-MW_qss6FYj6vRClyo5taGC4F9-mU7zc1ORFfTuXpP6G-8ExYTw_cC-5AA6Q2lWGqDlpE7irPnQrGNYWqvTIeV1-weWtnql-DAaSkL3tgGzV0QKuB1EcyyQ7icolX0Eu0_Yny9doeJdp-sDIzPBR5E3HePDg57p5uYttknI4fk0cDqqSH_ds8Ifdiu03u93Emr7bJg-mwg_6UdN9j_efX7242bwBrUrz328bFagbe6Xk3bynM-OUQ0YuuUtSZ2NEFevCYxOO0kIZ6HuBpTTGW_T5duuDgFSheiGzdPnVQkmL_DTnPyMnx0Y_Pk3wIvJAHsO4mV6HwzgcGUALkDH6rb6pGVgF-gn_GvHLMSVM1mqnKRS-gXPNgirr2dWFCwZ-TrfasjS8J5RqcPOWFjMgMGIRTmnnmA5eNl1XpMvJxLX4bBlZyDI6xsOid4HhZHC87jldG3o9_OO8JOW6v-gnHc6yGTNopA_TLDvpl79KvjLwFbdhoY3L41WIesjVKxfXPMiN7a2WxwxrQWYa-rFFaqIy8GYth9uKWjGvj2WVnYUEFgQAmhTovet0aH8U0fuPT0Lje0LqNvmyWtPNZYggHFIjQMiMf1vp53a1bhcWTAt8lVHs0nU7H1M7_EPEueQgNqv6G5x7ZulhdxlcA9S786zSr_wJQs004 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgEYgLguUVWFBAHEDasI3t2MkJLWhXFaIcECv1ZvkVWqlNS7OLxI2fwG_klzDjuKmi1cItfiSxPWPPN_Z4hpBXguU1aD4-q13uMi6oyUqe86ySteMVKzgzwcr3sxif8Y_TYho33NpoVrldE8NC7VYW98iPKGoGlZBcvFt_zzBqFJ6uxhAa18kNdF2GJl1y2itcAFXC_h5ISAnNkCK69iloQY_8cokX0XNEAMHx604qBef9IGtmaBp5GXdeNp_sz1CHCDeIqNO75E7Elulxxwz3yDXf7JObXbTJn_vk1iSeo98n7Rfv_vz63c7mNSDOFG__Nn6xmYGOum7nTQrzfhnjeqWbEHvGt-kC9XhMolEtpKGeAZDqUoxof5gutdXQhRSvRTb6MNVQEiIAxpwH5Oz05OuHcRbDL2QWZHyVCTsy2lgKgELXqL2auqyL0sIj0IIaoakuqrKWVJTaGw7lktlq5Jxxo8qO2EOy16wa_5ikTIKqJwwvPPoHtFwLSQ01lhW1KcpcJ-TtdviVjb7JMUTGQqGOgvRSSC_V0yshr_sX1p1bjqurvkd69tXQn3bIWG2-qTg9lQTFrYJOCWcl90yXhmlhK-i3cEZUJiEvgRsG3xgff1KYhz4bC8HkjzwhB1tmUXElaNWObxPyoi-GOYwHM7rxq4tWwbIKAwLIFOo86nir_xWVuNMn4eNywHWDtgxLmvks-AkHLIgAMyFvtvy5a9aVg8UCA_9vUNXJZDLpU0_-3fGn5DZUFd0NzgOyd7658M8Ayp2b52G-_gXLIkSd priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFQXkFCjKIA0gNbPyMj2XVaoVYDohKvVl-RbvSblptWiRu_AR-I7-EmSQbiEqFuMWP2LFnnPnG9swQ8krxogLNJ-VVLGIuFPN5KQqRG11FYbgU3Le3fD-p2bH4cCJPeidJaAvz5_m9ZJK9S-s1GowXKKmNuU5uyIIrZN-pmm5_uYBJ2o08EIUa-tOq9-HzlwZG4qf10g9CZYF3IC8DzMv3JIfD0jGUbWXR0V1ypweR9KCj-j1yLdW75GYXVvLbLrk17w_M75Pmc4o_v_9oFssKoCVFM986rTYLUEbPmmVNYYGv-wBedNMGmUkNXaHCjkm8PQtpqOcBjUaKoev36doFB0OgaP9Yu33qoKQN9dfnPCDHR4dfprO8j7OQBxDmJldh4p0PDJCDq1BN9VVZyTLAI6hjzCvHnDRlpZkqXfICyjUPZhKjjxMTJvwh2alP6_SYUK5Bp1NeyISOAINwSjPPfOCy8rIsXEbebqffht4JOcbCWFlURpBeFullB3pl5PXwwlnnf-Pqqu-RnkM1dJzdZgA_2X4dWg0amoFBqRi0SNyVnjsVDIxbRa-Mz8hL4IZRG7ODjxbz0DmjVFx_LTKyt2UW2y_5xjJUXY3SQmXkxVAMixVPYFydTi8aC_9PmBCAoFDnUcdbQ1dM45aehsb1iOtG3zIuqZeL1iE4gD5Ekhl5s-XP35915WTxloH_Nan2cD6fD6kn_9HDU3IbnlVnt7lHds43F-kZALhz_7xdvL8Aspc9FA priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxMGhF8UW0fq1WieKDQldvk2yyeazScognIhZ8C_la76C3V25bwTd_gr_RX-JM9kOWUgTf8rXZZDKTmUkyM4S8kLyoQfOJeR2KkAvJXF6JQuRa1UFoXgru0ivfj3J-LN5_LYfXhGgL0_mHGA_ckDLSfo0Ebl07ROxBr6FxvUZT8gJ5uNZXyTU0sEX3-Ux8GjZjkFbSER8wSQUjUbL37oNdvJl2MGFMyX8_sJslvo68KHpefEE5XqNOhdzEpY5uk1u9eEkPOny4Q67EZpdc7wJO_tglNxb9Vfpd0n6O4ffPX-1yVYPQSdEAGCCyXYKaetquGgqkv-5De9FtCj8TW3qCqjxm8V0t5KGdA0gGikHt9-naegtToGgZ2dh9aqEmBQHsS-6R46PDL-_meR-BIffA5nUu_cxZ5xnIFLZGBdbVVV1WHpKgqDEnLbOlrmrFZGWjE1CvuNezEFyYaT_j98lOs2niQ0K5Am1POlFGdBHohZWKOeY8L2tXVoXNyOsB_Mb37skxSsaJQTUF18vgeplxvTLycvzgtPPMcXnTt7ieYzN0qZ0KNttvpqdQo0B30zApGbwSkdvKcSu9hnnL4KR2GXkO2DDpY37wwWAZum0sJVffi4zsDchi-s2gNQyVWi2VkBl5NlYDGePdjG3i5rw1sLMCQEA4hTYPOtwaf8UUHvYp6FxNsG4ylmlNs1omV-EgDqKMmZFXA37-HdalwOIJgf8FVHO4WCzG3KP_-uoxuQlp2dl27pGds-15fAJC3pl7msj4DwsCSKU priority: 102 providerName: Wiley-Blackwell |
Title | Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina |
URI | https://link.springer.com/article/10.15252/emmm.201505699 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201505699 https://www.ncbi.nlm.nih.gov/pubmed/27679671 https://www.proquest.com/docview/2289996746 https://www.proquest.com/docview/1836726446 https://hal.sorbonne-universite.fr/hal-01375637 https://pubmed.ncbi.nlm.nih.gov/PMC5090658 https://doaj.org/article/754898926dc74e3a8b3a6c9af06db69b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfYJtBeEIx_gVEFxANIy2hix44fENqqThWi0zRRqW-W7Ti0UptuzYbYGx-Bz8gn4c5NM0XbhMRLVP-Ja5_Pud_Z5ztC3nEaF6D5uKjI4zxiPDFRxmIWSVHkTNKUUeOtfI_5YMS-jNPxdTigmoDVraodxpMaLWf7P8-vPsOC_1RH70k-uvkcL5XHKM2l3CBbIJYErtIha44UALf4zT4QlwL6JHjt5-eWBtBBsMD9FRG3pJV36g8yaIImkzfx6E2zyuZstY18veg6ekQe1pgzPFgxyWNyz5U75P4qCuXVDnkwrM_Xn5Dq1OV_fv2uJtMCkGiIt4JLN1tOQHc9q6ZlCN-DeR3vK1z6mDSuCmeo32MSjW0hDfUMgNc8xEj3e-FcWw1DCPG6ZKn3Qg0lPjJgnfOUjI7633qDqA7LEFmQ_TLitmu0sQkADV2gVmuKrEgzCz9Be0sM14lOZVaIhGfaGQblglrZzXOTd6Xt0mdks1yU7gUJqQAVkBuWOvQbaJnmIjGJsTQtTJrFOiD7a_IrW_ssx9AZM4W6C06dwqlTzdQF5H3zwtnKXcfdVQ9xPptq6GfbZyyW31W9bJUAhU7CoHhuBXNUZ4ZqbiWMm-eGSxOQt8ANrTYGB18V5qEvx5RT8SMOyO6aWdSawVWCmi6wGOMBedMUw9rGAxtdusVlpeBzCwQBxAp1nq94q_mrNYcGRLS4rtWXdkk5nXj_4YAREXgG5MOaP6-7dSexqGfgfxFV9YfDYZN6-d99e0W2oRW-shvaJZsXy0v3GtDfhemQjYSdwFOMRYdsHfaPT04h1eO9jt9P6fhV_xdmIlo7 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKh4XBOW1UGBBIFGpSxPba-8eEGohVUqTClWt1JuxvV4SKdmEbAvqjZ_AL-FH8UuY2VcUVYVTb-vH2mvP7Mw3fswQ8kqwTgqWjwvSpJMEXFATRLzDg1imCY9ZyJkpTvkeiN4x_3QSnqyQ3_VdGDxWWcvEQlAnU4tr5FsULYNYSC7ez74FGDUKd1frEBolW-y78x9gsuXv9j4CfV9Tuts9-tALqqgCgQXVFQfCto02loKe1CkaZSaN0jCy8AhdUCM01WEcpZKKSDvDoVwyG7eTxCTt2LYZtHuNrHIGpkyLrO50Dz4f1rIfwFGxogg6WcLApaicCYU0pFtuMsGr7x3EHIWr2YUeLMIFgHYb4mHMi0j34oHNZtd2GVMXSnH3DrldoVl_u2S_u2TFZWvkehnf8nyN3BhUO_f3SH7okj8_f-XDUQoY18f7xpkbz4dgFc_yUeaDpJlUkcT8eRHtxuX-GFcOMInHeCEN9QzA4sSfgHjb9CfaahiCjxcxM73paygpYg5WOffJ8ZWQ5gFpZdPMPSI-k2BcCsNDhx4JLddCUkONZWFqwqijPfK2nn5lK2_oGJRjrNAqQnoppJdq6OWRN80Ls9IRyOVVd5CeTTX04F1kTOdfVSUQlARTMYZBicRK7piODNPCxjBukRgRG4-8BG5YaqO33VeYh14iQ8Hk945H1mtmUZXsydXiT_HIi6YYpAZuBenMTc9yBYIcJgSwMNR5WPJW0xWVuLYooXG5xHVL37Jcko2GhWdyQJ8IaT2yUfPn4rMunSxWMPD_JlV1B4NBk3r874E_Jzd7R4O-6u8d7D8ht-A1Ud4fXSet0_mZewpA8tQ8q_5en3y5aoHxF4uSgtY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDTLwgGF-BAQGBBNJCGzuxkweEBlvVsXVCiEl9M7bj0EptWpoNtDd-Ar-Hn8Mv4c75qKpp8LS3-CNOfHe-D_t8R8hzzsIcLB8b5FmYBRGnOkiiMApSkWdRyuKIaefle8T7x9GHYTxcI7-buzDoVtnwRMeos5nBPfIORcsg5SLinbx2i_i423s7_xZgBik8aW3SaVQkcmDPfoD5Vr7Z3wVcv6C0t_f5fT-oMwwEBsRYGnDT1UobCjJT5Wig6TzJ48TAI3yOaq6oitMkF5QnyuoI2gUzaTfLdNZNTZfBuFfIVcHiENeYGLbGHqhJbm8RpLMAEAhehxWKaUw7djrFS_Ahah8u6OxSIrrEASDnRuiWeV7nPe-62Z7frmrXTjz2bpIbtV7r71SEeIus2WKTXKsyXZ5tko1BfYZ_m5SfbPbn569yNM5B2_Xx5nFhJ4sR2Mfzclz4wHOmdU4xf-Hy3tjSn-AeAhbRoRfK0E-Dgpz5U2B02_5UGQVT8PFKZqG2fQUtLvtgXXOHHF8KYu6S9WJW2PvEZwLMTK6j2GJsQhMpLqim2rA413ESKo-8bsAvTR0XHdNzTCTaR4gvifiSLb488rJ9YV6FBLm46zvEZ9sNY3m7itniq6xZgxRgNKYwKZ4ZEVmmEs0UNynMm2eap9ojz4AaVsbo7xxKrMN4kTFn4nvoka2GWGTNhUq5XDMeedo2A__AQyFV2NlpKYGlA0BAK4Y-9yraaj9FBe4yChhcrFDdyr-sthTjkYtRDnooKrceedXQ5_K3LgQWcwT8P6DKvcFg0JYe_HviT8gGsAl5uH908JBch7d4dZF0i6yfLE7tI9AoT_Rjt3R98uWyecVfR3mFpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red%E2%80%90shifted+channelrhodopsin+stimulation+restores+light+responses+in+blind+mice%2C+macaque+retina%2C+and+human+retina&rft.jtitle=EMBO+molecular+medicine&rft.au=Sengupta%2C+Abhishek&rft.au=Chaffiol%2C+Antoine&rft.au=Mac%C3%A9%2C+Emilie&rft.au=Caplette%2C+Romain&rft.date=2016-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=8&rft.issue=11&rft.spage=1248&rft.epage=1264&rft_id=info:doi/10.15252%2Femmm.201505699&rft_id=info%3Apmid%2F27679671&rft.externalDocID=PMC5090658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |