Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients
Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneo...
Saved in:
Published in | Health economics Vol. 16; no. 11; pp. 1133 - 1157 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2007
Wiley Periodicals Inc |
Series | Health Economics |
Subjects | |
Online Access | Get full text |
ISSN | 1057-9230 1099-1050 |
DOI | 10.1002/hec.1291 |
Cover
Abstract | Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self‐selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5‐year direct costs of breast‐conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. Copyright © 2007 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self-selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5-year direct costs of breast-conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters.Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self-selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5-year direct costs of breast-conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self-selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5-year direct costs of breast-conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self‐selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5‐year direct costs of breast‐conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. Copyright © 2007 John Wiley & Sons, Ltd. Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self-selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5-year direct costs of breast-conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. [PUBLICATION ABSTRACT] Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when estimating treatment effects. Less attention has been paid in the applied literature to the proper use of IVs if treatment effects are heterogeneous across subjects and individuals select treatments based on expected idiosyncratic gains or losses from treatments. In this paper we compare conventional IV analysis with alternative approaches that use IVs to estimate treatment effects in models with response heterogeneity and self-selection. Instead of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify the marginal patients and we apply the method of local IVs to estimate the average treatment effect and the effect on the treated on 5-year direct costs of breast-conserving surgery and radiation therapy compared with mastectomy in breast cancer patients. We use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey which is designed to be representative of all female Medicare beneficiaries (aged 67 or older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the advantages and limitations of conventional and alternative IV methods in estimating mean treatment effect parameters. [Copyright 2007 John Wiley and Sons, Ltd.] |
Author | Basu, Anirban Urzua, Sergio Heckman, James J. Navarro-Lozano, Salvador |
Author_xml | – sequence: 1 givenname: Anirban surname: Basu fullname: Basu, Anirban email: abasu@medicine.bsd.uchicago.edu organization: Section of General Internal Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA – sequence: 2 givenname: James J. surname: Heckman fullname: Heckman, James J. organization: Department of Economics, University of Chicago, Chicago, IL, USA – sequence: 3 givenname: Salvador surname: Navarro-Lozano fullname: Navarro-Lozano, Salvador organization: Department of Economics, University of Wisconsin-Madison, Madison, WI, USA – sequence: 4 givenname: Sergio surname: Urzua fullname: Urzua, Sergio organization: Department of Economics, Northwestern University, Chicago, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17910109$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/wlyhlthec/v_3a16_3ay_3a2007_3ai_3a11_3ap_3a1133-1157.htm$$DView record in RePEc |
BookMark | eNqFks1u1DAQxyNURD9A4gmQxQFxyeKPOF5zq5bSggocaMXRcpwJ6-JNgu1t2UfgrZnslkoUIQ4z4xn_5m_Z48Nirx96KIqnjM4YpfzVEtyMcc0eFAeMal0yKunetJaq1FzQ_eIwpStKcY_Wj4p9pjSjSB4UPy8TkKEjvk85rlfQZxvItY3eNgESlkleAhkjJOjdllxChjh8hR583hDbtyRB6Ep04LIf-tdYI3Ycg3d2ykkeSI5g8ySeJoUGs5SJs6gYyYjUtPO4eNjZkODJbTwqLt-eXCzOyvNPp-8Wx-elq5lgZWUV100LWohaNaBq7bii0lnZVGhMcltXet6pTuoWGsG7VrUAsuo69ALEUfFipzvG4fsaUjYrnxyEYHsY1snU84pzIcV_Qak4n2tWIfj8Hng1rGOPlzBccFpXSswR-rCDIozgzBj9ysaNuQmbZcAndubaCMtqdBs0TqnC4KcaQzduF0IYxqQyy7xCvWe3h66bFbR3gr9Hi8BsB7g4pBShM87n7URytD4YRs30d8x09vR3sOHlvYY7zb_Rcofe-ACbf3Lm7GTxJ-9Thh93vI3fTK2EkubLx1Mj3n9mF4s3c1OLXzzZ4hc |
CODEN | HEECEZ |
CitedBy_id | crossref_primary_10_1002_hec_1466 crossref_primary_10_1515_fhep_2013_0009 crossref_primary_10_1177_1536867X1501500204 crossref_primary_10_1002_hec_3647 crossref_primary_10_1007_s10549_020_05526_4 crossref_primary_10_1016_j_prro_2011_02_001 crossref_primary_10_1002_hec_1748 crossref_primary_10_1016_j_socscimed_2016_11_005 crossref_primary_10_1016_j_apmr_2011_12_011 crossref_primary_10_1097_MLR_0000000000000614 crossref_primary_10_1002_hec_3490 crossref_primary_10_1111_jep_12204 crossref_primary_10_1111_j_1524_4733_2009_00567_x crossref_primary_10_1016_j_jclinepi_2013_02_014 crossref_primary_10_1111_1475_6773_12463 crossref_primary_10_2139_ssrn_4196264 crossref_primary_10_2165_11537750_000000000_00000 crossref_primary_10_1007_s10640_024_00905_7 crossref_primary_10_1002_hec_4903 crossref_primary_10_1002_pst_2111 crossref_primary_10_1007_s10742_018_0190_7 crossref_primary_10_1016_j_gie_2012_03_247 crossref_primary_10_1007_s40258_013_0075_4 crossref_primary_10_1186_s12263_022_00708_9 crossref_primary_10_1162_REST_a_00198 crossref_primary_10_1515_ijb_2015_0006 crossref_primary_10_1002_hec_2812 crossref_primary_10_1002_pds_1908 crossref_primary_10_1097_SLA_0000000000000796 crossref_primary_10_1136_bmjopen_2021_055603 crossref_primary_10_1002_hec_4719 crossref_primary_10_1002_jae_2343 crossref_primary_10_1111_jori_12152 crossref_primary_10_2139_ssrn_1924005 crossref_primary_10_1177_0272989X15610780 crossref_primary_10_1016_j_jhealeco_2018_06_011 crossref_primary_10_2139_ssrn_1310191 crossref_primary_10_1016_j_soard_2022_02_021 crossref_primary_10_1097_MLR_0b013e31819c94a1 crossref_primary_10_1111_rssb_12300 crossref_primary_10_2139_ssrn_1301767 crossref_primary_10_2139_ssrn_3270447 crossref_primary_10_1016_j_jeconom_2023_105495 crossref_primary_10_1111_joes_12333 crossref_primary_10_1093_jncimonographs_lgt011 crossref_primary_10_1002_sim_6227 crossref_primary_10_2139_ssrn_2721681 crossref_primary_10_1016_j_labeco_2016_06_004 crossref_primary_10_1093_aepp_ppu021 crossref_primary_10_1016_j_jval_2011_06_009 crossref_primary_10_1093_jnci_djq393 crossref_primary_10_1002_sim_4168 crossref_primary_10_1016_j_jfe_2015_10_003 crossref_primary_10_1200_JOP_2014_001405 crossref_primary_10_1002_hec_4575 crossref_primary_10_1111_1475_6773_12013 crossref_primary_10_1002_hec_1783 crossref_primary_10_1002_hec_1302 crossref_primary_10_1155_2012_127854 crossref_primary_10_1002_hec_2996 crossref_primary_10_1017_S0266462314000142 crossref_primary_10_1002_hec_1667 crossref_primary_10_1007_s13524_013_0238_9 crossref_primary_10_4236_jssm_2011_44060 crossref_primary_10_1111_j_1524_4733_2009_00602_x crossref_primary_10_1080_01621459_2019_1688663 crossref_primary_10_1002_sim_9865 crossref_primary_10_1007_BF03399404 crossref_primary_10_1111_j_1471_0366_2012_00373_x crossref_primary_10_1002_hec_3970 crossref_primary_10_1177_1476127008094339 crossref_primary_10_1002_sim_6128 crossref_primary_10_1200_JCO_2012_42_2659 crossref_primary_10_1002_jae_2856 crossref_primary_10_1002_hec_2806 crossref_primary_10_1002_pds_3252 crossref_primary_10_1177_0272989X251319794 crossref_primary_10_1002_hec_4030 crossref_primary_10_2139_ssrn_1056141 crossref_primary_10_1007_s40273_015_0362_z crossref_primary_10_1016_j_worlddev_2014_05_007 crossref_primary_10_1111_j_1365_2753_2011_01802_x crossref_primary_10_1016_j_jpainsymman_2016_01_016 crossref_primary_10_1177_0272989X221100799 crossref_primary_10_1016_j_annepidem_2016_06_003 crossref_primary_10_2139_ssrn_1481242 crossref_primary_10_1016_j_jval_2018_08_012 crossref_primary_10_1097_EDE_0000000000001596 crossref_primary_10_1177_0272989X221100717 crossref_primary_10_1016_j_wdp_2019_100150 crossref_primary_10_1177_0272989X241289336 crossref_primary_10_1161_HYPERTENSIONAHA_120_16934 crossref_primary_10_1093_aje_kwr283 crossref_primary_10_1177_0011392115589599 crossref_primary_10_1186_s12874_022_01663_0 crossref_primary_10_1002_hec_3031 crossref_primary_10_1016_j_jclinepi_2013_04_008 crossref_primary_10_1016_j_jval_2010_10_014 crossref_primary_10_1007_s40258_018_0380_z crossref_primary_10_1007_s12561_011_9033_6 crossref_primary_10_1016_j_jeconom_2021_03_015 crossref_primary_10_2139_ssrn_1893664 crossref_primary_10_2139_ssrn_2874359 crossref_primary_10_1093_jeea_jvx058 crossref_primary_10_1016_j_jhealeco_2008_07_010 crossref_primary_10_1177_0272989X12448929 crossref_primary_10_1186_s12874_024_02187_5 crossref_primary_10_1586_erp_12_29 crossref_primary_10_1093_aje_kwr448 crossref_primary_10_1016_j_ijrobp_2013_05_050 crossref_primary_10_1186_s12913_022_07475_8 crossref_primary_10_1080_24709360_2020_1724003 crossref_primary_10_1002_hec_4134 crossref_primary_10_1016_j_worlddev_2020_104962 |
Cites_doi | 10.1086/504455 10.1111/1468-0262.00237 10.1162/003465304323023660 10.1086/322086 10.2307/1909757 10.1002/hec.710 10.2307/2938303 10.1111/1468-2354.t01-1-00074 10.1002/hec.852 10.1016/S0165-1765(99)00181-0 10.1073/pnas.96.8.4730 10.1162/rest.88.3.389 10.1080/01621459.1972.10482378 10.1200/JCO.2001.19.4.1064 10.1086/261352 10.2307/146178 10.1146/annurev.publhealth.19.1.17 10.1214/aos/1176344064 10.1056/NEJMoa020989 10.1016/S0167-6296(98)00039-3 10.2307/1937899 10.2307/2291631 10.1001/jama.1994.03520110039026 10.1080/01621459.1996.10476902 10.2307/2951620 10.1016/j.jhealeco.2004.09.011 10.1257/aer.91.2.107 10.1111/j.1468-0262.2005.00594.x 10.2307/2983637 10.1111/j.0008-4085.2005.00299.x 10.1111/j.1475-6773.2003.00184.x 10.1016/S1573-4412(05)80010-8 10.1093/oxfordjournals.oep.a041827 10.1111/1468-0262.00277 10.1016/S0002-9610(00)00501-8 10.1200/JCO.2003.03.126 |
ContentType | Journal Article |
Copyright | Copyright © 2007 John Wiley & Sons, Ltd. (c) 2007 John Wiley & Sons, Ltd. Copyright Wiley Periodicals Inc. Nov 2007 |
Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: (c) 2007 John Wiley & Sons, Ltd. – notice: Copyright Wiley Periodicals Inc. Nov 2007 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM DKI X2L 7QJ 7X8 |
DOI | 10.1002/hec.1291 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed RePEc IDEAS RePEc Applied Social Sciences Index & Abstracts (ASSIA) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Applied Social Sciences Index and Abstracts (ASSIA) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Applied Social Sciences Index and Abstracts (ASSIA) Applied Social Sciences Index and Abstracts (ASSIA) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1099-1050 |
EndPage | 1157 |
ExternalDocumentID | 1369004561 wlyhlthec_v_3a16_3ay_3a2007_3ai_3a11_3ap_3a1133_1157_htm 17910109 10_1002_hec_1291 HEC1291 ark_67375_WNG_3JS1TCD8_6 |
Genre | article Journal Article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -~X ..I .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1OL 1ZS 31~ 33P 3WU 4.4 44B 4ZD 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5GY 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAONW AAOUF AARRQ AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABQWH ABSOO ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFS ACGOF ACHQT ACMXC ACPOU ACSCC ACXQS ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKFF AFPWT AFZJQ AHBTC AIACR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-C D-D DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DUUFO EBD EBS EJD EMOBN EOH F00 F01 F5P FEDTE FUBAC G-S G.N G50 GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MXFUL MXMAN MXSSH N04 N06 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WH7 WHWMO WIB WIH WII WIJ WJL WOHZO WQZ WRC WUP WVDHM WWH WXI WXSBR XG1 XV2 YHZ ZZTAW ~IA ~WP AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AFYRF ALVPJ AAYXX AEYWJ AGHNM AGQPQ CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM - 08R 0R 1AW 31 3N AAPBV AAVGM ABFLS ACJLH ACXME ADDAD ADRMI AFVGU AGJLS AJYWA DKI GA HZ IA IPNFZ NF P4A PQEST RIG WP X X2L Y3 7QJ 7X8 |
ID | FETCH-LOGICAL-c6131-4a729bde93367be769c2705ca5b4a5b152a6498f7f59deb32fd7dee54ffee53e3 |
IEDL.DBID | DR2 |
ISSN | 1057-9230 |
IngestDate | Fri Jul 11 07:10:36 EDT 2025 Fri Jul 11 01:37:50 EDT 2025 Sat Sep 06 17:43:44 EDT 2025 Wed Aug 18 03:10:23 EDT 2021 Mon Jul 21 06:08:16 EDT 2025 Tue Jul 01 03:58:09 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Wed Jan 22 17:01:34 EST 2025 Wed Oct 30 09:51:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor (c) 2007 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6131-4a729bde93367be769c2705ca5b4a5b152a6498f7f59deb32fd7dee54ffee53e3 |
Notes | ArticleID:HEC1291 istex:5BF1F462B03B79D688FD802E27579B9536389DF5 ark:/67375/WNG-3JS1TCD8-6 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 17910109 |
PQID | 232064738 |
PQPubID | 31187 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_68422353 proquest_miscellaneous_57228914 proquest_journals_232064738 repec_primary_wlyhlthec_v_3a16_3ay_3a2007_3ai_3a11_3ap_3a1133_1157_htm pubmed_primary_17910109 crossref_citationtrail_10_1002_hec_1291 crossref_primary_10_1002_hec_1291 wiley_primary_10_1002_hec_1291_HEC1291 istex_primary_ark_67375_WNG_3JS1TCD8_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2007 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: November 2007 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: York |
PublicationSeriesTitle | Health Economics |
PublicationTitle | Health economics |
PublicationTitleAlternate | Health Econ |
PublicationYear | 2007 |
Publisher | John Wiley & Sons, Ltd Wiley Periodicals Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Periodicals Inc |
References | Brooks JM, Chrischilles E, Scott S, Chen-Hardee S. 2003. Was lumpectomy underutilized for early stage breast cancer? - instrumental variables evidence for stage II patients from Iowa. Health Services Research 38(6, Part I): 1385-1402. Heckman JJ. 2001. Microdata, heterogeneity, and the evaluation of public policy: Nobel Lecture. Journal of Political Economy 109(4): 673-748. Manning WG, Basu A, Mullahy J. 2006. Generalized modeling approaches on risk adjustment to skewed outcomes. Journal of Health, Economics 24(3): 465-488. Quandt RE. 1988. The Econometrics of Disequilibrium. Oxford: Blackwell. Claxton K. 1999. The Irrelevance of Inference: a decision-making approach to the stochastic evaluation of health care technologies. Journal of Health Economics 18: 341-364. Heckman JJ, Urzua S, Vytlacil E. 2006b. Understanding instrumental variables in models with essential heterogeneity. Review of Economics and Statistics 88(3): 389-432. Harris KM, Remler DK. 1998. Who is the marginal patient? Understanding instrumental variable estimates of treatment effects. Health Services Research 33(5): 1337-1360. Heckman JJ, Vytlacil E. 2005. Structural equations, treatment effects and econometric policy evaluation. Econometrica 73(3): 669-738. Heckman JJ. 1978. Dummy endogenous variables in a simultaneous equations system. Econometrica 46(4): 931-959. Heckman JJ, Vytlacil E. 2001b. Policy relevant treatment effects. American Economic Review 91(2): 107-111. Imbens GW. 2004. Non-parametric estimation of average treatment effects under exogeneity. A review. Review of Economics and Statistics 19(3): 358-364. Vytlacil E. 2002. Independence, monotonicity, and latent index models: an equivalence result. Econometrica 70(1): 331-341. LaLonde R. 1986. Evaluating the econometric evaluations of training programs with experimental data. American Economic Review 76(4): 604-620. Rubin D. 1978. Bayesian inference for causal effects: the role of randomization. Annals of Statistics 6: 34-58. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E. 2002. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. New England Journal of Medicine 347(16): 1127-1132. Cox DR. 1958. The Planning of Experiments. Wiley: New York. Fisher RA. 1935. Design of Experiments. Oliver and Boyd: Edinburgh. Heckman JJ, Vytlacil E. 1999. Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences of the United States of America 96: 4730-4734. Polsky D, Mandelblatt JS, Weeks J, Venditti L, Hwang YT, Glick HA, Hadley J, Schulman KA. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146. Earle CE, Tsai JS, Gelber RD, Weinstein MC, Neumann PJ, Weeks JC. 2001. Effectiveness of chemotherapy for advanced lung cancer in the elderly: Instrument variable and propensity analysis. Journal of Clinical Oncology 19(4): 1064-1070. Heckman JJ, Stixrud J, Urzua S. 2006a. The effect of cognitive and noncognitive skills on labor market outcomes and social behavior. Journal of Labor Economics 24(3): 411-481. Angrist J, Imbens G, Rubin G. 1996. Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91: 444-455. Heckman JJ, Sedlacek G. 1985. Heterogeneity, aggregation and market wage functions: An empirical model of self selection in the labor market. Journal of Political Economy 93(6): 1077-1125. Hadley J, Polsky D, Mandelblatt JS, Mitchell JM, Weeks JC, Wang Q, Hwang YT, OPTIONS Research Team. 2003. An exploratory instrumental variable analysis of the outcomes of localized breast cancer treatments in a Medicare population. Health Economics 12: 171-186. Card D. 2001. Estimating the return to schooling. Progress on some persistent econometric problems. Economterica 69(5): 1127-1160. Heckman JJ, Honore B. 1990. The empirical content of the Roy model. Econometrica 58(5): 1121-1149. Nold JR, Beamer L, Helmer SD, McBoyle MF. 2000. Factors influencing a women's choice to undergo breast-conserving surgery versus modified radical mastectomy. The American Journal of Surgery 180(6): 413-418. Björklund A, Moffitt R. 1987. The estimation of wage gains and welfare gains in self-selection. Review of Economics and Statistics 69(1): 42-49. Heckman JJ. 1996. Comments on Angrist, Imbens, and Rubin: identification of causal effects using instrumental variables. Journal of American Statistical Association 91: 434. Heckman JJ, Navarro S. 2004. Using matching, instrumental variables, and control functions to estimate economic choice models. Review of Economics and Statistics 86(1): 30-57. Heckman JJ, Vytlacil E. 2000. The relationship between treatment parameters within a latent variable framework. Economic Letters 66(1): 33-39. Heckman JJ. 1997. Instrumental Variables: a study of implicit behavioral assumptions used in making program evaluations. Journal of Human Resources 32(3): 441-462. Auld MC. 2005. Causal effect of early initiation on adolescent smoking patterns. Canadian Journal of Economics 38(3): 709-734. Basu A, Manning WG, Mullahy J. 2004. Comparing alternative models: log vs proportional hazard? Health Economics 13(8): 749-765. Hadley J, Mitchell JM, Mandelblatt J. 1992. Medicare fees and small area variations in the treatment of localized breast cancer. New England Journal of Medicine 52: 334-360. Imbens G, Angrist J. 1994. Identification and estimation of local average treatment effects. Econometrica 62(2): 467-475. Newhouse J, McClellan MB. 1998. Econometrics in outcomes research: the use of instrumental variables. Annual Review of Public Health 19: 17-34. Neyman J. 1935. Statistical problems in agricultural experimentation (with discussions). Journal of the Royal Statistical Society, Series B (Supplement) 2: 107-180. Quandt RE. 1972. A new approach to estimating switching regressions. Journal of the American Statistical Association 67: 306-310. Roy AD. 1951. Some thoughts on the distribution of earnings. Oxford Economic Papers 3: 135-146. Carneiro P, Hansen K, Heckman JJ. 2003. Estimating distribution of treatment effects with an application to returns to schooling and measurement of the effects of uncertainty on college choice. International Economic Review 44(2): 361-422. McClellan MB, Newhouse JB, McNeil BJ. 1994. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Journal of the American Medical Association 272(11): 859-866. 1990; 58 1986; 76 2001; 109 1935 1994; 62 1951; 3 1978; 6 1992; 52 2003; 12 1998; 19 2006; 24 1999; 18 2001; 19 2005; 73 1986 2007; 6 2002; 347 1999; 96 1985; 93 2005; 38 2006a; 24 2003; 44 1989 1988 2004; 86 2006b; 88 2000; 66 1994; 272 1998 2003; 38 2006 2001a 1996; 91 1972; 67 2001; 69 1958 1987; 69 1997; 32 2004; 19 2004; 13 2002; 70 1978; 46 1998; 33 2003; 21 1994; 4 2001b; 91 1923 1935; 2 2000; 180 Heckman JJ (e_1_2_1_22_1) 1986 Heckman JJ (e_1_2_1_32_1) 2007 LaLonde R (e_1_2_1_35_1) 1986; 76 e_1_2_1_20_1 Cox DR (e_1_2_1_10_1) 1958 Neyman J (e_1_2_1_41_1) 1935; 2 Harris KM (e_1_2_1_15_1) 1998; 33 e_1_2_1_45_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_4_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 McClellan MB (e_1_2_1_38_1) 1994; 272 e_1_2_1_18_1 Heckman JJ (e_1_2_1_29_1) 2001 Hadley J (e_1_2_1_13_1) 1992; 52 Vanness DJ (e_1_2_1_50_1) 2006 Polsky D (e_1_2_1_43_1) 2006 e_1_2_1_42_1 e_1_2_1_40_1 Manning WG (e_1_2_1_36_1) 2006 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 Heckman JJ (e_1_2_1_24_1) 1998 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_5_1 Imbens GW (e_1_2_1_34_1) 2004; 19 e_1_2_1_3_1 e_1_2_1_51_1 Fisher RA (e_1_2_1_12_1) 1935 e_1_2_1_11_1 e_1_2_1_53_1 e_1_2_1_17_1 Quandt RE (e_1_2_1_47_1) 1988 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Heckman JJ, Stixrud J, Urzua S. 2006a. The effect of cognitive and noncognitive skills on labor market outcomes and social behavior. Journal of Labor Economics 24(3): 411-481. – reference: Neyman J. 1935. Statistical problems in agricultural experimentation (with discussions). Journal of the Royal Statistical Society, Series B (Supplement) 2: 107-180. – reference: Manning WG, Basu A, Mullahy J. 2006. Generalized modeling approaches on risk adjustment to skewed outcomes. Journal of Health, Economics 24(3): 465-488. – reference: Heckman JJ, Vytlacil E. 2005. Structural equations, treatment effects and econometric policy evaluation. Econometrica 73(3): 669-738. – reference: Claxton K. 1999. The Irrelevance of Inference: a decision-making approach to the stochastic evaluation of health care technologies. Journal of Health Economics 18: 341-364. – reference: Fisher RA. 1935. Design of Experiments. Oliver and Boyd: Edinburgh. – reference: Cox DR. 1958. The Planning of Experiments. Wiley: New York. – reference: Björklund A, Moffitt R. 1987. The estimation of wage gains and welfare gains in self-selection. Review of Economics and Statistics 69(1): 42-49. – reference: Heckman JJ, Sedlacek G. 1985. Heterogeneity, aggregation and market wage functions: An empirical model of self selection in the labor market. Journal of Political Economy 93(6): 1077-1125. – reference: Heckman JJ, Honore B. 1990. The empirical content of the Roy model. Econometrica 58(5): 1121-1149. – reference: Nold JR, Beamer L, Helmer SD, McBoyle MF. 2000. Factors influencing a women's choice to undergo breast-conserving surgery versus modified radical mastectomy. The American Journal of Surgery 180(6): 413-418. – reference: Rubin D. 1978. Bayesian inference for causal effects: the role of randomization. Annals of Statistics 6: 34-58. – reference: Auld MC. 2005. Causal effect of early initiation on adolescent smoking patterns. Canadian Journal of Economics 38(3): 709-734. – reference: McClellan MB, Newhouse JB, McNeil BJ. 1994. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Journal of the American Medical Association 272(11): 859-866. – reference: Newhouse J, McClellan MB. 1998. Econometrics in outcomes research: the use of instrumental variables. Annual Review of Public Health 19: 17-34. – reference: Quandt RE. 1988. The Econometrics of Disequilibrium. Oxford: Blackwell. – reference: Heckman JJ. 2001. Microdata, heterogeneity, and the evaluation of public policy: Nobel Lecture. Journal of Political Economy 109(4): 673-748. – reference: Brooks JM, Chrischilles E, Scott S, Chen-Hardee S. 2003. Was lumpectomy underutilized for early stage breast cancer? - instrumental variables evidence for stage II patients from Iowa. Health Services Research 38(6, Part I): 1385-1402. – reference: Heckman JJ, Urzua S, Vytlacil E. 2006b. Understanding instrumental variables in models with essential heterogeneity. Review of Economics and Statistics 88(3): 389-432. – reference: Polsky D, Mandelblatt JS, Weeks J, Venditti L, Hwang YT, Glick HA, Hadley J, Schulman KA. 2003. Economic evaluation of breast cancer treatment: considering the value of patient choice. Journal of Clinical Oncology 21: 1139-1146. – reference: Hadley J, Polsky D, Mandelblatt JS, Mitchell JM, Weeks JC, Wang Q, Hwang YT, OPTIONS Research Team. 2003. An exploratory instrumental variable analysis of the outcomes of localized breast cancer treatments in a Medicare population. Health Economics 12: 171-186. – reference: Hadley J, Mitchell JM, Mandelblatt J. 1992. Medicare fees and small area variations in the treatment of localized breast cancer. New England Journal of Medicine 52: 334-360. – reference: LaLonde R. 1986. Evaluating the econometric evaluations of training programs with experimental data. American Economic Review 76(4): 604-620. – reference: Quandt RE. 1972. A new approach to estimating switching regressions. Journal of the American Statistical Association 67: 306-310. – reference: Heckman JJ. 1978. Dummy endogenous variables in a simultaneous equations system. Econometrica 46(4): 931-959. – reference: Roy AD. 1951. Some thoughts on the distribution of earnings. Oxford Economic Papers 3: 135-146. – reference: Heckman JJ, Vytlacil E. 2000. The relationship between treatment parameters within a latent variable framework. Economic Letters 66(1): 33-39. – reference: Imbens G, Angrist J. 1994. Identification and estimation of local average treatment effects. Econometrica 62(2): 467-475. – reference: Heckman JJ. 1997. Instrumental Variables: a study of implicit behavioral assumptions used in making program evaluations. Journal of Human Resources 32(3): 441-462. – reference: Heckman JJ, Navarro S. 2004. Using matching, instrumental variables, and control functions to estimate economic choice models. Review of Economics and Statistics 86(1): 30-57. – reference: Basu A, Manning WG, Mullahy J. 2004. Comparing alternative models: log vs proportional hazard? Health Economics 13(8): 749-765. – reference: Heckman JJ. 1996. Comments on Angrist, Imbens, and Rubin: identification of causal effects using instrumental variables. Journal of American Statistical Association 91: 434. – reference: Heckman JJ, Vytlacil E. 1999. Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences of the United States of America 96: 4730-4734. – reference: Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E. 2002. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. New England Journal of Medicine 347(16): 1127-1132. – reference: Angrist J, Imbens G, Rubin G. 1996. Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91: 444-455. – reference: Harris KM, Remler DK. 1998. Who is the marginal patient? Understanding instrumental variable estimates of treatment effects. Health Services Research 33(5): 1337-1360. – reference: Vytlacil E. 2002. Independence, monotonicity, and latent index models: an equivalence result. Econometrica 70(1): 331-341. – reference: Imbens GW. 2004. Non-parametric estimation of average treatment effects under exogeneity. A review. Review of Economics and Statistics 19(3): 358-364. – reference: Card D. 2001. Estimating the return to schooling. Progress on some persistent econometric problems. Economterica 69(5): 1127-1160. – reference: Earle CE, Tsai JS, Gelber RD, Weinstein MC, Neumann PJ, Weeks JC. 2001. Effectiveness of chemotherapy for advanced lung cancer in the elderly: Instrument variable and propensity analysis. Journal of Clinical Oncology 19(4): 1064-1070. – reference: Carneiro P, Hansen K, Heckman JJ. 2003. Estimating distribution of treatment effects with an application to returns to schooling and measurement of the effects of uncertainty on college choice. International Economic Review 44(2): 361-422. – reference: Heckman JJ, Vytlacil E. 2001b. Policy relevant treatment effects. American Economic Review 91(2): 107-111. – volume: 46 start-page: 931 issue: 4 year: 1978 end-page: 959 article-title: Dummy endogenous variables in a simultaneous equations system publication-title: Econometrica – volume: 66 start-page: 33 issue: 1 year: 2000 end-page: 39 article-title: The relationship between treatment parameters within a latent variable framework publication-title: Economic Letters – volume: 24 start-page: 411 issue: 3 year: 2006a end-page: 481 article-title: The effect of cognitive and noncognitive skills on labor market outcomes and social behavior publication-title: Journal of Labor Economics – volume: 73 start-page: 669 issue: 3 year: 2005 end-page: 738 article-title: Structural equations, treatment effects and econometric policy evaluation publication-title: Econometrica – year: 1989 – year: 1923 – volume: 91 start-page: 444 year: 1996 end-page: 455 article-title: Identification of causal effects using instrumental variables publication-title: Journal of the American Statistical Association – volume: 21 start-page: 1139 year: 2003 end-page: 1146 article-title: Economic evaluation of breast cancer treatment: considering the value of patient choice publication-title: Journal of Clinical Oncology – volume: 24 start-page: 465 issue: 3 year: 2006 end-page: 488 article-title: Generalized modeling approaches on risk adjustment to skewed outcomes publication-title: Journal of Health, Economics – volume: 93 start-page: 1077 issue: 6 year: 1985 end-page: 1125 article-title: Heterogeneity, aggregation and market wage functions: An empirical model of self selection in the labor market publication-title: Journal of Political Economy – volume: 52 start-page: 334 year: 1992 end-page: 360 article-title: Medicare fees and small area variations in the treatment of localized breast cancer publication-title: New England Journal of Medicine – year: 1998 – volume: 88 start-page: 389 issue: 3 year: 2006b end-page: 432 article-title: Understanding instrumental variables in models with essential heterogeneity publication-title: Review of Economics and Statistics – volume: 32 start-page: 441 issue: 3 year: 1997 end-page: 462 article-title: Instrumental Variables: a study of implicit behavioral assumptions used in making program evaluations publication-title: Journal of Human Resources – volume: 3 start-page: 135 year: 1951 end-page: 146 article-title: Some thoughts on the distribution of earnings publication-title: Oxford Economic Papers – volume: 109 start-page: 673 issue: 4 year: 2001 end-page: 748 article-title: Microdata, heterogeneity, and the evaluation of public policy: Nobel Lecture publication-title: Journal of Political Economy – volume: 67 start-page: 306 year: 1972 end-page: 310 article-title: A new approach to estimating switching regressions publication-title: Journal of the American Statistical Association – start-page: 1 year: 2001a end-page: 46 – volume: 91 start-page: 107 issue: 2 year: 2001b end-page: 111 article-title: Policy relevant treatment effects publication-title: American Economic Review – volume: 91 start-page: 434 year: 1996 article-title: Comments on Angrist, Imbens, and Rubin: identification of causal effects using instrumental variables publication-title: Journal of American Statistical Association – volume: 69 start-page: 1127 issue: 5 year: 2001 end-page: 1160 article-title: Estimating the return to schooling. Progress on some persistent econometric problems publication-title: Economterica – volume: 70 start-page: 331 issue: 1 year: 2002 end-page: 341 article-title: Independence, monotonicity, and latent index models: an equivalence result publication-title: Econometrica – volume: 19 start-page: 1064 issue: 4 year: 2001 end-page: 1070 article-title: Effectiveness of chemotherapy for advanced lung cancer in the elderly: Instrument variable and propensity analysis publication-title: Journal of Clinical Oncology – start-page: 156 year: 1986 end-page: 245 – year: 1958 – volume: 18 start-page: 341 year: 1999 end-page: 364 article-title: The Irrelevance of Inference: a decision‐making approach to the stochastic evaluation of health care technologies publication-title: Journal of Health Economics – volume: 19 start-page: 17 year: 1998 end-page: 34 article-title: Econometrics in outcomes research: the use of instrumental variables publication-title: Annual Review of Public Health – year: 1935 – volume: 62 start-page: 467 issue: 2 year: 1994 end-page: 475 article-title: Identification and estimation of local average treatment effects publication-title: Econometrica – volume: 38 start-page: 709 issue: 3 year: 2005 end-page: 734 article-title: Causal effect of early initiation on adolescent smoking patterns publication-title: Canadian Journal of Economics – volume: 12 start-page: 171 year: 2003 end-page: 186 article-title: An exploratory instrumental variable analysis of the outcomes of localized breast cancer treatments in a Medicare population publication-title: Health Economics – volume: 33 start-page: 1337 issue: 5 year: 1998 end-page: 1360 article-title: Who is the marginal patient? Understanding instrumental variable estimates of treatment effects publication-title: Health Services Research – volume: 58 start-page: 1121 issue: 5 year: 1990 end-page: 1149 article-title: The empirical content of the Roy model publication-title: Econometrica – volume: 4 start-page: 2443 year: 1994 end-page: 2521 – volume: 44 start-page: 361 issue: 2 year: 2003 end-page: 422 article-title: Estimating distribution of treatment effects with an application to returns to schooling and measurement of the effects of uncertainty on college choice publication-title: International Economic Review – volume: 347 start-page: 1127 issue: 16 year: 2002 end-page: 1132 article-title: Twenty‐year follow‐up of a randomized study comparing breast‐conserving surgery with radical mastectomy for early breast cancer publication-title: New England Journal of Medicine – volume: 13 start-page: 749 issue: 8 year: 2004 end-page: 765 article-title: Comparing alternative models: log vs proportional hazard? publication-title: Health Economics – volume: 19 start-page: 358 issue: 3 year: 2004 end-page: 364 article-title: Non‐parametric estimation of average treatment effects under exogeneity. A review publication-title: Review of Economics and Statistics – volume: 38 start-page: 1385 issue: 6, Part I year: 2003 end-page: 1402 article-title: Was lumpectomy underutilized for early stage breast cancer? – instrumental variables evidence for stage II patients from Iowa publication-title: Health Services Research – volume: 2 start-page: 107 issue: Supplement year: 1935 end-page: 180 article-title: Statistical problems in agricultural experimentation (with discussions) publication-title: Journal of the Royal Statistical Society, Series B – volume: 86 start-page: 30 issue: 1 year: 2004 end-page: 57 article-title: Using matching, instrumental variables, and control functions to estimate economic choice models publication-title: Review of Economics and Statistics – year: 1988 – year: 2006 – volume: 96 start-page: 4730 year: 1999 end-page: 4734 article-title: Local instrumental variables and latent variable models for identifying and bounding treatment effects publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 year: 2007 – volume: 69 start-page: 42 issue: 1 year: 1987 end-page: 49 article-title: The estimation of wage gains and welfare gains in self‐selection publication-title: Review of Economics and Statistics – volume: 6 start-page: 34 year: 1978 end-page: 58 article-title: Bayesian inference for causal effects: the role of randomization publication-title: Annals of Statistics – volume: 76 start-page: 604 issue: 4 year: 1986 end-page: 620 article-title: Evaluating the econometric evaluations of training programs with experimental data publication-title: American Economic Review – volume: 272 start-page: 859 issue: 11 year: 1994 end-page: 866 article-title: Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? publication-title: Journal of the American Medical Association – volume: 180 start-page: 413 issue: 6 year: 2000 end-page: 418 article-title: Factors influencing a women's choice to undergo breast‐conserving surgery versus modified radical mastectomy publication-title: The American Journal of Surgery – volume: 33 start-page: 1337 issue: 5 year: 1998 ident: e_1_2_1_15_1 article-title: Who is the marginal patient? Understanding instrumental variable estimates of treatment effects publication-title: Health Services Research – ident: e_1_2_1_25_1 doi: 10.1086/504455 – volume: 76 start-page: 604 issue: 4 year: 1986 ident: e_1_2_1_35_1 article-title: Evaluating the econometric evaluations of training programs with experimental data publication-title: American Economic Review – ident: e_1_2_1_7_1 doi: 10.1111/1468-0262.00237 – volume-title: Econometrics and Economic Theory in the 20th Century: The Ragnar Firsch Centennial year: 1998 ident: e_1_2_1_24_1 – volume-title: Elgar Companion to Health Economics year: 2006 ident: e_1_2_1_36_1 – ident: e_1_2_1_21_1 doi: 10.1162/003465304323023660 – ident: e_1_2_1_19_1 doi: 10.1086/322086 – ident: e_1_2_1_16_1 doi: 10.2307/1909757 – volume-title: Design of Experiments year: 1935 ident: e_1_2_1_12_1 – ident: e_1_2_1_14_1 doi: 10.1002/hec.710 – ident: e_1_2_1_20_1 doi: 10.2307/2938303 – ident: e_1_2_1_53_1 – ident: e_1_2_1_8_1 doi: 10.1111/1468-2354.t01-1-00074 – ident: e_1_2_1_4_1 doi: 10.1002/hec.852 – ident: e_1_2_1_28_1 doi: 10.1016/S0165-1765(99)00181-0 – ident: e_1_2_1_27_1 doi: 10.1073/pnas.96.8.4730 – ident: e_1_2_1_26_1 doi: 10.1162/rest.88.3.389 – ident: e_1_2_1_46_1 doi: 10.1080/01621459.1972.10482378 – ident: e_1_2_1_11_1 doi: 10.1200/JCO.2001.19.4.1064 – start-page: 156 volume-title: Longitudinal Analysis of Labor Market Data year: 1986 ident: e_1_2_1_22_1 – ident: e_1_2_1_23_1 doi: 10.1086/261352 – ident: e_1_2_1_18_1 doi: 10.2307/146178 – ident: e_1_2_1_39_1 doi: 10.1146/annurev.publhealth.19.1.17 – ident: e_1_2_1_49_1 doi: 10.1214/aos/1176344064 – ident: e_1_2_1_40_1 – volume: 52 start-page: 334 year: 1992 ident: e_1_2_1_13_1 article-title: Medicare fees and small area variations in the treatment of localized breast cancer publication-title: New England Journal of Medicine – ident: e_1_2_1_51_1 doi: 10.1056/NEJMoa020989 – volume-title: The Elgar Companion to Health Economics year: 2006 ident: e_1_2_1_50_1 – ident: e_1_2_1_9_1 doi: 10.1016/S0167-6296(98)00039-3 – ident: e_1_2_1_5_1 doi: 10.2307/1937899 – ident: e_1_2_1_17_1 doi: 10.2307/2291631 – volume: 272 start-page: 859 issue: 11 year: 1994 ident: e_1_2_1_38_1 article-title: Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? publication-title: Journal of the American Medical Association doi: 10.1001/jama.1994.03520110039026 – ident: e_1_2_1_2_1 doi: 10.1080/01621459.1996.10476902 – volume-title: Handbook of Econometrics year: 2007 ident: e_1_2_1_32_1 – ident: e_1_2_1_33_1 doi: 10.2307/2951620 – ident: e_1_2_1_37_1 doi: 10.1016/j.jhealeco.2004.09.011 – ident: e_1_2_1_30_1 doi: 10.1257/aer.91.2.107 – ident: e_1_2_1_31_1 doi: 10.1111/j.1468-0262.2005.00594.x – volume: 19 start-page: 358 issue: 3 year: 2004 ident: e_1_2_1_34_1 article-title: Non‐parametric estimation of average treatment effects under exogeneity. A review publication-title: Review of Economics and Statistics – volume: 2 start-page: 107 year: 1935 ident: e_1_2_1_41_1 article-title: Statistical problems in agricultural experimentation (with discussions) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.2307/2983637 – volume-title: The Planning of Experiments year: 1958 ident: e_1_2_1_10_1 – ident: e_1_2_1_3_1 doi: 10.1111/j.0008-4085.2005.00299.x – start-page: 1 volume-title: Nonlinear Statistical Modeling: Proceedings of the Thirteenth International Symposium in Economic Theory and Econometrics: Essays in the Honor of Takeshi Amemiya year: 2001 ident: e_1_2_1_29_1 – volume-title: Elgar Companion to Health Economics year: 2006 ident: e_1_2_1_43_1 – ident: e_1_2_1_6_1 doi: 10.1111/j.1475-6773.2003.00184.x – ident: e_1_2_1_45_1 doi: 10.1016/S1573-4412(05)80010-8 – ident: e_1_2_1_48_1 doi: 10.1093/oxfordjournals.oep.a041827 – ident: e_1_2_1_52_1 doi: 10.1111/1468-0262.00277 – volume-title: The Econometrics of Disequilibrium year: 1988 ident: e_1_2_1_47_1 – ident: e_1_2_1_42_1 doi: 10.1016/S0002-9610(00)00501-8 – ident: e_1_2_1_44_1 doi: 10.1200/JCO.2003.03.126 |
SSID | ssj0009906 |
Score | 2.2341526 |
Snippet | Instrumental variable (IV) methods are widely used in the health economics literature to adjust for hidden selection biases in observational studies when... |
SourceID | proquest repec pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1133 |
SubjectTerms | Aged Alternative approaches Beneficiaries Breast cancer Breast Neoplasms - economics Breast Neoplasms - therapy Cancer therapies Comparative analysis essential heterogeneity Female Health Care Costs - statistics & numerical data Health economics Heterogeneity Humans instrumental variables local instrumental variable method Mastectomy Mastectomy - economics Mastectomy, Segmental - economics Medical treatment Medicare Models, Statistical Newly diagnosed Observational studies Older women Outcome Assessment (Health Care) - methods Outcome Assessment (Health Care) - statistics & numerical data Parameter estimation Radiation Radiotherapy - economics Selection Bias self-selection Selfselection Studies Surgery Treatment United States |
Title | Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients |
URI | https://api.istex.fr/ark:/67375/WNG-3JS1TCD8-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhec.1291 https://www.ncbi.nlm.nih.gov/pubmed/17910109 http://econpapers.repec.org/article/wlyhlthec/v_3a16_3ay_3a2007_3ai_3a11_3ap_3a1133-1157.htm https://www.proquest.com/docview/232064738 https://www.proquest.com/docview/57228914 https://www.proquest.com/docview/68422353 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkBAS4jJuYTCMhOApXRLnyhvqVsrQ9gCrmMSD5as6rSRV0w3GE--88Bv5JZzjXMrQJiEe4lTOSZu4n-3P9jmfCXnOgkAAsdC-hO7Kj2UU-3khQz8Fbq9ZXKjC4oT-3n46nsS7h8lh61WJsTCNPkQ_4YY1w7XXWMGFrLdWoqFTowbQWeHIJ2QpyuZvv18pR0Ej6wKLgI74wGGCTnc2iLa6G8_1RFexUL9eRDPh2sLMjTrPXl33M7pFPnUP3nidHA9OlnKgvv2l6fh_b3ab3GxZKX3dwOgOuWLKdXJtr113Xyc3mtk92gQt3SU_JrWhlaVHTn-22R-AnsKwGwOxasimwCvp3IU2KWc5RbebCtBqgPZTUWpam5n99f1n7TbiAXS8glz6x3o6XVa0d4Ov8TskOtAvqUKgLmirCFvfI5PRzsFw7LfbOvgKuAMAQgChl9oUjKWZNFlaqCgLEiUSGcMBhEKkcZHbzCaFhrF-ZHWmjUliayFlht0na2VVmoeEJtDkWGktNkyxUFrEOs81s5EQOtdR6pGX3V_MVat5jltvzHij1hxxKGuOZe2RZ73lvNH5uMDmhUNJbyAWx-gXlyX84_4bznY_hAfD7ZzDz250MOJtk1BzoK4Y2Mtyjzztr0JdxgUaUZrqpOZJFsH4N4wvt8BV04glzCMPGnSuHjYD4hcGhUdGDq79hS-zsylAA3JOORNhCskZHDhHDacjzAshmbsPjHFUX-LT5Wd4WwfSS4uDj3eGeH70r4Yb5LqbGXeRnI_JGgDUPAFKt5SbUHnfvd10Vfg3rPJKMw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTQIkxGXcyoAZCcFTuiR2bvCEupUy1j5AK_aAZDm-qNNKWzXdYDzxzgu_kV_COc6lDG0S4iFO5Zy0ifvZ_nzs85mQZ8z3JRAL7eXQXXk8D7mXZnngxcDtNeOZyiw69PuDuDfi-4fR4Rp5VcfClPoQjcMNa4Zrr7GCo0N6Z6UaOjaqDb0VDH02OPAMHHntvl9pR0Ez60KLgJB4wGL8WnnWD3fqO8_1RRtYrF8vIppwbWHmRp3nr64D6t4kn-pHL9edHLdPlnlbfftL1fE_3-0WuVERU_q6RNJtsmamm-RKv5p63yTXSwcfLeOW7pAfo8LQmaVHToK23CKAnsLIG2OxCsimQC3p3EU3KWc5xpU3MwCsAeZP5VTTwkzsr-8_C7cXDwDkJeTSP6bU6XJGm5XwBX5Hjmvol1QhVhe0EoUt7pJRd2_Y6XnVzg6eAvoAmJDA6XNtMsbiJDdJnKkw8SMlo5zDAZxCxjxLbWKjTMNwP7Q60cZE3FpImWH3yPp0NjUPCI2g1bG5tdg2cam05DpNNbOhlDrVYdwiL-r_WKhK9hx335iIUrA5FFDWAsu6RZ42lvNS6uMCm-cOJo2BXBzj0rgkEh8HbwTb_xAMO7upgJ_dqnEkqlahEMBeMbaXpS2y3VyF6oxzNHJqZieFiJIQhsABv9wCJ05DFrEWuV_Cc_WwCXC_wM9apOvw2lz4MjkbAzQg51QwGcSQnMGBbmo4HWFeAMncfWBMoACTGC8_w9s6lF5aHKK318Hzw3813CZXe8P-gTh4O3i3Ra45R7kL7HxE1gGs5jEwvGX-xNXk317MTVk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJk1IiMu4dQNmJARP6ZLYufGGupUyWIVgFZN4sBxf1GldEzXdYDzxzgu_kV_COU6aMrRJiIc4lXPSJu5n-7N9zmdCnjHfl0AstJdDd-XxPORemuWBFwO314xnKrM4ob8_jAcjvncYHTZelRgLU-tDtBNuWDNce40VvNR2eykaOjaqC50VjHxWeQxEAgnRh6V0FLSyLrII-IgHJMZfCM_64fbizgtd0SqW6tfLeCZcm5nSqIv01fU__Vvk8-LJa7eT4-7pPO-qb3-JOv7fq90mNxtaSl_VOLpDrpnpOlnbbxbe18mNenqP1lFLd8mPUWVoYemRE6CtNwigZzDuxkisCrIpEEtautgm5SzH6HdTAFwN8H4qp5pWZmJ_ff9ZuZ14AB4vIZf-saBO5wVt_eAr_I4cPejnVCFSZ7SRhK3ukVF_96A38Jp9HTwF5AEQIYHR59pkjMVJbpI4U2HiR0pGOYcDGIWMeZbaxEaZhsF-aHWijYm4tZAyw-6TlWkxNQ8JjaDNsbm12DJxqbTkOk01s6GUOtVh3CEvFn-xUI3oOe69MRG1XHMooKwFlnWHPG0ty1ro4xKb5w4lrYGcHaNjXBKJT8PXgu19DA56O6mAn91cwEg0bUIlgLtiZC9LO2SrvQqVGVdo5NQUp5WIkhAGwAG_2gKXTUMWsQ55UKNz-bAJML_Azzqk7-DaXvgyOR8DNCDnTDAZxJCcw4GT1HA6wrwAktJ9YEyg_JIYz0_gbR1IrywOMdjt4XnjXw23yNr7nb5492b4dpNcd7PkLqrzEVkBrJrHQO_m-RNXj38DQ11MCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+instrumental+variables+in+the+presence+of+heterogeneity+and+self-selection%3A+an+application+to+treatments+of+breast+cancer+patients&rft.jtitle=Health+economics&rft.au=Basu%2C+Anirban&rft.au=Heckman%2C+James+J&rft.au=Navarro-Lozano%2C+Salvador&rft.au=Urzua%2C+Sergio&rft.date=2007-11-01&rft.issn=1057-9230&rft.volume=16&rft.issue=11&rft.spage=1133&rft_id=info:doi/10.1002%2Fhec.1291&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-9230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-9230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-9230&client=summon |