Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina

Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety thresho...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 8; no. 11; pp. 1248 - 1264
Main Authors Sengupta, Abhishek, Chaffiol, Antoine, Macé, Emilie, Caplette, Romain, Desrosiers, Mélissa, Lampič, Maruša, Forster, Valérie, Marre, Olivier, Lin, John Y, Sahel, José‐Alain, Picaud, Serge, Dalkara, Deniz, Duebel, Jens
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2016
EMBO Press
Wiley Open Access
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Synopsis A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind rd1 mice, using light intensities below the safety limit for the human retina. Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected ex vivo with viral vectors encoding ReaChR. The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina. Graphical Abstract A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems.
AbstractList Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Synopsis A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind rd1 mice, using light intensities below the safety limit for the human retina. Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected ex vivo with viral vectors encoding ReaChR. The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina. A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems.
Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina.Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV- and lentivirus-mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin-2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red-shifted light is vastly lower than that of blue light. Here, we show that a red-shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV-ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV-and lentivirus-mediated optogenetic spike responses in ganglion cells of the post-mortem human retina.
Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina. Synopsis A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems. The red‐shifted channelrhodopsin ReaChR restored light responses at the retinal, cortical, and behavioral levels in blind rd1 mice, using light intensities below the safety limit for the human retina. Optogenetic light responses were demonstrated in explanted postmortem macaque and human retina, infected ex vivo with viral vectors encoding ReaChR. The study presents the first electrophysiological recordings of optogenetic light responses in ganglion cells obtained directly from the human fovea as well as the far peripheral human retina. Graphical Abstract A red‐shifted channelrhodopsin (ReaChR) was targeted to retinal ganglion cells using three models in parallel: mouse, macaque, and human. Safe orange illumination was able to trigger light responses in all three systems.
Abstract Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV ‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV ‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina.
Author Marre, Olivier
Chaffiol, Antoine
Macé, Emilie
Lampič, Maruša
Dalkara, Deniz
Sengupta, Abhishek
Forster, Valérie
Caplette, Romain
Lin, John Y
Desrosiers, Mélissa
Sahel, José‐Alain
Picaud, Serge
Duebel, Jens
AuthorAffiliation 4 School of Medicine University of Tasmania Hobart Tasmania Australia
2 Sorbonne Universités UPMC Univ Paris 06 UMR_S 968 Institut de la Vision Paris France
6 Present address: Unit on Retinal Neurophysiology National Eye Institute and Graduate Partnerships Program National Institutes of Health Bethesda MD USA
3 CNRS UMR_7210 Paris France
1 INSERM U968 Paris France
5 Hôpital des Quinze‐Vingts Paris France
AuthorAffiliation_xml – name: 3 CNRS UMR_7210 Paris France
– name: 1 INSERM U968 Paris France
– name: 5 Hôpital des Quinze‐Vingts Paris France
– name: 2 Sorbonne Universités UPMC Univ Paris 06 UMR_S 968 Institut de la Vision Paris France
– name: 4 School of Medicine University of Tasmania Hobart Tasmania Australia
– name: 6 Present address: Unit on Retinal Neurophysiology National Eye Institute and Graduate Partnerships Program National Institutes of Health Bethesda MD USA
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Sengupta
  fullname: Sengupta, Abhishek
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210, Unit on Retinal Neurophysiology, National Eye Institute and Graduate Partnerships Program, National Institutes of Health
– sequence: 2
  givenname: Antoine
  surname: Chaffiol
  fullname: Chaffiol, Antoine
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 3
  givenname: Emilie
  surname: Macé
  fullname: Macé, Emilie
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 4
  givenname: Romain
  surname: Caplette
  fullname: Caplette, Romain
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 5
  givenname: Mélissa
  surname: Desrosiers
  fullname: Desrosiers, Mélissa
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 6
  givenname: Maruša
  surname: Lampič
  fullname: Lampič, Maruša
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 7
  givenname: Valérie
  surname: Forster
  fullname: Forster, Valérie
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 8
  givenname: Olivier
  surname: Marre
  fullname: Marre, Olivier
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 9
  givenname: John Y
  surname: Lin
  fullname: Lin, John Y
  organization: School of Medicine, University of Tasmania
– sequence: 10
  givenname: José‐Alain
  surname: Sahel
  fullname: Sahel, José‐Alain
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210, Hôpital des Quinze‐Vingts
– sequence: 11
  givenname: Serge
  surname: Picaud
  fullname: Picaud, Serge
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 12
  givenname: Deniz
  surname: Dalkara
  fullname: Dalkara, Deniz
  email: deniz.dalkara@gmail.com
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
– sequence: 13
  givenname: Jens
  orcidid: 0000-0002-9906-5597
  surname: Duebel
  fullname: Duebel, Jens
  email: jens.duebel@inserm.fr
  organization: INSERM, U968, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, CNRS, UMR_7210
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27679671$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-01375637$$DView record in HAL
BookMark eNqFUstu1DAUjVARfcCaHYrEBqROazvxiwVSVRVaaUZICNaW4zgTjxJ7sJOi7vgEvpEv4c6jQztSxcb2vfecc30fx9mBD95m2WuMzjAllJzbvu_PCMIUUSbls-wIc8onJRPlwe7N2WF2nNICIUYZFi-yQ8IZl4zjoyx9tfWfX79T65rB1rlptfe2i22owzI5n6fB9WOnBxd8Hm0aAhx55-btsDKXwSewAVd1ztd574w9zXtt9I_RAmBwXp_mGiLt2Gu_9bzMnje6S_bV9j7Jvn-6-nZ5PZl--XxzeTGdGIYLOWEGVboyRGKkG0R4WTWiocLAkwhJKqaJplI0nDChbVVCnBdGorquaiQNKk6ym41uHfRCLaPrdbxTQTu1doQ4VzoOznRWcVoKCaKsNry0hRZVoZmRkJfVFZMVaH3caC3Hqre1sX6Iunsk-jjiXavm4VZRJKHtAgTebwTaPdr1xVStfAgXnLKC32LAvtsmiwEamQbVu2Rs12lvw5gUFgWDqsuSAfTtHnQRxuihrYpAlyRMeY168_D3u_z3ewAAugGYGFKKtlHGDeupQzGuUxip9b6p1b6p3b4B73yPdy_9NOPDhvHTdfbuf3B1NZvNHpLRhpyA5-c2_qv2qXx_AYUA-zM
CitedBy_id crossref_primary_10_3788_LOP231425
crossref_primary_10_1101_cshperspect_a041304
crossref_primary_10_1371_journal_pone_0200107
crossref_primary_10_1021_acsabm_4c00435
crossref_primary_10_1016_j_preteyeres_2019_07_004
crossref_primary_10_1101_cshperspect_a041660
crossref_primary_10_1002_cne_24838
crossref_primary_10_1088_2057_1976_ab90a1
crossref_primary_10_15252_embr_202051866
crossref_primary_10_3390_genes10090654
crossref_primary_10_1142_S0129065720500458
crossref_primary_10_3389_fnmol_2022_1068185
crossref_primary_10_1117_1_NPh_4_4_041505
crossref_primary_10_1089_hum_2018_009
crossref_primary_10_1016_j_ymthe_2017_07_011
crossref_primary_10_1038_s43586_022_00136_4
crossref_primary_10_1186_s42234_018_0013_8
crossref_primary_10_3389_fncel_2023_1236826
crossref_primary_10_3389_fnins_2017_00521
crossref_primary_10_1167_tvst_11_5_24
crossref_primary_10_3389_fnins_2022_966772
crossref_primary_10_1088_1741_2552_ac1175
crossref_primary_10_1016_j_neures_2017_07_001
crossref_primary_10_1016_j_preteyeres_2021_100975
crossref_primary_10_1016_j_isci_2022_105866
crossref_primary_10_15252_emmm_201911618
crossref_primary_10_1089_hum_2017_164
crossref_primary_10_1080_17469899_2019_1699406
crossref_primary_10_1007_s11825_017_0135_5
crossref_primary_10_1049_htl_2019_0114
crossref_primary_10_1038_s41467_020_15317_6
crossref_primary_10_1016_j_cub_2022_12_026
crossref_primary_10_1088_1741_2552_aa795e
crossref_primary_10_1016_j_coph_2022_102259
crossref_primary_10_1038_s41598_021_91972_z
crossref_primary_10_1134_S0006297919050031
crossref_primary_10_1126_science_abc2294
crossref_primary_10_1126_scitranslmed_aau6447
crossref_primary_10_1038_s41684_018_0003_1
crossref_primary_10_3390_bioengineering11050487
crossref_primary_10_1002_adom_202200877
crossref_primary_10_1016_j_neuroscience_2020_09_022
crossref_primary_10_1016_j_preteyeres_2022_101065
crossref_primary_10_1016_j_cub_2023_08_044
crossref_primary_10_1016_j_mcn_2020_103523
crossref_primary_10_1038_s41434_022_00380_z
crossref_primary_10_1016_j_isci_2025_112106
crossref_primary_10_1016_j_omtm_2023_09_003
crossref_primary_10_1152_physrev_00035_2019
crossref_primary_10_1016_j_exer_2018_09_003
crossref_primary_10_1146_annurev_genom_083118_015043
crossref_primary_10_1042_CS20160492
crossref_primary_10_1007_s11055_019_00714_2
crossref_primary_10_1113_JP282076
crossref_primary_10_3389_fnana_2022_1099348
crossref_primary_10_1016_j_lfs_2017_11_010
crossref_primary_10_1038_s41598_024_62558_2
crossref_primary_10_1016_j_bpj_2020_06_031
crossref_primary_10_1038_s41551_021_00836_4
crossref_primary_10_1016_j_bpj_2017_02_001
crossref_primary_10_3389_fnins_2017_00161
crossref_primary_10_1016_j_preteyeres_2022_101089
crossref_primary_10_3389_fnins_2023_1221316
crossref_primary_10_3389_fddev_2023_934394
crossref_primary_10_1016_j_ajo_2021_04_013
crossref_primary_10_1016_j_omtm_2022_03_003
crossref_primary_10_1016_j_pbiomolbio_2019_08_013
crossref_primary_10_3389_fncel_2018_00316
crossref_primary_10_1016_j_ymthe_2025_01_030
crossref_primary_10_1038_s41598_023_34687_7
crossref_primary_10_3390_ijms232315041
crossref_primary_10_1063_1_5084197
crossref_primary_10_3389_fnins_2020_570909
crossref_primary_10_1016_j_ymthe_2019_04_002
crossref_primary_10_1097_IIO_0000000000000383
crossref_primary_10_1093_hmg_ddx185
crossref_primary_10_1111_ceo_13434
crossref_primary_10_1109_TBCAS_2019_2951298
crossref_primary_10_1167_tvst_11_1_18
crossref_primary_10_1371_journal_pone_0311102
crossref_primary_10_3390_biom12020269
crossref_primary_10_1038_s41598_022_23572_4
crossref_primary_10_1172_jci_insight_96029
crossref_primary_10_1038_s41467_019_12330_2
crossref_primary_10_1016_j_exer_2020_108330
crossref_primary_10_1002_ajmg_c_31842
crossref_primary_10_1038_s42003_020_01594_w
crossref_primary_10_1073_pnas_1902292116
crossref_primary_10_1016_j_bbrc_2019_12_117
crossref_primary_10_1016_j_celrep_2020_107934
crossref_primary_10_1038_gt_2017_63
crossref_primary_10_4155_fmc_2018_0315
crossref_primary_10_1167_tvst_8_2_7
crossref_primary_10_3389_fnins_2017_00663
crossref_primary_10_1016_j_cobeha_2019_10_003
crossref_primary_10_3390_ijms222111542
crossref_primary_10_1016_j_ymthe_2025_02_011
crossref_primary_10_1371_journal_pcbi_1007857
crossref_primary_10_1016_j_jacep_2017_12_006
crossref_primary_10_1016_j_isci_2023_107716
crossref_primary_10_1002_lsm_23463
crossref_primary_10_1038_s41434_024_00485_7
crossref_primary_10_1038_s41467_019_09124_x
crossref_primary_10_3389_fnins_2018_00789
crossref_primary_10_1051_medsci_2020095
crossref_primary_10_1360_SSV_2021_0114
crossref_primary_10_2174_0929867328666211129122908
crossref_primary_10_3390_ijms21020522
crossref_primary_10_1016_j_preteyeres_2022_101153
crossref_primary_10_1080_14712598_2022_2072208
crossref_primary_10_1134_S0022093022060011
crossref_primary_10_1016_j_omtm_2020_05_009
crossref_primary_10_1134_S1062360420010063
Cites_doi 10.1038/nn.2120
10.1007/BF00919652
10.1038/mt.2009.181
10.1073/pnas.1936192100
10.1167/iovs.10-6250
10.1074/jbc.M111.325969
10.1016/j.neuron.2006.02.026
10.1002/jgm.788
10.1088/1741-2560/6/3/035007
10.1016/j.conb.2006.12.002
10.1016/j.neuron.2014.04.044
10.1038/nmeth.2836
10.1074/jbc.270.32.18825
10.1523/JNEUROSCI.13-12-05334.1993
10.1016/j.tibtech.2013.07.001
10.1152/physrev.00021.2004
10.1126/science.1190897
10.1006/abbi.2001.2492
10.1016/j.neuron.2012.05.022
10.1097/HP.0b013e3182983fd4
10.1111/cge.12165
10.1038/nn.3502
10.1073/pnas.89.20.9666
10.1016/j.preteyeres.2011.11.001
10.1038/nn.2117
10.1038/mt.2011.69
10.1371/journal.pbio.1002143
10.1038/nchembio.1114
10.1038/nm.3851
10.1016/j.cub.2015.07.029
10.1113/jphysiol.2008.156638
10.1364/AO.34.004912
10.1089/hum.2010.157
10.1038/mt.2014.81
10.1016/j.exer.2009.12.006
10.1085/jgp.200609490
10.1073/pnas.0806114105
10.1002/cne.903380211
10.1016/j.survophthal.2006.06.009
10.1523/JNEUROSCI.4438-13.2014
10.1523/JNEUROSCI.4417-09.2010
10.15252/emmm.201404077
10.1371/journal.pone.0062097
10.1002/cne.902330107
10.1038/mt.2015.121
10.1016/j.exer.2016.03.018
10.1523/JNEUROSCI.5138-07.2008
10.1016/S0014-2999(03)01274-3
10.1016/j.ophtha.2011.09.028
10.1038/mt.2014.154
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2016
2016 The Authors. Published under the terms of the CC BY 4.0 license
2016 The Authors. Published under the terms of the CC BY 4.0 license.
2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2016
– notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2016 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.15252/emmm.201505699
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Abhishek Sengupta et al
EISSN 1757-4684
EndPage 1264
ExternalDocumentID oai_doaj_org_article_754898926dc74e3a8b3a6c9af06db69b
PMC5090658
oai_HAL_hal_01375637v1
27679671
10_15252_emmm_201505699
EMMM201505699
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR‐10‐LABX‐65
  funderid: 10.13039/501100001665
– fundername: Centre National de la Recherche Scientifique
  funderid: 10.13039/501100004794
– fundername: Pierre et Marie Curie University
  funderid: 10.13039/501100005737
– fundername: Institut National de la Santé et de la Recherche Médicale
  funderid: 10.13039/501100001677
– fundername: European Research Council (ERC)
  grantid: 309776
  funderid: 10.13039/501100000781
– fundername: European Research Council (ERC)
  funderid: 309776
– fundername: Institut National de la Santé et de la Recherche Médicale
– fundername: Centre National de la Recherche Scientifique
– fundername: Agence Nationale de la Recherche
  funderid: ANR‐10‐LABX‐65
– fundername: Pierre et Marie Curie University
– fundername: European Research Council
  grantid: 309776
– fundername: Agence Nationale de la Recherche
  grantid: ANR‐10‐LABX‐65
– fundername: European Research Council (ERC)
  grantid: 309776
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M48
M7P
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
AAHHS
ABJNI
ACCFJ
ADPDF
ADZOD
AEEZP
AEQDE
AFZJQ
AIWBW
AJBDE
EBLON
GODZA
H13
M~E
OVEED
RHF
AASML
AAYXX
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c6139-6c0babc2910af0274bf8f58c0272892b6a2a598f7268aeb44bf73c90ddbd09c03
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:25:01 EDT 2025
Thu Aug 21 18:26:18 EDT 2025
Fri Jun 13 07:03:26 EDT 2025
Fri Jul 11 01:32:32 EDT 2025
Wed Aug 13 06:51:18 EDT 2025
Mon Jul 21 06:01:37 EDT 2025
Tue Jul 01 01:52:59 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Wed Jan 22 16:26:43 EST 2025
Sat Aug 09 01:12:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords primate
vision restoration
channelrhodopsin
retina
optogenetics
Gene Therapy & Genetic Disease
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2016 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6139-6c0babc2910af0274bf8f58c0272892b6a2a598f7268aeb44bf73c90ddbd09c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-9906-5597
0000-0003-4112-9321
0000-0002-4831-1153
0000-0002-0090-6190
0000-0002-0548-5145
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201505699
PMID 27679671
PQID 2289996746
PQPubID 866378
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_754898926dc74e3a8b3a6c9af06db69b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5090658
hal_primary_oai_HAL_hal_01375637v1
proquest_miscellaneous_1836726446
proquest_journals_2289996746
pubmed_primary_27679671
crossref_citationtrail_10_15252_emmm_201505699
crossref_primary_10_15252_emmm_201505699
wiley_primary_10_15252_emmm_201505699_EMMM201505699
springer_journals_10_15252_emmm_201505699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2016
Publisher Nature Publishing Group UK
EMBO Press
Wiley Open Access
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: Wiley Open Access
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2012; 287
1995; 34
2000; 41
2011; 52
2008; 105
2008; 586
2013; 8
2011; 19
2014; 22
2013; 9
1993; 338
2013; 16
2002; 43
2008; 28
2011; 22
2006; 127
2014; 6
1992; 89
2010; 30
2014; 11
2009; 17
2016; 150
2007; 17
2015; 13
2006; 50
2010; 329
2006; 51
2013; 105
2013; 84
2005; 85
1978; 17
2008; 11
2014; 83
2012; 31
2012; 75
1995; 270
2006; 114
2015; 23
1993; 13
2015; 25
2001; 393
2013; 31
2015; 21
1985; 233
2005; 7
2009; 6
2010; 90
2003; 463
1993; 231
2003; 100
2014; 34
2012; 119
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Sparrow JR (e_1_2_9_46_1) 2002; 43
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
Ham WT (e_1_2_9_18_1) 1978; 17
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Sparrow JR (e_1_2_9_45_1) 2000; 41
e_1_2_9_26_1
e_1_2_9_49_1
European Commission (e_1_2_9_15_1) 2006; 114
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 51
  start-page: 461
  year: 2006
  end-page: 481
  article-title: Photochemical damage of the retina
  publication-title: Surv Ophthalmol
– volume: 17
  start-page: 87
  year: 2007
  end-page: 94
  article-title: New optical tools for controlling neuronal activity
  publication-title: Curr Opin Neurobiol
– volume: 13
  start-page: 5334
  year: 1993
  end-page: 5355
  article-title: The mosaic of midget ganglion cells in the human retina
  publication-title: J Neurosci
– volume: 84
  start-page: 175
  year: 2013
  end-page: 182
  article-title: Retinal optogenetic therapies: clinical criteria for candidacy
  publication-title: Clin Genet
– volume: 270
  start-page: 18825
  year: 1995
  end-page: 18830
  article-title: Blue light‐induced reactivity of retinal age pigment. In vitro generation of oxygen‐reactive species
  publication-title: J Biol Chem
– volume: 287
  start-page: 20888
  year: 2012
  end-page: 20897
  article-title: Melanopsin is highly resistant to light and chemical bleaching in vivo
  publication-title: J Biol Chem
– volume: 50
  start-page: 23
  year: 2006
  end-page: 33
  article-title: Ectopic expression of a microbial‐type rhodopsin restores visual responses in mice with photoreceptor degeneration
  publication-title: Neuron
– volume: 16
  start-page: 1499
  year: 2013
  end-page: 1508
  article-title: ReaChR: a red‐shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation
  publication-title: Nat Neurosci
– volume: 11
  start-page: 631
  year: 2008
  end-page: 633
  article-title: Red‐shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri
  publication-title: Nat Neurosci
– volume: 83
  start-page: 87
  year: 2014
  end-page: 92
  article-title: High‐fidelity reproduction of spatiotemporal visual signals for retinal prosthesis
  publication-title: Neuron
– volume: 338
  start-page: 289
  year: 1993
  end-page: 303
  article-title: Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus
  publication-title: J Comp Neurol
– volume: 11
  start-page: 338
  year: 2014
  end-page: 346
  article-title: Independent optical excitation of distinct neural populations
  publication-title: Nat Methods
– volume: 150
  start-page: 149
  year: 2016
  end-page: 165
  article-title: Retinal remodeling in human retinitis pigmentosa
  publication-title: Exp Eye Res
– volume: 28
  start-page: 4446
  year: 2008
  end-page: 4456
  article-title: High‐resolution electrical stimulation of primate retina for epiretinal implant design
  publication-title: J Neurosci
– volume: 90
  start-page: 429
  year: 2010
  end-page: 436
  article-title: Channelrhodopsin‐2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats
  publication-title: Exp Eye Res
– volume: 23
  start-page: 1562
  year: 2015
  end-page: 1571
  article-title: Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity
  publication-title: Mol Ther
– volume: 19
  start-page: 1220
  year: 2011
  end-page: 1229
  article-title: Virally delivered channelrhodopsin‐2 safely and effectively restores visual function in multiple mouse models of blindness
  publication-title: Mol Ther
– volume: 105
  start-page: 16009
  year: 2008
  end-page: 16014
  article-title: Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin
  publication-title: Proc Natl Acad Sci USA
– volume: 463
  start-page: 55
  year: 2003
  end-page: 65
  article-title: The mouse light/dark box test
  publication-title: Eur J Pharmacol
– volume: 233
  start-page: 115
  year: 1985
  end-page: 132
  article-title: Parasol and midget ganglion cells of the human retina
  publication-title: J Comp Neurol
– volume: 31
  start-page: 562
  year: 2013
  end-page: 571
  article-title: Visual prostheses for the blind
  publication-title: Trends Biotechnol
– volume: 34
  start-page: 6596
  year: 2014
  end-page: 6605
  article-title: Imaging light responses of foveal ganglion cells in the living macaque eye
  publication-title: J Neurosci
– volume: 119
  start-page: 779
  year: 2012
  end-page: 788
  article-title: Interim results from the international trial of Second Sight's visual prosthesis
  publication-title: Ophthalmology
– volume: 105
  start-page: 74
  year: 2013
  end-page: 96
  article-title: ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation
  publication-title: Health Phys
– volume: 17
  start-page: 1029
  year: 1978
  end-page: 1035
  article-title: Histologic analysis of photochemical lesions produced in rhesus retina by short‐wave‐length light
  publication-title: Invest Ophthalmol Vis Sci
– volume: 89
  start-page: 9666
  year: 1992
  end-page: 9670
  article-title: Dendritic field size and morphology of midget and parasol ganglion cells of the human retina
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 38
  year: 2006
  end-page: 59
  article-title: Directive 2006/25/EC of the European Parliament and of the Council (artificial optical radiation)
  publication-title: Off J Eur Union
– volume: 586
  start-page: 4377
  year: 2008
  end-page: 4384
  article-title: Functional circuitry of visual adaptation in the retina
  publication-title: J Physiol
– volume: 100
  start-page: 13940
  year: 2003
  end-page: 13945
  article-title: Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel
  publication-title: Proc Natl Acad Sci USA
– volume: 43
  start-page: 1222
  year: 2002
  end-page: 1227
  article-title: Involvement of oxidative mechanisms in blue‐light‐induced damage to A2E‐laden RPE
  publication-title: Invest Ophthalmol Vis Sci
– volume: 17
  start-page: 2096
  year: 2009
  end-page: 2102
  article-title: Inner limiting membrane barriers to AAV‐mediated retinal transduction from the vitreous
  publication-title: Mol Ther
– volume: 6
  start-page: 035007
  year: 2009
  article-title: Optobionic vision–a new genetically enhanced light on retinal prosthesis
  publication-title: J Neural Eng
– volume: 34
  start-page: 4912
  year: 1995
  end-page: 4922
  article-title: Optical radiation hazards analysis of ultraviolet headlamps
  publication-title: Appl Opt
– volume: 22
  start-page: 1434
  year: 2014
  end-page: 1440
  article-title: Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin‐1
  publication-title: Mol Ther
– volume: 127
  start-page: 359
  year: 2006
  end-page: 374
  article-title: Physiological features of the S‐ and M‐cone photoreceptors of wild‐type mice from single‐cell recordings
  publication-title: J Gen Physiol
– volume: 6
  start-page: 1175
  year: 2014
  end-page: 1190
  article-title: Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno‐associated virus capsid and promoter
  publication-title: EMBO Mol Med
– volume: 13
  start-page: e1002143
  year: 2015
  article-title: Restoring the ON switch in blind retinas: Opto‐mGluR6, a next‐generation. Cell‐tailored optogenetic tool
  publication-title: PLoS Biol
– volume: 75
  start-page: 271
  year: 2012
  end-page: 282
  article-title: Photochemical restoration of visual responses in blind mice
  publication-title: Neuron
– volume: 21
  start-page: 476
  year: 2015
  end-page: 482
  article-title: Photovoltaic restoration of sight with high visual acuity
  publication-title: Nat Med
– volume: 85
  start-page: 845
  year: 2005
  end-page: 881
  article-title: The retinal pigment epithelium in visual function
  publication-title: Physiol Rev
– volume: 7
  start-page: 1367
  year: 2005
  end-page: 1374
  article-title: Retinal cell type expression specificity of HIV‐1‐derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter
  publication-title: J Gene Med
– volume: 231
  start-page: 416
  year: 1993
  end-page: 423
  article-title: Inhibition of cytochrome oxidase and blue‐light damage in rat retina
  publication-title: Graefe's Arch Clin Exp Ophthalmol
– volume: 329
  start-page: 413
  year: 2010
  end-page: 417
  article-title: Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa
  publication-title: Science
– volume: 23
  start-page: 7
  year: 2015
  end-page: 16
  article-title: Targeting channelrhodopsin‐2 to ON‐bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice
  publication-title: Mol Ther
– volume: 31
  start-page: 28
  year: 2012
  end-page: 42
  article-title: The susceptibility of the retina to photochemical damage from visible light
  publication-title: Prog Retin Eye Res
– volume: 22
  start-page: 587
  year: 2011
  end-page: 593
  article-title: Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes
  publication-title: Hum Gene Ther
– volume: 11
  start-page: 667
  year: 2008
  end-page: 675
  article-title: Light‐activated channels targeted to ON bipolar cells restore visual function in retinal degeneration
  publication-title: Nat Neurosci
– volume: 25
  start-page: 2111
  year: 2015
  end-page: 2122
  article-title: Restoration of vision with ectopic expression of human rod opsin
  publication-title: Curr Biol
– volume: 393
  start-page: 316
  year: 2001
  end-page: 320
  article-title: Retinyl palmitate and the blue‐light‐induced phototoxicity of human ocular lipofuscin
  publication-title: Arch Biochem Biophys
– volume: 8
  start-page: e62097
  year: 2013
  article-title: Targeting photoreceptors via intravitreal delivery using novel, capsid‐mutated AAV vectors
  publication-title: PLoS One
– volume: 41
  start-page: 1981
  year: 2000
  end-page: 1989
  article-title: The lipofuscin fluorophore A2E mediates blue light‐induced damage to retinal pigmented epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
– volume: 52
  start-page: 2775
  year: 2011
  end-page: 2783
  article-title: Intravitreal injection of AAV2 transduces macaque inner retina
  publication-title: Invest Ophthalmol Vis Sci
– volume: 30
  start-page: 8745
  year: 2010
  end-page: 8758
  article-title: Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells
  publication-title: J Neurosci
– volume: 9
  start-page: 30
  year: 2013
  end-page: 36
  article-title: Identification of DES1 as a vitamin A isomerase in Muller glial cells of the retina
  publication-title: Nat Chem Biol
– ident: e_1_2_9_55_1
  doi: 10.1038/nn.2120
– ident: e_1_2_9_7_1
  doi: 10.1007/BF00919652
– ident: e_1_2_9_11_1
  doi: 10.1038/mt.2009.181
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.1936192100
– ident: e_1_2_9_53_1
  doi: 10.1167/iovs.10-6250
– ident: e_1_2_9_42_1
  doi: 10.1074/jbc.M111.325969
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuron.2006.02.026
– ident: e_1_2_9_2_1
  doi: 10.1002/jgm.788
– ident: e_1_2_9_12_1
  doi: 10.1088/1741-2560/6/3/035007
– ident: e_1_2_9_19_1
  doi: 10.1016/j.conb.2006.12.002
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuron.2014.04.044
– ident: e_1_2_9_28_1
  doi: 10.1038/nmeth.2836
– ident: e_1_2_9_40_1
  doi: 10.1074/jbc.270.32.18825
– ident: e_1_2_9_10_1
  doi: 10.1523/JNEUROSCI.13-12-05334.1993
– ident: e_1_2_9_43_1
  doi: 10.1016/j.tibtech.2013.07.001
– ident: e_1_2_9_47_1
  doi: 10.1152/physrev.00021.2004
– ident: e_1_2_9_5_1
  doi: 10.1126/science.1190897
– ident: e_1_2_9_30_1
  doi: 10.1006/abbi.2001.2492
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuron.2012.05.022
– ident: e_1_2_9_22_1
  doi: 10.1097/HP.0b013e3182983fd4
– volume: 41
  start-page: 1981
  year: 2000
  ident: e_1_2_9_45_1
  article-title: The lipofuscin fluorophore A2E mediates blue light‐induced damage to retinal pigmented epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_9_23_1
  doi: 10.1111/cge.12165
– ident: e_1_2_9_32_1
  doi: 10.1038/nn.3502
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.89.20.9666
– ident: e_1_2_9_21_1
  doi: 10.1016/j.preteyeres.2011.11.001
– ident: e_1_2_9_29_1
  doi: 10.1038/nn.2117
– ident: e_1_2_9_14_1
  doi: 10.1038/mt.2011.69
– volume: 114
  start-page: 38
  year: 2006
  ident: e_1_2_9_15_1
  article-title: Directive 2006/25/EC of the European Parliament and of the Council (artificial optical radiation)
  publication-title: Off J Eur Union
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pbio.1002143
– ident: e_1_2_9_27_1
  doi: 10.1038/nchembio.1114
– ident: e_1_2_9_33_1
  doi: 10.1038/nm.3851
– ident: e_1_2_9_6_1
  doi: 10.1016/j.cub.2015.07.029
– ident: e_1_2_9_13_1
  doi: 10.1113/jphysiol.2008.156638
– volume: 17
  start-page: 1029
  year: 1978
  ident: e_1_2_9_18_1
  article-title: Histologic analysis of photochemical lesions produced in rhesus retina by short‐wave‐length light
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_9_44_1
  doi: 10.1364/AO.34.004912
– ident: e_1_2_9_16_1
  doi: 10.1089/hum.2010.157
– ident: e_1_2_9_50_1
  doi: 10.1038/mt.2014.81
– ident: e_1_2_9_49_1
  doi: 10.1016/j.exer.2009.12.006
– ident: e_1_2_9_36_1
  doi: 10.1085/jgp.200609490
– ident: e_1_2_9_31_1
  doi: 10.1073/pnas.0806114105
– ident: e_1_2_9_39_1
  doi: 10.1002/cne.903380211
– ident: e_1_2_9_51_1
  doi: 10.1016/j.survophthal.2006.06.009
– ident: e_1_2_9_54_1
  doi: 10.1523/JNEUROSCI.4438-13.2014
– ident: e_1_2_9_48_1
  doi: 10.1523/JNEUROSCI.4417-09.2010
– ident: e_1_2_9_8_1
  doi: 10.15252/emmm.201404077
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0062097
– ident: e_1_2_9_38_1
  doi: 10.1002/cne.902330107
– ident: e_1_2_9_17_1
  doi: 10.1038/mt.2015.121
– ident: e_1_2_9_25_1
  doi: 10.1016/j.exer.2016.03.018
– ident: e_1_2_9_41_1
  doi: 10.1523/JNEUROSCI.5138-07.2008
– ident: e_1_2_9_4_1
  doi: 10.1016/S0014-2999(03)01274-3
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ophtha.2011.09.028
– ident: e_1_2_9_34_1
  doi: 10.1038/mt.2014.154
– volume: 43
  start-page: 1222
  year: 2002
  ident: e_1_2_9_46_1
  article-title: Involvement of oxidative mechanisms in blue‐light‐induced damage to A2E‐laden RPE
  publication-title: Invest Ophthalmol Vis Sci
SSID ssj0065618
Score 2.5025558
Snippet Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss...
Targeting the photosensitive ion channel channelrhodopsin-2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss...
Abstract Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1248
SubjectTerms Animals
channelrhodopsin
Cortex
Dependovirus - genetics
EMBO16
EMBO27
Experiments
Genetic Therapy - methods
Genetic Vectors
Human health and pathology
Humans
Lentivirus - genetics
Life Sciences
Light
Macaca
Membranes
Mice
Microscopy
optogenetics
Photoreceptors
Phototherapy - methods
primate
Research Article
Retina
Retina - physiology
Retinal degeneration
Retinal Degeneration - therapy
Retinal ganglion cells
Rhodopsin - genetics
Rhodopsin - metabolism
Sensory Organs
Transduction, Genetic
Treatment Outcome
vision restoration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJRAXBOWVtiCDOIDU0MTP-FhQqxViOSAq9WbZjqNdaTetNi1Sb_wEfiO_hBknm7Kqql64rR_rOOOx55vY_oaQd4qXDXg-MW_qss6FYj6vRClyo5taGC4F9-mU7zc1ORFfTuXpP6G-8ExYTw_cC-5AA6Q2lWGqDlpE7irPnQrGNYWqvTIeV1-weWtnql-DAaSkL3tgGzV0QKuB1EcyyQ7icolX0Eu0_Yny9doeJdp-sDIzPBR5E3HePDg57p5uYttknI4fk0cDqqSH_ds8Ifdiu03u93Emr7bJg-mwg_6UdN9j_efX7242bwBrUrz328bFagbe6Xk3bynM-OUQ0YuuUtSZ2NEFevCYxOO0kIZ6HuBpTTGW_T5duuDgFSheiGzdPnVQkmL_DTnPyMnx0Y_Pk3wIvJAHsO4mV6HwzgcGUALkDH6rb6pGVgF-gn_GvHLMSVM1mqnKRS-gXPNgirr2dWFCwZ-TrfasjS8J5RqcPOWFjMgMGIRTmnnmA5eNl1XpMvJxLX4bBlZyDI6xsOid4HhZHC87jldG3o9_OO8JOW6v-gnHc6yGTNopA_TLDvpl79KvjLwFbdhoY3L41WIesjVKxfXPMiN7a2WxwxrQWYa-rFFaqIy8GYth9uKWjGvj2WVnYUEFgQAmhTovet0aH8U0fuPT0Lje0LqNvmyWtPNZYggHFIjQMiMf1vp53a1bhcWTAt8lVHs0nU7H1M7_EPEueQgNqv6G5x7ZulhdxlcA9S786zSr_wJQs004
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELZgEYgLguUVWFBAHEDasI3t2MkJLWhXFaIcECv1ZvkVWqlNS7OLxI2fwG_klzDjuKmi1cItfiSxPWPPN_Z4hpBXguU1aD4-q13uMi6oyUqe86ySteMVKzgzwcr3sxif8Y_TYho33NpoVrldE8NC7VYW98iPKGoGlZBcvFt_zzBqFJ6uxhAa18kNdF2GJl1y2itcAFXC_h5ISAnNkCK69iloQY_8cokX0XNEAMHx604qBef9IGtmaBp5GXdeNp_sz1CHCDeIqNO75E7Elulxxwz3yDXf7JObXbTJn_vk1iSeo98n7Rfv_vz63c7mNSDOFG__Nn6xmYGOum7nTQrzfhnjeqWbEHvGt-kC9XhMolEtpKGeAZDqUoxof5gutdXQhRSvRTb6MNVQEiIAxpwH5Oz05OuHcRbDL2QWZHyVCTsy2lgKgELXqL2auqyL0sIj0IIaoakuqrKWVJTaGw7lktlq5Jxxo8qO2EOy16wa_5ikTIKqJwwvPPoHtFwLSQ01lhW1KcpcJ-TtdviVjb7JMUTGQqGOgvRSSC_V0yshr_sX1p1bjqurvkd69tXQn3bIWG2-qTg9lQTFrYJOCWcl90yXhmlhK-i3cEZUJiEvgRsG3xgff1KYhz4bC8HkjzwhB1tmUXElaNWObxPyoi-GOYwHM7rxq4tWwbIKAwLIFOo86nir_xWVuNMn4eNywHWDtgxLmvks-AkHLIgAMyFvtvy5a9aVg8UCA_9vUNXJZDLpU0_-3fGn5DZUFd0NzgOyd7658M8Ayp2b52G-_gXLIkSd
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFQXkFCjKIA0gNbPyMj2XVaoVYDohKvVl-RbvSblptWiRu_AR-I7-EmSQbiEqFuMWP2LFnnPnG9swQ8krxogLNJ-VVLGIuFPN5KQqRG11FYbgU3Le3fD-p2bH4cCJPeidJaAvz5_m9ZJK9S-s1GowXKKmNuU5uyIIrZN-pmm5_uYBJ2o08EIUa-tOq9-HzlwZG4qf10g9CZYF3IC8DzMv3JIfD0jGUbWXR0V1ypweR9KCj-j1yLdW75GYXVvLbLrk17w_M75Pmc4o_v_9oFssKoCVFM986rTYLUEbPmmVNYYGv-wBedNMGmUkNXaHCjkm8PQtpqOcBjUaKoev36doFB0OgaP9Yu33qoKQN9dfnPCDHR4dfprO8j7OQBxDmJldh4p0PDJCDq1BN9VVZyTLAI6hjzCvHnDRlpZkqXfICyjUPZhKjjxMTJvwh2alP6_SYUK5Bp1NeyISOAINwSjPPfOCy8rIsXEbebqffht4JOcbCWFlURpBeFullB3pl5PXwwlnnf-Pqqu-RnkM1dJzdZgA_2X4dWg0amoFBqRi0SNyVnjsVDIxbRa-Mz8hL4IZRG7ODjxbz0DmjVFx_LTKyt2UW2y_5xjJUXY3SQmXkxVAMixVPYFydTi8aC_9PmBCAoFDnUcdbQ1dM45aehsb1iOtG3zIuqZeL1iE4gD5Ekhl5s-XP35915WTxloH_Nan2cD6fD6kn_9HDU3IbnlVnt7lHds43F-kZALhz_7xdvL8Aspc9FA
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxMGhF8UW0fq1WieKDQldvk2yyeazScognIhZ8C_la76C3V25bwTd_gr_RX-JM9kOWUgTf8rXZZDKTmUkyM4S8kLyoQfOJeR2KkAvJXF6JQuRa1UFoXgru0ivfj3J-LN5_LYfXhGgL0_mHGA_ckDLSfo0Ebl07ROxBr6FxvUZT8gJ5uNZXyTU0sEX3-Ux8GjZjkFbSER8wSQUjUbL37oNdvJl2MGFMyX8_sJslvo68KHpefEE5XqNOhdzEpY5uk1u9eEkPOny4Q67EZpdc7wJO_tglNxb9Vfpd0n6O4ffPX-1yVYPQSdEAGCCyXYKaetquGgqkv-5De9FtCj8TW3qCqjxm8V0t5KGdA0gGikHt9-naegtToGgZ2dh9aqEmBQHsS-6R46PDL-_meR-BIffA5nUu_cxZ5xnIFLZGBdbVVV1WHpKgqDEnLbOlrmrFZGWjE1CvuNezEFyYaT_j98lOs2niQ0K5Am1POlFGdBHohZWKOeY8L2tXVoXNyOsB_Mb37skxSsaJQTUF18vgeplxvTLycvzgtPPMcXnTt7ieYzN0qZ0KNttvpqdQo0B30zApGbwSkdvKcSu9hnnL4KR2GXkO2DDpY37wwWAZum0sJVffi4zsDchi-s2gNQyVWi2VkBl5NlYDGePdjG3i5rw1sLMCQEA4hTYPOtwaf8UUHvYp6FxNsG4ylmlNs1omV-EgDqKMmZFXA37-HdalwOIJgf8FVHO4WCzG3KP_-uoxuQlp2dl27pGds-15fAJC3pl7msj4DwsCSKU
  priority: 102
  providerName: Wiley-Blackwell
Title Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina
URI https://link.springer.com/article/10.15252/emmm.201505699
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201505699
https://www.ncbi.nlm.nih.gov/pubmed/27679671
https://www.proquest.com/docview/2289996746
https://www.proquest.com/docview/1836726446
https://hal.sorbonne-universite.fr/hal-01375637
https://pubmed.ncbi.nlm.nih.gov/PMC5090658
https://doaj.org/article/754898926dc74e3a8b3a6c9af06db69b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfYJtBeEIx_gVEFxANIy2hix44fENqqThWi0zRRqW-W7Ti0UptuzYbYGx-Bz8gn4c5NM0XbhMRLVP-Ja5_Pud_Z5ztC3nEaF6D5uKjI4zxiPDFRxmIWSVHkTNKUUeOtfI_5YMS-jNPxdTigmoDVraodxpMaLWf7P8-vPsOC_1RH70k-uvkcL5XHKM2l3CBbIJYErtIha44UALf4zT4QlwL6JHjt5-eWBtBBsMD9FRG3pJV36g8yaIImkzfx6E2zyuZstY18veg6ekQe1pgzPFgxyWNyz5U75P4qCuXVDnkwrM_Xn5Dq1OV_fv2uJtMCkGiIt4JLN1tOQHc9q6ZlCN-DeR3vK1z6mDSuCmeo32MSjW0hDfUMgNc8xEj3e-FcWw1DCPG6ZKn3Qg0lPjJgnfOUjI7633qDqA7LEFmQ_TLitmu0sQkADV2gVmuKrEgzCz9Be0sM14lOZVaIhGfaGQblglrZzXOTd6Xt0mdks1yU7gUJqQAVkBuWOvQbaJnmIjGJsTQtTJrFOiD7a_IrW_ssx9AZM4W6C06dwqlTzdQF5H3zwtnKXcfdVQ9xPptq6GfbZyyW31W9bJUAhU7CoHhuBXNUZ4ZqbiWMm-eGSxOQt8ANrTYGB18V5qEvx5RT8SMOyO6aWdSawVWCmi6wGOMBedMUw9rGAxtdusVlpeBzCwQBxAp1nq94q_mrNYcGRLS4rtWXdkk5nXj_4YAREXgG5MOaP6-7dSexqGfgfxFV9YfDYZN6-d99e0W2oRW-shvaJZsXy0v3GtDfhemQjYSdwFOMRYdsHfaPT04h1eO9jt9P6fhV_xdmIlo7
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKh4XBOW1UGBBIFGpSxPba-8eEGohVUqTClWt1JuxvV4SKdmEbAvqjZ_AL-FH8UuY2VcUVYVTb-vH2mvP7Mw3fswQ8kqwTgqWjwvSpJMEXFATRLzDg1imCY9ZyJkpTvkeiN4x_3QSnqyQ3_VdGDxWWcvEQlAnU4tr5FsULYNYSC7ez74FGDUKd1frEBolW-y78x9gsuXv9j4CfV9Tuts9-tALqqgCgQXVFQfCto02loKe1CkaZSaN0jCy8AhdUCM01WEcpZKKSDvDoVwyG7eTxCTt2LYZtHuNrHIGpkyLrO50Dz4f1rIfwFGxogg6WcLApaicCYU0pFtuMsGr7x3EHIWr2YUeLMIFgHYb4mHMi0j34oHNZtd2GVMXSnH3DrldoVl_u2S_u2TFZWvkehnf8nyN3BhUO_f3SH7okj8_f-XDUQoY18f7xpkbz4dgFc_yUeaDpJlUkcT8eRHtxuX-GFcOMInHeCEN9QzA4sSfgHjb9CfaahiCjxcxM73paygpYg5WOffJ8ZWQ5gFpZdPMPSI-k2BcCsNDhx4JLddCUkONZWFqwqijPfK2nn5lK2_oGJRjrNAqQnoppJdq6OWRN80Ls9IRyOVVd5CeTTX04F1kTOdfVSUQlARTMYZBicRK7piODNPCxjBukRgRG4-8BG5YaqO33VeYh14iQ8Hk945H1mtmUZXsydXiT_HIi6YYpAZuBenMTc9yBYIcJgSwMNR5WPJW0xWVuLYooXG5xHVL37Jcko2GhWdyQJ8IaT2yUfPn4rMunSxWMPD_JlV1B4NBk3r874E_Jzd7R4O-6u8d7D8ht-A1Ud4fXSet0_mZewpA8tQ8q_5en3y5aoHxF4uSgtY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDTLwgGF-BAQGBBNJCGzuxkweEBlvVsXVCiEl9M7bj0EptWpoNtDd-Ar-Hn8Mv4c75qKpp8LS3-CNOfHe-D_t8R8hzzsIcLB8b5FmYBRGnOkiiMApSkWdRyuKIaefle8T7x9GHYTxcI7-buzDoVtnwRMeos5nBPfIORcsg5SLinbx2i_i423s7_xZgBik8aW3SaVQkcmDPfoD5Vr7Z3wVcv6C0t_f5fT-oMwwEBsRYGnDT1UobCjJT5Wig6TzJ48TAI3yOaq6oitMkF5QnyuoI2gUzaTfLdNZNTZfBuFfIVcHiENeYGLbGHqhJbm8RpLMAEAhehxWKaUw7djrFS_Ahah8u6OxSIrrEASDnRuiWeV7nPe-62Z7frmrXTjz2bpIbtV7r71SEeIus2WKTXKsyXZ5tko1BfYZ_m5SfbPbn569yNM5B2_Xx5nFhJ4sR2Mfzclz4wHOmdU4xf-Hy3tjSn-AeAhbRoRfK0E-Dgpz5U2B02_5UGQVT8PFKZqG2fQUtLvtgXXOHHF8KYu6S9WJW2PvEZwLMTK6j2GJsQhMpLqim2rA413ESKo-8bsAvTR0XHdNzTCTaR4gvifiSLb488rJ9YV6FBLm46zvEZ9sNY3m7itniq6xZgxRgNKYwKZ4ZEVmmEs0UNynMm2eap9ojz4AaVsbo7xxKrMN4kTFn4nvoka2GWGTNhUq5XDMeedo2A__AQyFV2NlpKYGlA0BAK4Y-9yraaj9FBe4yChhcrFDdyr-sthTjkYtRDnooKrceedXQ5_K3LgQWcwT8P6DKvcFg0JYe_HviT8gGsAl5uH908JBch7d4dZF0i6yfLE7tI9AoT_Rjt3R98uWyecVfR3mFpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red%E2%80%90shifted+channelrhodopsin+stimulation+restores+light+responses+in+blind+mice%2C+macaque+retina%2C+and+human+retina&rft.jtitle=EMBO+molecular+medicine&rft.au=Sengupta%2C+Abhishek&rft.au=Chaffiol%2C+Antoine&rft.au=Mac%C3%A9%2C+Emilie&rft.au=Caplette%2C+Romain&rft.date=2016-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=8&rft.issue=11&rft.spage=1248&rft.epage=1264&rft_id=info:doi/10.15252%2Femmm.201505699&rft_id=info%3Apmid%2F27679671&rft.externalDocID=PMC5090658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon