Pathogenesis and Management of Citrin Deficiency
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primar...
Saved in:
Published in | Internal Medicine Vol. 63; no. 14; pp. 1977 - 1986 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Internal Medicine
15.07.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0918-2918 1349-7235 1349-7235 |
DOI | 10.2169/internalmedicine.2595-23 |
Cover
Abstract | Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis. |
---|---|
AbstractList | Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis. Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis. |
ArticleNumber | 2595-23 |
Author | Hayasaka, Kiyoshi |
Author_xml | – sequence: 1 fullname: Hayasaka, Kiyoshi organization: Department of Pediatrics, Yamagata University School of Medicine, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37952953$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkDtPwzAUhS0EgrbwF1AkFpaAH3FiL0ioPCVQGWC2HOcGXKU22M7Qf0-iFoaysJy7fOdc6ZuifecdIJQRfEFJKS-tSxCc7lbQWGMdXFAueU7ZHpoQVsi8oozvowmWROR0iCM0jXGJMROVpIfoiFWSU8nZBOEXnT78OziINmbaNdmzdvodVuBS5ttsblOwLruBdngEzqyP0UGruwgn2ztDb3e3r_OH_Glx_zi_fspNSWjKodLEFLUsGRdCM6hqWZMGoGgLqDGFhuKSQlG0QhPalLyuWs0rKYumxYYyymbofLP7GfxXDzGplY0Guk478H1UVAjJhZS4HNCzHXTp-1FPVAxLhhku5Th4uqX6evCmPoNd6bBWPy4G4GoDmOBjDNAqY5NO1rsUtO0UwWqUr3blq1G-ouOA2Bn4-fGP6mJTXcY02P8t6pCs6eBvsWSKFGNuF35J86GDAse-ASu7rFw |
CitedBy_id | crossref_primary_10_1002_lipd_12436 crossref_primary_10_1002_jimd_12818 crossref_primary_10_1186_s13023_025_03532_7 |
Cites_doi | 10.1016/j.ymgme.2009.01.009 10.1016/j.ymgme.2021.03.004 10.1023/A:1015198103395 10.1002/hep.21651 10.2147/TACG.S162084 10.1093/ajcp/89.6.735 10.1016/j.ymgme.2003.08.002 10.3945/an.112.002089 10.1007/s10545-018-0176-1 10.1007/s004390000430 10.1016/j.bbadis.2014.12.011 10.5692/clinicalneurol.cn-001514 10.1038/s42003-022-03019-2 10.1159/000243858 10.1016/j.ymgme.2011.12.024 10.1007/s10038-008-0282-2 10.1002/lt.20131 10.1038/s41598-020-75615-3 10.1038/9667 10.1016/j.biocel.2007.05.002 10.1007/s100380200046 10.1016/j.ymgme.2004.01.006 10.1016/j.bbadis.2010.01.006 10.1016/j.diabres.2020.108159 10.1002/jimd.12051 10.1016/j.tem.2022.05.002 10.1007/s00439-002-0686-6 10.1210/jc.2017-02664 10.2741/2070 10.3918/jsicm.1.37 10.1038/sj.ejcn.1600744 10.2957/kanzo.61.204 10.1016/j.ymgmr.2013.12.002 10.2337/db12-0255 10.1093/emboj/20.18.5060 10.2169/internalmedicine.44.188 10.1038/s41586-021-03827-2 10.1002/jimd.12294 10.1067/mpd.2001.113264 10.3945/an.113.003798 10.1002/1520-7560(200005/06)16:3<202::AID-DMRR116>3.3.CO;2-R 10.1016/j.cmet.2005.04.002 10.1007/8904_2011_42 |
ContentType | Journal Article |
Copyright | 2024 by The Japanese Society of Internal Medicine 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by The Japanese Society of Internal Medicine – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7U9 H94 K9. 7X8 |
DOI | 10.2169/internalmedicine.2595-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-7235 |
EndPage | 1986 |
ExternalDocumentID | 37952953 10_2169_internalmedicine_2595_23 article_internalmedicine_63_14_63_2595_23_article_char_en |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 5GY ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 EBS EJD EMOBN F5P HYE JSF JSH M48 OK1 OVT P2P PGMZT RJT RNS RPM RZJ TR2 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c612t-e7a1c4b963588a3e7b9b1dee4f4eb02ed2062e44f8a12d65b7fa57994df0c2323 |
IEDL.DBID | M48 |
ISSN | 0918-2918 1349-7235 |
IngestDate | Fri Jul 11 08:27:49 EDT 2025 Mon Jun 30 07:52:51 EDT 2025 Mon Jul 21 05:40:52 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Tue Jul 01 01:40:30 EDT 2025 Wed Sep 03 06:30:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | medium-chain triglycerides neonatal intrahepatic cholestasis caused by citrin deficiency citrin adult-onset type 2 citrullinemia SLC25A13 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-e7a1c4b963588a3e7b9b1dee4f4eb02ed2062e44f8a12d65b7fa57994df0c2323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2169/internalmedicine.2595-23 |
PMID | 37952953 |
PQID | 3093030692 |
PQPubID | 2048449 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2889589906 proquest_journals_3093030692 pubmed_primary_37952953 crossref_citationtrail_10_2169_internalmedicine_2595_23 crossref_primary_10_2169_internalmedicine_2595_23 jstage_primary_article_internalmedicine_63_14_63_2595_23_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-15 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Internal Medicine |
PublicationTitleAlternate | Intern. Med. |
PublicationYear | 2024 |
Publisher | The Japanese Society of Internal Medicine Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society of Internal Medicine – name: Japan Science and Technology Agency |
References | 20. Hayasaka K, Numakura C, Yamakawa M, et al. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J Inher Metab Dis 41: 777-784, 2018. 1. Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159-163, 1999. 32. Häberle J, Pauli S, Linnebank M, et al. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110: 327-333, 2002. 26. Sakai M, Wang T, Otoyama Y, et al. A case of adult-onset type 2 citrullinemia brought on by changes in disease-specific eating habits following resection of a large portion of the small intestine. Kanzo (Acta Hepatol Jpn) 61: 204-212, 2020. 29. Suzuki T, Matsuura K, Imura N, et al. A case of adult-onset citrullinemia developed under dietary restrictions during imprisonment. Intern Med. Forthcoming. 4. Palmieri L, Pardo B, Lasorsa FM, et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060-5069, 2001. 36. Yagi Y, Saheki T, Imamura Y, et al. The heterogeneous distribution of argininosuccinate synthetase in the liver of type II citrullinemic patients. Its specificity and possible clinical implications. Am J Clin Pathol 89: 735-741, 1998. 14. Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 16: 202-210, 2000. 37. Thompson MD, Monga SP. WNT/β-catenin signaling in liver health and disease. Hepatology 45: 1298-1305, 2007. 49. Okano Y, Okamoto M, Yazaki M, et al. Analysis of daily energy, protein, fat, and carbohydrate intake in citrin-deficient patients: towards prevention of adult-onset type II citrullinemia. Mol Genet Metab 133: 63-70, 2021. 24. Tazawa Y, Kobayashi K, Ohura T, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 138: 735-740, 2001. 16. Numakura C, Tamiya G, Ueki M, et al. Growth impairment in individuals with citrin deficiency. J Inherit Metab Dis 42: 501-508, 2019. 39. Naito E, Ito M, Matsuura S, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis 25: 71-76, 2002. 5. Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 44: 110-117, 2020. 3. Miyakoshi T, Takahashi T, Kato M, Watanabe M, Ito C. Abnormal citrulline metabolism of Inose-type hepatocerebral disease. Shinkei Kagaku (Bull Jpn Neurochem) 7: 88-91, 1968 (in Japanese). 22. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47: 333-341, 2002. 43. Yazaki M, Hashikura Y, Takei Y, et al. Feasibility of auxiliary partial orthotopic liver transplantation from living donors for patients with adult-onset type II citrullinemia. Liver Transpl 10: 550-554, 2004. 19. Hayasaka K, Numakura C, Toyota K, et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1: 42-50, 2014. 21. Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2: 37-44, 2012. 9. Kikuchi A, Arai-Ichinoi N, Sakamoto O, et al. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 105: 553-558, 2012. 23. Saheki T, Kobayashi K, Iijima M, et al. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 81: S20-S26, 2004. 40. Tamakawa S, Nakamura H, Katano T, Yoshizawa M, Ohtake K, Kubota T. Hyperalimentation therapy produces a comatose state in a patient with citrullinemia. Nihon Shuchu Chiryo Igakkai Zasshi (J Jpn Soc Intensive Care Med) 1: 37-41, 1994 (in Japanese). 17. Komatsu M, Kimura T, Yazaki M, et al. Steatogenesis in adultonset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852: 473-481, 2015. 34. Eguchi K, Yonezawa M, Mitsui Y, Hiramatsu Y. Developmental changes of glutamate dehydrogenase activity in rat liver mitochondria and its enhancement by branched-chain amino acids. Biol Neonate 62: 83-88, 1992. 50. Yazaki M. Pathogenesis and treatment of adult-onset type 2 citrullinemia (CTLN2). In: Annual Review Neurology. 2021. Suzuki N, Araki N, Ugawa Y, Kuwabara S, Shiokawa Y, Eds. Chugai-Igakusya, Tokyo, 2021: 264-270 (in Japanase). 38. Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 1802: 416-431, 2010. 10. Seifter S, Englard S. Energy metabolism. In: The Liver: Biology and Pathobiology. Vol 6. 5th ed. Arias I, Wolkoff A, Boyer J, et al., Eds. Raven Press, New York, 2009: 1-42. 31. Häussinger D, Schliess F. Glutamine metabolism and signaling in the liver. Front Biosci 12: 371-391, 2007. 45. Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597: 263-267, 2021. 8. Tabata A, Sheng JS, Ushikaiet M, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 53: 534-545, 2008. 18. Hayasaka K, Numakura C. Adult-onset type II citrullinemia: current insights and therapy. Appl Clin Genet 11: 163-170, 2018. 51. Goetzman ES, Bharathi SS, Zhang Y, et al. Impaired mitochondrial medium chain fatty acid oxidation drives periportal microvesicular steatosis in sirtuin-5 knockout mice. Sci Rep 10: 18367, 2020. 47. Hirayama S, Nagasaka H, Honda A, et al. Cholesterol metabolism is enhanced in the liver and brain of children with citrin deficiency. J Clin Endocrinol Metab 103: 2488-2497, 2018. 35. Ibrahim SH, Balistreri WF. Mitochondrial hepatopathies. In: Nelson Textbook of Pediatrics. 21st ed. Kliegman RM, St Geme JW, Nathan J, et al., Eds. Elsevier, Philadelphia, 2020: 2123-2127. 48. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol 39: 1843-1851, 2007. 33. Häberle J, Pauli S, Schmidt E, Schulze-Eilfing B, Berning C, Koch HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80: 302-306, 2003. 44. Steinmann B, Gitzelmann R, Van den Berghe G. Disorders of fructose metabolism. In: Metabolic and Molecular Bases of Inherited Disease. Valle D, Antonarakis ALS, Ballabio A, Beaudet AL, Mitchell GA, Eds. The Online McGraw-Hill, New York, 2019. 13. Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 4: 439-445, 2013. 30. Yasuda T, Yamaguchi N, Kobayashi K, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 107: 537-545, 2000. 46. Nagasaka H, Okano Y, Tsukahara H, Shigematsu Y, Momoi T, Yorifuji J. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab 97: 21-26, 2009. 41. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult onset type II citrullinemia (CTLN2). Intern Med 44: 188-195, 2005. 42. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3: 286-294, 2012. 12. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309-322, 2005. 2. Saheki T, Song YZ. Citrin deficiency. In: GeneReviews® [Internet]. [cited 2023 Jul 1]. Adam MP, Ardinger HH, Pagon RA, et al., Eds. University of Washington, Seattle, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1181 6. Koshenov Z, Oflaz FE, Hirtl M, et al. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Commun Biol 20: 76, 2022. 7. Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 33: 539-553, 2022. 28. Yanai A, Moriya M, Miyamori T, et al. An adult patient with intellectual disability diagnosed as adult-onset type II citrullinemia. Nihon Shonika Gakkai Zasshi (J Jpn Pediatr Soc) 126: 515-519, 2022 (in Japanese). 25. Watanabe Y, Numakura C, Tahara T, et al. Diabetes mellitus exacerbates citrin deficiency via glucose toxicity. Diabetes Res Clin Pract 164: 108159, 2020. 27. Koda K, Akaogi M, Sekiya H, et al. A case of adult-onset type II citrullinemia triggered by entering a nursing home with a good response to medium-chain triglyceride oil therapy. Rinsho Shinkeigaku (Clin Neurol) 61: 200-203, 2021 (in Japanese). 15. Marcelino H, Veyrat-Durebex C, Summermatter S, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2: 362-372, 2013. 11. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53: S53-S65, 1999. 44 45 46 47 48 49 50 51 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 36. Yagi Y, Saheki T, Imamura Y, et al. The heterogeneous distribution of argininosuccinate synthetase in the liver of type II citrullinemic patients. Its specificity and possible clinical implications. Am J Clin Pathol 89: 735-741, 1998. – reference: 13. Contreras AV, Torres N, Tovar AR. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr 4: 439-445, 2013. – reference: 11. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 53: S53-S65, 1999. – reference: 3. Miyakoshi T, Takahashi T, Kato M, Watanabe M, Ito C. Abnormal citrulline metabolism of Inose-type hepatocerebral disease. Shinkei Kagaku (Bull Jpn Neurochem) 7: 88-91, 1968 (in Japanese). – reference: 2. Saheki T, Song YZ. Citrin deficiency. In: GeneReviews® [Internet]. [cited 2023 Jul 1]. Adam MP, Ardinger HH, Pagon RA, et al., Eds. University of Washington, Seattle, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1181/ – reference: 7. Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 33: 539-553, 2022. – reference: 32. Häberle J, Pauli S, Linnebank M, et al. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110: 327-333, 2002. – reference: 34. Eguchi K, Yonezawa M, Mitsui Y, Hiramatsu Y. Developmental changes of glutamate dehydrogenase activity in rat liver mitochondria and its enhancement by branched-chain amino acids. Biol Neonate 62: 83-88, 1992. – reference: 25. Watanabe Y, Numakura C, Tahara T, et al. Diabetes mellitus exacerbates citrin deficiency via glucose toxicity. Diabetes Res Clin Pract 164: 108159, 2020. – reference: 4. Palmieri L, Pardo B, Lasorsa FM, et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060-5069, 2001. – reference: 39. Naito E, Ito M, Matsuura S, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis 25: 71-76, 2002. – reference: 35. Ibrahim SH, Balistreri WF. Mitochondrial hepatopathies. In: Nelson Textbook of Pediatrics. 21st ed. Kliegman RM, St Geme JW, Nathan J, et al., Eds. Elsevier, Philadelphia, 2020: 2123-2127. – reference: 8. Tabata A, Sheng JS, Ushikaiet M, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 53: 534-545, 2008. – reference: 24. Tazawa Y, Kobayashi K, Ohura T, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 138: 735-740, 2001. – reference: 1. Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159-163, 1999. – reference: 42. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3: 286-294, 2012. – reference: 40. Tamakawa S, Nakamura H, Katano T, Yoshizawa M, Ohtake K, Kubota T. Hyperalimentation therapy produces a comatose state in a patient with citrullinemia. Nihon Shuchu Chiryo Igakkai Zasshi (J Jpn Soc Intensive Care Med) 1: 37-41, 1994 (in Japanese). – reference: 38. Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 1802: 416-431, 2010. – reference: 12. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309-322, 2005. – reference: 33. Häberle J, Pauli S, Schmidt E, Schulze-Eilfing B, Berning C, Koch HG. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80: 302-306, 2003. – reference: 18. Hayasaka K, Numakura C. Adult-onset type II citrullinemia: current insights and therapy. Appl Clin Genet 11: 163-170, 2018. – reference: 19. Hayasaka K, Numakura C, Toyota K, et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 1: 42-50, 2014. – reference: 46. Nagasaka H, Okano Y, Tsukahara H, Shigematsu Y, Momoi T, Yorifuji J. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab 97: 21-26, 2009. – reference: 9. Kikuchi A, Arai-Ichinoi N, Sakamoto O, et al. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13. Mol Genet Metab 105: 553-558, 2012. – reference: 37. Thompson MD, Monga SP. WNT/β-catenin signaling in liver health and disease. Hepatology 45: 1298-1305, 2007. – reference: 22. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47: 333-341, 2002. – reference: 44. Steinmann B, Gitzelmann R, Van den Berghe G. Disorders of fructose metabolism. In: Metabolic and Molecular Bases of Inherited Disease. Valle D, Antonarakis ALS, Ballabio A, Beaudet AL, Mitchell GA, Eds. The Online McGraw-Hill, New York, 2019. – reference: 23. Saheki T, Kobayashi K, Iijima M, et al. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 81: S20-S26, 2004. – reference: 16. Numakura C, Tamiya G, Ueki M, et al. Growth impairment in individuals with citrin deficiency. J Inherit Metab Dis 42: 501-508, 2019. – reference: 14. Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 16: 202-210, 2000. – reference: 15. Marcelino H, Veyrat-Durebex C, Summermatter S, et al. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2: 362-372, 2013. – reference: 48. Colgan SM, Tang D, Werstuck GH, Austin RC. Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol 39: 1843-1851, 2007. – reference: 43. Yazaki M, Hashikura Y, Takei Y, et al. Feasibility of auxiliary partial orthotopic liver transplantation from living donors for patients with adult-onset type II citrullinemia. Liver Transpl 10: 550-554, 2004. – reference: 26. Sakai M, Wang T, Otoyama Y, et al. A case of adult-onset type 2 citrullinemia brought on by changes in disease-specific eating habits following resection of a large portion of the small intestine. Kanzo (Acta Hepatol Jpn) 61: 204-212, 2020. – reference: 10. Seifter S, Englard S. Energy metabolism. In: The Liver: Biology and Pathobiology. Vol 6. 5th ed. Arias I, Wolkoff A, Boyer J, et al., Eds. Raven Press, New York, 2009: 1-42. – reference: 6. Koshenov Z, Oflaz FE, Hirtl M, et al. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Commun Biol 20: 76, 2022. – reference: 50. Yazaki M. Pathogenesis and treatment of adult-onset type 2 citrullinemia (CTLN2). In: Annual Review Neurology. 2021. Suzuki N, Araki N, Ugawa Y, Kuwabara S, Shiokawa Y, Eds. Chugai-Igakusya, Tokyo, 2021: 264-270 (in Japanase). – reference: 21. Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2: 37-44, 2012. – reference: 28. Yanai A, Moriya M, Miyamori T, et al. An adult patient with intellectual disability diagnosed as adult-onset type II citrullinemia. Nihon Shonika Gakkai Zasshi (J Jpn Pediatr Soc) 126: 515-519, 2022 (in Japanese). – reference: 51. Goetzman ES, Bharathi SS, Zhang Y, et al. Impaired mitochondrial medium chain fatty acid oxidation drives periportal microvesicular steatosis in sirtuin-5 knockout mice. Sci Rep 10: 18367, 2020. – reference: 49. Okano Y, Okamoto M, Yazaki M, et al. Analysis of daily energy, protein, fat, and carbohydrate intake in citrin-deficient patients: towards prevention of adult-onset type II citrullinemia. Mol Genet Metab 133: 63-70, 2021. – reference: 41. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult onset type II citrullinemia (CTLN2). Intern Med 44: 188-195, 2005. – reference: 30. Yasuda T, Yamaguchi N, Kobayashi K, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 107: 537-545, 2000. – reference: 27. Koda K, Akaogi M, Sekiya H, et al. A case of adult-onset type II citrullinemia triggered by entering a nursing home with a good response to medium-chain triglyceride oil therapy. Rinsho Shinkeigaku (Clin Neurol) 61: 200-203, 2021 (in Japanese). – reference: 47. Hirayama S, Nagasaka H, Honda A, et al. Cholesterol metabolism is enhanced in the liver and brain of children with citrin deficiency. J Clin Endocrinol Metab 103: 2488-2497, 2018. – reference: 17. Komatsu M, Kimura T, Yazaki M, et al. Steatogenesis in adultonset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta 1852: 473-481, 2015. – reference: 20. Hayasaka K, Numakura C, Yamakawa M, et al. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J Inher Metab Dis 41: 777-784, 2018. – reference: 29. Suzuki T, Matsuura K, Imura N, et al. A case of adult-onset citrullinemia developed under dietary restrictions during imprisonment. Intern Med. Forthcoming. – reference: 45. Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597: 263-267, 2021. – reference: 5. Hayasaka K. Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 44: 110-117, 2020. – reference: 31. Häussinger D, Schliess F. Glutamine metabolism and signaling in the liver. Front Biosci 12: 371-391, 2007. – ident: 2 – ident: 46 doi: 10.1016/j.ymgme.2009.01.009 – ident: 49 doi: 10.1016/j.ymgme.2021.03.004 – ident: 39 doi: 10.1023/A:1015198103395 – ident: 37 doi: 10.1002/hep.21651 – ident: 35 – ident: 18 doi: 10.2147/TACG.S162084 – ident: 36 doi: 10.1093/ajcp/89.6.735 – ident: 33 doi: 10.1016/j.ymgme.2003.08.002 – ident: 42 doi: 10.3945/an.112.002089 – ident: 20 doi: 10.1007/s10545-018-0176-1 – ident: 30 doi: 10.1007/s004390000430 – ident: 17 doi: 10.1016/j.bbadis.2014.12.011 – ident: 27 doi: 10.5692/clinicalneurol.cn-001514 – ident: 6 doi: 10.1038/s42003-022-03019-2 – ident: 34 doi: 10.1159/000243858 – ident: 9 doi: 10.1016/j.ymgme.2011.12.024 – ident: 8 doi: 10.1007/s10038-008-0282-2 – ident: 43 doi: 10.1002/lt.20131 – ident: 51 doi: 10.1038/s41598-020-75615-3 – ident: 1 doi: 10.1038/9667 – ident: 48 doi: 10.1016/j.biocel.2007.05.002 – ident: 50 – ident: 22 doi: 10.1007/s100380200046 – ident: 23 doi: 10.1016/j.ymgme.2004.01.006 – ident: 38 doi: 10.1016/j.bbadis.2010.01.006 – ident: 25 doi: 10.1016/j.diabres.2020.108159 – ident: 44 – ident: 16 doi: 10.1002/jimd.12051 – ident: 7 doi: 10.1016/j.tem.2022.05.002 – ident: 10 – ident: 32 doi: 10.1007/s00439-002-0686-6 – ident: 47 doi: 10.1210/jc.2017-02664 – ident: 28 – ident: 31 doi: 10.2741/2070 – ident: 40 doi: 10.3918/jsicm.1.37 – ident: 11 doi: 10.1038/sj.ejcn.1600744 – ident: 26 doi: 10.2957/kanzo.61.204 – ident: 19 doi: 10.1016/j.ymgmr.2013.12.002 – ident: 15 doi: 10.2337/db12-0255 – ident: 3 – ident: 4 doi: 10.1093/emboj/20.18.5060 – ident: 41 doi: 10.2169/internalmedicine.44.188 – ident: 29 – ident: 45 doi: 10.1038/s41586-021-03827-2 – ident: 5 doi: 10.1002/jimd.12294 – ident: 24 doi: 10.1067/mpd.2001.113264 – ident: 13 doi: 10.3945/an.113.003798 – ident: 14 doi: 10.1002/1520-7560(200005/06)16:3<202::AID-DMRR116>3.3.CO;2-R – ident: 12 doi: 10.1016/j.cmet.2005.04.002 – ident: 21 doi: 10.1007/8904_2011_42 |
SSID | ssj0038792 |
Score | 2.4132898 |
SecondaryResourceType | review_article |
Snippet | Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1977 |
SubjectTerms | adult-onset type 2 citrullinemia Brain injury Calcium-Binding Proteins - deficiency Calcium-Binding Proteins - genetics Carbohydrates Cholestasis Cholestasis, Intrahepatic - etiology Cholestasis, Intrahepatic - genetics Cholestasis, Intrahepatic - therapy citrin Citrullinemia - diagnosis Citrullinemia - genetics Citrullinemia - therapy Dietary Supplements Dyslipidemia Glycolysis Hepatocytes Hepatocytes - metabolism Humans Lipogenesis Liver medium-chain triglycerides Mitochondrial Membrane Transport Proteins - genetics Mutation neonatal intrahepatic cholestasis caused by citrin deficiency Neonates Organic Anion Transporters - deficiency Organic Anion Transporters - genetics Quality of life SLC25A13 Triglycerides - metabolism |
Title | Pathogenesis and Management of Citrin Deficiency |
URI | https://www.jstage.jst.go.jp/article/internalmedicine/63/14/63_2595-23/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37952953 https://www.proquest.com/docview/3093030692 https://www.proquest.com/docview/2889589906 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Internal Medicine, 2024/07/15, Vol.63(14), pp.1977-1986 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qFemLqG3ttrWs4Gvqbr42eZAi1XIqJz540Lcl2U3KybHX3l2h_e87c_shWpW-5CWZECaZzG8ymRmAt6ZyuUdgzMjpw2Rta2ZkpZnzlcyiQxVhKd55_E2PJvLLuTrfgD5csWPg8q-mHdWTmixmxzdXtyco8O_pG3Ou7btp-3Y2673RxwjpFePiETxG_aTJJBvLwbcgTLEulUx5-VjBhWr_9_x3pt-U1pOfiNsuwr8h6Vo1nT2HZx2mTD-0h-AFbITmJTwdd7NvQ_YdYd78gm616TJ1TZ3--vSSzmN6Ol0tpk36MVA2CQrF3IHJ2acfpyPWVUpgFSKUFQuFyyvpUZiUMU6Ewluf1yHIKIPPeKh5pnmQMhqX81orX0SnCmtlHbMKMZXYhc1m3oQ9SHWMGrsrJXMva5NZ70XkDu1IHIttAkXPirLq0ohTNYtZieYEMbH8k4klMbHkIoF8oLxsU2k8gGbUcnug6ATqPoUWaMZQ25EOIyl8De-ABA77_Sr7Y1aSH5isJssTeDN0o4SR28Q1YX69LLkxVqFZmukEXrX7PKxGFJY8pWL_AdQHsMUREdHDcK4OYXO1uA6vEdGs_BFi-c9fj9bH9A6mFfn7 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenesis+and+Management+of+Citrin+Deficiency&rft.jtitle=Internal+medicine+%28Tokyo%2C+1992%29&rft.au=Hayasaka%2C+Kiyoshi&rft.date=2024-07-15&rft.issn=1349-7235&rft.eissn=1349-7235&rft.volume=63&rft.issue=14&rft.spage=1977&rft_id=info:doi/10.2169%2Finternalmedicine.2595-23&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-2918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-2918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-2918&client=summon |