Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions
BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1–3 µm in diameter and modifie...
Saved in:
Published in | Journal of the science of food and agriculture Vol. 92; no. 9; pp. 1841 - 1847 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2012
Wiley John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0022-5142 1097-0010 1097-0010 |
DOI | 10.1002/jsfa.5610 |
Cover
Loading…
Abstract | BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1–3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources.
RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9–70 µm depending on the starch‐to‐oil ratio. Droplet size decreased with increasing starch‐to‐oil ratio, but was unaffected by the oil phase volume over a range of 5–33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch‐to‐oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200–2000 Pa depending on droplet size.
CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. Copyright © 2012 Society of Chemical Industry |
---|---|
AbstractList | Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources.BACKGROUNDParticle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources.Emulsions produced by high shear homogenisation had droplet sizes of 9-70 µm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size.RESULTSEmulsions produced by high shear homogenisation had droplet sizes of 9-70 µm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size.This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations.CONCLUSIONThis work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1–3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9–70 µm depending on the starch‐to‐oil ratio. Droplet size decreased with increasing starch‐to‐oil ratio, but was unaffected by the oil phase volume over a range of 5–33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch‐to‐oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200–2000 Pa depending on droplet size. CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. BACKGROUND: Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9-70 µm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size. CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. Copyright © 2012 Society of Chemical Industry. Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. Emulsions produced by high shear homogenisation had droplet sizes of 9-70 µm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size. This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1–3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9–70 µm depending on the starch‐to‐oil ratio. Droplet size decreased with increasing starch‐to‐oil ratio, but was unaffected by the oil phase volume over a range of 5–33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch‐to‐oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200–2000 Pa depending on droplet size. CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. Copyright © 2012 Society of Chemical Industry Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 μm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. Emulsions produced by high shear homogenisation had droplet sizes of 9-70 μm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size. This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1–3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9–70 µm depending on the starch‐to‐oil ratio. Droplet size decreased with increasing starch‐to‐oil ratio, but was unaffected by the oil phase volume over a range of 5–33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch‐to‐oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated a gel structure with an elastic modulus in the range 200–2000 Pa depending on droplet size. CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. Copyright © 2012 Society of Chemical Industry BACKGROUND: Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch granules isolated from quinoa have been used as emulsion stabilising particles. The granules were intact, 1-3 µm in diameter and modified with octenyl succinic anhydride to increase their hydrophobicity. Starch granules, as opposed to most other particles used to generate Pickering emulsions, are edible, abundant and derived from natural sources. RESULTS: Emulsions produced by high shear homogenisation had droplet sizes of 9-70 µm depending on the starch-to-oil ratio. Droplet size decreased with increasing starch-to-oil ratio, but was unaffected by the oil phase volume over a range of 5-33% oil (v/v). Although the drops were large and subject to creaming, their size remained unchanged over a period of 7 days. By adjusting the starch-to-oil ratio drops could be made to be buoyancy neutral to prevent creaming. Rheological characterisation indicated agel structure with an elastic modulus in the range 200-2000 Pa depending on droplet size. CONCLUSION: This work has demonstrated the successful use of starch granules to stabilise emulsions which may find applications beyond that of food, for example in cosmetics and pharmaceutical formulations. Copyright © 2012 Society of Chemical Industry. |
Author | Rayner, Marilyn Sjöö, Malin Timgren, Anna Dejmek, Petr |
Author_xml | – sequence: 1 givenname: Marilyn surname: Rayner fullname: Rayner, Marilyn email: marilyn.rayner@food.lth.se organization: Department of Food Technology Engineering and Nutrition, Lund University, Box 124, SE 221 00 Lund, Sweden – sequence: 2 givenname: Anna surname: Timgren fullname: Timgren, Anna organization: Department of Food Technology Engineering and Nutrition, Lund University, Box 124, SE 221 00 Lund, Sweden – sequence: 3 givenname: Malin surname: Sjöö fullname: Sjöö, Malin organization: Department of Food Technology Engineering and Nutrition, Lund University, Box 124, SE 221 00 Lund, Sweden – sequence: 4 givenname: Petr surname: Dejmek fullname: Dejmek, Petr organization: Department of Food Technology Engineering and Nutrition, Lund University, Box 124, SE 221 00 Lund, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25963416$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22318925$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/2367137$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/953009f5-0eec-42c1-a330-630808dc4a1a$$DView record from Swedish Publication Index |
BookMark | eNqNkl1v0zAUhiM0xLrBBX8ARUJIcJHt2E7cmLtpYi2ojMFAXFqnzslw5ybFTjT273FoKNKkAReWZfs57_nwe5DsNW1DSfKUwRED4MerUONRIRk8SCYM1DQDYLCXTOIbzwqW8_3kIIQVACgl5aNkn3PBSsWLSfLpY2-bFtPQoTff0iuPTe8ovE4xNdhUtsKO0rr1A7C0zgbbXMVzW2URrSi9sOaa_HBJ694F2zbhcfKwRhfoybgfJl_O3nw-nWeLD7O3pyeLzEgmIBNCVIrICGM4lqiA5VAozoDEFGQuwdQ15ya2Vee1ELJUyuTESElTUlmU4jDBrW64oU2_1Btv1-hvdYtWb1rfodOeAg19adfrQDpSzhrshiq1KkScR11oiEXonBumUQjQUkAJZWVyZBhzLO7N4fpNXMtR-z_lXm7lNr793lPo9NoGQ85hQ20fNBOyADEtRP5vFJiSHASIiD6_g67a3jdx9pGKCC-4HASfjVS_XFO1a-W3FyLwYgQwGHR1tIKx4Q9XKClyJiP3assZ34bgqd4hDPTgRz34UQ9-jOzxHdbY7tcHdB6t-1vEjXV0e7-0fnd5djJGZNsIGzr6sYtAf63lNA5Tfz2f6XP-Xl1ezOd6Jn4Ck-z9yg |
CODEN | JSFAAE |
CitedBy_id | crossref_primary_10_1002_jsfa_6013 crossref_primary_10_1039_D1RA01622A crossref_primary_10_1016_j_cocis_2020_03_002 crossref_primary_10_1039_C6RA23366J crossref_primary_10_1016_j_foodhyd_2019_01_001 crossref_primary_10_3389_fphar_2017_00287 crossref_primary_10_1016_j_foodhyd_2016_11_011 crossref_primary_10_1016_j_colsurfb_2017_10_001 crossref_primary_10_1016_j_jfoodeng_2022_111037 crossref_primary_10_1128_spectrum_01696_22 crossref_primary_10_1002_jsfa_6495 crossref_primary_10_1016_j_foodchem_2024_141355 crossref_primary_10_1016_j_foodhyd_2018_03_002 crossref_primary_10_1007_s11947_015_1584_y crossref_primary_10_1016_j_ijbiomac_2019_06_230 crossref_primary_10_1016_j_carbpol_2017_12_062 crossref_primary_10_1080_10942912_2017_1347675 crossref_primary_10_1021_jf401859y crossref_primary_10_1021_acs_jafc_7b03940 crossref_primary_10_1016_j_carbpol_2022_119715 crossref_primary_10_1016_j_foodhyd_2020_105703 crossref_primary_10_1002_star_202300112 crossref_primary_10_1016_j_foodhyd_2014_04_040 crossref_primary_10_1080_01932691_2019_1703736 crossref_primary_10_3390_app9020359 crossref_primary_10_1016_j_foodhyd_2016_11_031 crossref_primary_10_1016_j_cocis_2013_04_009 crossref_primary_10_1016_j_foodhyd_2017_05_003 crossref_primary_10_1002_star_201400108 crossref_primary_10_1002_star_202100215 crossref_primary_10_1016_j_ijbiomac_2021_10_199 crossref_primary_10_1021_la403493y crossref_primary_10_1039_C6SM01830K crossref_primary_10_1016_j_carbpol_2017_11_040 crossref_primary_10_1080_10408398_2015_1057634 crossref_primary_10_1016_j_ijbiomac_2021_08_212 crossref_primary_10_1016_j_carbpol_2017_07_044 crossref_primary_10_1038_s41598_017_12386_4 crossref_primary_10_1021_acs_langmuir_8b01124 crossref_primary_10_1080_01932691_2021_2025070 crossref_primary_10_3390_foods14020164 crossref_primary_10_1016_j_foodhyd_2018_01_043 crossref_primary_10_1016_j_foodres_2021_110554 crossref_primary_10_1039_C4FO00965G crossref_primary_10_1016_j_foodchem_2021_130301 crossref_primary_10_1016_j_lwt_2014_03_023 crossref_primary_10_1007_s11356_019_06652_3 crossref_primary_10_1021_acs_langmuir_0c02285 crossref_primary_10_1016_j_carbpol_2016_10_003 crossref_primary_10_1007_s10068_023_01359_1 crossref_primary_10_3390_foods13030431 crossref_primary_10_1016_j_ijbiomac_2022_07_014 crossref_primary_10_1016_j_fochx_2023_101066 crossref_primary_10_1016_j_cis_2018_10_002 crossref_primary_10_1021_acs_langmuir_9b00250 crossref_primary_10_1016_j_foodres_2015_10_018 crossref_primary_10_1039_C7SM00618G crossref_primary_10_1039_c2fd20038d crossref_primary_10_1002_star_201900326 crossref_primary_10_1016_j_carbpol_2018_08_049 crossref_primary_10_1016_j_foodhyd_2015_04_025 crossref_primary_10_1016_j_foodhyd_2018_11_063 crossref_primary_10_1021_acsomega_2c02149 crossref_primary_10_1016_j_jcis_2016_03_060 crossref_primary_10_1016_j_carbpol_2020_116649 crossref_primary_10_1002_jsfa_11214 crossref_primary_10_1016_j_foodchem_2019_01_020 crossref_primary_10_1002_star_202100131 crossref_primary_10_1007_s11483_014_9346_3 crossref_primary_10_1002_jsfa_11219 crossref_primary_10_1021_am400582n crossref_primary_10_1080_10408398_2015_1067594 crossref_primary_10_1016_j_lwt_2022_113329 crossref_primary_10_1016_j_foodchem_2019_125391 crossref_primary_10_1016_j_foodhyd_2018_05_045 crossref_primary_10_1039_C6RA12569G crossref_primary_10_1016_j_jfoodeng_2023_111458 crossref_primary_10_1016_j_foodhyd_2016_05_004 crossref_primary_10_1016_j_ijpharm_2012_01_031 crossref_primary_10_1094_CCHEM_05_15_0107_R crossref_primary_10_1016_j_foodhyd_2015_10_024 crossref_primary_10_1016_j_colsurfa_2013_01_060 crossref_primary_10_1016_j_ijpharm_2015_07_065 crossref_primary_10_1002_jsfa_11467 crossref_primary_10_1016_j_ifset_2017_11_009 crossref_primary_10_1016_j_carbpol_2019_115389 crossref_primary_10_1016_j_foodres_2020_109837 crossref_primary_10_1016_j_foodhyd_2016_12_041 crossref_primary_10_1007_s11814_017_0125_y crossref_primary_10_1016_j_ijbiomac_2024_130597 crossref_primary_10_1039_C8FO02002G crossref_primary_10_1016_j_foodres_2015_05_034 crossref_primary_10_1002_fsh3_12057 crossref_primary_10_1016_j_foodhyd_2019_105520 crossref_primary_10_1016_j_foodres_2015_11_025 crossref_primary_10_1016_j_colsurfa_2021_127908 crossref_primary_10_1016_j_carbpol_2020_117515 crossref_primary_10_1016_j_foodhyd_2014_12_007 crossref_primary_10_1016_j_jiec_2019_10_012 crossref_primary_10_1016_j_cocis_2014_07_003 crossref_primary_10_1038_s41538_019_0040_1 crossref_primary_10_1016_j_colsurfa_2022_130143 crossref_primary_10_1016_j_foodhyd_2016_01_002 crossref_primary_10_1515_ijfe_2021_0123 crossref_primary_10_1002_jbm_b_34814 crossref_primary_10_1002_app_49017 crossref_primary_10_1016_j_foodhyd_2014_05_024 crossref_primary_10_1016_j_foodhyd_2013_03_017 crossref_primary_10_1016_j_jcis_2019_12_055 crossref_primary_10_1016_j_materresbull_2014_08_019 crossref_primary_10_1016_j_colsurfa_2014_03_053 crossref_primary_10_1016_j_jcis_2021_09_187 crossref_primary_10_1016_j_jcis_2015_03_004 crossref_primary_10_1016_j_foodchem_2017_01_092 crossref_primary_10_1016_j_foodhyd_2020_105672 crossref_primary_10_1016_j_colsurfa_2013_04_025 crossref_primary_10_1039_C8FO00336J crossref_primary_10_1016_j_cofs_2015_05_006 crossref_primary_10_1007_s00217_023_04349_z crossref_primary_10_29097_2011_639X_185 crossref_primary_10_1021_acs_jafc_8b00225 crossref_primary_10_1016_j_foodchem_2015_08_069 crossref_primary_10_1039_C6RA18468E crossref_primary_10_1146_annurev_food_022814_015651 crossref_primary_10_3390_foods9010083 crossref_primary_10_1016_j_foodhyd_2016_10_035 crossref_primary_10_1016_j_foodhyd_2019_105308 crossref_primary_10_1016_j_fochx_2025_102221 crossref_primary_10_1002_jsfa_10289 crossref_primary_10_1016_j_cattod_2016_02_017 crossref_primary_10_1016_j_foodchem_2019_125476 crossref_primary_10_1021_acs_energyfuels_7b02672 crossref_primary_10_1016_j_foodhyd_2019_03_035 crossref_primary_10_1016_j_colsurfb_2019_05_046 crossref_primary_10_1016_j_carbpol_2015_01_029 crossref_primary_10_1016_j_ijbiomac_2022_02_044 crossref_primary_10_1016_j_lwt_2016_05_012 crossref_primary_10_1016_j_foodchem_2021_129003 crossref_primary_10_1016_j_carbpol_2017_04_006 crossref_primary_10_1016_j_agrcom_2025_100072 crossref_primary_10_1016_j_ijbiomac_2019_12_129 crossref_primary_10_1007_s12034_020_02163_x crossref_primary_10_1016_j_foodhyd_2015_07_031 crossref_primary_10_1002_star_202300095 crossref_primary_10_1016_j_foodhyd_2023_108690 crossref_primary_10_1039_C3FO60380F crossref_primary_10_1016_j_foodchem_2013_12_046 crossref_primary_10_1080_01932691_2018_1467778 crossref_primary_10_1016_j_jfoodeng_2017_11_009 crossref_primary_10_1021_acs_jafc_7b05507 crossref_primary_10_3390_polym15030706 crossref_primary_10_1016_j_fbio_2022_101933 crossref_primary_10_3389_fchem_2018_00139 crossref_primary_10_1016_j_tifs_2020_10_016 crossref_primary_10_1021_acsnano_7b03110 crossref_primary_10_1002_sfp2_1017 crossref_primary_10_1016_j_foodhyd_2018_12_012 crossref_primary_10_1016_j_foodchem_2022_133485 crossref_primary_10_1016_j_colsurfa_2018_08_063 crossref_primary_10_1016_j_foodchem_2019_125201 crossref_primary_10_1016_j_foodhyd_2018_03_047 crossref_primary_10_1021_acsami_6b14349 crossref_primary_10_1016_j_foodhyd_2017_09_005 crossref_primary_10_1016_j_foodres_2017_11_006 crossref_primary_10_1021_acs_langmuir_8b03806 crossref_primary_10_1016_j_carbpol_2020_116366 crossref_primary_10_1146_annurev_food_081114_110822 crossref_primary_10_1016_j_tca_2015_01_001 crossref_primary_10_1016_j_carbpol_2020_116241 crossref_primary_10_1016_j_jcis_2019_11_103 crossref_primary_10_1016_j_jece_2023_109936 crossref_primary_10_1016_j_tifs_2016_01_023 crossref_primary_10_1016_j_carbpol_2017_11_067 crossref_primary_10_1016_j_foodhyd_2021_106812 crossref_primary_10_3390_su152014758 crossref_primary_10_1146_annurev_food_060721_021636 crossref_primary_10_1007_s00396_014_3484_5 crossref_primary_10_1007_s00396_021_04856_z crossref_primary_10_1016_j_ijbiomac_2019_10_220 crossref_primary_10_1021_acs_macromol_1c00225 crossref_primary_10_1063_1_4878501 crossref_primary_10_1021_jf405348k crossref_primary_10_1016_j_colsurfa_2024_134939 crossref_primary_10_3390_foods7050073 crossref_primary_10_1016_j_colsurfa_2013_07_015 crossref_primary_10_1080_10408398_2017_1290578 crossref_primary_10_1007_s11694_021_01233_w crossref_primary_10_1002_jsfa_6964 crossref_primary_10_1039_D2FO02827A crossref_primary_10_1002_fsn3_17 crossref_primary_10_1016_j_carbpol_2020_116264 crossref_primary_10_1515_tsd_2022_2443 crossref_primary_10_1021_jf404930c crossref_primary_10_1016_j_carres_2016_10_010 crossref_primary_10_1016_j_ijbiomac_2025_141941 crossref_primary_10_1002_star_202400028 crossref_primary_10_1016_j_carpta_2024_100490 crossref_primary_10_1016_j_cis_2024_103321 crossref_primary_10_1371_journal_pone_0160140 |
Cites_doi | 10.1017/CBO9780511536670.009 10.1016/j.cis.2007.07.007 10.1016/j.cocis.2009.11.001 10.1006/jcis.2001.8005 10.1016/j.foodhyd.2008.08.005 10.1039/b816680c 10.1016/S0260-8774(01)00206-0 10.1016/S1359-0294(02)00008-0 10.1038/nmat1757 10.1039/CT9079102001 10.1016/S0001-8686(02)00069-6 10.1039/b715933c 10.1039/b716587k 10.1002/star.19940460402 10.1021/la060870f 10.1098/rspl.1903.0034 10.1016/j.foodhyd.2010.07.025 10.1016/j.foodhyd.2010.05.004 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Society of Chemical Industry 2015 INIST-CNRS Copyright © 2012 Society of Chemical Industry. Copyright John Wiley and Sons, Limited Jul 2012 |
Copyright_xml | – notice: Copyright © 2012 Society of Chemical Industry – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Society of Chemical Industry. – notice: Copyright John Wiley and Sons, Limited Jul 2012 |
CorporateAuthor | Institutioner vid LTH Institutionen för processteknik och tillämpad biovetenskap Avdelningen för livsmedel och läkemedel Livsmedelsteknik Department of Food Technology, Engineering and Nutrition Departments at LTH Department of Process and Life Science Engineering Lunds universitet Faculty of Engineering, LTH Lunds Tekniska Högskola Lund University Division of Food and Pharma |
CorporateAuthor_xml | – name: Faculty of Engineering, LTH – name: Lund University – name: Division of Food and Pharma – name: Livsmedelsteknik – name: Department of Process and Life Science Engineering – name: Department of Food Technology, Engineering and Nutrition – name: Institutionen för processteknik och tillämpad biovetenskap – name: Institutioner vid LTH – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet – name: Avdelningen för livsmedel och läkemedel |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QL 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7ST 7T5 7T7 7TA 7TB 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 SOI 7X8 7S9 L.6 ADTPV AOWAS D95 |
DOI | 10.1002/jsfa.5610 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Agriculture Diet & Clinical Nutrition Chemistry |
EISSN | 1097-0010 |
EndPage | 1847 |
ExternalDocumentID | oai_portal_research_lu_se_publications_953009f5_0eec_42c1_a330_630808dc4a1a oai_lup_lub_lu_se_953009f5_0eec_42c1_a330_630808dc4a1a 2686607891 22318925 25963416 10_1002_jsfa_5610 JSFA5610 ark_67375_WNG_N2M9SPHH_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29L 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACKIV ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M64 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIG RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ UB1 V2E V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WWF WXSBR WYISQ XG1 XOL XPP XV2 Y6R ZCG ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QF 7QL 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7ST 7T5 7T7 7TA 7TB 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 SOI 7X8 7S9 L.6 ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c6130-333d9eec3cc2a8a9014059210e3706460cff22c561f4f336899c4e1e96c8e8583 |
IEDL.DBID | DR2 |
ISSN | 0022-5142 1097-0010 |
IngestDate | Sun Aug 31 03:17:33 EDT 2025 Thu Jul 03 05:01:29 EDT 2025 Fri Jul 11 18:27:20 EDT 2025 Fri Jul 11 15:10:21 EDT 2025 Fri Jul 25 03:28:37 EDT 2025 Mon Jul 21 06:05:24 EDT 2025 Mon Jul 21 09:14:39 EDT 2025 Tue Jul 01 04:14:40 EDT 2025 Thu Apr 24 23:11:43 EDT 2025 Wed Jan 22 16:49:09 EST 2025 Wed Oct 30 09:57:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Starch granule Quinoa stabilise Emulsion Pickering emulsion Starch Pseudocereals surfactant-free Carbohydrate Surfactant Polysaccharide Food |
Language | English |
License | CC BY 4.0 Copyright © 2012 Society of Chemical Industry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6130-333d9eec3cc2a8a9014059210e3706460cff22c561f4f336899c4e1e96c8e8583 |
Notes | ark:/67375/WNG-N2M9SPHH-G istex:06A8E1743B031DEC7053C372839ED2D518B2D024 ArticleID:JSFA5610 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22318925 |
PQID | 1020325264 |
PQPubID | 37930 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_953009f5_0eec_42c1_a330_630808dc4a1a swepub_primary_oai_lup_lub_lu_se_953009f5_0eec_42c1_a330_630808dc4a1a proquest_miscellaneous_1365037534 proquest_miscellaneous_1019620303 proquest_journals_1020325264 pubmed_primary_22318925 pascalfrancis_primary_25963416 crossref_primary_10_1002_jsfa_5610 crossref_citationtrail_10_1002_jsfa_5610 wiley_primary_10_1002_jsfa_5610_JSFA5610 istex_primary_ark_67375_WNG_N2M9SPHH_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Malden, MA – name: England – name: London |
PublicationTitle | Journal of the science of food and agriculture |
PublicationTitleAlternate | J. Sci. Food Agric |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Wiley John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: John Wiley and Sons, Limited |
References | Tcholakova S, Denkov ND and Lips A, Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10: 1608-1627 (2008). Seguchi M, Oil-binding ability of heat-treated wheat starch. Cereal Chem 61: 248-250 (1984). Murray BS, Durga K, Yusoff A and Stoyanov SD, Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids 25: 627-638 (2011). Binks BP, Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 7(1-2): 21-41 (2002). Madivala B, Vandebril S, Fransaer J and Vermant J, Exploiting particle shape in solid stabilized emulsions. Soft Matter 5: 1717-1727 (2009). Bromley EHC and Hopkinson I, Confocal microscopy of a dense particle system. J Colloid Interface Sci 245: 75-80 (2002). Aveyard R, Binks BP and Clint JH, Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100-102: 503-546 (2003). Yusoff A and Murray BS, Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids 25: 42-55 (2011). Jane J-L, Leas S, Zobel H and Robyt JF, Anthology of starch granule morphology by scanning electron microscopy. Starch 46: 121-129 (1994). 1Dickinson E, Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23: 1473-1482 (2009). Binks BP and Murakami R, Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater 5: 865-869 (2006). Hunter TN, Pugh RJ, Franks GV and Jameson GJ, The role of particles in stabilising foams and emulsions. Adv Colloid Interface Sci 137: 57-81 (2008). Pickering SU, Emulsions. J Chem Soc 91: 2001 (1907). Tesch S, Gerhards C and Schubert H, Stabilization of emulsions by OSA starches. J Food Eng 54: 167-174 (2002). Dickinson E, Food emulsions and foams: Stabilization by particles. Curr Opin Colloid Interface Sci 15: 40-49 (2010). Binks BP, Colloidal particles at liquid interfaces. Phys Chem Chem Phys 9: 6298-6299 (2007). Ramsden W, Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)-preliminary account. Proc R Soc Lond 72: 156-164 (1903). Nilsson L and Bergenstahl B, Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir 22: 8770-8776 (2006). 2009; 23 1984; 61 2003; 100–102 1903; 72 2010; 15 2006; 22 1907; 91 2002; 245 2002; 54 2002; 7(1–2) 2009 2007; 9 2006; 5 2006 1995 1994; 46 2008; 10 2008; 137 2009; 5 2011; 25 e_1_2_6_20_2 Binks BP (e_1_2_6_10_2) 2002; 7 Seguchi M (e_1_2_6_19_2) 1984; 61 Wurzburg OB (e_1_2_6_18_2) 1995 e_1_2_6_8_2 e_1_2_6_7_2 Abugoch James LE (e_1_2_6_22_2) 2009 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_11_2 e_1_2_6_21_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 |
References_xml | – reference: Ramsden W, Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)-preliminary account. Proc R Soc Lond 72: 156-164 (1903). – reference: Binks BP and Murakami R, Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater 5: 865-869 (2006). – reference: Nilsson L and Bergenstahl B, Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir 22: 8770-8776 (2006). – reference: Seguchi M, Oil-binding ability of heat-treated wheat starch. Cereal Chem 61: 248-250 (1984). – reference: Binks BP, Colloidal particles at liquid interfaces. Phys Chem Chem Phys 9: 6298-6299 (2007). – reference: Aveyard R, Binks BP and Clint JH, Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100-102: 503-546 (2003). – reference: 1Dickinson E, Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23: 1473-1482 (2009). – reference: Pickering SU, Emulsions. J Chem Soc 91: 2001 (1907). – reference: Bromley EHC and Hopkinson I, Confocal microscopy of a dense particle system. J Colloid Interface Sci 245: 75-80 (2002). – reference: Madivala B, Vandebril S, Fransaer J and Vermant J, Exploiting particle shape in solid stabilized emulsions. Soft Matter 5: 1717-1727 (2009). – reference: Tcholakova S, Denkov ND and Lips A, Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10: 1608-1627 (2008). – reference: Murray BS, Durga K, Yusoff A and Stoyanov SD, Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids 25: 627-638 (2011). – reference: Dickinson E, Food emulsions and foams: Stabilization by particles. Curr Opin Colloid Interface Sci 15: 40-49 (2010). – reference: Binks BP, Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 7(1-2): 21-41 (2002). – reference: Tesch S, Gerhards C and Schubert H, Stabilization of emulsions by OSA starches. J Food Eng 54: 167-174 (2002). – reference: Jane J-L, Leas S, Zobel H and Robyt JF, Anthology of starch granule morphology by scanning electron microscopy. Starch 46: 121-129 (1994). – reference: Yusoff A and Murray BS, Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids 25: 42-55 (2011). – reference: Hunter TN, Pugh RJ, Franks GV and Jameson GJ, The role of particles in stabilising foams and emulsions. Adv Colloid Interface Sci 137: 57-81 (2008). – volume: 137 start-page: 57 year: 2008 end-page: 81 article-title: The role of particles in stabilising foams and emulsions publication-title: Adv Colloid Interface Sci – volume: 46 start-page: 121 year: 1994 end-page: 129 article-title: Anthology of starch granule morphology by scanning electron microscopy publication-title: Starch – volume: 23 start-page: 1473 year: 2009 end-page: 1482 article-title: Hydrocolloids as emulsifiers and emulsion stabilizers publication-title: Food Hydrocolloids – volume: 7(1–2) start-page: 21 year: 2002 end-page: 41 article-title: Particles as surfactants—similarities and differences publication-title: Curr Opin Colloid Interface Sci – volume: 5 start-page: 865 year: 2006 end-page: 869 article-title: Phase inversion of particle‐stabilized materials from foams to dry water publication-title: Nat Mater – volume: 245 start-page: 75 year: 2002 end-page: 80 article-title: Confocal microscopy of a dense particle system publication-title: J Colloid Interface Sci – start-page: 67 year: 1995 end-page: 98 – volume: 9 start-page: 6298 year: 2007 end-page: 6299 article-title: Colloidal particles at liquid interfaces publication-title: Phys Chem Chem Phys – volume: 72 start-page: 156 year: 1903 end-page: 164 article-title: Separation of solids in the surface‐layers of solutions and ‘suspensions’ (observations on surface‐membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account publication-title: Proc R Soc Lond – volume: 22 start-page: 8770 year: 2006 end-page: 8776 article-title: Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification publication-title: Langmuir – volume: 25 start-page: 42 year: 2011 end-page: 55 article-title: Modified starch granules as particle‐stabilizers of oil‐in‐water emulsions publication-title: Food Hydrocolloids – year: 2006 – volume: 25 start-page: 627 year: 2011 end-page: 638 article-title: Stabilization of foams and emulsions by mixtures of surface active food‐grade particles and proteins publication-title: Food Hydrocolloids – volume: 91 start-page: 2001 year: 1907 article-title: Emulsions publication-title: J Chem Soc – volume: 54 start-page: 167 year: 2002 end-page: 174 article-title: Stabilization of emulsions by OSA starches publication-title: J Food Eng – volume: 15 start-page: 40 year: 2010 end-page: 49 article-title: Food emulsions and foams: Stabilization by particles publication-title: Curr Opin Colloid Interface Sci – volume: 100–102 start-page: 503 year: 2003 end-page: 546 article-title: Emulsions stabilised solely by colloidal particles publication-title: Adv Colloid Interface Sci – volume: 61 start-page: 248 year: 1984 end-page: 250 article-title: Oil‐binding ability of heat‐treated wheat starch publication-title: Cereal Chem – volume: 10 start-page: 1608 year: 2008 end-page: 1627 article-title: Comparison of solid particles, globular proteins and surfactants as emulsifiers publication-title: Phys Chem Chem Phys – start-page: 1 year: 2009 end-page: 31 – volume: 5 start-page: 1717 year: 2009 end-page: 1727 article-title: Exploiting particle shape in solid stabilized emulsions publication-title: Soft Matter – ident: e_1_2_6_14_2 doi: 10.1017/CBO9780511536670.009 – start-page: 67 volume-title: Food Polysaccharides and Their Applications year: 1995 ident: e_1_2_6_18_2 – ident: e_1_2_6_12_2 doi: 10.1016/j.cis.2007.07.007 – ident: e_1_2_6_15_2 doi: 10.1016/j.cocis.2009.11.001 – ident: e_1_2_6_13_2 doi: 10.1016/j.cocis.2009.11.001 – ident: e_1_2_6_23_2 doi: 10.1006/jcis.2001.8005 – start-page: 1 volume-title: Advances in Food and Nutrition Research year: 2009 ident: e_1_2_6_22_2 – ident: e_1_2_6_2_2 doi: 10.1016/j.foodhyd.2008.08.005 – ident: e_1_2_6_20_2 doi: 10.1039/b816680c – ident: e_1_2_6_4_2 doi: 10.1016/S0260-8774(01)00206-0 – volume: 7 start-page: 21 year: 2002 ident: e_1_2_6_10_2 article-title: Particles as surfactants—similarities and differences publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/S1359-0294(02)00008-0 – ident: e_1_2_6_17_2 doi: 10.1038/nmat1757 – ident: e_1_2_6_8_2 doi: 10.1039/CT9079102001 – volume: 61 start-page: 248 year: 1984 ident: e_1_2_6_19_2 article-title: Oil‐binding ability of heat‐treated wheat starch publication-title: Cereal Chem – ident: e_1_2_6_11_2 doi: 10.1016/S0001-8686(02)00069-6 – ident: e_1_2_6_9_2 doi: 10.1039/b715933c – ident: e_1_2_6_16_2 doi: 10.1039/b716587k – ident: e_1_2_6_21_2 doi: 10.1002/star.19940460402 – ident: e_1_2_6_3_2 doi: 10.1021/la060870f – ident: e_1_2_6_7_2 doi: 10.1098/rspl.1903.0034 – ident: e_1_2_6_6_2 doi: 10.1016/j.foodhyd.2010.07.025 – ident: e_1_2_6_5_2 doi: 10.1016/j.foodhyd.2010.05.004 |
SSID | ssj0009966 |
Score | 2.4726696 |
Snippet | BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable.... BACKGROUND: Particle‐stabilised emulsions, so‐called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable.... Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable. Starch... BACKGROUND: Particle-stabilised emulsions, so-called Pickering emulsions, are known to possess many beneficial properties, including being extremely stable.... |
SourceID | swepub proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1841 |
SubjectTerms | Agricultural and Veterinary sciences Agricultural Science, Forestry and Fisheries Agricultural Sciences Agriculture, Forestry and Fisheries Biological and medical sciences Carbohydrates Cereal and baking product industries chemistry Chenopodium quinoa Chenopodium quinoa - chemistry cosmetics creaming droplet size Elasticity Emulsions Food industries Food science foods Fundamental and applied biological sciences. Psychology Gels granules homogenization Hydrophobic and Hydrophilic Interactions hydrophobicity Jordbruk, skogsbruk och fiske Lantbruksvetenskap och veterinärmedicin Lantbruksvetenskap, skogsbruk och fiske modulus of elasticity oils Oils & fats Oils - chemistry Particle Size Pickering emulsion quinoa quinoa grain Rheology Seeds Seeds - chemistry stabilise Starch Starch - chemistry Starch and starchy product industries starch granules Succinic Anhydrides Surface Properties surfactant-free Water Water - chemistry |
Title | Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions |
URI | https://api.istex.fr/ark:/67375/WNG-N2M9SPHH-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjsfa.5610 https://www.ncbi.nlm.nih.gov/pubmed/22318925 https://www.proquest.com/docview/1020325264 https://www.proquest.com/docview/1019620303 https://www.proquest.com/docview/1365037534 https://lup.lub.lu.se/record/2367137 oai:portal.research.lu.se:publications/953009f5-0eec-42c1-a330-630808dc4a1a |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLam8QA8cCm3wJgMQtNe0iVx4iTwVLF11aRVg21iQpMs27FHt66tmkZCPPET-I38Es5pLqWooImHSElz4sb2OcffcY4_E_KGxbH10li5oWLcDaXyXSm5dFVoICTSoDUc1zsf9nnvNDw4i87WyLt6LUzJD9FMuKFlzP01GrhU-c6CNPQyt7KNoz_4X59x5M3f_bigjkIcXzOFAygIalYhL9hpnlwai25hs37F3EiZQ_PYcl-LVcCzYRVdBrTzEal7n5zXdSkTUa7axUy19bc_aB7_s7IPyL0KqdJOqVoPyZoZtcjdzsW0YuswLeLsDsyMbtGKXHRI-zW3f4vcrpc854_IyYdiMBpLCkgUzIpeQKWLocnfUkk1LqvBWQcK6BkFMFkX5y_gepz9_P4DhDNDjwaY_oE_m-tiiDN8-WNy2t07ed9zq-0cXI1BissYy1JjNNM6kInE77eA7SDkNCwGYMQ9bW0QaKilDS1jHCJBHRrfpFwnJokS9oSsj8Yj84xQy7yMq1QZm6lQGa58ywLjmSSLuU29yCHbdccKXXGd45YbQ1GyNAcCG1RggzrkdSM6KQk-VgltzbWjkZDTK8yIiyPxqb8v-sFhenzU64l9h2wuqU_zAESZHAADd8hGrU-i8hY5_BnuYx8BNnXIq-Y22Dl-vJEjMy5QBnwliHnsHzIM8Da8FINynpa6ungBAPJJGkDT7JXK29xBgvFhMYFDwSFyI9KIgQHZSHjQXSIMtC8kY57gDOKLJNOh9KVDPq8op4wZRUVU9aUqb_LbDPQNC9-eW8Pfe0QcHHc7ePL85qIvyB2Au1Wy9QZZn00L8xIg5Uxtzn3HL9lAc0s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9jD2wKVcFhgjIDTtJV0aJ06CeKnYujLWarBOm5CQZTv2KCtt1TQS4omfwG_kl3BOcylFBU08REqaEze2z7G_c3L8mZAXNAyNG4fS8SVlji9kwxGCCUf6GlwiBVrDcL1zp8vaZ_7RRXCxQl6Va2Fyfogq4IaWMRuv0cAxIL03Zw39nBpRx-n_BlnzAWig67X_fk4ehUi-5AoHWOCVvEKut1c9ujAbrWHDfsXsSJFCA5l8Z4tl0LPiFV2EtLM5qXWbfCxrk6eiXNWzqayrb38QPf5vde-QWwVYtZu5dt0lK3pYIxvNy0lB2KFrxNrv66m9Yxf8ogO7W9L718h6ueo5vUd677L-cCRsAKNgWfYl1Dob6PSlLWyFK2sw8GADgEYBzNfFEAZcj5Kf33-AcKLtkz5mgODP-ks2wCBfep-ctQ56r9tOsaODo9BPcSilSay1okp5IhL4CRfgHXidmoaAjZirjPE8BbU0vqGUgTOofN3QMVORjoKIPiCrw9FQbxLbUDdhMpbaJNKXmsmGoZ52dZSEzMRuYJHdsme5KujOcdeNAc-Jmj2ODcqxQS3yvBId5xwfy4R2ZupRSYjJFSbFhQE_7x7yrteJT0_abX5oke0F_akeAEeTAWZgFtkqFYoXA0YKf4Zb2QcATy3yrLoNpo7fb8RQjzKUgeESxFz6DxkKlgAvRaGch7myzl8AsHwUe9A0B7n2VneQY3yQjeGQcPBU8zigYEEm4C50F_c91eCCUpczCi5GlChfNIRFPiwpJ3cbecFV9akob_xbEPqahe_OzOHvPcKPTltNPHl0fdGnZL3d6xzz4zfdt4_JTUC_Re71FlmdTjL9BBDmVG7PBpJf2Gx3ag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJnF54FJugTEMQtNe0qVx4iTwVLF1ZbBqsE1MCMmyHXuUlbZqGgnxxE_gN_JLOKe5lKKCJh4iJc2JGx-fY3_HOf5MyDMWRdZLIuUGinE3kKrlSsmlqwIDIZEGq-G43vmgx7snwf5peLpCXlRrYQp-iHrCDT1j1l-jg49Tuz0nDf2cWdnE0f8SWQs4IAlERO_m3FEI5CuqcEAFfkUr5Pnb9aMLg9Ea6vUrJkfKDPRji40tliHPmlZ0EdHOhqTODfKxqkyRiXLezKeqqb_9wfP4n7W9Sa6XUJW2C9u6RVbMsEGutc8mJV2HaRBnp2-mdJOW7KID2qvI_RvkSrXmObtNjt_m_eFIUoCi4Ff0DCqdD0z2nEqqcV0NTjtQgM8ogNm6OIEB16P05_cfIJwaetjH_A_82XzJBzjFl90hJ53d45ddt9zPwdUYpbiMsTQxRjOtfRlL_IAL4A5iTsMiQEbc09b6voZa2sAyxiEU1IFpmYTr2MRhzO6S1eFoaO4TapmXcpUoY1MVKMNVyzLfeCZOI24TL3TIVtWwQpdk57jnxkAUNM2-QIUKVKhDntai44LhY5nQ5sw6agk5OceUuCgU73t7oucfJEeH3a7Yc8jGgvnUD0CYyQExcIesV_Ykyu4igz_DjexDAKcOeVLfBkfHrzdyaEY5ykBnCWIe-4cMA8ANL8WgnHuFrc5fAJB8nPigmt3CeOs7yDA-yMdwKDhEZkQSMnAgGwoPmksEvm4JyZgnOIMAI051IFvSIR-WlFMEjaJkqvpUljf-bQr6goVvzbzh7y0i9o86bTx5cHHRx-Ty4U5HvHnVe_2QXAXoWyZer5PV6SQ3jwBeTtXGrBv5BRlTdhk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quinoa+starch+granules%3A+a+candidate+for+stabilising+food-grade+Pickering+emulsions&rft.jtitle=Journal+of+the+science+of+food+and+agriculture&rft.au=Rayner%2C+Marilyn&rft.au=Timgren%2C+Anna&rft.au=Sj%C3%B6%C3%B6%2C+Malin&rft.au=Dejmek%2C+Petr&rft.date=2012-07-01&rft.issn=1097-0010&rft.volume=92&rft.issue=9&rft.spage=1841&rft_id=info:doi/10.1002%2Fjsfa.5610&rft.externalDocID=oai_portal_research_lu_se_publications_953009f5_0eec_42c1_a330_630808dc4a1a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5142&client=summon |