Towards Practical Application of Li–S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race?
Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically...
Saved in:
Published in | Nano-micro letters Vol. 15; no. 1; pp. 150 - 39 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization.
The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined.
The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed.
A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated.
As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. |
---|---|
AbstractList | Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization. The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined. The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed. A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. HighlightsA comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization.The recent implementation of effective machine learning methods in discovering carbon-based sulfur hosts has been systematically examined.The challenges and future directions of carbon-based sulfur hosts for practically application have been comprehensively discussed.A summary of the strengths and weaknesses, along with the outlook on carbon-based sulfur hosts for practical application has been incorporated.As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. |
ArticleNumber | 150 |
Author | Yang, Kai Zhang, Guangpeng Cai, Qiong Zhao, Yunlong Gong, Yi Li, Jing Xu, Ming Shi, Yan Li, Huanxin Li, Shaoyin |
Author_xml | – sequence: 1 givenname: Yi surname: Gong fullname: Gong, Yi organization: Advanced Technology Institute, University of Surrey – sequence: 2 givenname: Jing surname: Li fullname: Li, Jing organization: Department of Chemical and Process Engineering, University of Surrey – sequence: 3 givenname: Kai surname: Yang fullname: Yang, Kai organization: Advanced Technology Institute, University of Surrey – sequence: 4 givenname: Shaoyin surname: Li fullname: Li, Shaoyin organization: Advanced Technology Institute, University of Surrey – sequence: 5 givenname: Ming surname: Xu fullname: Xu, Ming organization: Advanced Technology Institute, University of Surrey – sequence: 6 givenname: Guangpeng surname: Zhang fullname: Zhang, Guangpeng organization: Advanced Technology Institute, University of Surrey – sequence: 7 givenname: Yan surname: Shi fullname: Shi, Yan organization: College of Materials and Metallurgy, Guizhou University – sequence: 8 givenname: Qiong surname: Cai fullname: Cai, Qiong organization: Department of Chemical and Process Engineering, University of Surrey – sequence: 9 givenname: Huanxin surname: Li fullname: Li, Huanxin email: huanxin.li@chem.ox.ac.uk organization: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Department of Engineering, University of Cambridge, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 10 givenname: Yunlong surname: Zhao fullname: Zhao, Yunlong email: yunlong.zhao@surrey.ac.uk organization: Advanced Technology Institute, University of Surrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37286885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuUzEUvEJFtJT-AAtkiQ2bC7bvwzabqo0KqRQJRINYWr5-JK4cO7V9qbJjwxfwh3wJblIK7aIrH9kzc8bnzPNqzwevq-olgm8RhORdaiHFsIa4qSFCpSJPqgOMOlh3XYf2St0gVPcE9vvVUUp2gB1uCSZd-6zabwimPaXdQfVzHq5FVAl8jkJmK4UDJ-u1K0W2wYNgwMz-_vHrApyKnHXcgGubl2BqF0twMTozRjALQlm_AMIrMNPCgzOnZY7BbbJ-D75Z58BExCH4-lQkrcA0pJzKvQfzpU3gi5D6-EX11AiX9NHteVh9_XA2n0zr2aeP55OTWS17hHOtNGWYMkIHgtuBUYE0VbgbJNSsVw0WDClGWiW0kqXsTW8g0QY2GGnSYtUcVuc7XRXEJV9HuxJxw4OwfHsR4oKLWKbgNKeQ6ZZIpVgztIZRZrQpVltiWFGCpmgd77TW47AqDbXPUbh7ovdfvF3yRfjOESyL6Pu-KLy5VYjhatQp85VNUjsnvA5j4pjihjGMCCrQ1w-gl2GMvsyqoCjraAvJjeCr_y3defm77gLAO4CMIaWozR0EQX4TK76LFS-x4ttYcVJI9AFJ2ryNR_mWdY9Tmx01lT5-oeM_24-w_gAokeJX |
CitedBy_id | crossref_primary_10_1021_accountsmr_4c00368 crossref_primary_10_26599_NRE_2022_9120142 crossref_primary_10_1021_acs_iecr_4c01878 crossref_primary_10_1016_j_apsusc_2023_158850 crossref_primary_10_1002_anie_202408026 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1002_celc_202400589 crossref_primary_10_1021_acsami_4c18229 crossref_primary_10_20517_microstructures_2023_82 crossref_primary_10_1002_smll_202404983 crossref_primary_10_1016_j_est_2024_113800 crossref_primary_10_1016_j_cej_2024_158265 crossref_primary_10_1016_j_cclet_2024_110217 crossref_primary_10_1016_j_nanoen_2023_108718 crossref_primary_10_1007_s40820_023_01306_z crossref_primary_10_1016_j_apsusc_2024_161493 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1016_j_jpowsour_2024_234850 crossref_primary_10_1021_acsanm_4c06605 crossref_primary_10_1039_D4MA00115J crossref_primary_10_1002_adma_202406343 crossref_primary_10_1002_smll_202309146 crossref_primary_10_1016_j_cej_2025_160150 crossref_primary_10_1016_j_fmre_2025_01_002 crossref_primary_10_1016_j_nanoen_2024_110445 crossref_primary_10_1002_adma_202415633 crossref_primary_10_1002_advs_202407304 crossref_primary_10_1021_acsnano_3c09919 crossref_primary_10_1002_adfm_202409748 crossref_primary_10_1002_adsu_202400555 crossref_primary_10_1002_ange_202408026 crossref_primary_10_1016_j_est_2024_112027 crossref_primary_10_1002_smll_202406731 crossref_primary_10_1016_j_synthmet_2024_117759 crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1016_j_cej_2025_159924 crossref_primary_10_1016_j_est_2024_112342 crossref_primary_10_1016_j_jelechem_2023_117780 crossref_primary_10_1016_j_indcrop_2024_118813 crossref_primary_10_1016_j_jechem_2024_07_038 crossref_primary_10_26599_NRE_2024_9120142 crossref_primary_10_1016_j_jechem_2024_07_013 crossref_primary_10_1002_cssc_202401288 |
Cites_doi | 10.1021/nl304795g 10.1002/adma.202105067 10.1021/ja206955k 10.1002/aenm.201301761 10.1038/nmat3191 10.1021/nn404439r 10.1039/C5TA07818K 10.1002/anie.202104053 10.1016/j.scib.2023.01.032 10.1002/adfm.202104286 10.1002/adma.202105947 10.1016/j.ensm.2020.01.002 10.1016/j.ensm.2020.11.009 10.1021/ar300179v 10.1039/D1TA08942K 10.1002/adma.202201555 10.1007/s40820-020-00475-5 10.1002/adfm.201601897 10.1016/j.ensm.2023.02.023 10.1021/acsnano.8b05534 10.1016/j.electacta.2010.06.019 10.1021/acsnano.1c00270 10.1021/acsnano.5b07347 10.1007/s40820-021-00726-z 10.1002/adfm.202006798 10.1038/s41560-019-0351-0 10.1021/acs.jpcc.1c04491 10.1016/j.ensm.2022.11.045 10.1002/anie.201107817 10.1002/aenm.201904010 10.1016/j.joule.2022.02.015 10.1039/C4TA01823K 10.1038/ncomms4410 10.1002/anie.201304762 10.1021/acs.nanolett.5b00367 10.1021/acsnano.7b01945 10.1039/C8EE01402G 10.1016/j.ensm.2021.09.003 10.1021/acscentsci.0c00449 10.1039/C9TA00535H 10.1002/adfm.202011289 10.1007/s12274-012-0279-1 10.1039/C7EE01430A 10.1002/adfm.202102314 10.1002/admi.201701598 10.1021/acsami.1c10749 10.1016/j.ensm.2020.05.002 10.1002/adma.201502467 10.1021/acs.nanolett.9b04719 10.1016/j.ensm.2016.09.003 10.1039/D0EE03316B 10.1039/c2cp42796f 10.1021/acs.jpclett.1c00927 10.1016/j.ensm.2019.05.034 10.1039/C2CS35325C 10.1038/ncomms14627 10.1016/j.electacta.2017.10.032 10.1002/smll.201600809 10.1002/aenm.202102995 10.1002/adfm.202104830 10.1016/j.jpowsour.2012.12.102 10.1021/nl202297p 10.1002/advs.201800621 10.1002/adma.201901125 10.1002/ange.202007740 10.1038/s41467-020-19070-8 10.1002/advs.202103456 10.1016/j.ensm.2020.05.022 10.1007/s12598-021-01839-5 10.1016/j.ensm.2022.04.004 10.1016/j.chempr.2022.07.004 10.1016/j.ensm.2021.11.024 10.1016/j.electacta.2018.08.107 10.1002/adma.202000315 10.1038/s41560-022-01175-7 10.1016/j.nanoen.2017.07.002 10.1002/aenm.202200889 10.1016/j.jechem.2020.08.025 10.1002/advs.202201640 10.1038/s41565-020-00797-w 10.1021/nn501308m 10.1039/D0EE02088E 10.1016/j.jechem.2022.09.029 10.1039/D0TA01664K 10.1039/C9TA11451C 10.1021/acsnano.7b00596 10.1016/j.ensm.2018.08.016 10.1002/adfm.201704865 10.1002/adma.201700598 10.1016/j.nanoen.2019.04.006 10.1021/acsnano.1c06067 10.1002/anie.201909339 10.1039/C6TA07864H 10.1039/C4TA03877K 10.1002/adma.201401191 10.1038/ncomms8760 10.1039/C9TA00212J 10.1002/aenm.201601943 10.1021/am400958x 10.1021/acs.accounts.2c00259 10.1002/adfm.202200893 10.1038/ncomms10601 10.1002/aenm.202202206 10.1038/nature13434 10.1007/s12598-022-02140-9 10.1021/nl502238b 10.1126/sciadv.abn4372 10.1002/aenm.202001304 10.1002/aenm.202201056 10.26599/NRE.2022.9120012 10.1016/j.cej.2021.132734 10.1002/aenm.201301473 10.1126/science.1246501 10.1021/acs.nanolett.0c02167 10.1002/adfm.201503726 10.1002/anie.201100637 10.1016/j.cej.2020.124117 10.1002/adma.201601382 10.1002/aenm.202100601 10.1038/ncomms5759 10.1002/inf2.12304 10.1002/adfm.202212759 10.1002/smll.201804786 10.1002/chem.201600040 10.1002/aenm.201500211 10.20517/energymater.2021.22 10.26599/NRE.2023.9120049 10.1016/j.nantod.2018.02.006 10.1002/anie.201205292 10.1016/j.cej.2020.126967 10.1002/adma.201506014 10.1038/npjcompumats.2016.2 10.34133/energymatadv.0010 10.1002/chem.201900884 10.1002/adma.202208590 10.1016/j.electacta.2019.135311 10.1088/2515-7655/aadef6 10.1002/smll.201804347 10.20517/energymater.2022.4 10.1002/chem.202003807 10.1002/aenm.202202518 10.1002/eem2.12483 10.1016/j.ensm.2015.09.007 10.1002/anie.201905852 10.1016/j.partic.2022.11.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-023-01120-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 39 |
ExternalDocumentID | oai_doaj_org_article_809e47cdd93b4f989feface47f942d0f PMC10247666 37286885 10_1007_s40820_023_01120_7 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c612t-de8928978b724b98a1e8d25bc0e96d32a91d974daedc91d6f6f07ef0321e742d3 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Thu Aug 21 18:37:57 EDT 2025 Thu Jul 10 23:13:28 EDT 2025 Wed Aug 13 05:09:33 EDT 2025 Thu Apr 03 07:05:24 EDT 2025 Tue Jul 01 00:55:49 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Fri Feb 21 02:41:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Structural design Li–S batteries Functional modification Carbon materials Machine learning |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-de8928978b724b98a1e8d25bc0e96d32a91d974daedc91d6f6f07ef0321e742d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2889584076?pq-origsite=%requestingapplication% |
PMID | 37286885 |
PQID | 2889584076 |
PQPubID | 2044332 |
PageCount | 39 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_809e47cdd93b4f989feface47f942d0f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10247666 proquest_miscellaneous_2823992171 proquest_journals_2889584076 pubmed_primary_37286885 crossref_primary_10_1007_s40820_023_01120_7 crossref_citationtrail_10_1007_s40820_023_01120_7 springer_journals_10_1007_s40820_023_01120_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Ye, Jiang, Yang, Li, Wu (CR106) 2022; 9 Liu, Zhang, Yu, Wang, Li (CR1) 2022; 12 Andritsos, Lekakou, Cai (CR118) 2021; 125 CR38 CR37 Cheng, Yan, Huang, Li, Zhu (CR133) 2017; 6 Zhang, Wang, Seh, Fu, Zhang (CR88) 2015; 15 Sun, Vijay, Heenen, Eng, Tu (CR96) 2020; 10 CR33 CR32 Chen, Luo, Li, Han, Wang (CR104) 2020; 30 Qu, Chen, Yang, Zhang, Li (CR141) 2017; 39 Bruce, Freunberger, Hardwick, Tarascon (CR4) 2012; 11 Yin, Xin, Guo, Wan (CR29) 2013; 52 Chen, Huang, Sun, Zhang, Liu (CR47) 2014; 2 He, Evers, Liang, Cuisinier, Garsuch (CR41) 2013; 7 Wang, Yang, Chen, Zhang, Liu (CR76) 2018; 5 Liu, Sun, Wu, Chen, Xu (CR30) 2020; 11 Xu, Hu, Zhang, Yan, Zhu (CR116) 2021; 43 Chung, Manthiram (CR22) 2019; 31 Li, Gong, Yan, Wang, Liu (CR102) 2020; 8 Cai, Li, Zhang, Xiao, Wang (CR11) 2018; 28 Shi, Qin, Lu, Dong, He (CR18) 2021; 31 Zhao, Zhang, Huang, Tian, Nie (CR56) 2014; 5 Cheng, Chen, Li, Hou, Bi (CR142) 2023; 76 Zhao, Li, Zhang, Huang, Zhang (CR8) 2020; 6 CR46 Song, Guo, Zhang, Chen, Zhang (CR94) 2019; 7 Xue, Shi, Suo, Wang, Wang (CR145) 2019; 4 CR45 CR44 CR43 Song, Shen, Yao, Li, Bi (CR34) 2022; 8 Zhang, Zhao, Tao, Chen (CR42) 2013; 6 Shi, Sun, Cai, Fan, Jin (CR114) 2021; 31 Ji, Yang, Liu, Chen, Liu (CR7) 2021; 31 Yang, Li, Jia, Wang, Wang (CR2) 2021; 56 Li, Xi, Wang, Liu, Li (CR112) 2022; 45 Sun, Wang, Chen, Ma, Wang (CR31) 2022; 12 Xie, Peng, Song, Li, Xiao (CR35) 2020; 132 Chen, Wang, Wang, Liu, Sun (CR12) 2022; 10 Li, Sun, Hou, Jiang, Huang (CR63) 2016; 7 Shi, Bak, Shadike, Wang, Niu (CR135) 2020; 13 Shi, Zhao, Wu, Dong, Lu (CR17) 2019; 60 Guo, Xu, Wang (CR52) 2011; 11 Zhou, Lv, Li, Zhou, Zhao (CR99) 2017; 10 CR57 Deng, Xue, Bai, Lei, Yuan (CR10) 2018; 12 CR55 Chen, Zhao, Hou, Zhang, Li (CR132) 2022; 34 CR137 Sun, Wang, Chen, Li, Qiao (CR71) 2013; 5 Lee, Kim, Jang, Manthiram (CR54) 2017; 7 CR131 Yang, Wei, Chen, Qin, Zuo (CR85) 2020; 8 Li, Wen, Jiang, Yao, Zhou (CR3) 2021; 31 Ogoke, Wu, Wang, Casimir, Ma (CR27) 2017; 5 Wang, Takei, Takahashi, Javey (CR48) 2013; 42 Deng, Xue, Jia, Ye, Bai (CR90) 2017; 11 CR139 Wang, Luo, Wang, Zhou, Deng (CR105) 2020; 32 Shi, Anderson, Mishra, Qiao, Canfield (CR134) 2022; 9 Zhao, Xu, Yu, Zhang, Hwang (CR9) 2021; 16 Li, Chen, Yan, Yan, Cheng (CR107) 2021; 33 Wu, Wang, Shan, Wang, Lu (CR108) 2022; 49 Li, Wu, Zhang, Wang, Zhang (CR122) 2020; 30 Zhao, Li, Peng, Yuan, Wei (CR13) 2020; 59 Li, Sami, Yang, Li, Kumar (CR146) 2023; 8 Gong, Fu, Zhang, Zhou, Kuang (CR79) 2017; 256 Lian, Yang, Jan, Li (CR127) 2021; 12 Ye, Wu, Liu, Zhao, Qian (CR143) 2017; 29 Schuster, He, Mandlmeier, Yim, Lee (CR40) 2012; 51 Wang, Zhang, Liu, Li, Yan, Gao (CR115) 2022; 32 CR68 Huang, Lu, Xu, Zhang, Jiang (CR136) 2022; 6 Zhao, Wu, Li, Xu, Guan (CR53) 2014; 26 Sun, Zhang, Yin, Hu, Fang (CR83) 2017; 8 CR65 Zhou, Paek, Hwang, Manthiram (CR75) 2015; 6 Shen, Gao, Zhu, Guo, Guo (CR36) 2023; 57 CR62 CR144 CR61 CR60 Zheng, Guo, Pei, Zhang, Chen (CR59) 2016; 26 Pang, Nazar (CR77) 2016; 10 Zhou, Xiao, Cai, Yang (CR69) 2014; 14 Wu, Ye, Huang, Zhao, Qian (CR138) 2017; 11 Pang, Tang, Huang, Liang, Hart (CR72) 2015; 27 Fan, Wu, Wu, Wang, Cheng (CR86) 2019; 295 Yao, Zheng, Xu, Tian, Han (CR101) 2021; 15 Zhu, Zhu, Yan, Dirican, Zang (CR70) 2018; 5 Li, Ma, Cai, Zhou, Huang (CR97) 2019; 18 Manthiram, Fu, Su (CR28) 2013; 46 Wang, Li, Zhao, Xu, Liu (CR98) 2023; 42 Su, Fu, Manthiram (CR50) 2012; 14 Yang, Wang, Zhang, Yang, Luo (CR49) 2014; 510 Han, Zhao, Xiao, Zhong, Sheng (CR120) 2021; 33 Song, Zhao, Kong, Zhang, Zhu (CR100) 2018; 11 CR74 Ye, Jiang, Li, Wu, Chen (CR91) 2021; 13 CR111 Zhang, Wang, Cai, Wu, Li (CR125) 2021; 13 Zhu, Chen, Li, Yin, Xiao (CR6) 2023 Li, Lin, Chang, Yang, Wu (CR140) 2023; 55 Ji, Rao, Zheng, Zhang, Li (CR66) 2011; 133 Wang, Zhang, Xu, Li, Liu (CR20) 2021; 31 CR117 Li, Ma, Li, Liu, Zhou (CR109) 2020; 26 Chen, Huang, Liu, Sun, Yeoh (CR58) 2014; 4 Zhou, Zhao, Wang, Yang, Johannessen (CR119) 2019; 20 Jiang, Qiu, Tian, Zhang, Song (CR113) 2021; 11 CR130 CR89 CR87 Boyjoo, Shi, Tian, Liu, Liang (CR16) 2021; 14 Hou, Chen, Peng, Huang, Li (CR73) 2016; 12 CR124 Chen, Li, Park, Hong, Song (CR64) 2014; 2 CR82 CR81 CR121 CR80 CR128 Zheng, Zhang, Cha, Yang, Li (CR67) 2013; 13 CR129 CR19 CR15 CR14 CR95 Zhang (CR26) 2013; 231 Liang, Zheng, Li, Seh, Yao (CR84) 2014; 8 Tian, Song, Qiu, Sun, Jiang (CR110) 2021; 15 Chen, Song, Wang, Chen, Zhang (CR5) 2022; 55 Pan, Li, He, Xu, He (CR92) 2019; 23 Zhang, Wang, Ren, Liu, Li (CR126) 2021; 35 Wang, Chen, Shi, Zheng, Dong (CR39) 2010; 55 Wang, Xi, Zhang, Huang, Feng (CR123) 2021; 60 Kim, Shirvani-Arani, Choi, Cho, Lee (CR78) 2020; 12 Jeong, Lee, Kim, Kim, Park (CR51) 2016; 4 CR24 Zhu, Xu, Shen, Zhang, Li (CR93) 2022; 41 CR23 CR21 CR103 Deng, Wang, Wang, Yu (CR25) 2019; 7 1120_CR121 1120_CR43 1120_CR124 H Shi (1120_CR17) 2019; 60 Z Sun (1120_CR96) 2020; 10 1120_CR128 1120_CR129 J Schuster (1120_CR40) 2012; 51 Q Zhang (1120_CR88) 2015; 15 W Li (1120_CR102) 2020; 8 PG Bruce (1120_CR4) 2012; 11 S Chen (1120_CR5) 2022; 55 S-M Wang (1120_CR98) 2023; 42 D-R Deng (1120_CR90) 2017; 11 K Zhang (1120_CR42) 2013; 6 1120_CR45 H Li (1120_CR97) 2019; 18 1120_CR44 1120_CR130 ZX Chen (1120_CR132) 2022; 34 1120_CR46 1120_CR131 Z Zheng (1120_CR59) 2016; 26 K Yang (1120_CR2) 2021; 56 1120_CR32 S Chen (1120_CR58) 2014; 4 D Tian (1120_CR110) 2021; 15 1120_CR137 1120_CR139 Y Ye (1120_CR143) 2017; 29 Y-S Su (1120_CR50) 2012; 14 Q Cheng (1120_CR142) 2023; 76 L Huang (1120_CR136) 2022; 6 EI Andritsos (1120_CR118) 2021; 125 1120_CR38 1120_CR37 H Shi (1120_CR18) 2021; 31 F Sun (1120_CR71) 2013; 5 1120_CR33 R Wang (1120_CR105) 2020; 32 1120_CR21 1120_CR103 M Zhao (1120_CR13) 2020; 59 F Liu (1120_CR30) 2020; 11 S Chen (1120_CR104) 2020; 30 W Cai (1120_CR11) 2018; 28 Z Ye (1120_CR91) 2021; 13 Y Ji (1120_CR7) 2021; 31 SH Chung (1120_CR22) 2019; 31 Y Zhao (1120_CR53) 2014; 26 SS Zhang (1120_CR26) 2013; 231 W Yang (1120_CR85) 2020; 8 YC Jeong (1120_CR51) 2016; 4 H Li (1120_CR109) 2020; 26 S Sun (1120_CR31) 2022; 12 1120_CR23 JS Lee (1120_CR54) 2017; 7 Z Shen (1120_CR36) 2023; 57 1120_CR24 W Xue (1120_CR145) 2019; 4 1120_CR95 1120_CR111 J Wang (1120_CR76) 2018; 5 Z Han (1120_CR120) 2021; 33 Z Lian (1120_CR127) 2021; 12 1120_CR117 Y Gong (1120_CR79) 2017; 256 G Zheng (1120_CR67) 2013; 13 F Yang (1120_CR49) 2014; 510 Z Ye (1120_CR106) 2022; 9 1120_CR19 C Deng (1120_CR25) 2019; 7 1120_CR15 T Pan (1120_CR92) 2019; 23 1120_CR14 S Kim (1120_CR78) 2020; 12 C Zhao (1120_CR9) 2021; 16 C Wang (1120_CR48) 2013; 42 1120_CR87 X Chen (1120_CR12) 2022; 10 W Zhou (1120_CR69) 2014; 14 1120_CR81 1120_CR80 Y Song (1120_CR100) 2018; 11 H Li (1120_CR107) 2021; 33 1120_CR82 Y-W Song (1120_CR34) 2022; 8 C Wang (1120_CR39) 2010; 55 Z-Y Wang (1120_CR115) 2022; 32 H Xu (1120_CR116) 2021; 43 P Zhu (1120_CR70) 2018; 5 Z Liang (1120_CR84) 2014; 8 Q Pang (1120_CR72) 2015; 27 1120_CR89 P Wang (1120_CR123) 2021; 60 L Ji (1120_CR66) 2011; 133 1120_CR74 Z Li (1120_CR146) 2023; 8 F Wu (1120_CR138) 2017; 11 M Zhao (1120_CR8) 2020; 6 G Zhou (1120_CR119) 2019; 20 G Zhou (1120_CR75) 2015; 6 O Ogoke (1120_CR27) 2017; 5 C Qu (1120_CR141) 2017; 39 L Shi (1120_CR134) 2022; 9 C Zhu (1120_CR6) 2023 TZ Hou (1120_CR73) 2016; 12 B Jiang (1120_CR113) 2021; 11 W Yao (1120_CR101) 2021; 15 DR Deng (1120_CR10) 2018; 12 S Li (1120_CR140) 2023; 55 M-Q Zhao (1120_CR56) 2014; 5 T Zhou (1120_CR99) 2017; 10 Y-X Yin (1120_CR29) 2013; 52 1120_CR62 1120_CR144 1120_CR65 G He (1120_CR41) 2013; 7 1120_CR61 1120_CR60 Y Li (1120_CR122) 2020; 30 A Manthiram (1120_CR28) 2013; 46 Q Zhu (1120_CR93) 2022; 41 G Li (1120_CR63) 2016; 7 X-B Cheng (1120_CR133) 2017; 6 J Xie (1120_CR35) 2020; 132 H Zhang (1120_CR125) 2021; 13 S Chen (1120_CR47) 2014; 2 H Li (1120_CR3) 2021; 31 Y Boyjoo (1120_CR16) 2021; 14 J Guo (1120_CR52) 2011; 11 1120_CR68 H-J Li (1120_CR112) 2022; 45 L Fan (1120_CR86) 2019; 295 Z Shi (1120_CR114) 2021; 31 X Liu (1120_CR1) 2022; 12 L Wang (1120_CR20) 2021; 31 H Zhang (1120_CR126) 2021; 35 Z Sun (1120_CR83) 2017; 8 J Song (1120_CR94) 2019; 7 Q Pang (1120_CR77) 2016; 10 Y Chen (1120_CR64) 2014; 2 L Shi (1120_CR135) 2020; 13 1120_CR55 S Wu (1120_CR108) 2022; 49 1120_CR57 |
References_xml | – ident: CR45 – volume: 13 start-page: 1265 issue: 3 year: 2013 end-page: 1270 ident: CR67 article-title: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl304795g – volume: 33 start-page: 2105067 issue: 51 year: 2021 ident: CR107 article-title: Utilizing the built-in electric field of p–n junctions to spatially propel the stepwise polysulfide conversion in lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.202105067 – ident: CR68 – ident: CR74 – volume: 133 start-page: 18522 issue: 46 year: 2011 end-page: 18525 ident: CR66 article-title: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206955k – volume: 4 start-page: 1301761 issue: 8 year: 2014 ident: CR58 article-title: 3d hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301761 – volume: 11 start-page: 19 issue: 1 year: 2012 end-page: 29 ident: CR4 article-title: Li–O and Li–S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 7 start-page: 10920 issue: 12 year: 2013 end-page: 10930 ident: CR41 article-title: Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes publication-title: ACS Nano doi: 10.1021/nn404439r – volume: 4 start-page: 819 issue: 3 year: 2016 end-page: 826 ident: CR51 article-title: Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07818K – volume: 60 start-page: 15563 issue: 28 year: 2021 end-page: 15571 ident: CR123 article-title: Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104053 – year: 2023 ident: CR6 article-title: Quantitative analysis of the structural evolution in Si anode via multi-scale image reconstruction publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.01.032 – volume: 31 start-page: 2104286 issue: 36 year: 2021 ident: CR20 article-title: Tetrabutylammonium-intercalated 1t-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2d delaminated mxene for high-performance lithium-ion capacitors publication-title: Mater. Adv. Funct. Mater. doi: 10.1002/adfm.202104286 – volume: 33 start-page: 2105947 issue: 44 year: 2021 ident: CR120 article-title: Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries publication-title: Adv. Mater. doi: 10.1002/adma.202105947 – ident: CR80 – volume: 26 start-page: 203 year: 2020 end-page: 212 ident: CR109 article-title: Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.002 – volume: 35 start-page: 88 year: 2021 end-page: 98 ident: CR126 article-title: Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.009 – volume: 46 start-page: 1125 issue: 5 year: 2013 end-page: 1134 ident: CR28 article-title: Challenges and prospects of lithium–sulfur batteries publication-title: Acc. Chem. Res. doi: 10.1021/ar300179v – ident: CR121 – volume: 10 start-page: 1359 issue: 3 year: 2022 end-page: 1368 ident: CR12 article-title: A cof-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li–S batteries publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08942K – volume: 34 start-page: 2201555 issue: 35 year: 2022 ident: CR132 article-title: Toward practical high-energy-density lithium–sulfur pouch cells: A review publication-title: Adv. Mater. doi: 10.1002/adma.202201555 – volume: 12 start-page: 139 issue: 1 year: 2020 ident: CR78 article-title: Strongly anchoring polysulfides by hierarchical Fe O /C N nanostructures for advanced lithium–sulfur batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00475-5 – volume: 26 start-page: 8952 issue: 48 year: 2016 end-page: 8959 ident: CR59 article-title: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601897 – ident: CR129 – ident: CR144 – ident: CR19 – volume: 57 start-page: 299 year: 2023 end-page: 307 ident: CR36 article-title: In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.02.023 – volume: 12 start-page: 11120 issue: 11 year: 2018 end-page: 11129 ident: CR10 article-title: Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range publication-title: ACS Nano doi: 10.1021/acsnano.8b05534 – volume: 55 start-page: 7010 issue: 23 year: 2010 end-page: 7015 ident: CR39 article-title: Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.06.019 – volume: 15 start-page: 7114 issue: 4 year: 2021 end-page: 7130 ident: CR101 article-title: ZnS-SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c00270 – volume: 10 start-page: 4111 issue: 4 year: 2016 end-page: 4118 ident: CR77 article-title: Long-life and high-areal-capacity li–s batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption publication-title: ACS Nano doi: 10.1021/acsnano.5b07347 – volume: 13 start-page: 203 year: 2021 ident: CR91 article-title: Rational design of mof-based materials for next-generation rechargeable batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00726-z – ident: CR57 – volume: 31 start-page: 2006798 issue: 4 year: 2021 ident: CR114 article-title: Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006798 – ident: CR60 – volume: 4 start-page: 374 issue: 5 year: 2019 end-page: 382 ident: CR145 article-title: Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities publication-title: Nat. Energy doi: 10.1038/s41560-019-0351-0 – volume: 125 start-page: 18108 issue: 33 year: 2021 end-page: 18118 ident: CR118 article-title: Single-atom catalysts as promising cathode materials for lithium–sulfur batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04491 – volume: 55 start-page: 94 year: 2023 end-page: 104 ident: CR140 article-title: Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.11.045 – volume: 51 start-page: 3591 issue: 15 year: 2012 end-page: 3595 ident: CR40 article-title: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107817 – volume: 10 start-page: 1904010 issue: 22 year: 2020 ident: CR96 article-title: Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904010 – volume: 6 start-page: 906 issue: 4 year: 2022 end-page: 922 ident: CR136 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule doi: 10.1016/j.joule.2022.02.015 – volume: 2 start-page: 10126 issue: 26 year: 2014 end-page: 10130 ident: CR64 article-title: Sulfur encapsulated in porous hollow CNTs@ CNFs for high-performance lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01823K – volume: 5 start-page: 3410 issue: 1 year: 2014 ident: CR56 article-title: Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms4410 – volume: 52 start-page: 13186 issue: 50 year: 2013 end-page: 13200 ident: CR29 article-title: Lithium–sulfur batteries: Electrochemical materials and prospects publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304762 – volume: 15 start-page: 3780 issue: 6 year: 2015 end-page: 3786 ident: CR88 article-title: Understanding the anchoring effect of two-dimensional layered material for lithium–sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00367 – volume: 11 start-page: 6031 issue: 6 year: 2017 end-page: 6039 ident: CR90 article-title: Co4n nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b01945 – volume: 11 start-page: 2620 issue: 9 year: 2018 end-page: 2630 ident: CR100 article-title: Synchronous immobilization and conversion of polysulfides on a VO –Vn binary host targeting high sulfur load Li–S batteries publication-title: Energy Environm. Sci. doi: 10.1039/C8EE01402G – volume: 43 start-page: 212 year: 2021 end-page: 220 ident: CR116 article-title: Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.09.003 – volume: 6 start-page: 1095 issue: 7 year: 2020 end-page: 1104 ident: CR8 article-title: A perspective toward practical lithium–sulfur batteries publication-title: ACS Centr. Sci. doi: 10.1021/acscentsci.0c00449 – ident: CR89 – volume: 7 start-page: 12381 issue: 20 year: 2019 end-page: 12413 ident: CR25 article-title: Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00535H – ident: CR117 – ident: CR33 – ident: CR137 – volume: 31 start-page: 2011289 issue: 22 year: 2021 ident: CR3 article-title: Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011289 – volume: 6 start-page: 38 issue: 1 year: 2013 end-page: 46 ident: CR42 article-title: Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance publication-title: Nano Res. doi: 10.1007/s12274-012-0279-1 – volume: 10 start-page: 1694 issue: 7 year: 2017 end-page: 1703 ident: CR99 article-title: Twinborn TiO –Tin heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries publication-title: Energy Environm. Sci. doi: 10.1039/C7EE01430A – volume: 31 start-page: 2102314 issue: 28 year: 2021 ident: CR18 article-title: Interfacial engineering of bifunctional niobium (v)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries publication-title: Mater. Adv. Funct. Mater. doi: 10.1002/adfm.202102314 – volume: 5 start-page: 1701598 issue: 10 year: 2018 ident: CR70 article-title: In situ polymerization of nanostructured conductive polymer on 3d sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701598 – volume: 13 start-page: 53388 issue: 45 year: 2021 end-page: 53397 ident: CR125 article-title: Machine-learning-enabled tricks of the trade for rapid host material discovery in Li–S battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10749 – volume: 30 start-page: 187 year: 2020 end-page: 195 ident: CR104 article-title: Multifunctional LDH/Co S heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.002 – volume: 27 start-page: 6021 issue: 39 year: 2015 end-page: 6028 ident: CR72 article-title: A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201502467 – ident: CR44 – ident: CR103 – volume: 20 start-page: 1252 issue: 2 year: 2019 end-page: 1261 ident: CR119 article-title: Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04719 – ident: CR38 – volume: 6 start-page: 18 year: 2017 end-page: 25 ident: CR133 article-title: The gap between long lifespan li-s coin and pouch cells: The importance of lithium metal anode protection publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.09.003 – volume: 14 start-page: 540 issue: 2 year: 2021 end-page: 575 ident: CR16 article-title: Engineering nanoreactors for metal–chalcogen batteries publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03316B – volume: 14 start-page: 14495 issue: 42 year: 2012 end-page: 14499 ident: CR50 article-title: Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42796f – volume: 12 start-page: 7053 issue: 29 year: 2021 end-page: 7059 ident: CR127 article-title: Machine learning derived blueprint for rational design of the effective single-atom cathode catalyst of the lithium–sulfur battery publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00927 – ident: CR139 – volume: 23 start-page: 55 year: 2019 end-page: 61 ident: CR92 article-title: Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.034 – volume: 42 start-page: 2592 issue: 7 year: 2013 end-page: 2609 ident: CR48 article-title: Carbon nanotube electronics–moving forward publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35325C – ident: CR55 – volume: 8 start-page: 14627 issue: 1 year: 2017 ident: CR83 article-title: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms14627 – volume: 256 start-page: 1 year: 2017 end-page: 9 ident: CR79 article-title: Three-dimensional porous C N nanosheets@ reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.032 – volume: 12 start-page: 3283 issue: 24 year: 2016 end-page: 3291 ident: CR73 article-title: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries publication-title: Small doi: 10.1002/smll.201600809 – volume: 11 start-page: 2102995 issue: 48 year: 2021 ident: CR113 article-title: Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102995 – volume: 31 start-page: 2104830 issue: 47 year: 2021 ident: CR7 article-title: PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104830 – ident: CR24 – ident: CR128 – volume: 231 start-page: 153 year: 2013 end-page: 162 ident: CR26 article-title: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2012.12.102 – volume: 11 start-page: 4288 issue: 10 year: 2011 end-page: 4294 ident: CR52 article-title: Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl202297p – volume: 5 start-page: 1800621 issue: 11 year: 2018 ident: CR76 article-title: Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries publication-title: Adv. Sci. doi: 10.1002/advs.201800621 – volume: 31 start-page: 1901125 issue: 27 year: 2019 ident: CR22 article-title: Current status and future prospects of metal–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901125 – volume: 132 start-page: 17823 issue: 40 year: 2020 end-page: 17828 ident: CR35 article-title: Spatial and kinetic regulation of sulfur electrochemical on semi-immobilized redox mediators in working batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202007740 – ident: CR87 – ident: CR131 – volume: 11 start-page: 5215 issue: 1 year: 2020 ident: CR30 article-title: Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-19070-8 – volume: 9 start-page: 2103456 issue: 1 year: 2022 ident: CR106 article-title: Engineering catalytic CoSe–ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions publication-title: Adv. Sci. doi: 10.1002/advs.202103456 – ident: CR111 – volume: 30 start-page: 250 year: 2020 end-page: 259 ident: CR122 article-title: Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.022 – ident: CR61 – volume: 41 start-page: 311 issue: 1 year: 2022 end-page: 318 ident: CR93 article-title: Efficient polysulfides conversion on Mo CT MXene for high-performance lithium–sulfur batteries publication-title: Rare Met. doi: 10.1007/s12598-021-01839-5 – volume: 49 start-page: 153 year: 2022 end-page: 163 ident: CR108 article-title: Conductive 1T-VS2− MXene heterostructured bidirectional electrocatalyst enabling compact li-s batteries with high volumetric and areal capacity publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.004 – volume: 8 start-page: 3031 issue: 11 year: 2022 end-page: 3050 ident: CR34 article-title: Cationic lithium polysulfides in lithium–sulfur batteries publication-title: Chem doi: 10.1016/j.chempr.2022.07.004 – volume: 45 start-page: 1229 year: 2022 end-page: 1237 ident: CR112 article-title: Quantitatively regulating defects of 2d tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.024 – ident: CR21 – ident: CR46 – volume: 295 start-page: 444 year: 2019 end-page: 451 ident: CR86 article-title: Fe-mof derived jujube pit like Fe O /C composite as sulfur host for lithium-sulfur battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.107 – volume: 32 start-page: 2000315 issue: 32 year: 2020 ident: CR105 article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.202000315 – ident: CR15 – volume: 8 start-page: 84 year: 2023 end-page: 93 ident: CR146 article-title: Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries publication-title: Nat. Energy doi: 10.1038/s41560-022-01175-7 – volume: 39 start-page: 262 year: 2017 end-page: 272 ident: CR141 article-title: LiNO -free electrolyte for Li-S battery: a solvent of choice with low ksp of polysulfide and low dendrite of lithium publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.002 – volume: 12 start-page: 2200889 issue: 33 year: 2022 ident: CR1 article-title: Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200889 – volume: 56 start-page: 438 year: 2021 end-page: 443 ident: CR2 article-title: Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.025 – volume: 9 start-page: 2201640 issue: 21 year: 2022 ident: CR134 article-title: Early failure of lithium–sulfur batteries at practical conditions: Crosstalk between sulfur cathode and lithium anode publication-title: Adv. Sci. doi: 10.1002/advs.202201640 – ident: CR32 – volume: 16 start-page: 166 issue: 2 year: 2021 end-page: 173 ident: CR9 article-title: A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites publication-title: Nat. Nanotechn. doi: 10.1038/s41565-020-00797-w – volume: 8 start-page: 5249 issue: 5 year: 2014 end-page: 5256 ident: CR84 article-title: Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure publication-title: ACS Nano doi: 10.1021/nn501308m – volume: 13 start-page: 3620 issue: 10 year: 2020 end-page: 3632 ident: CR135 article-title: Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02088E – ident: CR81 – volume: 76 start-page: 181 year: 2023 end-page: 186 ident: CR142 article-title: Constructing a 700 wh kg -level rechargeable lithium–sulfur pouch cell publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.09.029 – volume: 8 start-page: 15816 issue: 31 year: 2020 end-page: 15821 ident: CR85 article-title: A MoO /MoO -CP self-supporting heterostructure for modification of lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01664K – volume: 8 start-page: 433 issue: 1 year: 2020 end-page: 442 ident: CR102 article-title: In situ engineered zns–fes heterostructures in n-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11451C – volume: 11 start-page: 4694 issue: 5 year: 2017 end-page: 4702 ident: CR138 article-title: Sulfur nanodots stitched in 2d “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b00596 – volume: 18 start-page: 338 year: 2019 end-page: 348 ident: CR97 article-title: Ultra-thin Fe C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries publication-title: Energy storage Mater. doi: 10.1016/j.ensm.2018.08.016 – ident: CR95 – ident: CR43 – volume: 28 start-page: 1704865 issue: 2 year: 2018 ident: CR11 article-title: Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704865 – ident: CR14 – ident: CR37 – ident: CR82 – volume: 29 start-page: 1700598 issue: 48 year: 2017 ident: CR143 article-title: Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201700598 – volume: 60 start-page: 743 year: 2019 end-page: 751 ident: CR17 article-title: Free-standing integrated cathode derived from 3d graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.006 – volume: 15 start-page: 16515 issue: 10 year: 2021 end-page: 16524 ident: CR110 article-title: Basal-plane-activated molybdenum sulfide nanosheets with suitable orbital orientation as efficient electrocatalysts for lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.1c06067 – volume: 59 start-page: 12636 issue: 31 year: 2020 end-page: 12652 ident: CR13 article-title: Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909339 – volume: 5 start-page: 448 issue: 2 year: 2017 end-page: 469 ident: CR27 article-title: Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07864H – ident: CR23 – volume: 2 start-page: 16199 issue: 38 year: 2014 end-page: 16207 ident: CR47 article-title: Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03877K – volume: 26 start-page: 5113 issue: 30 year: 2014 end-page: 5118 ident: CR53 article-title: Encapsulating mwnts into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201401191 – volume: 6 start-page: 7760 issue: 1 year: 2015 ident: CR75 article-title: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge publication-title: Nat. Commun. doi: 10.1038/ncomms8760 – volume: 7 start-page: 6507 issue: 11 year: 2019 end-page: 6513 ident: CR94 article-title: Rational design of free-standing 3d porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00212J – ident: CR124 – volume: 7 start-page: 1601943 issue: 5 year: 2017 ident: CR54 article-title: Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601943 – ident: CR65 – volume: 5 start-page: 5630 issue: 12 year: 2013 end-page: 5638 ident: CR71 article-title: High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li–S batteries publication-title: ACS Appl. Mater. interfaces doi: 10.1021/am400958x – ident: CR130 – volume: 55 start-page: 2088 issue: 15 year: 2022 end-page: 2102 ident: CR5 article-title: Establishing a resilient conductive binding network for Si-based anodes via molecular engineering publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00259 – volume: 32 start-page: 2200893 issue: 27 year: 2022 ident: CR115 article-title: Nickel–platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200893 – volume: 7 start-page: 10601 issue: 1 year: 2016 ident: CR63 article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms10601 – volume: 12 start-page: 2202206 issue: 41 year: 2022 ident: CR31 article-title: Thermally stable and dendrite-resistant separators toward highly robust lithium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202206 – volume: 510 start-page: 522 issue: 7506 year: 2014 end-page: 524 ident: CR49 article-title: Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts publication-title: Nature doi: 10.1038/nature13434 – volume: 42 start-page: 515 issue: 2 year: 2023 end-page: 524 ident: CR98 article-title: Ni FeN anchored on porous carbon as electrocatalyst for advanced Li–S batteries publication-title: Rare Met. doi: 10.1007/s12598-022-02140-9 – ident: CR62 – volume: 14 start-page: 5250 issue: 9 year: 2014 end-page: 5256 ident: CR69 article-title: Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries publication-title: Nano Lett. doi: 10.1021/nl502238b – volume: 46 start-page: 1125 issue: 5 year: 2013 ident: 1120_CR28 publication-title: Acc. Chem. Res. doi: 10.1021/ar300179v – volume: 23 start-page: 55 year: 2019 ident: 1120_CR92 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.034 – volume: 12 start-page: 7053 issue: 29 year: 2021 ident: 1120_CR127 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00927 – ident: 1120_CR32 doi: 10.1126/sciadv.abn4372 – volume: 34 start-page: 2201555 issue: 35 year: 2022 ident: 1120_CR132 publication-title: Adv. Mater. doi: 10.1002/adma.202201555 – volume: 31 start-page: 2011289 issue: 22 year: 2021 ident: 1120_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011289 – volume: 18 start-page: 338 year: 2019 ident: 1120_CR97 publication-title: Energy storage Mater. doi: 10.1016/j.ensm.2018.08.016 – ident: 1120_CR23 doi: 10.1002/aenm.202001304 – volume: 31 start-page: 2102314 issue: 28 year: 2021 ident: 1120_CR18 publication-title: Mater. Adv. Funct. Mater. doi: 10.1002/adfm.202102314 – ident: 1120_CR95 doi: 10.1002/aenm.202201056 – ident: 1120_CR14 doi: 10.26599/NRE.2022.9120012 – volume: 256 start-page: 1 year: 2017 ident: 1120_CR79 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.032 – volume: 51 start-page: 3591 issue: 15 year: 2012 ident: 1120_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107817 – volume: 12 start-page: 139 issue: 1 year: 2020 ident: 1120_CR78 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00475-5 – volume: 13 start-page: 203 year: 2021 ident: 1120_CR91 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00726-z – volume: 27 start-page: 6021 issue: 39 year: 2015 ident: 1120_CR72 publication-title: Adv. Mater. doi: 10.1002/adma.201502467 – volume: 32 start-page: 2200893 issue: 27 year: 2022 ident: 1120_CR115 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200893 – volume: 16 start-page: 166 issue: 2 year: 2021 ident: 1120_CR9 publication-title: Nat. Nanotechn. doi: 10.1038/s41565-020-00797-w – volume: 35 start-page: 88 year: 2021 ident: 1120_CR126 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.009 – volume: 13 start-page: 1265 issue: 3 year: 2013 ident: 1120_CR67 publication-title: Nano Lett. doi: 10.1021/nl304795g – ident: 1120_CR19 doi: 10.1016/j.cej.2021.132734 – volume: 60 start-page: 743 year: 2019 ident: 1120_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.006 – volume: 42 start-page: 2592 issue: 7 year: 2013 ident: 1120_CR48 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35325C – ident: 1120_CR43 doi: 10.1002/aenm.201301473 – volume: 11 start-page: 2620 issue: 9 year: 2018 ident: 1120_CR100 publication-title: Energy Environm. Sci. doi: 10.1039/C8EE01402G – volume: 55 start-page: 7010 issue: 23 year: 2010 ident: 1120_CR39 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.06.019 – volume: 14 start-page: 14495 issue: 42 year: 2012 ident: 1120_CR50 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42796f – volume: 55 start-page: 2088 issue: 15 year: 2022 ident: 1120_CR5 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.2c00259 – ident: 1120_CR55 doi: 10.1126/science.1246501 – volume: 31 start-page: 2104830 issue: 47 year: 2021 ident: 1120_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104830 – volume: 6 start-page: 7760 issue: 1 year: 2015 ident: 1120_CR75 publication-title: Nat. Commun. doi: 10.1038/ncomms8760 – ident: 1120_CR121 doi: 10.1021/acs.nanolett.0c02167 – volume: 60 start-page: 15563 issue: 28 year: 2021 ident: 1120_CR123 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104053 – volume: 10 start-page: 1694 issue: 7 year: 2017 ident: 1120_CR99 publication-title: Energy Environm. Sci. doi: 10.1039/C7EE01430A – ident: 1120_CR57 doi: 10.1002/adfm.201503726 – volume: 30 start-page: 187 year: 2020 ident: 1120_CR104 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.002 – ident: 1120_CR45 doi: 10.1002/anie.201100637 – volume: 11 start-page: 19 issue: 1 year: 2012 ident: 1120_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 2 start-page: 16199 issue: 38 year: 2014 ident: 1120_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03877K – volume: 31 start-page: 2104286 issue: 36 year: 2021 ident: 1120_CR20 publication-title: Mater. Adv. Funct. Mater. doi: 10.1002/adfm.202104286 – volume: 15 start-page: 3780 issue: 6 year: 2015 ident: 1120_CR88 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00367 – volume: 56 start-page: 438 year: 2021 ident: 1120_CR2 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.025 – ident: 1120_CR128 doi: 10.1016/j.cej.2020.124117 – volume: 33 start-page: 2105067 issue: 51 year: 2021 ident: 1120_CR107 publication-title: Adv. Mater. doi: 10.1002/adma.202105067 – volume: 5 start-page: 448 issue: 2 year: 2017 ident: 1120_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07864H – volume: 6 start-page: 1095 issue: 7 year: 2020 ident: 1120_CR8 publication-title: ACS Centr. Sci. doi: 10.1021/acscentsci.0c00449 – volume: 8 start-page: 84 year: 2023 ident: 1120_CR146 publication-title: Nat. Energy doi: 10.1038/s41560-022-01175-7 – volume: 12 start-page: 11120 issue: 11 year: 2018 ident: 1120_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.8b05534 – volume: 5 start-page: 1800621 issue: 11 year: 2018 ident: 1120_CR76 publication-title: Adv. Sci. doi: 10.1002/advs.201800621 – ident: 1120_CR89 doi: 10.1002/adma.201601382 – ident: 1120_CR24 doi: 10.1002/aenm.202100601 – ident: 1120_CR82 doi: 10.1038/ncomms5759 – volume: 9 start-page: 2103456 issue: 1 year: 2022 ident: 1120_CR106 publication-title: Adv. Sci. doi: 10.1002/advs.202103456 – volume: 26 start-page: 203 year: 2020 ident: 1120_CR109 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.002 – volume: 132 start-page: 17823 issue: 40 year: 2020 ident: 1120_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202007740 – ident: 1120_CR124 doi: 10.1002/inf2.12304 – volume: 7 start-page: 10920 issue: 12 year: 2013 ident: 1120_CR41 publication-title: ACS Nano doi: 10.1021/nn404439r – volume: 133 start-page: 18522 issue: 46 year: 2011 ident: 1120_CR66 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206955k – volume: 12 start-page: 3283 issue: 24 year: 2016 ident: 1120_CR73 publication-title: Small doi: 10.1002/smll.201600809 – volume: 8 start-page: 15816 issue: 31 year: 2020 ident: 1120_CR85 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01664K – volume: 49 start-page: 153 year: 2022 ident: 1120_CR108 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.004 – ident: 1120_CR144 doi: 10.1002/adfm.202212759 – volume: 6 start-page: 906 issue: 4 year: 2022 ident: 1120_CR136 publication-title: Joule doi: 10.1016/j.joule.2022.02.015 – volume: 6 start-page: 38 issue: 1 year: 2013 ident: 1120_CR42 publication-title: Nano Res. doi: 10.1007/s12274-012-0279-1 – ident: 1120_CR44 doi: 10.1002/smll.201804786 – ident: 1120_CR38 doi: 10.1002/chem.201600040 – volume: 8 start-page: 5249 issue: 5 year: 2014 ident: 1120_CR84 publication-title: ACS Nano doi: 10.1021/nn501308m – volume: 13 start-page: 53388 issue: 45 year: 2021 ident: 1120_CR125 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10749 – volume: 8 start-page: 433 issue: 1 year: 2020 ident: 1120_CR102 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11451C – volume: 5 start-page: 1701598 issue: 10 year: 2018 ident: 1120_CR70 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201701598 – volume: 59 start-page: 12636 issue: 31 year: 2020 ident: 1120_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909339 – volume: 7 start-page: 6507 issue: 11 year: 2019 ident: 1120_CR94 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00212J – ident: 1120_CR33 doi: 10.1002/anie.201909339 – volume: 57 start-page: 299 year: 2023 ident: 1120_CR36 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.02.023 – volume: 11 start-page: 2102995 issue: 48 year: 2021 ident: 1120_CR113 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102995 – volume: 15 start-page: 7114 issue: 4 year: 2021 ident: 1120_CR101 publication-title: ACS Nano doi: 10.1021/acsnano.1c00270 – volume: 510 start-page: 522 issue: 7506 year: 2014 ident: 1120_CR49 publication-title: Nature doi: 10.1038/nature13434 – volume: 7 start-page: 1601943 issue: 5 year: 2017 ident: 1120_CR54 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601943 – volume: 26 start-page: 8952 issue: 48 year: 2016 ident: 1120_CR59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601897 – ident: 1120_CR60 doi: 10.1002/aenm.201500211 – volume: 7 start-page: 12381 issue: 20 year: 2019 ident: 1120_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00535H – ident: 1120_CR65 doi: 10.20517/energymater.2021.22 – volume: 76 start-page: 181 year: 2023 ident: 1120_CR142 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.09.029 – volume: 6 start-page: 18 year: 2017 ident: 1120_CR133 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.09.003 – volume: 8 start-page: 3031 issue: 11 year: 2022 ident: 1120_CR34 publication-title: Chem doi: 10.1016/j.chempr.2022.07.004 – ident: 1120_CR74 doi: 10.26599/NRE.2023.9120049 – ident: 1120_CR68 doi: 10.1016/j.nantod.2018.02.006 – ident: 1120_CR46 doi: 10.1002/anie.201205292 – volume: 8 start-page: 14627 issue: 1 year: 2017 ident: 1120_CR83 publication-title: Nat. Commun. doi: 10.1038/ncomms14627 – volume: 7 start-page: 10601 issue: 1 year: 2016 ident: 1120_CR63 publication-title: Nat. Commun. doi: 10.1038/ncomms10601 – ident: 1120_CR87 doi: 10.1016/j.cej.2020.126967 – volume: 11 start-page: 5215 issue: 1 year: 2020 ident: 1120_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19070-8 – volume: 41 start-page: 311 issue: 1 year: 2022 ident: 1120_CR93 publication-title: Rare Met. doi: 10.1007/s12598-021-01839-5 – volume: 52 start-page: 13186 issue: 50 year: 2013 ident: 1120_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304762 – ident: 1120_CR61 doi: 10.1002/adma.201506014 – volume: 10 start-page: 1359 issue: 3 year: 2022 ident: 1120_CR12 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08942K – volume: 12 start-page: 2202206 issue: 41 year: 2022 ident: 1120_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202206 – volume: 28 start-page: 1704865 issue: 2 year: 2018 ident: 1120_CR11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704865 – volume: 5 start-page: 5630 issue: 12 year: 2013 ident: 1120_CR71 publication-title: ACS Appl. Mater. interfaces doi: 10.1021/am400958x – volume: 14 start-page: 540 issue: 2 year: 2021 ident: 1120_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03316B – volume: 12 start-page: 2200889 issue: 33 year: 2022 ident: 1120_CR1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200889 – volume: 11 start-page: 4288 issue: 10 year: 2011 ident: 1120_CR52 publication-title: Nano Lett. doi: 10.1021/nl202297p – volume: 11 start-page: 6031 issue: 6 year: 2017 ident: 1120_CR90 publication-title: ACS Nano doi: 10.1021/acsnano.7b01945 – volume: 2 start-page: 10126 issue: 26 year: 2014 ident: 1120_CR64 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01823K – volume: 4 start-page: 374 issue: 5 year: 2019 ident: 1120_CR145 publication-title: Nat. Energy doi: 10.1038/s41560-019-0351-0 – volume: 45 start-page: 1229 year: 2022 ident: 1120_CR112 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.024 – ident: 1120_CR117 doi: 10.1038/npjcompumats.2016.2 – volume: 31 start-page: 1901125 issue: 27 year: 2019 ident: 1120_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201901125 – ident: 1120_CR129 doi: 10.34133/energymatadv.0010 – volume: 15 start-page: 16515 issue: 10 year: 2021 ident: 1120_CR110 publication-title: ACS Nano doi: 10.1021/acsnano.1c06067 – volume: 55 start-page: 94 year: 2023 ident: 1120_CR140 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.11.045 – ident: 1120_CR80 doi: 10.1002/chem.201900884 – ident: 1120_CR139 doi: 10.1002/adma.202208590 – volume: 295 start-page: 444 year: 2019 ident: 1120_CR86 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.107 – volume: 26 start-page: 5113 issue: 30 year: 2014 ident: 1120_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201401191 – volume: 32 start-page: 2000315 issue: 32 year: 2020 ident: 1120_CR105 publication-title: Adv. Mater. doi: 10.1002/adma.202000315 – volume: 43 start-page: 212 year: 2021 ident: 1120_CR116 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.09.003 – volume: 33 start-page: 2105947 issue: 44 year: 2021 ident: 1120_CR120 publication-title: Adv. Mater. doi: 10.1002/adma.202105947 – volume: 42 start-page: 515 issue: 2 year: 2023 ident: 1120_CR98 publication-title: Rare Met. doi: 10.1007/s12598-022-02140-9 – volume: 9 start-page: 2201640 issue: 21 year: 2022 ident: 1120_CR134 publication-title: Adv. Sci. doi: 10.1002/advs.202201640 – volume: 5 start-page: 3410 issue: 1 year: 2014 ident: 1120_CR56 publication-title: Nat. Commun. doi: 10.1038/ncomms4410 – volume: 30 start-page: 250 year: 2020 ident: 1120_CR122 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.022 – ident: 1120_CR103 doi: 10.1016/j.electacta.2019.135311 – ident: 1120_CR15 doi: 10.1088/2515-7655/aadef6 – ident: 1120_CR62 doi: 10.1002/smll.201804347 – ident: 1120_CR130 doi: 10.20517/energymater.2022.4 – volume: 39 start-page: 262 year: 2017 ident: 1120_CR141 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.002 – ident: 1120_CR81 doi: 10.1002/chem.202003807 – volume: 31 start-page: 2006798 issue: 4 year: 2021 ident: 1120_CR114 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006798 – volume: 10 start-page: 1904010 issue: 22 year: 2020 ident: 1120_CR96 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904010 – ident: 1120_CR131 doi: 10.1002/aenm.202202518 – ident: 1120_CR21 doi: 10.1002/eem2.12483 – ident: 1120_CR37 doi: 10.1016/j.ensm.2015.09.007 – volume: 4 start-page: 1301761 issue: 8 year: 2014 ident: 1120_CR58 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301761 – ident: 1120_CR111 doi: 10.1002/anie.201905852 – volume: 125 start-page: 18108 issue: 33 year: 2021 ident: 1120_CR118 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04491 – volume: 29 start-page: 1700598 issue: 48 year: 2017 ident: 1120_CR143 publication-title: Adv. Mater. doi: 10.1002/adma.201700598 – year: 2023 ident: 1120_CR6 publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.01.032 – volume: 13 start-page: 3620 issue: 10 year: 2020 ident: 1120_CR135 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02088E – ident: 1120_CR137 doi: 10.1016/j.partic.2022.11.009 – volume: 14 start-page: 5250 issue: 9 year: 2014 ident: 1120_CR69 publication-title: Nano Lett. doi: 10.1021/nl502238b – volume: 231 start-page: 153 year: 2013 ident: 1120_CR26 publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2012.12.102 – volume: 10 start-page: 4111 issue: 4 year: 2016 ident: 1120_CR77 publication-title: ACS Nano doi: 10.1021/acsnano.5b07347 – volume: 20 start-page: 1252 issue: 2 year: 2019 ident: 1120_CR119 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04719 – volume: 4 start-page: 819 issue: 3 year: 2016 ident: 1120_CR51 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07818K – volume: 11 start-page: 4694 issue: 5 year: 2017 ident: 1120_CR138 publication-title: ACS Nano doi: 10.1021/acsnano.7b00596 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5164802 |
SecondaryResourceType | review_article |
Snippet | Highlights
A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional... As the need for high-energy–density batteries continues to grow, lithium-sulfur (Li–S) batteries have become a highly promising next-generation energy solution... As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution... HighlightsA comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional... A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional optimization.... Highlights A comprehensive discussion of the approaches for developing carbon-based sulfur hosts is presented, encompassing structural design and functional... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | Carbon Carbon materials Commercialization Design optimization Electrolytes Engineering Functional modification Li-S batteries Lithium sulfur batteries Lithium-ion batteries Machine learning Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Rechargeable batteries Review Structural design Sulfur |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuEBE7dmxzQbRqtUILB7qVeovs2FZXWiXVPg69ceEX8A_5Jcw42RfPC7fIj8iaGXtmPONvCHmJRrtVEk4_WbhccB9z57zKpXQC2N0oxvDt8MdP1ehcfLiQFzulvjAnrIcH7gn3RhcmCNV4b0onotEmhmgbaIoG_lxEPH1B5-04UyBJXGFFpm18EMsqix2UGoGYLuUWyEwicJna4mNKLkCvD4q2N6QVhrBSpTrG8koV1fACJ73Dw6rNRQ7qDzxzBl9qT8ulYgC_s2B_TcT8KRqblNzpHXJ7sE7p-54qd8mN0N4jt3YwC--Tr5OUaLugPdJRg8O3QXDaRTqefv_y7Yz2yJ3XFG96KaaT0LPVLK7mdNylvH1qW0_Hwbb0pC_FM7tehrcUL4DosZ27rs2PQMV6OuoWywW0t3RyOV3Qz8CXdw_I-enJ5HiUD7Uc8gZsqGXugzbg2yntFBfOaMuC9ly6pgim8iW3hnlwbbwFYsBnFatYqBCLkrMA3rsvH5KDtmvDY0zG4miEcO6tEWWpQMcGWTlbllZGJlRG2Jr2dTMAnWO9jVm9gWhO_KqBX3XiVw1zXm3mXPUwH38dfYQs3YxEiO7UAIJbD4Jb_0twM3K4Foh6ODcWNdfagEkIspaRF5tu2PEYxrFt6FY4Bt8jgyvJMvKol5_NSkrFdaW1zIjek6y9pe73tNPLhCoOZBUKnNmMvF4L4XZdf6bFk_9Bi6fkJsfdk9KEDsnBcr4Kz8DYW7rnaV__AHcBRTY priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagXOCA-G-gICNxg0iJY8c2F0SrViu0cKBbqbfIiW260ipBm-yhNy48AW_IkzDjZJMuFCRuUTKRnJmxZyYz8w0hr9BpN1LA6SeSMubM-rgsrYyFKDmIu5Jpir3DHz_lszP-4VycD01h7bbafZuSDCf12OyGo5GTGGwMhL8pXMmb5JbA2B1TtBPmOJM4jWnKDeJIZX4FoYYjnks2gZgJBC2TEzamYBxs-mBkeydaYvoqTKlL0ziXST5031y_rB0LFwYBXOe9_lmE-VsmNhi4k3vk7uCZ0ve9Kt0nN1z9gNy5glf4kHxfhCLblvYoRxWSTwlw2ng6X_789uOU9qidlxT_8lIsJaGnm5XfrOm8CTX71NSWzp2p6XE_hmd12bm3FH_-0COzLps6PgTzaumsabsW7td0cbFs6WdTuXePyNnJ8eJoFg9zHOIK_Kcutk5piOukKiXjpVYmdcoyUVaJ07nNmNGphbDGGmAGXOY-94l0PslY6iByt9ljslc3tdvHQiyGDghj1mieZRLsqxN5abLMCJ9yGZF0y_uiGkDOcdbGqhjhmYO8CpBXEeRVwDuvx3e-9hAf_6Q-RJGOlAjPHW406y_FsNsLlWjHZWWtzkrutdLeeWAQl17D9yQ-IgdbhSiGM6MtmFIa3EHQtYi8HB_DbscUjqlds0Ea7EWGMDKNyJNef8aVZJKpXCkREbWjWTtL3X1SLy8CojiwlUsIZCPyZquE07r-zoun_0f-jNxmuE9CMdAB2evWG_ccXLqufBF28C-IDjfM priority: 102 providerName: Springer Nature |
Title | Towards Practical Application of Li–S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race? |
URI | https://link.springer.com/article/10.1007/s40820-023-01120-7 https://www.ncbi.nlm.nih.gov/pubmed/37286885 https://www.proquest.com/docview/2889584076 https://www.proquest.com/docview/2823992171 https://pubmed.ncbi.nlm.nih.gov/PMC10247666 https://doaj.org/article/809e47cdd93b4f989feface47f942d0f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHxJvAUhmJG0QkjhM7XFbb0lKhskL7kPYWObG9W6lKlqY97I0Lv4B_yC9hxkmbLY-9RJHjSLZnPA_P-BtC3qDRrkQM0i8Ocp8zbf0818KP45wDuQsRhnh3-MtRMj3jn8_j8_bArW7TKjcy0QlqXRV4Rv6eSZmCsgS3--Dqm49VozC62pbQ2CN9EMFS9kh_OD76erzhKCawMlMXJ8TyyvwGWg1HbJeoAzSLEcBMdDiZMeOg31uF2xjUAkNZrmJdGPqJCJL2Jo67j4fVmwMf1CB46CG8iR1t54oC_MuS_Tsh84-orFN2kwfkfmul0sOGrR6SO6Z8RO7dwC58TH6cuoTbmjaIRwV274LhtLJ0Nv_1_ecJbRA8ryme-FJMK6En64VdL-mscvn7VJWazowq6bgpybO4XpkPFA-C6Egt86r0h6BqNZ1W9aqG9pKeXs5reqwKc_CEnE3Gp6Op39Z08AuwpVa-NjIFH0_IXDCep1KFRmoW50Vg0kRHTKWhBhdHK1gMeE1sYgNhbBCx0IAXr6OnpFdWpXmOSVkMjRHGtEp5FAnQtSZOchVFKrYhFx4JN2ufFS3gOdbdWGRbqGZHrwzolTl6ZfDP2-0_Vw3cx629h0jSbU-E6nYN1fIia3d-JoPUcFFonUY5t6lMrbGwQFzYFOYTWI_sbxgia-VHnXXc7pHX28-w8zGco0pTrbEP3ksGlzL0yLOGf7YjiQSTiZSxR-QOZ-0MdfdLOb906OKwrFyAU-uRdxsm7Mb1_7V4cfs0XpK7DPeFSwTaJ73Vcm1egTm3ygdkT04-DUj_cPhxOBm0OxhaR4zjMxkN3EHJb-9GQbY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSISx4kdJFTR0mVLtz3QrdRbcGKbrrRKyj6E9saFX8D_4EfxS5hxkk2XR2-9RYkTOZ7xPDwz3xDyDI12JWKQfnGQ-5xp6-e5Fn4c5xzIXYgwxNrh_YOkf8Q_HMfHa-RnWwuDaZWtTHSCWlcFnpG_YlKmoCzB7d48_eJj1yiMrrYtNGq22DOLr-CyTd_svgP6PmestzPc7vtNVwG_AG0-87WRKXgZQuaC8TyVKjRSszgvApMmOmIqDTUY2VoZXcBlYhMbCGODiIUG_EgdwXcvkcs8Ak2Olem99y3_MoF9oLqoJDZz5mewcTgiyUQdfFqMcGmiQ-WMGQdrolHvtfkuMHDm-uOFoZ-IIGnqflz1H_aKDnxQuj5sUrgSK7rVtSD4l938d_rnHzFgp1p7N8j1xiamb2smvknWTHmLXDuDlHibfB-69N4prfGVChzehd5pZelg9Ovbj0Na44UuKJ4vU0xioYfzsZ1P6KBy1QJUlZoOjCrpTt0AaLyYmdcUj53otprkVelvgWLXtF9NZ1O4X9LhyWhKP6rCbN4hRxdC67tkvaxKcx9TwBiaPoxplQLtBWh2Eye5iiIV25ALj4Tt2mdFA6-OXT7G2RIY2tErA3pljl4ZvPNi-c5pDS5y7ugtJOlyJAKDuxvV5HPWyJlMBqnhotA6jXJuU5laY2GBuLAp_E9gPbLRMkTWSKtp1u0tjzxdPgY5g8EjVZpqjmOwChoc2NAj92r-Wc4kEkwmUsYekSuctTLV1Sfl6MRhmcOycgEutEdetkzYzev_a_Hg_N94Qq70h_uDbLB7sPeQXGW4R1wK0gZZn03m5hEYkrP8sdu9lHy6aHHxG1WteJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVEJwQPxjKLBIcAKr9nrtXSMhlP5EaRoqRFKpN3ft3aWRIruKHaHcuPAEvAjPxJMw698GChKH3ix7HG1mZndmPDPfIPTSOO2C-XD6-U5sUyK1HceS2b4fUxB3wlzX9A5_OAqGx3R04p9soB9NL0xZ7d6kJKueBoPSlBbb51Jvt41vZkyyY4O9gVDYhStWl1UeqtUXCNrydwd7IOFXhAz2p7tDu54rYCdgzwtbKh5CnMF4zAiNQy5cxSXx48RRYSA9IkJXgpsthZIJXAY60A5T2vGIqyCSlB787jW0yQPYoT202e-PJqNGhwkzs6C6zKQZ6Ewv4ONQgybjdRBqvoFMYx0yp08oeBS1ia9ceGaSZ-WMPNe1A-YEde_P5YxYs6_lGILLfOc_S0B_ywOX5nVwG92q_WLcrxT5DtpQ6V108wJa4j30bVqW-Oa4wlhKDHmXfseZxuPZz6_fJ7jCDF1h840Zm0IWPFnO9XKBx1nZMYBFKvFYiRTvV0OA5qtCvcXm0xPeFYs4S-0dMO4SD7O8yOF-iqdnsxx_Eol6fx8dX4m0H6BemqXqkSkDI8b9IUSKkHoeA-uu_CAWnid87VJmIbfhfZTUEOtm0sc8asGhS3lFIK-olFcE77xu3zmvAEb-Sb1jRNpSGnDw8ka2-BzVZ03EnVBRlkgZejHVIQ-10sAgynQI_8fRFtpqFCKqT6w8IpyH4IyCrlnoRfsYzhqTQBKpypaGxnRCQxDrWuhhpT_tSjxGeMC5byG-pllrS11_ks7OSjxzYCtlEEZb6E2jhN26_s6Lx_9H_hxd_7g3iMYHR4dP0A1itkxZlbSFesViqZ6Cb1nEz-rtjNHpVZ8gvwCFJnr3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Practical+Application+of+Li%E2%80%93S+Battery+with+High+Sulfur+Loading+and+Lean+Electrolyte%3A+Will+Carbon-Based+Hosts+Win+This+Race%3F&rft.jtitle=Nano-micro+letters&rft.au=Gong%2C+Yi&rft.au=Li%2C+Jing&rft.au=Yang%2C+Kai&rft.au=Li%2C+Shaoyin&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=150&rft_id=info:doi/10.1007%2Fs40820-023-01120-7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |