Pathogenesis and Management of Citrin Deficiency

Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primar...

Full description

Saved in:
Bibliographic Details
Published inInternal Medicine Vol. 63; no. 14; pp. 1977 - 1986
Main Author Hayasaka, Kiyoshi
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Internal Medicine 15.07.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0918-2918
1349-7235
1349-7235
DOI10.2169/internalmedicine.2595-23

Cover

Abstract Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
AbstractList Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
ArticleNumber 2595-23
Author Hayasaka, Kiyoshi
Author_xml – sequence: 1
  fullname: Hayasaka, Kiyoshi
  organization: Department of Pediatrics, Yamagata University School of Medicine, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37952953$$D View this record in MEDLINE/PubMed
BookMark eNqNkDtPwzAUhS0EgrbwF1AkFpaAH3FiL0ioPCVQGWC2HOcGXKU22M7Qf0-iFoaysJy7fOdc6ZuifecdIJQRfEFJKS-tSxCc7lbQWGMdXFAueU7ZHpoQVsi8oozvowmWROR0iCM0jXGJMROVpIfoiFWSU8nZBOEXnT78OziINmbaNdmzdvodVuBS5ttsblOwLruBdngEzqyP0UGruwgn2ztDb3e3r_OH_Glx_zi_fspNSWjKodLEFLUsGRdCM6hqWZMGoGgLqDGFhuKSQlG0QhPalLyuWs0rKYumxYYyymbofLP7GfxXDzGplY0Guk478H1UVAjJhZS4HNCzHXTp-1FPVAxLhhku5Th4uqX6evCmPoNd6bBWPy4G4GoDmOBjDNAqY5NO1rsUtO0UwWqUr3blq1G-ouOA2Bn4-fGP6mJTXcY02P8t6pCs6eBvsWSKFGNuF35J86GDAse-ASu7rFw
CitedBy_id crossref_primary_10_1002_lipd_12436
crossref_primary_10_1002_jimd_12818
crossref_primary_10_1186_s13023_025_03532_7
Cites_doi 10.1016/j.ymgme.2009.01.009
10.1016/j.ymgme.2021.03.004
10.1023/A:1015198103395
10.1002/hep.21651
10.2147/TACG.S162084
10.1093/ajcp/89.6.735
10.1016/j.ymgme.2003.08.002
10.3945/an.112.002089
10.1007/s10545-018-0176-1
10.1007/s004390000430
10.1016/j.bbadis.2014.12.011
10.5692/clinicalneurol.cn-001514
10.1038/s42003-022-03019-2
10.1159/000243858
10.1016/j.ymgme.2011.12.024
10.1007/s10038-008-0282-2
10.1002/lt.20131
10.1038/s41598-020-75615-3
10.1038/9667
10.1016/j.biocel.2007.05.002
10.1007/s100380200046
10.1016/j.ymgme.2004.01.006
10.1016/j.bbadis.2010.01.006
10.1016/j.diabres.2020.108159
10.1002/jimd.12051
10.1016/j.tem.2022.05.002
10.1007/s00439-002-0686-6
10.1210/jc.2017-02664
10.2741/2070
10.3918/jsicm.1.37
10.1038/sj.ejcn.1600744
10.2957/kanzo.61.204
10.1016/j.ymgmr.2013.12.002
10.2337/db12-0255
10.1093/emboj/20.18.5060
10.2169/internalmedicine.44.188
10.1038/s41586-021-03827-2
10.1002/jimd.12294
10.1067/mpd.2001.113264
10.3945/an.113.003798
10.1002/1520-7560(200005/06)16:3<202::AID-DMRR116>3.3.CO;2-R
10.1016/j.cmet.2005.04.002
10.1007/8904_2011_42
ContentType Journal Article
Copyright 2024 by The Japanese Society of Internal Medicine
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by The Japanese Society of Internal Medicine
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7U9
H94
K9.
7X8
DOI 10.2169/internalmedicine.2595-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-7235
EndPage 1986
ExternalDocumentID 37952953
10_2169_internalmedicine_2595_23
article_internalmedicine_63_14_63_2595_23_article_char_en
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
EBS
EJD
EMOBN
F5P
HYE
JSF
JSH
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TR2
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c612t-e7a1c4b963588a3e7b9b1dee4f4eb02ed2062e44f8a12d65b7fa57994df0c2323
IEDL.DBID M48
ISSN 0918-2918
1349-7235
IngestDate Fri Jul 11 08:27:49 EDT 2025
Mon Jun 30 07:52:51 EDT 2025
Mon Jul 21 05:40:52 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 01:40:30 EDT 2025
Wed Sep 03 06:30:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords medium-chain triglycerides
neonatal intrahepatic cholestasis caused by citrin deficiency
citrin
adult-onset type 2 citrullinemia
SLC25A13
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-e7a1c4b963588a3e7b9b1dee4f4eb02ed2062e44f8a12d65b7fa57994df0c2323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2169/internalmedicine.2595-23
PMID 37952953
PQID 3093030692
PQPubID 2048449
PageCount 10
ParticipantIDs proquest_miscellaneous_2889589906
proquest_journals_3093030692
pubmed_primary_37952953
crossref_citationtrail_10_2169_internalmedicine_2595_23
crossref_primary_10_2169_internalmedicine_2595_23
jstage_primary_article_internalmedicine_63_14_63_2595_23_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-15
  day: 15
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Internal Medicine
PublicationTitleAlternate Intern. Med.
PublicationYear 2024
Publisher The Japanese Society of Internal Medicine
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Internal Medicine
– name: Japan Science and Technology Agency
References 20. Hayasaka K, Numakura C, Yamakawa M, et al. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J Inher Metab Dis 41: 777-784, 2018.
1. Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159-163, 1999.
32. Häberle J, Pauli S, Linnebank M, et al. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110: 327-333, 2002.
26. Sakai M, Wang T, Otoyama Y, et al. A case of adult-onset type 2 citrullinemia brought on by changes in disease-specific eating habits following resection of a large portion of the small intestine. Kanzo (Acta Hepatol Jpn) 61: 204-212, 2020.
29. Suzuki T, Matsuura K, Imura N, et al. A case of adult-onset citrullinemia developed under dietary restrictions during imprisonment. Intern Med. Forthcoming.
4. Palmieri L, Pardo B, Lasorsa FM, et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060-5069, 2001.
36. Yagi Y, Saheki T, Imamura Y, et al. The heterogeneous distribution of argininosuccinate synthetase in the liver of type II citrullinemic patients. Its specificity and possible clinical implications. Am J Clin Pathol 89: 735-741, 1998.
14. Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 16: 202-210, 2000.
37. Thompson MD, Monga SP. WNT/β-catenin signaling in liver health and disease. Hepatology 45: 1298-1305, 2007.
49. Okano Y, Okamoto M, Yazaki M, et al. Analysis of daily energy, protein, fat, and carbohydrate intake in citrin-deficient patients: towards prevention of adult-onset type II citrullinemia. Mol Genet Metab 133: 63-70, 2021.
24. Tazawa Y, Kobayashi K, Ohura T, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 138: 735-740, 2001.
16. Numakura C, Tamiya G, Ueki M, et al. Growth impairment in individuals with citrin deficiency. J Inherit Metab Dis 42: 501-508, 2019.
39. Naito E, Ito M, Matsuura S, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis 25: 71-76, 2002.
5. Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 44: 110-117, 2020.
3. Miyakoshi T, Takahashi T, Kato M, Watanabe M, Ito C. Abnormal citrulline metabolism of Inose-type hepatocerebral disease. Shinkei Kagaku (Bull Jpn Neurochem) 7: 88-91, 1968 (in Japanese).
22. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47: 333-341, 2002.
43. Yazaki M, Hashikura Y, Takei Y, et al. Feasibility of auxiliary partial orthotopic liver transplantation from living donors for patients with adult-onset type II citrullinemia. Liver Transpl 10: 550-554, 2004.
19. Hayasaka K, Numakura C, Toyota K, et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1: 42-50, 2014.
21. Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2: 37-44, 2012.
9. Kikuchi A, Arai-Ichinoi N, Sakamoto O, et al. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 105: 553-558, 2012.
23. Saheki T, Kobayashi K, Iijima M, et al. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 81: S20-S26, 2004.
40. Tamakawa S, Nakamura H, Katano T, Yoshizawa M, Ohtake K, Kubota T. Hyperalimentation therapy produces a comatose state in a patient with citrullinemia. Nihon Shuchu Chiryo Igakkai Zasshi (J Jpn Soc Intensive Care Med) 1: 37-41, 1994 (in Japanese).
17. Komatsu M, Kimura T, Yazaki M, et al. Steatogenesis in adultonset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852: 473-481, 2015.
34. Eguchi K, Yonezawa M, Mitsui Y, Hiramatsu Y. Developmental changes of glutamate dehydrogenase activity in rat liver mitochondria and its enhancement by branched-chain amino acids. Biol Neonate 62: 83-88, 1992.
50. Yazaki M. Pathogenesis and treatment of adult-onset type 2 citrullinemia (CTLN2). In: Annual Review Neurology. 2021. Suzuki N, Araki N, Ugawa Y, Kuwabara S, Shiokawa Y, Eds. Chugai-Igakusya, Tokyo, 2021: 264-270 (in Japanase).
38. Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 1802: 416-431, 2010.
10. Seifter S, Englard S. Energy metabolism. In: The Liver: Biology and Pathobiology. Vol 6. 5th ed. Arias I, Wolkoff A, Boyer J, et al., Eds. Raven Press, New York, 2009: 1-42.
31. Häussinger D, Schliess F. Glutamine metabolism and signaling in the liver. Front Biosci 12: 371-391, 2007.
45. Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597: 263-267, 2021.
8. Tabata A, Sheng JS, Ushikaiet M, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 53: 534-545, 2008.
18. Hayasaka K, Numakura C. Adult-onset type II citrullinemia: current insights and therapy. Appl Clin Genet 11: 163-170, 2018.
51. Goetzman ES, Bharathi SS, Zhang Y, et al. Impaired mitochondrial medium chain fatty acid oxidation drives periportal microvesicular steatosis in sirtuin-5 knockout mice. Sci Rep 10: 18367, 2020.
47. Hirayama S, Nagasaka H, Honda A, et al. Cholesterol metabolism is enhanced in the liver and brain of children with citrin deficiency. J Clin Endocrinol Metab 103: 2488-2497, 2018.
35. Ibrahim SH, Balistreri WF. Mitochondrial hepatopathies. In: Nelson Textbook of Pediatrics. 21st ed. Kliegman RM, St Geme JW, Nathan J, et al., Eds. Elsevier, Philadelphia, 2020: 2123-2127.
48. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol 39: 1843-1851, 2007.
33. Häberle J, Pauli S, Schmidt E, Schulze-Eilfing B, Berning C, Koch HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80: 302-306, 2003.
44. Steinmann B, Gitzelmann R, Van den Berghe G. Disorders of fructose metabolism. In: Metabolic and Molecular Bases of Inherited Disease. Valle D, Antonarakis ALS, Ballabio A, Beaudet AL, Mitchell GA, Eds. The Online McGraw-Hill, New York, 2019.
13. Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 4: 439-445, 2013.
30. Yasuda T, Yamaguchi N, Kobayashi K, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 107: 537-545, 2000.
46. Nagasaka H, Okano Y, Tsukahara H, Shigematsu Y, Momoi T, Yorifuji J. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab 97: 21-26, 2009.
41. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult onset type II citrullinemia (CTLN2). Intern Med 44: 188-195, 2005.
42. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3: 286-294, 2012.
12. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309-322, 2005.
2. Saheki T, Song YZ. Citrin deficiency. In: GeneReviews® [Internet]. [cited 2023 Jul 1]. Adam MP, Ardinger HH, Pagon RA, et al., Eds. University of Washington, Seattle, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1181
6. Koshenov Z, Oflaz FE, Hirtl M, et al. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Commun Biol 20: 76, 2022.
7. Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 33: 539-553, 2022.
28. Yanai A, Moriya M, Miyamori T, et al. An adult patient with intellectual disability diagnosed as adult-onset type II citrullinemia. Nihon Shonika Gakkai Zasshi (J Jpn Pediatr Soc) 126: 515-519, 2022 (in Japanese).
25. Watanabe Y, Numakura C, Tahara T, et al. Diabetes mellitus exacerbates citrin deficiency via glucose toxicity. Diabetes Res Clin Pract 164: 108159, 2020.
27. Koda K, Akaogi M, Sekiya H, et al. A case of adult-onset type II citrullinemia triggered by entering a nursing home with a good response to medium-chain triglyceride oil therapy. Rinsho Shinkeigaku (Clin Neurol) 61: 200-203, 2021 (in Japanese).
15. Marcelino H, Veyrat-Durebex C, Summermatter S, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2: 362-372, 2013.
11. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53: S53-S65, 1999.
44
45
46
47
48
49
50
51
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 36. Yagi Y, Saheki T, Imamura Y, et al. The heterogeneous distribution of argininosuccinate synthetase in the liver of type II citrullinemic patients. Its specificity and possible clinical implications. Am J Clin Pathol 89: 735-741, 1998.
– reference: 13. Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 4: 439-445, 2013.
– reference: 11. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53: S53-S65, 1999.
– reference: 3. Miyakoshi T, Takahashi T, Kato M, Watanabe M, Ito C. Abnormal citrulline metabolism of Inose-type hepatocerebral disease. Shinkei Kagaku (Bull Jpn Neurochem) 7: 88-91, 1968 (in Japanese).
– reference: 2. Saheki T, Song YZ. Citrin deficiency. In: GeneReviews® [Internet]. [cited 2023 Jul 1]. Adam MP, Ardinger HH, Pagon RA, et al., Eds. University of Washington, Seattle, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1181/
– reference: 7. Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 33: 539-553, 2022.
– reference: 32. Häberle J, Pauli S, Linnebank M, et al. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110: 327-333, 2002.
– reference: 34. Eguchi K, Yonezawa M, Mitsui Y, Hiramatsu Y. Developmental changes of glutamate dehydrogenase activity in rat liver mitochondria and its enhancement by branched-chain amino acids. Biol Neonate 62: 83-88, 1992.
– reference: 25. Watanabe Y, Numakura C, Tahara T, et al. Diabetes mellitus exacerbates citrin deficiency via glucose toxicity. Diabetes Res Clin Pract 164: 108159, 2020.
– reference: 4. Palmieri L, Pardo B, Lasorsa FM, et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060-5069, 2001.
– reference: 39. Naito E, Ito M, Matsuura S, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis 25: 71-76, 2002.
– reference: 35. Ibrahim SH, Balistreri WF. Mitochondrial hepatopathies. In: Nelson Textbook of Pediatrics. 21st ed. Kliegman RM, St Geme JW, Nathan J, et al., Eds. Elsevier, Philadelphia, 2020: 2123-2127.
– reference: 8. Tabata A, Sheng JS, Ushikaiet M, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 53: 534-545, 2008.
– reference: 24. Tazawa Y, Kobayashi K, Ohura T, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 138: 735-740, 2001.
– reference: 1. Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159-163, 1999.
– reference: 42. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3: 286-294, 2012.
– reference: 40. Tamakawa S, Nakamura H, Katano T, Yoshizawa M, Ohtake K, Kubota T. Hyperalimentation therapy produces a comatose state in a patient with citrullinemia. Nihon Shuchu Chiryo Igakkai Zasshi (J Jpn Soc Intensive Care Med) 1: 37-41, 1994 (in Japanese).
– reference: 38. Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 1802: 416-431, 2010.
– reference: 12. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309-322, 2005.
– reference: 33. Häberle J, Pauli S, Schmidt E, Schulze-Eilfing B, Berning C, Koch HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80: 302-306, 2003.
– reference: 18. Hayasaka K, Numakura C. Adult-onset type II citrullinemia: current insights and therapy. Appl Clin Genet 11: 163-170, 2018.
– reference: 19. Hayasaka K, Numakura C, Toyota K, et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1: 42-50, 2014.
– reference: 46. Nagasaka H, Okano Y, Tsukahara H, Shigematsu Y, Momoi T, Yorifuji J. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab 97: 21-26, 2009.
– reference: 9. Kikuchi A, Arai-Ichinoi N, Sakamoto O, et al. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 105: 553-558, 2012.
– reference: 37. Thompson MD, Monga SP. WNT/β-catenin signaling in liver health and disease. Hepatology 45: 1298-1305, 2007.
– reference: 22. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47: 333-341, 2002.
– reference: 44. Steinmann B, Gitzelmann R, Van den Berghe G. Disorders of fructose metabolism. In: Metabolic and Molecular Bases of Inherited Disease. Valle D, Antonarakis ALS, Ballabio A, Beaudet AL, Mitchell GA, Eds. The Online McGraw-Hill, New York, 2019.
– reference: 23. Saheki T, Kobayashi K, Iijima M, et al. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 81: S20-S26, 2004.
– reference: 16. Numakura C, Tamiya G, Ueki M, et al. Growth impairment in individuals with citrin deficiency. J Inherit Metab Dis 42: 501-508, 2019.
– reference: 14. Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 16: 202-210, 2000.
– reference: 15. Marcelino H, Veyrat-Durebex C, Summermatter S, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2: 362-372, 2013.
– reference: 48. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol 39: 1843-1851, 2007.
– reference: 43. Yazaki M, Hashikura Y, Takei Y, et al. Feasibility of auxiliary partial orthotopic liver transplantation from living donors for patients with adult-onset type II citrullinemia. Liver Transpl 10: 550-554, 2004.
– reference: 26. Sakai M, Wang T, Otoyama Y, et al. A case of adult-onset type 2 citrullinemia brought on by changes in disease-specific eating habits following resection of a large portion of the small intestine. Kanzo (Acta Hepatol Jpn) 61: 204-212, 2020.
– reference: 10. Seifter S, Englard S. Energy metabolism. In: The Liver: Biology and Pathobiology. Vol 6. 5th ed. Arias I, Wolkoff A, Boyer J, et al., Eds. Raven Press, New York, 2009: 1-42.
– reference: 6. Koshenov Z, Oflaz FE, Hirtl M, et al. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Commun Biol 20: 76, 2022.
– reference: 50. Yazaki M. Pathogenesis and treatment of adult-onset type 2 citrullinemia (CTLN2). In: Annual Review Neurology. 2021. Suzuki N, Araki N, Ugawa Y, Kuwabara S, Shiokawa Y, Eds. Chugai-Igakusya, Tokyo, 2021: 264-270 (in Japanase).
– reference: 21. Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2: 37-44, 2012.
– reference: 28. Yanai A, Moriya M, Miyamori T, et al. An adult patient with intellectual disability diagnosed as adult-onset type II citrullinemia. Nihon Shonika Gakkai Zasshi (J Jpn Pediatr Soc) 126: 515-519, 2022 (in Japanese).
– reference: 51. Goetzman ES, Bharathi SS, Zhang Y, et al. Impaired mitochondrial medium chain fatty acid oxidation drives periportal microvesicular steatosis in sirtuin-5 knockout mice. Sci Rep 10: 18367, 2020.
– reference: 49. Okano Y, Okamoto M, Yazaki M, et al. Analysis of daily energy, protein, fat, and carbohydrate intake in citrin-deficient patients: towards prevention of adult-onset type II citrullinemia. Mol Genet Metab 133: 63-70, 2021.
– reference: 41. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult onset type II citrullinemia (CTLN2). Intern Med 44: 188-195, 2005.
– reference: 30. Yasuda T, Yamaguchi N, Kobayashi K, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 107: 537-545, 2000.
– reference: 27. Koda K, Akaogi M, Sekiya H, et al. A case of adult-onset type II citrullinemia triggered by entering a nursing home with a good response to medium-chain triglyceride oil therapy. Rinsho Shinkeigaku (Clin Neurol) 61: 200-203, 2021 (in Japanese).
– reference: 47. Hirayama S, Nagasaka H, Honda A, et al. Cholesterol metabolism is enhanced in the liver and brain of children with citrin deficiency. J Clin Endocrinol Metab 103: 2488-2497, 2018.
– reference: 17. Komatsu M, Kimura T, Yazaki M, et al. Steatogenesis in adultonset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852: 473-481, 2015.
– reference: 20. Hayasaka K, Numakura C, Yamakawa M, et al. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J Inher Metab Dis 41: 777-784, 2018.
– reference: 29. Suzuki T, Matsuura K, Imura N, et al. A case of adult-onset citrullinemia developed under dietary restrictions during imprisonment. Intern Med. Forthcoming.
– reference: 45. Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597: 263-267, 2021.
– reference: 5. Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 44: 110-117, 2020.
– reference: 31. Häussinger D, Schliess F. Glutamine metabolism and signaling in the liver. Front Biosci 12: 371-391, 2007.
– ident: 2
– ident: 46
  doi: 10.1016/j.ymgme.2009.01.009
– ident: 49
  doi: 10.1016/j.ymgme.2021.03.004
– ident: 39
  doi: 10.1023/A:1015198103395
– ident: 37
  doi: 10.1002/hep.21651
– ident: 35
– ident: 18
  doi: 10.2147/TACG.S162084
– ident: 36
  doi: 10.1093/ajcp/89.6.735
– ident: 33
  doi: 10.1016/j.ymgme.2003.08.002
– ident: 42
  doi: 10.3945/an.112.002089
– ident: 20
  doi: 10.1007/s10545-018-0176-1
– ident: 30
  doi: 10.1007/s004390000430
– ident: 17
  doi: 10.1016/j.bbadis.2014.12.011
– ident: 27
  doi: 10.5692/clinicalneurol.cn-001514
– ident: 6
  doi: 10.1038/s42003-022-03019-2
– ident: 34
  doi: 10.1159/000243858
– ident: 9
  doi: 10.1016/j.ymgme.2011.12.024
– ident: 8
  doi: 10.1007/s10038-008-0282-2
– ident: 43
  doi: 10.1002/lt.20131
– ident: 51
  doi: 10.1038/s41598-020-75615-3
– ident: 1
  doi: 10.1038/9667
– ident: 48
  doi: 10.1016/j.biocel.2007.05.002
– ident: 50
– ident: 22
  doi: 10.1007/s100380200046
– ident: 23
  doi: 10.1016/j.ymgme.2004.01.006
– ident: 38
  doi: 10.1016/j.bbadis.2010.01.006
– ident: 25
  doi: 10.1016/j.diabres.2020.108159
– ident: 44
– ident: 16
  doi: 10.1002/jimd.12051
– ident: 7
  doi: 10.1016/j.tem.2022.05.002
– ident: 10
– ident: 32
  doi: 10.1007/s00439-002-0686-6
– ident: 47
  doi: 10.1210/jc.2017-02664
– ident: 28
– ident: 31
  doi: 10.2741/2070
– ident: 40
  doi: 10.3918/jsicm.1.37
– ident: 11
  doi: 10.1038/sj.ejcn.1600744
– ident: 26
  doi: 10.2957/kanzo.61.204
– ident: 19
  doi: 10.1016/j.ymgmr.2013.12.002
– ident: 15
  doi: 10.2337/db12-0255
– ident: 3
– ident: 4
  doi: 10.1093/emboj/20.18.5060
– ident: 41
  doi: 10.2169/internalmedicine.44.188
– ident: 29
– ident: 45
  doi: 10.1038/s41586-021-03827-2
– ident: 5
  doi: 10.1002/jimd.12294
– ident: 24
  doi: 10.1067/mpd.2001.113264
– ident: 13
  doi: 10.3945/an.113.003798
– ident: 14
  doi: 10.1002/1520-7560(200005/06)16:3<202::AID-DMRR116>3.3.CO;2-R
– ident: 12
  doi: 10.1016/j.cmet.2005.04.002
– ident: 21
  doi: 10.1007/8904_2011_42
SSID ssj0038792
Score 2.4132898
SecondaryResourceType review_article
Snippet Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1977
SubjectTerms adult-onset type 2 citrullinemia
Brain injury
Calcium-Binding Proteins - deficiency
Calcium-Binding Proteins - genetics
Carbohydrates
Cholestasis
Cholestasis, Intrahepatic - etiology
Cholestasis, Intrahepatic - genetics
Cholestasis, Intrahepatic - therapy
citrin
Citrullinemia - diagnosis
Citrullinemia - genetics
Citrullinemia - therapy
Dietary Supplements
Dyslipidemia
Glycolysis
Hepatocytes
Hepatocytes - metabolism
Humans
Lipogenesis
Liver
medium-chain triglycerides
Mitochondrial Membrane Transport Proteins - genetics
Mutation
neonatal intrahepatic cholestasis caused by citrin deficiency
Neonates
Organic Anion Transporters - deficiency
Organic Anion Transporters - genetics
Quality of life
SLC25A13
Triglycerides - metabolism
Title Pathogenesis and Management of Citrin Deficiency
URI https://www.jstage.jst.go.jp/article/internalmedicine/63/14/63_2595-23/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37952953
https://www.proquest.com/docview/3093030692
https://www.proquest.com/docview/2889589906
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Internal Medicine, 2024/07/15, Vol.63(14), pp.1977-1986
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qFemLqG3ttrWs4Gvqbr42eZAi1XIqJz540Lcl2U3KybHX3l2h_e87c_shWpW-5CWZECaZzG8ymRmAt6ZyuUdgzMjpw2Rta2ZkpZnzlcyiQxVhKd55_E2PJvLLuTrfgD5csWPg8q-mHdWTmixmxzdXtyco8O_pG3Ou7btp-3Y2673RxwjpFePiETxG_aTJJBvLwbcgTLEulUx5-VjBhWr_9_x3pt-U1pOfiNsuwr8h6Vo1nT2HZx2mTD-0h-AFbITmJTwdd7NvQ_YdYd78gm616TJ1TZ3--vSSzmN6Ol0tpk36MVA2CQrF3IHJ2acfpyPWVUpgFSKUFQuFyyvpUZiUMU6Ewluf1yHIKIPPeKh5pnmQMhqX81orX0SnCmtlHbMKMZXYhc1m3oQ9SHWMGrsrJXMva5NZ70XkDu1IHIttAkXPirLq0ohTNYtZieYEMbH8k4klMbHkIoF8oLxsU2k8gGbUcnug6ATqPoUWaMZQ25EOIyl8De-ABA77_Sr7Y1aSH5isJssTeDN0o4SR28Q1YX69LLkxVqFZmukEXrX7PKxGFJY8pWL_AdQHsMUREdHDcK4OYXO1uA6vEdGs_BFi-c9fj9bH9A6mFfn7
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenesis+and+Management+of+Citrin+Deficiency&rft.jtitle=Internal+medicine+%28Tokyo%2C+1992%29&rft.au=Hayasaka%2C+Kiyoshi&rft.date=2024-07-15&rft.issn=1349-7235&rft.eissn=1349-7235&rft.volume=63&rft.issue=14&rft.spage=1977&rft_id=info:doi/10.2169%2Finternalmedicine.2595-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-2918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-2918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-2918&client=summon