结合特征偏好的半监督聚类学习

TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 no. 1; pp. 105 - 111
Main Authors 方玲, 陈松灿
Format Journal Article
LanguageChinese
Published 南京航空航天大学 计算机科学与技术学院,南京,210016 2015
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1405035

Cover

Abstract TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。
AbstractList TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。
Abstract_FL Semi-supervised clustering is one of the important research subjects in the machine learning community. It guides semi-supervised clustering by using the label information of a small amount of data or the information of relative preference relations between features. However, the only single-facet information is considered as prior knowledge in existing semi-supervised clustering algorithms. It is relatively rare to jointly use information from two different facets in pattern and feature into semi-supervised clustering. To remedy such shortcoming, based on tradi-tional semi-supervised clustering algorithms, this paper proposes an extended semi-supervised clustering algorithm by jointly exploiting both given feature preferences in feature facet and semi-supervised information of a small amount of data in pattern facet. The experimental results show its effectiveness.
Author 陈松灿
方玲
AuthorAffiliation 南京航空航天大学 计算机科学与技术学院,南京,210016
AuthorAffiliation_xml – name: 南京航空航天大学 计算机科学与技术学院,南京,210016
Author_FL CHEN Songcan
FANG Ling
Author_FL_xml – sequence: 1
  fullname: FANG Ling
– sequence: 2
  fullname: CHEN Songcan
Author_xml – sequence: 1
  fullname: 方玲
– sequence: 2
  fullname: 陈松灿
BookMark eNo9jb1KQzEYQDNUsNa-g6vCvebLf0Yp_kHBpXvJjbnSq6RgFHW84KCCqLhVhELRzcGxFH0aQ3wMC4rTgTOcs4QafugdQiuAcyqlWq_yQQg-ByFpphmoHBjmmPIGav67RdQOYVBgzhgBKVQTraXZY7y_StfT-FnH-i6-fKTRZby9SU8P6XnyXY_S-yy-vX5Nx8tooTRHwbX_2EK9rc1eZyfr7m3vdja6mRUw3xSaKecKZyl2BTXEGS6kMJJaa402JcVCs30G2DJdshK4ZYoQwYkyIEHRFlr9zZ4ZXxp_0K-Gp8d-PuxXoTo8vzgJBAPHgIHSH2xBVlo
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1405035
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Semi-Supervised Clustering Learning Combined with Feature Preferences
EndPage 111
ExternalDocumentID jsjkxyts201501013
GrantInformation_xml – fundername: The Natural Science Foundation of Jiangsu Province of China under Grant No. BK2011728; the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20133218110032
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-c613-9b948eebec30eb3a2ea5676a73ccca9af30694d410c49f4f15c48226528a17183
ISSN 1673-9418
IngestDate Thu May 29 04:00:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 聚类
标记信息
半监督学习
半监督聚类
clustering
semi-supervised learning
semi-supervised clustering
feature preferences
特征偏好
label information
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c613-9b948eebec30eb3a2ea5676a73ccca9af30694d410c49f4f15c48226528a17183
PageCount 7
ParticipantIDs wanfang_journals_jsjkxyts201501013
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2015
Publisher 南京航空航天大学 计算机科学与技术学院,南京,210016
Publisher_xml – name: 南京航空航天大学 计算机科学与技术学院,南京,210016
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 1.9803064
Snippet TP391.4;...
SourceID wanfang
SourceType Aggregation Database
StartPage 105
Title 结合特征偏好的半监督聚类学习
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201501013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9VAcGnrxYsoKn5TxL0oqdnsZj-Om9c8HkI9PaG3kuQlSoUn-F5BexAeeFBBVLxVBEH05sFjKfprDPFnOLNJ86JWqHpZJrOzk5k3LzOzm50NIVf8TBaFCJmXZkx7ImPG04HKvQQPo8tHfiFSXBpYuykHt8SN9XB9YXHQ2bW0NU1Xsu0D60r-xaqAA7tilexfWLZlCgiAwb7QgoWhPZSNaaxoFFHDaRxS41OtEaMNjQxiohjyRASg1X0ELCBXkcZYqoXrWqXaOgzwYQ5YpRYYahxlXFfE8C44HLokjQXyt343r0V6G1PrOABgFI0lNT0aOQ5WOeZdDsA_RhpobeDuIgDYt78bLZ0eCkmiTo-hxjhVJcoKSiIJiNjvrmDU1Zvu39aoiSIJlMf2nHYgcC2bcUK2GBBSILIBVCv2tf9Q0uKOkprY9js0ThfQP-gdIGXQC_DsKtkJHFJxz4h5LGmfmTowMD_s5BhNgPk1fHGltAtfyHKlZQnRDE_tCechu91IuTnZvPvg4XSCPyueFsgXyZFAKYabW9cexfNEDHy16U4k8Vr8VNEMmWvrmfGrAjKcJ7ZwybUv28Q3ZFzhC7v2WgiY2tZ1p_tS19vmUKXrf1LIFcqNi2R8u5PTDY-TY81kbNnWT9YJsrB95yS5Wu29Ll8-qZ7ull9n5exF-eFLtfO4fP6sevOqevv--2yn-rxXfvr4bffdKTLsx8PewGu-KOJlkLZ6JjVC5-i2uJ-nPAnyJJRKJopn4MhMUnAsAx8J5mfCFKJgYSYggZZhoBMGSRw_TZbG98b5GbI8YgK8WaCCRCeCi5FRWktfjnyuilGWhGfJ5Ua1jcZhTDZ-M9a5wxCdJ0cRrpf9LpCl6f2t_CIkwtP0krPxD9Yre5c
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BB%93%E5%90%88%E7%89%B9%E5%BE%81%E5%81%8F%E5%A5%BD%E7%9A%84%E5%8D%8A%E7%9B%91%E7%9D%A3%E8%81%9A%E7%B1%BB%E5%AD%A6%E4%B9%A0&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E6%96%B9%E7%8E%B2&rft.au=%E9%99%88%E6%9D%BE%E7%81%BF&rft.date=2015&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC%2C210016&rft.issn=1673-9418&rft.issue=1&rft.spage=105&rft.epage=111&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1405035&rft.externalDocID=jsjkxyts201501013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg