结合特征偏好的半监督聚类学习
TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。...
Saved in:
Published in | 计算机科学与探索 no. 1; pp. 105 - 111 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
南京航空航天大学 计算机科学与技术学院,南京,210016
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1673-9418 |
DOI | 10.3778/j.issn.1673-9418.1405035 |
Cover
Abstract | TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。 |
---|---|
AbstractList | TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。 |
Abstract_FL | Semi-supervised clustering is one of the important research subjects in the machine learning community. It guides semi-supervised clustering by using the label information of a small amount of data or the information of relative preference relations between features. However, the only single-facet information is considered as prior knowledge in existing semi-supervised clustering algorithms. It is relatively rare to jointly use information from two different facets in pattern and feature into semi-supervised clustering. To remedy such shortcoming, based on tradi-tional semi-supervised clustering algorithms, this paper proposes an extended semi-supervised clustering algorithm by jointly exploiting both given feature preferences in feature facet and semi-supervised information of a small amount of data in pattern facet. The experimental results show its effectiveness. |
Author | 陈松灿 方玲 |
AuthorAffiliation | 南京航空航天大学 计算机科学与技术学院,南京,210016 |
AuthorAffiliation_xml | – name: 南京航空航天大学 计算机科学与技术学院,南京,210016 |
Author_FL | CHEN Songcan FANG Ling |
Author_FL_xml | – sequence: 1 fullname: FANG Ling – sequence: 2 fullname: CHEN Songcan |
Author_xml | – sequence: 1 fullname: 方玲 – sequence: 2 fullname: 陈松灿 |
BookMark | eNo9jb1KQzEYQDNUsNa-g6vCvebLf0Yp_kHBpXvJjbnSq6RgFHW84KCCqLhVhELRzcGxFH0aQ3wMC4rTgTOcs4QafugdQiuAcyqlWq_yQQg-ByFpphmoHBjmmPIGav67RdQOYVBgzhgBKVQTraXZY7y_StfT-FnH-i6-fKTRZby9SU8P6XnyXY_S-yy-vX5Nx8tooTRHwbX_2EK9rc1eZyfr7m3vdja6mRUw3xSaKecKZyl2BTXEGS6kMJJaa402JcVCs30G2DJdshK4ZYoQwYkyIEHRFlr9zZ4ZXxp_0K-Gp8d-PuxXoTo8vzgJBAPHgIHSH2xBVlo |
ClassificationCodes | TP391.4 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1673-9418.1405035 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Semi-Supervised Clustering Learning Combined with Feature Preferences |
EndPage | 111 |
ExternalDocumentID | jsjkxyts201501013 |
GrantInformation_xml | – fundername: The Natural Science Foundation of Jiangsu Province of China under Grant No. BK2011728; the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20133218110032 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
ID | FETCH-LOGICAL-c613-9b948eebec30eb3a2ea5676a73ccca9af30694d410c49f4f15c48226528a17183 |
ISSN | 1673-9418 |
IngestDate | Thu May 29 04:00:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 聚类 标记信息 半监督学习 半监督聚类 clustering semi-supervised learning semi-supervised clustering feature preferences 特征偏好 label information |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c613-9b948eebec30eb3a2ea5676a73ccca9af30694d410c49f4f15c48226528a17183 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_jsjkxyts201501013 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 计算机科学与探索 |
PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
PublicationYear | 2015 |
Publisher | 南京航空航天大学 计算机科学与技术学院,南京,210016 |
Publisher_xml | – name: 南京航空航天大学 计算机科学与技术学院,南京,210016 |
SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
Score | 1.9803064 |
Snippet | TP391.4;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 105 |
Title | 结合特征偏好的半监督聚类学习 |
URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201501013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9VAcGnrxYsoKn5TxL0oqdnsZj-Om9c8HkI9PaG3kuQlSoUn-F5BexAeeFBBVLxVBEH05sFjKfprDPFnOLNJ86JWqHpZJrOzk5k3LzOzm50NIVf8TBaFCJmXZkx7ImPG04HKvQQPo8tHfiFSXBpYuykHt8SN9XB9YXHQ2bW0NU1Xsu0D60r-xaqAA7tilexfWLZlCgiAwb7QgoWhPZSNaaxoFFHDaRxS41OtEaMNjQxiohjyRASg1X0ELCBXkcZYqoXrWqXaOgzwYQ5YpRYYahxlXFfE8C44HLokjQXyt343r0V6G1PrOABgFI0lNT0aOQ5WOeZdDsA_RhpobeDuIgDYt78bLZ0eCkmiTo-hxjhVJcoKSiIJiNjvrmDU1Zvu39aoiSIJlMf2nHYgcC2bcUK2GBBSILIBVCv2tf9Q0uKOkprY9js0ThfQP-gdIGXQC_DsKtkJHFJxz4h5LGmfmTowMD_s5BhNgPk1fHGltAtfyHKlZQnRDE_tCechu91IuTnZvPvg4XSCPyueFsgXyZFAKYabW9cexfNEDHy16U4k8Vr8VNEMmWvrmfGrAjKcJ7ZwybUv28Q3ZFzhC7v2WgiY2tZ1p_tS19vmUKXrf1LIFcqNi2R8u5PTDY-TY81kbNnWT9YJsrB95yS5Wu29Ll8-qZ7ull9n5exF-eFLtfO4fP6sevOqevv--2yn-rxXfvr4bffdKTLsx8PewGu-KOJlkLZ6JjVC5-i2uJ-nPAnyJJRKJopn4MhMUnAsAx8J5mfCFKJgYSYggZZhoBMGSRw_TZbG98b5GbI8YgK8WaCCRCeCi5FRWktfjnyuilGWhGfJ5Ua1jcZhTDZ-M9a5wxCdJ0cRrpf9LpCl6f2t_CIkwtP0krPxD9Yre5c |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BB%93%E5%90%88%E7%89%B9%E5%BE%81%E5%81%8F%E5%A5%BD%E7%9A%84%E5%8D%8A%E7%9B%91%E7%9D%A3%E8%81%9A%E7%B1%BB%E5%AD%A6%E4%B9%A0&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E6%96%B9%E7%8E%B2&rft.au=%E9%99%88%E6%9D%BE%E7%81%BF&rft.date=2015&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210016&rft.issn=1673-9418&rft.issue=1&rft.spage=105&rft.epage=111&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1405035&rft.externalDocID=jsjkxyts201501013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |