Towards Practical Application of Li–S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race?

Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 150 - 39
Main Authors Gong, Yi, Li, Jing, Yang, Kai, Li, Shaoyin, Xu, Ming, Zhang, Guangpeng, Shi, Yan, Cai, Qiong, Li, Huanxin, Zhao, Yunlong
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
AbstractList Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated.
As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
HighlightsA comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization.The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined.The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed.A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated.As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
ArticleNumber 150
Author Yang, Kai
Zhang, Guangpeng
Cai, Qiong
Zhao, Yunlong
Gong, Yi
Li, Jing
Xu, Ming
Shi, Yan
Li, Huanxin
Li, Shaoyin
Author_xml – sequence: 1
  givenname: Yi
  surname: Gong
  fullname: Gong, Yi
  organization: Advanced Technology Institute, University of Surrey
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Department of Chemical and Process Engineering, University of Surrey
– sequence: 3
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: Advanced Technology Institute, University of Surrey
– sequence: 4
  givenname: Shaoyin
  surname: Li
  fullname: Li, Shaoyin
  organization: Advanced Technology Institute, University of Surrey
– sequence: 5
  givenname: Ming
  surname: Xu
  fullname: Xu, Ming
  organization: Advanced Technology Institute, University of Surrey
– sequence: 6
  givenname: Guangpeng
  surname: Zhang
  fullname: Zhang, Guangpeng
  organization: Advanced Technology Institute, University of Surrey
– sequence: 7
  givenname: Yan
  surname: Shi
  fullname: Shi, Yan
  organization: College of Materials and Metallurgy, Guizhou University
– sequence: 8
  givenname: Qiong
  surname: Cai
  fullname: Cai, Qiong
  organization: Department of Chemical and Process Engineering, University of Surrey
– sequence: 9
  givenname: Huanxin
  surname: Li
  fullname: Li, Huanxin
  email: huanxin.li@chem.ox.ac.uk
  organization: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Department of Engineering, University of Cambridge, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 10
  givenname: Yunlong
  surname: Zhao
  fullname: Zhao, Yunlong
  email: yunlong.zhao@surrey.ac.uk
  organization: Advanced Technology Institute, University of Surrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37286885$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuUzEUvEJFtJT-AAtkiQ2bC7bvwzabqo0KqRQJRINYWr5-JK4cO7V9qbJjwxfwh3wJblIK7aIrH9kzc8bnzPNqzwevq-olgm8RhORdaiHFsIa4qSFCpSJPqgOMOlh3XYf2St0gVPcE9vvVUUp2gB1uCSZd-6zabwimPaXdQfVzHq5FVAl8jkJmK4UDJ-u1K0W2wYNgwMz-_vHrApyKnHXcgGubl2BqF0twMTozRjALQlm_AMIrMNPCgzOnZY7BbbJ-D75Z58BExCH4-lQkrcA0pJzKvQfzpU3gi5D6-EX11AiX9NHteVh9_XA2n0zr2aeP55OTWS17hHOtNGWYMkIHgtuBUYE0VbgbJNSsVw0WDClGWiW0kqXsTW8g0QY2GGnSYtUcVuc7XRXEJV9HuxJxw4OwfHsR4oKLWKbgNKeQ6ZZIpVgztIZRZrQpVltiWFGCpmgd77TW47AqDbXPUbh7ovdfvF3yRfjOESyL6Pu-KLy5VYjhatQp85VNUjsnvA5j4pjihjGMCCrQ1w-gl2GMvsyqoCjraAvJjeCr_y3defm77gLAO4CMIaWozR0EQX4TK76LFS-x4ttYcVJI9AFJ2ryNR_mWdY9Tmx01lT5-oeM_24-w_gAokeJX
CitedBy_id crossref_primary_10_1021_accountsmr_4c00368
crossref_primary_10_26599_NRE_2022_9120142
crossref_primary_10_1021_acs_iecr_4c01878
crossref_primary_10_1016_j_apsusc_2023_158850
crossref_primary_10_1002_anie_202408026
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1002_celc_202400589
crossref_primary_10_1021_acsami_4c18229
crossref_primary_10_20517_microstructures_2023_82
crossref_primary_10_1002_smll_202404983
crossref_primary_10_1016_j_est_2024_113800
crossref_primary_10_1016_j_cej_2024_158265
crossref_primary_10_1016_j_cclet_2024_110217
crossref_primary_10_1016_j_nanoen_2023_108718
crossref_primary_10_1007_s40820_023_01306_z
crossref_primary_10_1016_j_apsusc_2024_161493
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1016_j_jpowsour_2024_234850
crossref_primary_10_1021_acsanm_4c06605
crossref_primary_10_1039_D4MA00115J
crossref_primary_10_1002_adma_202406343
crossref_primary_10_1002_smll_202309146
crossref_primary_10_1016_j_cej_2025_160150
crossref_primary_10_1016_j_fmre_2025_01_002
crossref_primary_10_1016_j_nanoen_2024_110445
crossref_primary_10_1002_adma_202415633
crossref_primary_10_1002_advs_202407304
crossref_primary_10_1021_acsnano_3c09919
crossref_primary_10_1002_adfm_202409748
crossref_primary_10_1002_adsu_202400555
crossref_primary_10_1002_ange_202408026
crossref_primary_10_1016_j_est_2024_112027
crossref_primary_10_1002_smll_202406731
crossref_primary_10_1016_j_synthmet_2024_117759
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1016_j_cej_2025_159924
crossref_primary_10_1016_j_est_2024_112342
crossref_primary_10_1016_j_jelechem_2023_117780
crossref_primary_10_1016_j_indcrop_2024_118813
crossref_primary_10_1016_j_jechem_2024_07_038
crossref_primary_10_26599_NRE_2024_9120142
crossref_primary_10_1016_j_jechem_2024_07_013
crossref_primary_10_1002_cssc_202401288
Cites_doi 10.1021/nl304795g
10.1002/adma.202105067
10.1021/ja206955k
10.1002/aenm.201301761
10.1038/nmat3191
10.1021/nn404439r
10.1039/C5TA07818K
10.1002/anie.202104053
10.1016/j.scib.2023.01.032
10.1002/adfm.202104286
10.1002/adma.202105947
10.1016/j.ensm.2020.01.002
10.1016/j.ensm.2020.11.009
10.1021/ar300179v
10.1039/D1TA08942K
10.1002/adma.202201555
10.1007/s40820-020-00475-5
10.1002/adfm.201601897
10.1016/j.ensm.2023.02.023
10.1021/acsnano.8b05534
10.1016/j.electacta.2010.06.019
10.1021/acsnano.1c00270
10.1021/acsnano.5b07347
10.1007/s40820-021-00726-z
10.1002/adfm.202006798
10.1038/s41560-019-0351-0
10.1021/acs.jpcc.1c04491
10.1016/j.ensm.2022.11.045
10.1002/anie.201107817
10.1002/aenm.201904010
10.1016/j.joule.2022.02.015
10.1039/C4TA01823K
10.1038/ncomms4410
10.1002/anie.201304762
10.1021/acs.nanolett.5b00367
10.1021/acsnano.7b01945
10.1039/C8EE01402G
10.1016/j.ensm.2021.09.003
10.1021/acscentsci.0c00449
10.1039/C9TA00535H
10.1002/adfm.202011289
10.1007/s12274-012-0279-1
10.1039/C7EE01430A
10.1002/adfm.202102314
10.1002/admi.201701598
10.1021/acsami.1c10749
10.1016/j.ensm.2020.05.002
10.1002/adma.201502467
10.1021/acs.nanolett.9b04719
10.1016/j.ensm.2016.09.003
10.1039/D0EE03316B
10.1039/c2cp42796f
10.1021/acs.jpclett.1c00927
10.1016/j.ensm.2019.05.034
10.1039/C2CS35325C
10.1038/ncomms14627
10.1016/j.electacta.2017.10.032
10.1002/smll.201600809
10.1002/aenm.202102995
10.1002/adfm.202104830
10.1016/j.jpowsour.2012.12.102
10.1021/nl202297p
10.1002/advs.201800621
10.1002/adma.201901125
10.1002/ange.202007740
10.1038/s41467-020-19070-8
10.1002/advs.202103456
10.1016/j.ensm.2020.05.022
10.1007/s12598-021-01839-5
10.1016/j.ensm.2022.04.004
10.1016/j.chempr.2022.07.004
10.1016/j.ensm.2021.11.024
10.1016/j.electacta.2018.08.107
10.1002/adma.202000315
10.1038/s41560-022-01175-7
10.1016/j.nanoen.2017.07.002
10.1002/aenm.202200889
10.1016/j.jechem.2020.08.025
10.1002/advs.202201640
10.1038/s41565-020-00797-w
10.1021/nn501308m
10.1039/D0EE02088E
10.1016/j.jechem.2022.09.029
10.1039/D0TA01664K
10.1039/C9TA11451C
10.1021/acsnano.7b00596
10.1016/j.ensm.2018.08.016
10.1002/adfm.201704865
10.1002/adma.201700598
10.1016/j.nanoen.2019.04.006
10.1021/acsnano.1c06067
10.1002/anie.201909339
10.1039/C6TA07864H
10.1039/C4TA03877K
10.1002/adma.201401191
10.1038/ncomms8760
10.1039/C9TA00212J
10.1002/aenm.201601943
10.1021/am400958x
10.1021/acs.accounts.2c00259
10.1002/adfm.202200893
10.1038/ncomms10601
10.1002/aenm.202202206
10.1038/nature13434
10.1007/s12598-022-02140-9
10.1021/nl502238b
10.1126/sciadv.abn4372
10.1002/aenm.202001304
10.1002/aenm.202201056
10.26599/NRE.2022.9120012
10.1016/j.cej.2021.132734
10.1002/aenm.201301473
10.1126/science.1246501
10.1021/acs.nanolett.0c02167
10.1002/adfm.201503726
10.1002/anie.201100637
10.1016/j.cej.2020.124117
10.1002/adma.201601382
10.1002/aenm.202100601
10.1038/ncomms5759
10.1002/inf2.12304
10.1002/adfm.202212759
10.1002/smll.201804786
10.1002/chem.201600040
10.1002/aenm.201500211
10.20517/energymater.2021.22
10.26599/NRE.2023.9120049
10.1016/j.nantod.2018.02.006
10.1002/anie.201205292
10.1016/j.cej.2020.126967
10.1002/adma.201506014
10.1038/npjcompumats.2016.2
10.34133/energymatadv.0010
10.1002/chem.201900884
10.1002/adma.202208590
10.1016/j.electacta.2019.135311
10.1088/2515-7655/aadef6
10.1002/smll.201804347
10.20517/energymater.2022.4
10.1002/chem.202003807
10.1002/aenm.202202518
10.1002/eem2.12483
10.1016/j.ensm.2015.09.007
10.1002/anie.201905852
10.1016/j.partic.2022.11.009
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-023-01120-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 39
ExternalDocumentID oai_doaj_org_article_809e47cdd93b4f989feface47f942d0f
PMC10247666
37286885
10_1007_s40820_023_01120_7
Genre Journal Article
Review
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c612t-de8928978b724b98a1e8d25bc0e96d32a91d974daedc91d6f6f07ef0321e742d3
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:32:43 EDT 2025
Thu Aug 21 18:37:57 EDT 2025
Thu Jul 10 23:13:28 EDT 2025
Wed Aug 13 05:09:33 EDT 2025
Thu Apr 03 07:05:24 EDT 2025
Tue Jul 01 00:55:49 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 21 02:41:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Structural design
Li–S batteries
Functional modification
Carbon materials
Machine learning
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-de8928978b724b98a1e8d25bc0e96d32a91d974daedc91d6f6f07ef0321e742d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2889584076?pq-origsite=%requestingapplication%
PMID 37286885
PQID 2889584076
PQPubID 2044332
PageCount 39
ParticipantIDs doaj_primary_oai_doaj_org_article_809e47cdd93b4f989feface47f942d0f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10247666
proquest_miscellaneous_2823992171
proquest_journals_2889584076
pubmed_primary_37286885
crossref_primary_10_1007_s40820_023_01120_7
crossref_citationtrail_10_1007_s40820_023_01120_7
springer_journals_10_1007_s40820_023_01120_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Ye, Jiang, Yang, Li, Wu (CR106) 2022; 9
Liu, Zhang, Yu, Wang, Li (CR1) 2022; 12
Andritsos, Lekakou, Cai (CR118) 2021; 125
CR38
CR37
Cheng, Yan, Huang, Li, Zhu (CR133) 2017; 6
Zhang, Wang, Seh, Fu, Zhang (CR88) 2015; 15
Sun, Vijay, Heenen, Eng, Tu (CR96) 2020; 10
CR33
CR32
Chen, Luo, Li, Han, Wang (CR104) 2020; 30
Qu, Chen, Yang, Zhang, Li (CR141) 2017; 39
Bruce, Freunberger, Hardwick, Tarascon (CR4) 2012; 11
Yin, Xin, Guo, Wan (CR29) 2013; 52
Chen, Huang, Sun, Zhang, Liu (CR47) 2014; 2
He, Evers, Liang, Cuisinier, Garsuch (CR41) 2013; 7
Wang, Yang, Chen, Zhang, Liu (CR76) 2018; 5
Liu, Sun, Wu, Chen, Xu (CR30) 2020; 11
Xu, Hu, Zhang, Yan, Zhu (CR116) 2021; 43
Chung, Manthiram (CR22) 2019; 31
Li, Gong, Yan, Wang, Liu (CR102) 2020; 8
Cai, Li, Zhang, Xiao, Wang (CR11) 2018; 28
Shi, Qin, Lu, Dong, He (CR18) 2021; 31
Zhao, Zhang, Huang, Tian, Nie (CR56) 2014; 5
Cheng, Chen, Li, Hou, Bi (CR142) 2023; 76
Zhao, Li, Zhang, Huang, Zhang (CR8) 2020; 6
CR46
Song, Guo, Zhang, Chen, Zhang (CR94) 2019; 7
Xue, Shi, Suo, Wang, Wang (CR145) 2019; 4
CR45
CR44
CR43
Song, Shen, Yao, Li, Bi (CR34) 2022; 8
Zhang, Zhao, Tao, Chen (CR42) 2013; 6
Shi, Sun, Cai, Fan, Jin (CR114) 2021; 31
Ji, Yang, Liu, Chen, Liu (CR7) 2021; 31
Yang, Li, Jia, Wang, Wang (CR2) 2021; 56
Li, Xi, Wang, Liu, Li (CR112) 2022; 45
Sun, Wang, Chen, Ma, Wang (CR31) 2022; 12
Xie, Peng, Song, Li, Xiao (CR35) 2020; 132
Chen, Wang, Wang, Liu, Sun (CR12) 2022; 10
Li, Sun, Hou, Jiang, Huang (CR63) 2016; 7
Shi, Bak, Shadike, Wang, Niu (CR135) 2020; 13
Shi, Zhao, Wu, Dong, Lu (CR17) 2019; 60
Guo, Xu, Wang (CR52) 2011; 11
Zhou, Lv, Li, Zhou, Zhao (CR99) 2017; 10
CR57
Deng, Xue, Bai, Lei, Yuan (CR10) 2018; 12
CR55
Chen, Zhao, Hou, Zhang, Li (CR132) 2022; 34
CR137
Sun, Wang, Chen, Li, Qiao (CR71) 2013; 5
Lee, Kim, Jang, Manthiram (CR54) 2017; 7
CR131
Yang, Wei, Chen, Qin, Zuo (CR85) 2020; 8
Li, Wen, Jiang, Yao, Zhou (CR3) 2021; 31
Ogoke, Wu, Wang, Casimir, Ma (CR27) 2017; 5
Wang, Takei, Takahashi, Javey (CR48) 2013; 42
Deng, Xue, Jia, Ye, Bai (CR90) 2017; 11
CR139
Wang, Luo, Wang, Zhou, Deng (CR105) 2020; 32
Shi, Anderson, Mishra, Qiao, Canfield (CR134) 2022; 9
Zhao, Xu, Yu, Zhang, Hwang (CR9) 2021; 16
Li, Chen, Yan, Yan, Cheng (CR107) 2021; 33
Wu, Wang, Shan, Wang, Lu (CR108) 2022; 49
Li, Wu, Zhang, Wang, Zhang (CR122) 2020; 30
Zhao, Li, Peng, Yuan, Wei (CR13) 2020; 59
Li, Sami, Yang, Li, Kumar (CR146) 2023; 8
Gong, Fu, Zhang, Zhou, Kuang (CR79) 2017; 256
Lian, Yang, Jan, Li (CR127) 2021; 12
Ye, Wu, Liu, Zhao, Qian (CR143) 2017; 29
Schuster, He, Mandlmeier, Yim, Lee (CR40) 2012; 51
Wang, Zhang, Liu, Li, Yan, Gao (CR115) 2022; 32
CR68
Huang, Lu, Xu, Zhang, Jiang (CR136) 2022; 6
Zhao, Wu, Li, Xu, Guan (CR53) 2014; 26
Sun, Zhang, Yin, Hu, Fang (CR83) 2017; 8
CR65
Zhou, Paek, Hwang, Manthiram (CR75) 2015; 6
Shen, Gao, Zhu, Guo, Guo (CR36) 2023; 57
CR62
CR144
CR61
CR60
Zheng, Guo, Pei, Zhang, Chen (CR59) 2016; 26
Pang, Nazar (CR77) 2016; 10
Zhou, Xiao, Cai, Yang (CR69) 2014; 14
Wu, Ye, Huang, Zhao, Qian (CR138) 2017; 11
Pang, Tang, Huang, Liang, Hart (CR72) 2015; 27
Fan, Wu, Wu, Wang, Cheng (CR86) 2019; 295
Yao, Zheng, Xu, Tian, Han (CR101) 2021; 15
Zhu, Zhu, Yan, Dirican, Zang (CR70) 2018; 5
Li, Ma, Cai, Zhou, Huang (CR97) 2019; 18
Manthiram, Fu, Su (CR28) 2013; 46
Wang, Li, Zhao, Xu, Liu (CR98) 2023; 42
Su, Fu, Manthiram (CR50) 2012; 14
Yang, Wang, Zhang, Yang, Luo (CR49) 2014; 510
Han, Zhao, Xiao, Zhong, Sheng (CR120) 2021; 33
Song, Zhao, Kong, Zhang, Zhu (CR100) 2018; 11
CR74
Ye, Jiang, Li, Wu, Chen (CR91) 2021; 13
CR111
Zhang, Wang, Cai, Wu, Li (CR125) 2021; 13
Zhu, Chen, Li, Yin, Xiao (CR6) 2023
Li, Lin, Chang, Yang, Wu (CR140) 2023; 55
Ji, Rao, Zheng, Zhang, Li (CR66) 2011; 133
Wang, Zhang, Xu, Li, Liu (CR20) 2021; 31
CR117
Li, Ma, Li, Liu, Zhou (CR109) 2020; 26
Chen, Huang, Liu, Sun, Yeoh (CR58) 2014; 4
Zhou, Zhao, Wang, Yang, Johannessen (CR119) 2019; 20
Jiang, Qiu, Tian, Zhang, Song (CR113) 2021; 11
CR130
CR89
CR87
Boyjoo, Shi, Tian, Liu, Liang (CR16) 2021; 14
Hou, Chen, Peng, Huang, Li (CR73) 2016; 12
CR124
Chen, Li, Park, Hong, Song (CR64) 2014; 2
CR82
CR81
CR121
CR80
CR128
Zheng, Zhang, Cha, Yang, Li (CR67) 2013; 13
CR129
CR19
CR15
CR14
CR95
Zhang (CR26) 2013; 231
Liang, Zheng, Li, Seh, Yao (CR84) 2014; 8
Tian, Song, Qiu, Sun, Jiang (CR110) 2021; 15
Chen, Song, Wang, Chen, Zhang (CR5) 2022; 55
Pan, Li, He, Xu, He (CR92) 2019; 23
Zhang, Wang, Ren, Liu, Li (CR126) 2021; 35
Wang, Chen, Shi, Zheng, Dong (CR39) 2010; 55
Wang, Xi, Zhang, Huang, Feng (CR123) 2021; 60
Kim, Shirvani-Arani, Choi, Cho, Lee (CR78) 2020; 12
Jeong, Lee, Kim, Kim, Park (CR51) 2016; 4
CR24
Zhu, Xu, Shen, Zhang, Li (CR93) 2022; 41
CR23
CR21
CR103
Deng, Wang, Wang, Yu (CR25) 2019; 7
1120_CR121
1120_CR43
1120_CR124
H Shi (1120_CR17) 2019; 60
Z Sun (1120_CR96) 2020; 10
1120_CR128
1120_CR129
J Schuster (1120_CR40) 2012; 51
Q Zhang (1120_CR88) 2015; 15
W Li (1120_CR102) 2020; 8
PG Bruce (1120_CR4) 2012; 11
S Chen (1120_CR5) 2022; 55
S-M Wang (1120_CR98) 2023; 42
D-R Deng (1120_CR90) 2017; 11
K Zhang (1120_CR42) 2013; 6
1120_CR45
H Li (1120_CR97) 2019; 18
1120_CR44
1120_CR130
ZX Chen (1120_CR132) 2022; 34
1120_CR46
1120_CR131
Z Zheng (1120_CR59) 2016; 26
K Yang (1120_CR2) 2021; 56
1120_CR32
S Chen (1120_CR58) 2014; 4
D Tian (1120_CR110) 2021; 15
1120_CR137
1120_CR139
Y Ye (1120_CR143) 2017; 29
Y-S Su (1120_CR50) 2012; 14
Q Cheng (1120_CR142) 2023; 76
L Huang (1120_CR136) 2022; 6
EI Andritsos (1120_CR118) 2021; 125
1120_CR38
1120_CR37
H Shi (1120_CR18) 2021; 31
F Sun (1120_CR71) 2013; 5
1120_CR33
R Wang (1120_CR105) 2020; 32
1120_CR21
1120_CR103
M Zhao (1120_CR13) 2020; 59
F Liu (1120_CR30) 2020; 11
S Chen (1120_CR104) 2020; 30
W Cai (1120_CR11) 2018; 28
Z Ye (1120_CR91) 2021; 13
Y Ji (1120_CR7) 2021; 31
SH Chung (1120_CR22) 2019; 31
Y Zhao (1120_CR53) 2014; 26
SS Zhang (1120_CR26) 2013; 231
W Yang (1120_CR85) 2020; 8
YC Jeong (1120_CR51) 2016; 4
H Li (1120_CR109) 2020; 26
S Sun (1120_CR31) 2022; 12
1120_CR23
JS Lee (1120_CR54) 2017; 7
Z Shen (1120_CR36) 2023; 57
1120_CR24
W Xue (1120_CR145) 2019; 4
1120_CR95
1120_CR111
J Wang (1120_CR76) 2018; 5
Z Han (1120_CR120) 2021; 33
Z Lian (1120_CR127) 2021; 12
1120_CR117
Y Gong (1120_CR79) 2017; 256
G Zheng (1120_CR67) 2013; 13
F Yang (1120_CR49) 2014; 510
Z Ye (1120_CR106) 2022; 9
1120_CR19
C Deng (1120_CR25) 2019; 7
1120_CR15
T Pan (1120_CR92) 2019; 23
1120_CR14
S Kim (1120_CR78) 2020; 12
C Zhao (1120_CR9) 2021; 16
C Wang (1120_CR48) 2013; 42
1120_CR87
X Chen (1120_CR12) 2022; 10
W Zhou (1120_CR69) 2014; 14
1120_CR81
1120_CR80
Y Song (1120_CR100) 2018; 11
H Li (1120_CR107) 2021; 33
1120_CR82
Y-W Song (1120_CR34) 2022; 8
C Wang (1120_CR39) 2010; 55
Z-Y Wang (1120_CR115) 2022; 32
H Xu (1120_CR116) 2021; 43
P Zhu (1120_CR70) 2018; 5
Z Liang (1120_CR84) 2014; 8
Q Pang (1120_CR72) 2015; 27
1120_CR89
P Wang (1120_CR123) 2021; 60
L Ji (1120_CR66) 2011; 133
1120_CR74
Z Li (1120_CR146) 2023; 8
F Wu (1120_CR138) 2017; 11
M Zhao (1120_CR8) 2020; 6
G Zhou (1120_CR119) 2019; 20
G Zhou (1120_CR75) 2015; 6
O Ogoke (1120_CR27) 2017; 5
C Qu (1120_CR141) 2017; 39
L Shi (1120_CR134) 2022; 9
C Zhu (1120_CR6) 2023
TZ Hou (1120_CR73) 2016; 12
B Jiang (1120_CR113) 2021; 11
W Yao (1120_CR101) 2021; 15
DR Deng (1120_CR10) 2018; 12
S Li (1120_CR140) 2023; 55
M-Q Zhao (1120_CR56) 2014; 5
T Zhou (1120_CR99) 2017; 10
Y-X Yin (1120_CR29) 2013; 52
1120_CR62
1120_CR144
1120_CR65
G He (1120_CR41) 2013; 7
1120_CR61
1120_CR60
Y Li (1120_CR122) 2020; 30
A Manthiram (1120_CR28) 2013; 46
Q Zhu (1120_CR93) 2022; 41
G Li (1120_CR63) 2016; 7
X-B Cheng (1120_CR133) 2017; 6
J Xie (1120_CR35) 2020; 132
H Zhang (1120_CR125) 2021; 13
S Chen (1120_CR47) 2014; 2
H Li (1120_CR3) 2021; 31
Y Boyjoo (1120_CR16) 2021; 14
J Guo (1120_CR52) 2011; 11
1120_CR68
H-J Li (1120_CR112) 2022; 45
L Fan (1120_CR86) 2019; 295
Z Shi (1120_CR114) 2021; 31
X Liu (1120_CR1) 2022; 12
L Wang (1120_CR20) 2021; 31
H Zhang (1120_CR126) 2021; 35
Z Sun (1120_CR83) 2017; 8
J Song (1120_CR94) 2019; 7
Q Pang (1120_CR77) 2016; 10
Y Chen (1120_CR64) 2014; 2
L Shi (1120_CR135) 2020; 13
1120_CR55
S Wu (1120_CR108) 2022; 49
1120_CR57
References_xml – ident: CR45
– volume: 13
  start-page: 1265
  issue: 3
  year: 2013
  end-page: 1270
  ident: CR67
  article-title: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl304795g
– volume: 33
  start-page: 2105067
  issue: 51
  year: 2021
  ident: CR107
  article-title: Utilizing the built-in electric field of p–n junctions to spatially propel the stepwise polysulfide conversion in lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105067
– ident: CR68
– ident: CR74
– volume: 133
  start-page: 18522
  issue: 46
  year: 2011
  end-page: 18525
  ident: CR66
  article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206955k
– volume: 4
  start-page: 1301761
  issue: 8
  year: 2014
  ident: CR58
  article-title: 3d hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301761
– volume: 11
  start-page: 19
  issue: 1
  year: 2012
  end-page: 29
  ident: CR4
  article-title: Li–O and Li–S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 7
  start-page: 10920
  issue: 12
  year: 2013
  end-page: 10930
  ident: CR41
  article-title: Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes
  publication-title: ACS Nano
  doi: 10.1021/nn404439r
– volume: 4
  start-page: 819
  issue: 3
  year: 2016
  end-page: 826
  ident: CR51
  article-title: Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07818K
– volume: 60
  start-page: 15563
  issue: 28
  year: 2021
  end-page: 15571
  ident: CR123
  article-title: Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104053
– year: 2023
  ident: CR6
  article-title: Quantitative analysis of the structural evolution in Si anode via multi-scale image reconstruction
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.01.032
– volume: 31
  start-page: 2104286
  issue: 36
  year: 2021
  ident: CR20
  article-title: Tetrabutylammonium-intercalated 1t-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2d delaminated mxene for high-performance lithium-ion capacitors
  publication-title: Mater. Adv. Funct. Mater.
  doi: 10.1002/adfm.202104286
– volume: 33
  start-page: 2105947
  issue: 44
  year: 2021
  ident: CR120
  article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105947
– ident: CR80
– volume: 26
  start-page: 203
  year: 2020
  end-page: 212
  ident: CR109
  article-title: Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.002
– volume: 35
  start-page: 88
  year: 2021
  end-page: 98
  ident: CR126
  article-title: Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.009
– volume: 46
  start-page: 1125
  issue: 5
  year: 2013
  end-page: 1134
  ident: CR28
  article-title: Challenges and prospects of lithium–sulfur batteries
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300179v
– ident: CR121
– volume: 10
  start-page: 1359
  issue: 3
  year: 2022
  end-page: 1368
  ident: CR12
  article-title: A cof-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li–S batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08942K
– volume: 34
  start-page: 2201555
  issue: 35
  year: 2022
  ident: CR132
  article-title: Toward practical high-energy-density lithium–sulfur pouch cells: A review
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201555
– volume: 12
  start-page: 139
  issue: 1
  year: 2020
  ident: CR78
  article-title: Strongly anchoring polysulfides by hierarchical Fe O /C N nanostructures for advanced lithium–sulfur batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00475-5
– volume: 26
  start-page: 8952
  issue: 48
  year: 2016
  end-page: 8959
  ident: CR59
  article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601897
– ident: CR129
– ident: CR144
– ident: CR19
– volume: 57
  start-page: 299
  year: 2023
  end-page: 307
  ident: CR36
  article-title: In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.02.023
– volume: 12
  start-page: 11120
  issue: 11
  year: 2018
  end-page: 11129
  ident: CR10
  article-title: Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05534
– volume: 55
  start-page: 7010
  issue: 23
  year: 2010
  end-page: 7015
  ident: CR39
  article-title: Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.06.019
– volume: 15
  start-page: 7114
  issue: 4
  year: 2021
  end-page: 7130
  ident: CR101
  article-title: ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00270
– volume: 10
  start-page: 4111
  issue: 4
  year: 2016
  end-page: 4118
  ident: CR77
  article-title: Long-life and high-areal-capacity li–s batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07347
– volume: 13
  start-page: 203
  year: 2021
  ident: CR91
  article-title: Rational design of mof-based materials for next-generation rechargeable batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00726-z
– ident: CR57
– volume: 31
  start-page: 2006798
  issue: 4
  year: 2021
  ident: CR114
  article-title: Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006798
– ident: CR60
– volume: 4
  start-page: 374
  issue: 5
  year: 2019
  end-page: 382
  ident: CR145
  article-title: Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0351-0
– volume: 125
  start-page: 18108
  issue: 33
  year: 2021
  end-page: 18118
  ident: CR118
  article-title: Single-atom catalysts as promising cathode materials for lithium–sulfur batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c04491
– volume: 55
  start-page: 94
  year: 2023
  end-page: 104
  ident: CR140
  article-title: Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.11.045
– volume: 51
  start-page: 3591
  issue: 15
  year: 2012
  end-page: 3595
  ident: CR40
  article-title: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107817
– volume: 10
  start-page: 1904010
  issue: 22
  year: 2020
  ident: CR96
  article-title: Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904010
– volume: 6
  start-page: 906
  issue: 4
  year: 2022
  end-page: 922
  ident: CR136
  article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2022.02.015
– volume: 2
  start-page: 10126
  issue: 26
  year: 2014
  end-page: 10130
  ident: CR64
  article-title: Sulfur encapsulated in porous hollow CNTs@ CNFs for high-performance lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01823K
– volume: 5
  start-page: 3410
  issue: 1
  year: 2014
  ident: CR56
  article-title: Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4410
– volume: 52
  start-page: 13186
  issue: 50
  year: 2013
  end-page: 13200
  ident: CR29
  article-title: Lithium–sulfur batteries: Electrochemical materials and prospects
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201304762
– volume: 15
  start-page: 3780
  issue: 6
  year: 2015
  end-page: 3786
  ident: CR88
  article-title: Understanding the anchoring effect of two-dimensional layered material for lithium–sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00367
– volume: 11
  start-page: 6031
  issue: 6
  year: 2017
  end-page: 6039
  ident: CR90
  article-title: Co4n nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01945
– volume: 11
  start-page: 2620
  issue: 9
  year: 2018
  end-page: 2630
  ident: CR100
  article-title: Synchronous immobilization and conversion of polysulfides on a VO –Vn binary host targeting high sulfur load Li–S batteries
  publication-title: Energy Environm. Sci.
  doi: 10.1039/C8EE01402G
– volume: 43
  start-page: 212
  year: 2021
  end-page: 220
  ident: CR116
  article-title: Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.09.003
– volume: 6
  start-page: 1095
  issue: 7
  year: 2020
  end-page: 1104
  ident: CR8
  article-title: A perspective toward practical lithium–sulfur batteries
  publication-title: ACS Centr. Sci.
  doi: 10.1021/acscentsci.0c00449
– ident: CR89
– volume: 7
  start-page: 12381
  issue: 20
  year: 2019
  end-page: 12413
  ident: CR25
  article-title: Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00535H
– ident: CR117
– ident: CR33
– ident: CR137
– volume: 31
  start-page: 2011289
  issue: 22
  year: 2021
  ident: CR3
  article-title: Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011289
– volume: 6
  start-page: 38
  issue: 1
  year: 2013
  end-page: 46
  ident: CR42
  article-title: Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0279-1
– volume: 10
  start-page: 1694
  issue: 7
  year: 2017
  end-page: 1703
  ident: CR99
  article-title: Twinborn TiO –Tin heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries
  publication-title: Energy Environm. Sci.
  doi: 10.1039/C7EE01430A
– volume: 31
  start-page: 2102314
  issue: 28
  year: 2021
  ident: CR18
  article-title: Interfacial engineering of bifunctional niobium (v)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries
  publication-title: Mater. Adv. Funct. Mater.
  doi: 10.1002/adfm.202102314
– volume: 5
  start-page: 1701598
  issue: 10
  year: 2018
  ident: CR70
  article-title: In situ polymerization of nanostructured conductive polymer on 3d sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701598
– volume: 13
  start-page: 53388
  issue: 45
  year: 2021
  end-page: 53397
  ident: CR125
  article-title: Machine-learning-enabled tricks of the trade for rapid host material discovery in Li–S battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10749
– volume: 30
  start-page: 187
  year: 2020
  end-page: 195
  ident: CR104
  article-title: Multifunctional LDH/Co S heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.002
– volume: 27
  start-page: 6021
  issue: 39
  year: 2015
  end-page: 6028
  ident: CR72
  article-title: A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502467
– ident: CR44
– ident: CR103
– volume: 20
  start-page: 1252
  issue: 2
  year: 2019
  end-page: 1261
  ident: CR119
  article-title: Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04719
– ident: CR38
– volume: 6
  start-page: 18
  year: 2017
  end-page: 25
  ident: CR133
  article-title: The gap between long lifespan li-s coin and pouch cells: The importance of lithium metal anode protection
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.09.003
– volume: 14
  start-page: 540
  issue: 2
  year: 2021
  end-page: 575
  ident: CR16
  article-title: Engineering nanoreactors for metal–chalcogen batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03316B
– volume: 14
  start-page: 14495
  issue: 42
  year: 2012
  end-page: 14499
  ident: CR50
  article-title: Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42796f
– volume: 12
  start-page: 7053
  issue: 29
  year: 2021
  end-page: 7059
  ident: CR127
  article-title: Machine learning derived blueprint for rational design of the effective single-atom cathode catalyst of the lithium–sulfur battery
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00927
– ident: CR139
– volume: 23
  start-page: 55
  year: 2019
  end-page: 61
  ident: CR92
  article-title: Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.034
– volume: 42
  start-page: 2592
  issue: 7
  year: 2013
  end-page: 2609
  ident: CR48
  article-title: Carbon nanotube electronics–moving forward
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35325C
– ident: CR55
– volume: 8
  start-page: 14627
  issue: 1
  year: 2017
  ident: CR83
  article-title: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14627
– volume: 256
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR79
  article-title: Three-dimensional porous C N nanosheets@ reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.032
– volume: 12
  start-page: 3283
  issue: 24
  year: 2016
  end-page: 3291
  ident: CR73
  article-title: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.201600809
– volume: 11
  start-page: 2102995
  issue: 48
  year: 2021
  ident: CR113
  article-title: Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102995
– volume: 31
  start-page: 2104830
  issue: 47
  year: 2021
  ident: CR7
  article-title: PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104830
– ident: CR24
– ident: CR128
– volume: 231
  start-page: 153
  year: 2013
  end-page: 162
  ident: CR26
  article-title: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2012.12.102
– volume: 11
  start-page: 4288
  issue: 10
  year: 2011
  end-page: 4294
  ident: CR52
  article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl202297p
– volume: 5
  start-page: 1800621
  issue: 11
  year: 2018
  ident: CR76
  article-title: Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800621
– volume: 31
  start-page: 1901125
  issue: 27
  year: 2019
  ident: CR22
  article-title: Current status and future prospects of metal–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901125
– volume: 132
  start-page: 17823
  issue: 40
  year: 2020
  end-page: 17828
  ident: CR35
  article-title: Spatial and kinetic regulation of sulfur electrochemical on semi-immobilized redox mediators in working batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202007740
– ident: CR87
– ident: CR131
– volume: 11
  start-page: 5215
  issue: 1
  year: 2020
  ident: CR30
  article-title: Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19070-8
– volume: 9
  start-page: 2103456
  issue: 1
  year: 2022
  ident: CR106
  article-title: Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103456
– ident: CR111
– volume: 30
  start-page: 250
  year: 2020
  end-page: 259
  ident: CR122
  article-title: Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.022
– ident: CR61
– volume: 41
  start-page: 311
  issue: 1
  year: 2022
  end-page: 318
  ident: CR93
  article-title: Efficient polysulfides conversion on Mo CT MXene for high-performance lithium–sulfur batteries
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01839-5
– volume: 49
  start-page: 153
  year: 2022
  end-page: 163
  ident: CR108
  article-title: Conductive 1T-VS2− MXene heterostructured bidirectional electrocatalyst enabling compact li-s batteries with high volumetric and areal capacity
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.004
– volume: 8
  start-page: 3031
  issue: 11
  year: 2022
  end-page: 3050
  ident: CR34
  article-title: Cationic lithium polysulfides in lithium–sulfur batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.004
– volume: 45
  start-page: 1229
  year: 2022
  end-page: 1237
  ident: CR112
  article-title: Quantitatively regulating defects of 2d tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.024
– ident: CR21
– ident: CR46
– volume: 295
  start-page: 444
  year: 2019
  end-page: 451
  ident: CR86
  article-title: Fe-mof derived jujube pit like Fe O /C composite as sulfur host for lithium-sulfur battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.107
– volume: 32
  start-page: 2000315
  issue: 32
  year: 2020
  ident: CR105
  article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000315
– ident: CR15
– volume: 8
  start-page: 84
  year: 2023
  end-page: 93
  ident: CR146
  article-title: Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01175-7
– volume: 39
  start-page: 262
  year: 2017
  end-page: 272
  ident: CR141
  article-title: LiNO -free electrolyte for Li-S battery: a solvent of choice with low ksp of polysulfide and low dendrite of lithium
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.002
– volume: 12
  start-page: 2200889
  issue: 33
  year: 2022
  ident: CR1
  article-title: Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200889
– volume: 56
  start-page: 438
  year: 2021
  end-page: 443
  ident: CR2
  article-title: Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.025
– volume: 9
  start-page: 2201640
  issue: 21
  year: 2022
  ident: CR134
  article-title: Early failure of lithium–sulfur batteries at practical conditions: Crosstalk between sulfur cathode and lithium anode
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201640
– ident: CR32
– volume: 16
  start-page: 166
  issue: 2
  year: 2021
  end-page: 173
  ident: CR9
  article-title: A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites
  publication-title: Nat. Nanotechn.
  doi: 10.1038/s41565-020-00797-w
– volume: 8
  start-page: 5249
  issue: 5
  year: 2014
  end-page: 5256
  ident: CR84
  article-title: Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure
  publication-title: ACS Nano
  doi: 10.1021/nn501308m
– volume: 13
  start-page: 3620
  issue: 10
  year: 2020
  end-page: 3632
  ident: CR135
  article-title: Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02088E
– ident: CR81
– volume: 76
  start-page: 181
  year: 2023
  end-page: 186
  ident: CR142
  article-title: Constructing a 700 wh kg -level rechargeable lithium–sulfur pouch cell
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.09.029
– volume: 8
  start-page: 15816
  issue: 31
  year: 2020
  end-page: 15821
  ident: CR85
  article-title: A MoO /MoO -CP self-supporting heterostructure for modification of lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01664K
– volume: 8
  start-page: 433
  issue: 1
  year: 2020
  end-page: 442
  ident: CR102
  article-title: In situ engineered zns–fes heterostructures in n-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11451C
– volume: 11
  start-page: 4694
  issue: 5
  year: 2017
  end-page: 4702
  ident: CR138
  article-title: Sulfur nanodots stitched in 2d “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00596
– volume: 18
  start-page: 338
  year: 2019
  end-page: 348
  ident: CR97
  article-title: Ultra-thin Fe C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries
  publication-title: Energy storage Mater.
  doi: 10.1016/j.ensm.2018.08.016
– ident: CR95
– ident: CR43
– volume: 28
  start-page: 1704865
  issue: 2
  year: 2018
  ident: CR11
  article-title: Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704865
– ident: CR14
– ident: CR37
– ident: CR82
– volume: 29
  start-page: 1700598
  issue: 48
  year: 2017
  ident: CR143
  article-title: Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700598
– volume: 60
  start-page: 743
  year: 2019
  end-page: 751
  ident: CR17
  article-title: Free-standing integrated cathode derived from 3d graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.006
– volume: 15
  start-page: 16515
  issue: 10
  year: 2021
  end-page: 16524
  ident: CR110
  article-title: Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06067
– volume: 59
  start-page: 12636
  issue: 31
  year: 2020
  end-page: 12652
  ident: CR13
  article-title: Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909339
– volume: 5
  start-page: 448
  issue: 2
  year: 2017
  end-page: 469
  ident: CR27
  article-title: Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07864H
– ident: CR23
– volume: 2
  start-page: 16199
  issue: 38
  year: 2014
  end-page: 16207
  ident: CR47
  article-title: Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03877K
– volume: 26
  start-page: 5113
  issue: 30
  year: 2014
  end-page: 5118
  ident: CR53
  article-title: Encapsulating mwnts into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401191
– volume: 6
  start-page: 7760
  issue: 1
  year: 2015
  ident: CR75
  article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8760
– volume: 7
  start-page: 6507
  issue: 11
  year: 2019
  end-page: 6513
  ident: CR94
  article-title: Rational design of free-standing 3d porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00212J
– ident: CR124
– volume: 7
  start-page: 1601943
  issue: 5
  year: 2017
  ident: CR54
  article-title: Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601943
– ident: CR65
– volume: 5
  start-page: 5630
  issue: 12
  year: 2013
  end-page: 5638
  ident: CR71
  article-title: High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/am400958x
– ident: CR130
– volume: 55
  start-page: 2088
  issue: 15
  year: 2022
  end-page: 2102
  ident: CR5
  article-title: Establishing a resilient conductive binding network for Si-based anodes via molecular engineering
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00259
– volume: 32
  start-page: 2200893
  issue: 27
  year: 2022
  ident: CR115
  article-title: Nickel–platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200893
– volume: 7
  start-page: 10601
  issue: 1
  year: 2016
  ident: CR63
  article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10601
– volume: 12
  start-page: 2202206
  issue: 41
  year: 2022
  ident: CR31
  article-title: Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202206
– volume: 510
  start-page: 522
  issue: 7506
  year: 2014
  end-page: 524
  ident: CR49
  article-title: Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
  publication-title: Nature
  doi: 10.1038/nature13434
– volume: 42
  start-page: 515
  issue: 2
  year: 2023
  end-page: 524
  ident: CR98
  article-title: Ni FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-02140-9
– ident: CR62
– volume: 14
  start-page: 5250
  issue: 9
  year: 2014
  end-page: 5256
  ident: CR69
  article-title: Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl502238b
– volume: 46
  start-page: 1125
  issue: 5
  year: 2013
  ident: 1120_CR28
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300179v
– volume: 23
  start-page: 55
  year: 2019
  ident: 1120_CR92
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.034
– volume: 12
  start-page: 7053
  issue: 29
  year: 2021
  ident: 1120_CR127
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00927
– ident: 1120_CR32
  doi: 10.1126/sciadv.abn4372
– volume: 34
  start-page: 2201555
  issue: 35
  year: 2022
  ident: 1120_CR132
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201555
– volume: 31
  start-page: 2011289
  issue: 22
  year: 2021
  ident: 1120_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202011289
– volume: 18
  start-page: 338
  year: 2019
  ident: 1120_CR97
  publication-title: Energy storage Mater.
  doi: 10.1016/j.ensm.2018.08.016
– ident: 1120_CR23
  doi: 10.1002/aenm.202001304
– volume: 31
  start-page: 2102314
  issue: 28
  year: 2021
  ident: 1120_CR18
  publication-title: Mater. Adv. Funct. Mater.
  doi: 10.1002/adfm.202102314
– ident: 1120_CR95
  doi: 10.1002/aenm.202201056
– ident: 1120_CR14
  doi: 10.26599/NRE.2022.9120012
– volume: 256
  start-page: 1
  year: 2017
  ident: 1120_CR79
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.032
– volume: 51
  start-page: 3591
  issue: 15
  year: 2012
  ident: 1120_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107817
– volume: 12
  start-page: 139
  issue: 1
  year: 2020
  ident: 1120_CR78
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00475-5
– volume: 13
  start-page: 203
  year: 2021
  ident: 1120_CR91
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00726-z
– volume: 27
  start-page: 6021
  issue: 39
  year: 2015
  ident: 1120_CR72
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502467
– volume: 32
  start-page: 2200893
  issue: 27
  year: 2022
  ident: 1120_CR115
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200893
– volume: 16
  start-page: 166
  issue: 2
  year: 2021
  ident: 1120_CR9
  publication-title: Nat. Nanotechn.
  doi: 10.1038/s41565-020-00797-w
– volume: 35
  start-page: 88
  year: 2021
  ident: 1120_CR126
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.009
– volume: 13
  start-page: 1265
  issue: 3
  year: 2013
  ident: 1120_CR67
  publication-title: Nano Lett.
  doi: 10.1021/nl304795g
– ident: 1120_CR19
  doi: 10.1016/j.cej.2021.132734
– volume: 60
  start-page: 743
  year: 2019
  ident: 1120_CR17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.006
– volume: 42
  start-page: 2592
  issue: 7
  year: 2013
  ident: 1120_CR48
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35325C
– ident: 1120_CR43
  doi: 10.1002/aenm.201301473
– volume: 11
  start-page: 2620
  issue: 9
  year: 2018
  ident: 1120_CR100
  publication-title: Energy Environm. Sci.
  doi: 10.1039/C8EE01402G
– volume: 55
  start-page: 7010
  issue: 23
  year: 2010
  ident: 1120_CR39
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.06.019
– volume: 14
  start-page: 14495
  issue: 42
  year: 2012
  ident: 1120_CR50
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42796f
– volume: 55
  start-page: 2088
  issue: 15
  year: 2022
  ident: 1120_CR5
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.2c00259
– ident: 1120_CR55
  doi: 10.1126/science.1246501
– volume: 31
  start-page: 2104830
  issue: 47
  year: 2021
  ident: 1120_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104830
– volume: 6
  start-page: 7760
  issue: 1
  year: 2015
  ident: 1120_CR75
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8760
– ident: 1120_CR121
  doi: 10.1021/acs.nanolett.0c02167
– volume: 60
  start-page: 15563
  issue: 28
  year: 2021
  ident: 1120_CR123
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104053
– volume: 10
  start-page: 1694
  issue: 7
  year: 2017
  ident: 1120_CR99
  publication-title: Energy Environm. Sci.
  doi: 10.1039/C7EE01430A
– ident: 1120_CR57
  doi: 10.1002/adfm.201503726
– volume: 30
  start-page: 187
  year: 2020
  ident: 1120_CR104
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.002
– ident: 1120_CR45
  doi: 10.1002/anie.201100637
– volume: 11
  start-page: 19
  issue: 1
  year: 2012
  ident: 1120_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 2
  start-page: 16199
  issue: 38
  year: 2014
  ident: 1120_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03877K
– volume: 31
  start-page: 2104286
  issue: 36
  year: 2021
  ident: 1120_CR20
  publication-title: Mater. Adv. Funct. Mater.
  doi: 10.1002/adfm.202104286
– volume: 15
  start-page: 3780
  issue: 6
  year: 2015
  ident: 1120_CR88
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00367
– volume: 56
  start-page: 438
  year: 2021
  ident: 1120_CR2
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.025
– ident: 1120_CR128
  doi: 10.1016/j.cej.2020.124117
– volume: 33
  start-page: 2105067
  issue: 51
  year: 2021
  ident: 1120_CR107
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105067
– volume: 5
  start-page: 448
  issue: 2
  year: 2017
  ident: 1120_CR27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07864H
– volume: 6
  start-page: 1095
  issue: 7
  year: 2020
  ident: 1120_CR8
  publication-title: ACS Centr. Sci.
  doi: 10.1021/acscentsci.0c00449
– volume: 8
  start-page: 84
  year: 2023
  ident: 1120_CR146
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01175-7
– volume: 12
  start-page: 11120
  issue: 11
  year: 2018
  ident: 1120_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05534
– volume: 5
  start-page: 1800621
  issue: 11
  year: 2018
  ident: 1120_CR76
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800621
– ident: 1120_CR89
  doi: 10.1002/adma.201601382
– ident: 1120_CR24
  doi: 10.1002/aenm.202100601
– ident: 1120_CR82
  doi: 10.1038/ncomms5759
– volume: 9
  start-page: 2103456
  issue: 1
  year: 2022
  ident: 1120_CR106
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103456
– volume: 26
  start-page: 203
  year: 2020
  ident: 1120_CR109
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.002
– volume: 132
  start-page: 17823
  issue: 40
  year: 2020
  ident: 1120_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202007740
– ident: 1120_CR124
  doi: 10.1002/inf2.12304
– volume: 7
  start-page: 10920
  issue: 12
  year: 2013
  ident: 1120_CR41
  publication-title: ACS Nano
  doi: 10.1021/nn404439r
– volume: 133
  start-page: 18522
  issue: 46
  year: 2011
  ident: 1120_CR66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206955k
– volume: 12
  start-page: 3283
  issue: 24
  year: 2016
  ident: 1120_CR73
  publication-title: Small
  doi: 10.1002/smll.201600809
– volume: 8
  start-page: 15816
  issue: 31
  year: 2020
  ident: 1120_CR85
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01664K
– volume: 49
  start-page: 153
  year: 2022
  ident: 1120_CR108
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.004
– ident: 1120_CR144
  doi: 10.1002/adfm.202212759
– volume: 6
  start-page: 906
  issue: 4
  year: 2022
  ident: 1120_CR136
  publication-title: Joule
  doi: 10.1016/j.joule.2022.02.015
– volume: 6
  start-page: 38
  issue: 1
  year: 2013
  ident: 1120_CR42
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0279-1
– ident: 1120_CR44
  doi: 10.1002/smll.201804786
– ident: 1120_CR38
  doi: 10.1002/chem.201600040
– volume: 8
  start-page: 5249
  issue: 5
  year: 2014
  ident: 1120_CR84
  publication-title: ACS Nano
  doi: 10.1021/nn501308m
– volume: 13
  start-page: 53388
  issue: 45
  year: 2021
  ident: 1120_CR125
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10749
– volume: 8
  start-page: 433
  issue: 1
  year: 2020
  ident: 1120_CR102
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11451C
– volume: 5
  start-page: 1701598
  issue: 10
  year: 2018
  ident: 1120_CR70
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201701598
– volume: 59
  start-page: 12636
  issue: 31
  year: 2020
  ident: 1120_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909339
– volume: 7
  start-page: 6507
  issue: 11
  year: 2019
  ident: 1120_CR94
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00212J
– ident: 1120_CR33
  doi: 10.1002/anie.201909339
– volume: 57
  start-page: 299
  year: 2023
  ident: 1120_CR36
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.02.023
– volume: 11
  start-page: 2102995
  issue: 48
  year: 2021
  ident: 1120_CR113
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102995
– volume: 15
  start-page: 7114
  issue: 4
  year: 2021
  ident: 1120_CR101
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00270
– volume: 510
  start-page: 522
  issue: 7506
  year: 2014
  ident: 1120_CR49
  publication-title: Nature
  doi: 10.1038/nature13434
– volume: 7
  start-page: 1601943
  issue: 5
  year: 2017
  ident: 1120_CR54
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601943
– volume: 26
  start-page: 8952
  issue: 48
  year: 2016
  ident: 1120_CR59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601897
– ident: 1120_CR60
  doi: 10.1002/aenm.201500211
– volume: 7
  start-page: 12381
  issue: 20
  year: 2019
  ident: 1120_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00535H
– ident: 1120_CR65
  doi: 10.20517/energymater.2021.22
– volume: 76
  start-page: 181
  year: 2023
  ident: 1120_CR142
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.09.029
– volume: 6
  start-page: 18
  year: 2017
  ident: 1120_CR133
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.09.003
– volume: 8
  start-page: 3031
  issue: 11
  year: 2022
  ident: 1120_CR34
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.004
– ident: 1120_CR74
  doi: 10.26599/NRE.2023.9120049
– ident: 1120_CR68
  doi: 10.1016/j.nantod.2018.02.006
– ident: 1120_CR46
  doi: 10.1002/anie.201205292
– volume: 8
  start-page: 14627
  issue: 1
  year: 2017
  ident: 1120_CR83
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14627
– volume: 7
  start-page: 10601
  issue: 1
  year: 2016
  ident: 1120_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10601
– ident: 1120_CR87
  doi: 10.1016/j.cej.2020.126967
– volume: 11
  start-page: 5215
  issue: 1
  year: 2020
  ident: 1120_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19070-8
– volume: 41
  start-page: 311
  issue: 1
  year: 2022
  ident: 1120_CR93
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01839-5
– volume: 52
  start-page: 13186
  issue: 50
  year: 2013
  ident: 1120_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201304762
– ident: 1120_CR61
  doi: 10.1002/adma.201506014
– volume: 10
  start-page: 1359
  issue: 3
  year: 2022
  ident: 1120_CR12
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08942K
– volume: 12
  start-page: 2202206
  issue: 41
  year: 2022
  ident: 1120_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202206
– volume: 28
  start-page: 1704865
  issue: 2
  year: 2018
  ident: 1120_CR11
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704865
– volume: 5
  start-page: 5630
  issue: 12
  year: 2013
  ident: 1120_CR71
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/am400958x
– volume: 14
  start-page: 540
  issue: 2
  year: 2021
  ident: 1120_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03316B
– volume: 12
  start-page: 2200889
  issue: 33
  year: 2022
  ident: 1120_CR1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200889
– volume: 11
  start-page: 4288
  issue: 10
  year: 2011
  ident: 1120_CR52
  publication-title: Nano Lett.
  doi: 10.1021/nl202297p
– volume: 11
  start-page: 6031
  issue: 6
  year: 2017
  ident: 1120_CR90
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01945
– volume: 2
  start-page: 10126
  issue: 26
  year: 2014
  ident: 1120_CR64
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01823K
– volume: 4
  start-page: 374
  issue: 5
  year: 2019
  ident: 1120_CR145
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0351-0
– volume: 45
  start-page: 1229
  year: 2022
  ident: 1120_CR112
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.024
– ident: 1120_CR117
  doi: 10.1038/npjcompumats.2016.2
– volume: 31
  start-page: 1901125
  issue: 27
  year: 2019
  ident: 1120_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901125
– ident: 1120_CR129
  doi: 10.34133/energymatadv.0010
– volume: 15
  start-page: 16515
  issue: 10
  year: 2021
  ident: 1120_CR110
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06067
– volume: 55
  start-page: 94
  year: 2023
  ident: 1120_CR140
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.11.045
– ident: 1120_CR80
  doi: 10.1002/chem.201900884
– ident: 1120_CR139
  doi: 10.1002/adma.202208590
– volume: 295
  start-page: 444
  year: 2019
  ident: 1120_CR86
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.107
– volume: 26
  start-page: 5113
  issue: 30
  year: 2014
  ident: 1120_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401191
– volume: 32
  start-page: 2000315
  issue: 32
  year: 2020
  ident: 1120_CR105
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000315
– volume: 43
  start-page: 212
  year: 2021
  ident: 1120_CR116
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.09.003
– volume: 33
  start-page: 2105947
  issue: 44
  year: 2021
  ident: 1120_CR120
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105947
– volume: 42
  start-page: 515
  issue: 2
  year: 2023
  ident: 1120_CR98
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-02140-9
– volume: 9
  start-page: 2201640
  issue: 21
  year: 2022
  ident: 1120_CR134
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201640
– volume: 5
  start-page: 3410
  issue: 1
  year: 2014
  ident: 1120_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4410
– volume: 30
  start-page: 250
  year: 2020
  ident: 1120_CR122
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.022
– ident: 1120_CR103
  doi: 10.1016/j.electacta.2019.135311
– ident: 1120_CR15
  doi: 10.1088/2515-7655/aadef6
– ident: 1120_CR62
  doi: 10.1002/smll.201804347
– ident: 1120_CR130
  doi: 10.20517/energymater.2022.4
– volume: 39
  start-page: 262
  year: 2017
  ident: 1120_CR141
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.002
– ident: 1120_CR81
  doi: 10.1002/chem.202003807
– volume: 31
  start-page: 2006798
  issue: 4
  year: 2021
  ident: 1120_CR114
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006798
– volume: 10
  start-page: 1904010
  issue: 22
  year: 2020
  ident: 1120_CR96
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904010
– ident: 1120_CR131
  doi: 10.1002/aenm.202202518
– ident: 1120_CR21
  doi: 10.1002/eem2.12483
– ident: 1120_CR37
  doi: 10.1016/j.ensm.2015.09.007
– volume: 4
  start-page: 1301761
  issue: 8
  year: 2014
  ident: 1120_CR58
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301761
– ident: 1120_CR111
  doi: 10.1002/anie.201905852
– volume: 125
  start-page: 18108
  issue: 33
  year: 2021
  ident: 1120_CR118
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c04491
– volume: 29
  start-page: 1700598
  issue: 48
  year: 2017
  ident: 1120_CR143
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700598
– year: 2023
  ident: 1120_CR6
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.01.032
– volume: 13
  start-page: 3620
  issue: 10
  year: 2020
  ident: 1120_CR135
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02088E
– ident: 1120_CR137
  doi: 10.1016/j.partic.2022.11.009
– volume: 14
  start-page: 5250
  issue: 9
  year: 2014
  ident: 1120_CR69
  publication-title: Nano Lett.
  doi: 10.1021/nl502238b
– volume: 231
  start-page: 153
  year: 2013
  ident: 1120_CR26
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2012.12.102
– volume: 10
  start-page: 4111
  issue: 4
  year: 2016
  ident: 1120_CR77
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07347
– volume: 20
  start-page: 1252
  issue: 2
  year: 2019
  ident: 1120_CR119
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04719
– volume: 4
  start-page: 819
  issue: 3
  year: 2016
  ident: 1120_CR51
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07818K
– volume: 11
  start-page: 4694
  issue: 5
  year: 2017
  ident: 1120_CR138
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00596
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5164802
SecondaryResourceType review_article
Snippet Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional...
As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution...
As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution...
HighlightsA comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional...
A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization....
Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Carbon
Carbon materials
Commercialization
Design optimization
Electrolytes
Engineering
Functional modification
Li-S batteries
Lithium sulfur batteries
Lithium-ion batteries
Machine learning
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Rechargeable batteries
Review
Structural design
Sulfur
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuEBE7dmxzQbRqtUILB7qVeovs2FZXWiXVPg69ceEX8A_5Jcw42RfPC7fIj8iaGXtmPONvCHmJRrtVEk4_WbhccB9z57zKpXQC2N0oxvDt8MdP1ehcfLiQFzulvjAnrIcH7gn3RhcmCNV4b0onotEmhmgbaIoG_lxEPH1B5-04UyBJXGFFpm18EMsqix2UGoGYLuUWyEwicJna4mNKLkCvD4q2N6QVhrBSpTrG8koV1fACJ73Dw6rNRQ7qDzxzBl9qT8ulYgC_s2B_TcT8KRqblNzpHXJ7sE7p-54qd8mN0N4jt3YwC--Tr5OUaLugPdJRg8O3QXDaRTqefv_y7Yz2yJ3XFG96KaaT0LPVLK7mdNylvH1qW0_Hwbb0pC_FM7tehrcUL4DosZ27rs2PQMV6OuoWywW0t3RyOV3Qz8CXdw_I-enJ5HiUD7Uc8gZsqGXugzbg2yntFBfOaMuC9ly6pgim8iW3hnlwbbwFYsBnFatYqBCLkrMA3rsvH5KDtmvDY0zG4miEcO6tEWWpQMcGWTlbllZGJlRG2Jr2dTMAnWO9jVm9gWhO_KqBX3XiVw1zXm3mXPUwH38dfYQs3YxEiO7UAIJbD4Jb_0twM3K4Foh6ODcWNdfagEkIspaRF5tu2PEYxrFt6FY4Bt8jgyvJMvKol5_NSkrFdaW1zIjek6y9pe73tNPLhCoOZBUKnNmMvF4L4XZdf6bFk_9Bi6fkJsfdk9KEDsnBcr4Kz8DYW7rnaV__AHcBRTY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagXOCA-G-gICNxg0iJY8c2F0SrViu0cKBbqbfIiW260ipBm-yhNy48AW_IkzDjZJMuFCRuUTKRnJmxZyYz8w0hr9BpN1LA6SeSMubM-rgsrYyFKDmIu5Jpir3DHz_lszP-4VycD01h7bbafZuSDCf12OyGo5GTGGwMhL8pXMmb5JbA2B1TtBPmOJM4jWnKDeJIZX4FoYYjnks2gZgJBC2TEzamYBxs-mBkeydaYvoqTKlL0ziXST5031y_rB0LFwYBXOe9_lmE-VsmNhi4k3vk7uCZ0ve9Kt0nN1z9gNy5glf4kHxfhCLblvYoRxWSTwlw2ng6X_789uOU9qidlxT_8lIsJaGnm5XfrOm8CTX71NSWzp2p6XE_hmd12bm3FH_-0COzLps6PgTzaumsabsW7td0cbFs6WdTuXePyNnJ8eJoFg9zHOIK_Kcutk5piOukKiXjpVYmdcoyUVaJ07nNmNGphbDGGmAGXOY-94l0PslY6iByt9ljslc3tdvHQiyGDghj1mieZRLsqxN5abLMCJ9yGZF0y_uiGkDOcdbGqhjhmYO8CpBXEeRVwDuvx3e-9hAf_6Q-RJGOlAjPHW406y_FsNsLlWjHZWWtzkrutdLeeWAQl17D9yQ-IgdbhSiGM6MtmFIa3EHQtYi8HB_DbscUjqlds0Ea7EWGMDKNyJNef8aVZJKpXCkREbWjWTtL3X1SLy8CojiwlUsIZCPyZquE07r-zoun_0f-jNxmuE9CMdAB2evWG_ccXLqufBF28C-IDjfM
  priority: 102
  providerName: Springer Nature
Title Towards Practical Application of Li–S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race?
URI https://link.springer.com/article/10.1007/s40820-023-01120-7
https://www.ncbi.nlm.nih.gov/pubmed/37286885
https://www.proquest.com/docview/2889584076
https://www.proquest.com/docview/2823992171
https://pubmed.ncbi.nlm.nih.gov/PMC10247666
https://doaj.org/article/809e47cdd93b4f989feface47f942d0f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHxJvAUhmJG0QkjhM7XFbb0lKhskL7kPYWObG9W6lKlqY97I0Lv4B_yC9hxkmbLY-9RJHjSLZnPA_P-BtC3qDRrkQM0i8Ocp8zbf0818KP45wDuQsRhnh3-MtRMj3jn8_j8_bArW7TKjcy0QlqXRV4Rv6eSZmCsgS3--Dqm49VozC62pbQ2CN9EMFS9kh_OD76erzhKCawMlMXJ8TyyvwGWg1HbJeoAzSLEcBMdDiZMeOg31uF2xjUAkNZrmJdGPqJCJL2Jo67j4fVmwMf1CB46CG8iR1t54oC_MuS_Tsh84-orFN2kwfkfmul0sOGrR6SO6Z8RO7dwC58TH6cuoTbmjaIRwV274LhtLJ0Nv_1_ecJbRA8ryme-FJMK6En64VdL-mscvn7VJWazowq6bgpybO4XpkPFA-C6Egt86r0h6BqNZ1W9aqG9pKeXs5reqwKc_CEnE3Gp6Op39Z08AuwpVa-NjIFH0_IXDCep1KFRmoW50Vg0kRHTKWhBhdHK1gMeE1sYgNhbBCx0IAXr6OnpFdWpXmOSVkMjRHGtEp5FAnQtSZOchVFKrYhFx4JN2ufFS3gOdbdWGRbqGZHrwzolTl6ZfDP2-0_Vw3cx629h0jSbU-E6nYN1fIia3d-JoPUcFFonUY5t6lMrbGwQFzYFOYTWI_sbxgia-VHnXXc7pHX28-w8zGco0pTrbEP3ksGlzL0yLOGf7YjiQSTiZSxR-QOZ-0MdfdLOb906OKwrFyAU-uRdxsm7Mb1_7V4cfs0XpK7DPeFSwTaJ73Vcm1egTm3ygdkT04-DUj_cPhxOBm0OxhaR4zjMxkN3EHJb-9GQbY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSISx4kdJFTR0mVLtz3QrdRbcGKbrrRKyj6E9saFX8D_4EfxS5hxkk2XR2-9RYkTOZ7xPDwz3xDyDI12JWKQfnGQ-5xp6-e5Fn4c5xzIXYgwxNrh_YOkf8Q_HMfHa-RnWwuDaZWtTHSCWlcFnpG_YlKmoCzB7d48_eJj1yiMrrYtNGq22DOLr-CyTd_svgP6PmestzPc7vtNVwG_AG0-87WRKXgZQuaC8TyVKjRSszgvApMmOmIqDTUY2VoZXcBlYhMbCGODiIUG_EgdwXcvkcs8Ak2Olem99y3_MoF9oLqoJDZz5mewcTgiyUQdfFqMcGmiQ-WMGQdrolHvtfkuMHDm-uOFoZ-IIGnqflz1H_aKDnxQuj5sUrgSK7rVtSD4l938d_rnHzFgp1p7N8j1xiamb2smvknWTHmLXDuDlHibfB-69N4prfGVChzehd5pZelg9Ovbj0Na44UuKJ4vU0xioYfzsZ1P6KBy1QJUlZoOjCrpTt0AaLyYmdcUj53otprkVelvgWLXtF9NZ1O4X9LhyWhKP6rCbN4hRxdC67tkvaxKcx9TwBiaPoxplQLtBWh2Eye5iiIV25ALj4Tt2mdFA6-OXT7G2RIY2tErA3pljl4ZvPNi-c5pDS5y7ugtJOlyJAKDuxvV5HPWyJlMBqnhotA6jXJuU5laY2GBuLAp_E9gPbLRMkTWSKtp1u0tjzxdPgY5g8EjVZpqjmOwChoc2NAj92r-Wc4kEkwmUsYekSuctTLV1Sfl6MRhmcOycgEutEdetkzYzev_a_Hg_N94Qq70h_uDbLB7sPeQXGW4R1wK0gZZn03m5hEYkrP8sdu9lHy6aHHxG1WteJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJwQPxjKLBIcAKr9nrtXSMhlP5EaRoqRFKpN3ft3aWRIruKHaHcuPAEvAjPxJMw698GChKH3ix7HG1mZndmPDPfIPTSOO2C-XD6-U5sUyK1HceS2b4fUxB3wlzX9A5_OAqGx3R04p9soB9NL0xZ7d6kJKueBoPSlBbb51Jvt41vZkyyY4O9gVDYhStWl1UeqtUXCNrydwd7IOFXhAz2p7tDu54rYCdgzwtbKh5CnMF4zAiNQy5cxSXx48RRYSA9IkJXgpsthZIJXAY60A5T2vGIqyCSlB787jW0yQPYoT202e-PJqNGhwkzs6C6zKQZ6Ewv4ONQgybjdRBqvoFMYx0yp08oeBS1ia9ceGaSZ-WMPNe1A-YEde_P5YxYs6_lGILLfOc_S0B_ywOX5nVwG92q_WLcrxT5DtpQ6V108wJa4j30bVqW-Oa4wlhKDHmXfseZxuPZz6_fJ7jCDF1h840Zm0IWPFnO9XKBx1nZMYBFKvFYiRTvV0OA5qtCvcXm0xPeFYs4S-0dMO4SD7O8yOF-iqdnsxx_Eol6fx8dX4m0H6BemqXqkSkDI8b9IUSKkHoeA-uu_CAWnid87VJmIbfhfZTUEOtm0sc8asGhS3lFIK-olFcE77xu3zmvAEb-Sb1jRNpSGnDw8ka2-BzVZ03EnVBRlkgZejHVIQ-10sAgynQI_8fRFtpqFCKqT6w8IpyH4IyCrlnoRfsYzhqTQBKpypaGxnRCQxDrWuhhpT_tSjxGeMC5byG-pllrS11_ks7OSjxzYCtlEEZb6E2jhN26_s6Lx_9H_hxd_7g3iMYHR4dP0A1itkxZlbSFesViqZ6Cb1nEz-rtjNHpVZ8gvwCFJnr3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Practical+Application+of+Li%E2%80%93S+Battery+with+High+Sulfur+Loading+and+Lean+Electrolyte%3A+Will+Carbon-Based+Hosts+Win+This+Race%3F&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Yi&rft.au=Li%2C+Jing&rft.au=Yang%2C+Kai&rft.au=Li%2C+Shaoyin&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=150&rft_id=info:doi/10.1007%2Fs40820-023-01120-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon