Enantiomer-specific detection of chiral molecules via microwave spectroscopy

Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Microwave spectroscopy measures chirality Chir...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 497; no. 7450; pp. 475 - 477
Main Authors Patterson, David, Schnell, Melanie, Doyle, John M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.05.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Microwave spectroscopy measures chirality Chiral molecules exist as enantiomers that form non-superimposable mirror images, and chirality has a fundamental role in many aspects of chemistry and biology. It is notoriously difficult to detect and quantify chirality because conventional spectroscopic methods exploit weak effects that produce weak signals. Patterson et al . now show that microwave spectroscopy combined with a switched electric field can map the sign of an electric dipole Rabi frequency — a variable that depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation. The effect is then used to determine the chirality of cold gas-phase molecules, illustrated with S and R enantiomers of 1,2-propanediol and their racemic mixture. The method produces large and definitive signatures of chirality, and is both sensitive and species-selective — making it a potentially ideal and unique tool for determining the chirality of multiple species in a mixture. Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging 1 . The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation 2 . The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples 3 , 4 , 5 , 6 , 7 . Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture.
AbstractList Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency -- which depends directly on the chirality of the molecule -- onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules.
Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging. The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation. The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples. Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture.
Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging1. The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation2. The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples3-7. Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture. [PUBLICATION ABSTRACT]
Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Microwave spectroscopy measures chirality Chiral molecules exist as enantiomers that form non-superimposable mirror images, and chirality has a fundamental role in many aspects of chemistry and biology. It is notoriously difficult to detect and quantify chirality because conventional spectroscopic methods exploit weak effects that produce weak signals. Patterson et al . now show that microwave spectroscopy combined with a switched electric field can map the sign of an electric dipole Rabi frequency — a variable that depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation. The effect is then used to determine the chirality of cold gas-phase molecules, illustrated with S and R enantiomers of 1,2-propanediol and their racemic mixture. The method produces large and definitive signatures of chirality, and is both sensitive and species-selective — making it a potentially ideal and unique tool for determining the chirality of multiple species in a mixture. Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging 1 . The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation 2 . The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples 3 , 4 , 5 , 6 , 7 . Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture.
Audience Academic
Author Schnell, Melanie
Patterson, David
Doyle, John M.
Author_xml – sequence: 1
  givenname: David
  surname: Patterson
  fullname: Patterson, David
  email: dave@cua.harvard.edu
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Melanie
  surname: Schnell
  fullname: Schnell, Melanie
  organization: Center for Free-Electron Laser Science, D-22607 Hamburg, Germany, Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
– sequence: 3
  givenname: John M.
  surname: Doyle
  fullname: Doyle, John M.
  organization: Department of Physics, Harvard University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27375064$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23698447$$D View this record in MEDLINE/PubMed
BookMark eNp10s9rFDEUB_AgFbutnrzLoAiKjiaTn3tclqqFRUErHkM287KmzCTTZKba_94sXXUr6ymQfPLNy0tO0FGIARB6TPAbgql6G8w4JSAN4fgemhEmRc2EkkdohnGjaqyoOEYnOV9ijDmR7AE6bqiYK8bkDK3Oggmjjz2kOg9gvfO2amEEWyZDFV1lv_tkuqqPHdipg1xde1P13qb4w1xDtd00pphtHG4eovvOdBke7cZT9PXd2cXyQ7369P58uVjVVpBmrNtSElBLeQsg5rIRjCjBZGtt6wzDDDsHkglhrJONUtCS9RzP19RZAoK3nJ6iF7e5Q4pXE-RR9z5b6DoTIE5ZE8o5kxILVeizf-hlnFIo1RUlBJVC7auN6UD74OKYjN2G6oVoBOFNiSzq6QFlB3-l99HLO8jGMMLPcWOmnPX5l893A1_93y4uvi0_HtSl9TkncHpIvjfpRhOstz9B7_2Eop_sLj6te2j_2N9PX8DzHTDZms4lE6zPf52kkmPBint963JZChtIex08cO4v5xTJLA
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111028
crossref_primary_10_1103_PhysRevLett_124_083901
crossref_primary_10_1021_acs_joc_6b00816
crossref_primary_10_1016_j_jms_2017_01_006
crossref_primary_10_1063_1_5091773
crossref_primary_10_1002_anie_202219045
crossref_primary_10_1039_c4ay00759j
crossref_primary_10_1016_j_molstruc_2020_128277
crossref_primary_10_1016_j_jms_2022_111705
crossref_primary_10_1021_acsphotonics_7b00608
crossref_primary_10_1063_5_0008157
crossref_primary_10_1080_00268976_2022_2146541
crossref_primary_10_1021_acs_jpclett_1c04161
crossref_primary_10_1016_j_synthmet_2020_116603
crossref_primary_10_1088_1361_648X_ac4b2b
crossref_primary_10_1021_jz502312t
crossref_primary_10_1103_PhysRevA_104_053115
crossref_primary_10_1103_RevModPhys_91_035005
crossref_primary_10_1103_PhysRevX_14_011015
crossref_primary_10_1039_D0CP00470G
crossref_primary_10_1016_j_jms_2020_111396
crossref_primary_10_1051_refdp_202375004
crossref_primary_10_1021_acs_jpca_8b11528
crossref_primary_10_1103_PhysRevA_99_043416
crossref_primary_10_1039_D2CP04060C
crossref_primary_10_1007_s10762_017_0406_x
crossref_primary_10_1088_1361_6501_ab2ab6
crossref_primary_10_1002_nadc_201490248
crossref_primary_10_1021_acs_jpca_2c08646
crossref_primary_10_1103_PhysRevA_98_063428
crossref_primary_10_1063_1_5097406
crossref_primary_10_1126_sciadv_abm3749
crossref_primary_10_1364_OL_496226
crossref_primary_10_1515_nanoph_2022_0802
crossref_primary_10_1002_nadc_20164047466
crossref_primary_10_1038_s41598_017_05692_4
crossref_primary_10_1021_acs_jpclett_3c01622
crossref_primary_10_1039_C7NR01527E
crossref_primary_10_1039_D1CP05427A
crossref_primary_10_1103_PhysRevA_106_013321
crossref_primary_10_1103_PhysRevA_99_043417
crossref_primary_10_1002_ardp_201300285
crossref_primary_10_1103_PhysRevA_108_052810
crossref_primary_10_1021_acscentsci_9b01277
crossref_primary_10_1039_C6CP00244G
crossref_primary_10_1364_OL_40_000677
crossref_primary_10_1002_ange_202212020
crossref_primary_10_1002_cphc_201402643
crossref_primary_10_3390_sym14050871
crossref_primary_10_1021_acs_jpca_9b02115
crossref_primary_10_1021_acs_jchemed_0c00934
crossref_primary_10_1103_PhysRevLett_111_023008
crossref_primary_10_1021_jp505290v
crossref_primary_10_1039_C4AN02218A
crossref_primary_10_1002_ange_202006486
crossref_primary_10_1103_PhysRevLett_129_103201
crossref_primary_10_1016_j_epsl_2018_05_026
crossref_primary_10_1103_PhysRevA_99_062703
crossref_primary_10_1021_acs_jpclett_2c00671
crossref_primary_10_1039_C6CP01293K
crossref_primary_10_2183_pjab_93_053
crossref_primary_10_1021_acs_langmuir_0c00961
crossref_primary_10_1038_s41566_019_0531_2
crossref_primary_10_1002_anie_201307159
crossref_primary_10_1063_1_5045052
crossref_primary_10_1002_chem_201805986
crossref_primary_10_1038_ncomms8511
crossref_primary_10_1002_chir_23596
crossref_primary_10_1051_0004_6361_202244295
crossref_primary_10_1063_1_4994273
crossref_primary_10_1103_PhysRevLett_132_043602
crossref_primary_10_1073_pnas_1907189116
crossref_primary_10_1088_1367_2630_aa6de4
crossref_primary_10_1002_ange_201709438
crossref_primary_10_1063_1_4958866
crossref_primary_10_1088_1674_1056_abdda6
crossref_primary_10_1103_PhysRevLett_118_123002
crossref_primary_10_1063_1_4952762
crossref_primary_10_1103_PhysRevLett_128_173001
crossref_primary_10_1103_PhysRevResearch_3_013249
crossref_primary_10_1016_j_rinp_2021_105007
crossref_primary_10_1038_s41467_018_07609_9
crossref_primary_10_1039_D0CP01376E
crossref_primary_10_1063_1_4944089
crossref_primary_10_1364_OE_436211
crossref_primary_10_3175_molsci_14_A0111
crossref_primary_10_1073_pnas_2020941118
crossref_primary_10_1103_PhysRevA_105_043110
crossref_primary_10_1002_anie_201906630
crossref_primary_10_1103_PhysRevA_102_033727
crossref_primary_10_1002_anie_201709438
crossref_primary_10_1088_1361_6455_aaae5e
crossref_primary_10_1103_PhysRevA_100_033411
crossref_primary_10_1177_1934578X1701200501
crossref_primary_10_1103_PhysRevX_11_031056
crossref_primary_10_1007_s10043_017_0315_1
crossref_primary_10_1021_acs_jpclett_8b01815
crossref_primary_10_1007_s00245_022_09821_y
crossref_primary_10_1364_OE_25_023502
crossref_primary_10_1002_chir_23379
crossref_primary_10_1039_D0SC03752D
crossref_primary_10_3390_photonics2020483
crossref_primary_10_1002_ijch_201600111
crossref_primary_10_1103_PhysRevA_90_032703
crossref_primary_10_1021_ph500293u
crossref_primary_10_1039_D0CP00539H
crossref_primary_10_1007_s44214_023_00045_x
crossref_primary_10_1088_1361_648X_aa9730
crossref_primary_10_1016_j_aca_2020_08_046
crossref_primary_10_1088_1361_6455_aa77a9
crossref_primary_10_1103_PhysRevLett_126_123001
crossref_primary_10_1002_advs_202308362
crossref_primary_10_1002_andp_202100573
crossref_primary_10_3390_sym14050848
crossref_primary_10_1039_D2CP01418A
crossref_primary_10_1364_OE_435006
crossref_primary_10_1038_ncomms15897
crossref_primary_10_1021_acs_jpca_5b08958
crossref_primary_10_1021_acs_jpclett_9b00978
crossref_primary_10_1021_jacs_7b07884
crossref_primary_10_1103_PhysRevLett_120_143401
crossref_primary_10_1021_acsphotonics_8b01555
crossref_primary_10_1039_C3CP55352C
crossref_primary_10_1016_S1872_2040_14_60767_2
crossref_primary_10_1039_c4cp00417e
crossref_primary_10_1103_PhysRevA_102_063103
crossref_primary_10_1103_PhysRevResearch_2_043235
crossref_primary_10_1038_ncomms8868
crossref_primary_10_1002_anie_201600030
crossref_primary_10_1021_acs_jpclett_1c02196
crossref_primary_10_1177_1934578X1501001036
crossref_primary_10_1016_j_jpba_2020_113474
crossref_primary_10_1021_acs_jpca_9b04210
crossref_primary_10_1039_C5CP06522D
crossref_primary_10_1088_1361_648X_aaa1c8
crossref_primary_10_1088_1367_2630_ad2db4
crossref_primary_10_1039_C3CP53741B
crossref_primary_10_1038_s42005_022_00883_6
crossref_primary_10_1080_00268976_2018_1547845
crossref_primary_10_1002_cphc_201600811
crossref_primary_10_1080_23746149_2016_1203732
crossref_primary_10_1073_pnas_1516704112
crossref_primary_10_1039_D0CP03523H
crossref_primary_10_1016_j_jms_2018_05_003
crossref_primary_10_1088_1367_2630_16_10_103021
crossref_primary_10_1038_srep09416
crossref_primary_10_1063_5_0029792
crossref_primary_10_1103_PhysRevA_104_013113
crossref_primary_10_1098_rsta_2015_0433
crossref_primary_10_1021_acsnano_2c08090
crossref_primary_10_1007_s11468_021_01416_7
crossref_primary_10_3390_life11060568
crossref_primary_10_1007_s11468_023_01811_2
crossref_primary_10_1002_admt_202201394
crossref_primary_10_1002_chem_201704644
crossref_primary_10_1002_chem_201901666
crossref_primary_10_1038_497446b
crossref_primary_10_1063_1_5040476
crossref_primary_10_1088_1361_648X_aa84d5
crossref_primary_10_1103_PhysRevLett_120_083204
crossref_primary_10_1002_anie_202011727
crossref_primary_10_1103_PhysRevA_98_063401
crossref_primary_10_1364_OPTICA_423618
crossref_primary_10_1039_D1CP05468F
crossref_primary_10_1002_anie_202006486
crossref_primary_10_1021_acs_jpca_4c00426
crossref_primary_10_1002_adfm_202208641
crossref_primary_10_1103_PhysRevA_105_033113
crossref_primary_10_1016_j_jms_2017_03_004
crossref_primary_10_1021_jp500319x
crossref_primary_10_1103_PhysRevA_109_053104
crossref_primary_10_1364_OE_445743
crossref_primary_10_34133_2020_2547609
crossref_primary_10_1021_acs_jpcc_6b09435
crossref_primary_10_1021_acs_jpclett_3c02616
crossref_primary_10_1103_PhysRevA_102_053519
crossref_primary_10_1038_srep18003
crossref_primary_10_1016_j_cplett_2017_12_009
crossref_primary_10_1021_jp5014785
crossref_primary_10_1088_1367_2630_16_1_013020
crossref_primary_10_1103_PhysRevX_9_031004
crossref_primary_10_1103_PhysRevX_9_031002
crossref_primary_10_1126_science_1240362
crossref_primary_10_1002_ange_202011727
crossref_primary_10_1016_j_orgel_2015_12_027
crossref_primary_10_3390_sym14061262
crossref_primary_10_1080_0144235X_2015_1077838
crossref_primary_10_1103_PhysRevA_98_063410
crossref_primary_10_1103_PhysRevX_8_031060
crossref_primary_10_1007_s11467_020_1037_6
crossref_primary_10_1002_cphc_201800647
crossref_primary_10_1063_1_4818137
crossref_primary_10_1039_C4CP05641H
crossref_primary_10_1103_PhysRevResearch_3_L032006
crossref_primary_10_1002_ange_201600030
crossref_primary_10_1063_1_4921833
crossref_primary_10_1364_OE_462558
crossref_primary_10_1080_23746149_2018_1477530
crossref_primary_10_1364_OE_444210
crossref_primary_10_1002_ange_201307159
crossref_primary_10_1103_PhysRevA_94_032505
crossref_primary_10_1039_D4CC00735B
crossref_primary_10_1103_PhysRevResearch_4_013100
crossref_primary_10_1002_nadc_201390230
crossref_primary_10_1007_s00340_017_6685_z
crossref_primary_10_1103_PhysRevA_105_013102
crossref_primary_10_1088_1361_6455_abc143
crossref_primary_10_1103_PhysRevLett_121_193201
crossref_primary_10_1364_OL_398859
crossref_primary_10_1021_acs_jpclett_3c01900
crossref_primary_10_1146_annurev_physchem_040513_103744
crossref_primary_10_1364_JOSAB_32_000B25
crossref_primary_10_1103_PhysRevA_109_012810
crossref_primary_10_1063_1_4936403
crossref_primary_10_1209_0295_5075_134_27003
crossref_primary_10_1063_5_0152203
crossref_primary_10_1021_acsami_8b13517
crossref_primary_10_1088_1361_6455_ab8b42
crossref_primary_10_1016_j_elspec_2015_04_008
crossref_primary_10_1051_0004_6361_201424320
crossref_primary_10_1021_acs_jpclett_5b02443
crossref_primary_10_1038_s41467_021_24118_4
crossref_primary_10_1364_OE_502410
crossref_primary_10_1007_s11128_023_04109_8
crossref_primary_10_1021_acs_jpclett_6b02653
crossref_primary_10_1038_s41567_017_0038_z
crossref_primary_10_1021_acs_jpca_0c00327
crossref_primary_10_1021_jacsau_2c00661
crossref_primary_10_1002_anie_201709966
crossref_primary_10_1103_PhysRevLett_122_173202
crossref_primary_10_1364_OE_24_024824
crossref_primary_10_1016_j_cej_2024_152229
crossref_primary_10_1021_acs_chemrev_9b00547
crossref_primary_10_1021_acs_jpclett_5b00494
crossref_primary_10_1016_j_cplett_2020_137345
crossref_primary_10_1103_PhysRevA_109_L060802
crossref_primary_10_1364_OE_22_004357
crossref_primary_10_1021_acs_jpclett_3c02899
crossref_primary_10_1103_PhysRevB_88_041407
crossref_primary_10_1146_annurev_biophys_051013_022708
crossref_primary_10_1088_1367_2630_ad121e
crossref_primary_10_1039_D1CP05833A
crossref_primary_10_1002_cphc_201500334
crossref_primary_10_1039_D0SC01853H
crossref_primary_10_1126_sciadv_adj1429
crossref_primary_10_1364_OE_404089
crossref_primary_10_1002_ange_202219045
crossref_primary_10_1103_PhysRevResearch_2_033064
crossref_primary_10_1016_j_ijpharm_2024_124412
crossref_primary_10_1146_annurev_astro_091918_104438
crossref_primary_10_1002_ange_201709966
crossref_primary_10_1103_PhysRevA_109_023114
crossref_primary_10_3788_AOS231950
crossref_primary_10_1098_rspa_2022_0806
crossref_primary_10_1016_j_jms_2018_12_005
crossref_primary_10_1021_acs_jpclett_1c03813
crossref_primary_10_1002_chem_201901113
crossref_primary_10_1103_PhysRevE_107_L042103
crossref_primary_10_1002_cssc_201601269
crossref_primary_10_1088_0256_307X_40_5_054202
crossref_primary_10_1021_acs_jpclett_7b03416
crossref_primary_10_1063_5_0014917
crossref_primary_10_1103_PhysRevA_91_032706
crossref_primary_10_1063_1_5093912
crossref_primary_10_1002_ange_201906630
crossref_primary_10_1021_acs_jpca_9b09982
crossref_primary_10_1021_acsnano_8b09784
crossref_primary_10_1002_cphc_202200575
crossref_primary_10_1063_4_0000213
crossref_primary_10_1103_PhysRevLett_116_163001
crossref_primary_10_1088_1361_6455_ac09c3
crossref_primary_10_1103_PhysRevLett_115_073202
crossref_primary_10_1002_ange_201306271
crossref_primary_10_1016_j_jms_2017_09_003
crossref_primary_10_1038_s42004_022_00641_3
crossref_primary_10_1103_PhysRevA_107_053714
crossref_primary_10_1038_ncomms4648
crossref_primary_10_1038_nphys3369
crossref_primary_10_1088_1367_2630_acf150
crossref_primary_10_3390_app10217650
crossref_primary_10_1063_5_0144743
crossref_primary_10_1038_s41467_023_36653_3
crossref_primary_10_1063_1_4944072
crossref_primary_10_1088_0953_4075_48_23_234005
crossref_primary_10_1088_1361_6455_ab26d7
crossref_primary_10_1103_PhysRevLett_122_013204
crossref_primary_10_1016_j_cplett_2015_02_051
crossref_primary_10_1126_science_adj8342
crossref_primary_10_1039_D3CP01057K
crossref_primary_10_1103_PhysRevA_97_063849
crossref_primary_10_1002_asia_201901480
crossref_primary_10_1063_5_0025006
crossref_primary_10_1103_PhysRevA_101_063401
crossref_primary_10_1063_1_4982614
crossref_primary_10_1088_1555_6611_ab8d2e
crossref_primary_10_1021_acs_jpclett_6b01814
crossref_primary_10_1088_1361_6455_aabc95
crossref_primary_10_1039_C5AN00878F
crossref_primary_10_1038_s41377_019_0136_z
crossref_primary_10_1063_1_4844295
crossref_primary_10_1039_C4AN01751J
crossref_primary_10_1088_1367_2630_ace7ee
crossref_primary_10_1002_anie_202207275
crossref_primary_10_1002_chem_201400296
crossref_primary_10_1103_PhysRevX_13_041025
crossref_primary_10_3389_fchem_2018_00025
crossref_primary_10_1016_j_jms_2014_04_002
crossref_primary_10_1002_ange_202103900
crossref_primary_10_1039_C9SM00778D
crossref_primary_10_1063_1_4964096
crossref_primary_10_1039_C6CP02876D
crossref_primary_10_1364_OE_412474
crossref_primary_10_1039_D2CP02776C
crossref_primary_10_1021_acs_jpclett_8b00256
crossref_primary_10_1016_j_optlastec_2022_108842
crossref_primary_10_1002_ansa_202300021
crossref_primary_10_1021_acs_jpca_8b02550
crossref_primary_10_1103_PhysRevA_107_013718
crossref_primary_10_1109_TMTT_2023_3293804
crossref_primary_10_1146_annurev_physchem_052516_050629
crossref_primary_10_1038_srep38334
crossref_primary_10_1103_PhysRevLett_123_243202
crossref_primary_10_1002_anie_201704901
crossref_primary_10_1103_PhysRevLett_117_033001
crossref_primary_10_1063_5_0205481
crossref_primary_10_1103_PhysRevA_92_033411
crossref_primary_10_1039_D3CP01058A
crossref_primary_10_1088_1361_6455_aaf666
crossref_primary_10_1016_j_nantod_2023_101963
crossref_primary_10_1063_5_0154875
crossref_primary_10_1142_S0217732314500564
crossref_primary_10_1002_ange_202207275
crossref_primary_10_1002_anie_202212020
crossref_primary_10_1364_OE_466143
crossref_primary_10_1016_j_optcom_2022_128514
crossref_primary_10_1002_anie_202103900
crossref_primary_10_1021_acsami_8b00149
crossref_primary_10_1021_acs_oprd_3c00028
crossref_primary_10_1021_jz501158r
crossref_primary_10_1063_5_0156273
crossref_primary_10_1103_PhysRevA_103_022830
crossref_primary_10_1109_LCSYS_2022_3162250
crossref_primary_10_1021_acs_analchem_0c04651
crossref_primary_10_1039_C6FD00113K
crossref_primary_10_1103_PhysRevA_100_043413
crossref_primary_10_1016_j_aca_2017_06_051
crossref_primary_10_1021_acs_jpcc_0c02584
crossref_primary_10_1002_ange_201704901
crossref_primary_10_1002_anie_201306271
crossref_primary_10_1103_PhysRevLett_122_223201
crossref_primary_10_1002_advs_202003681
crossref_primary_10_1063_5_0092114
crossref_primary_10_1088_0953_4075_49_23_234001
crossref_primary_10_1038_nature13680
crossref_primary_10_1007_s11468_020_01218_3
crossref_primary_10_1039_D2CP01009G
crossref_primary_10_1002_cphc_201402502
crossref_primary_10_1103_PhysRevA_100_043403
crossref_primary_10_1103_PhysRevApplied_13_044021
crossref_primary_10_1126_sciadv_abq2811
crossref_primary_10_1063_1_4947551
crossref_primary_10_1103_PhysRevA_100_043406
crossref_primary_10_1126_sciadv_abq1962
crossref_primary_10_1364_PRJ_412904
crossref_primary_10_1016_j_jphotochemrev_2017_12_001
crossref_primary_10_1016_j_comptc_2021_113446
crossref_primary_10_1038_s41377_020_00367_8
crossref_primary_10_1016_j_cplett_2020_138125
Cites_doi 10.1016/j.jms.2012.08.004
10.1016/j.jms.2009.06.013
10.1103/PhysRevA.77.015403
10.1002/anie.200290005
10.1002/chir.20179
10.1146/annurev.physchem.58.032806.104511
10.1103/PhysRevLett.85.4253
10.1063/1.1753552
10.1021/ac049366a
10.1021/ar100090q
10.1039/c1cp22197c
10.1002/chir.20911
10.1103/PhysRevLett.109.083901
10.2183/pjab.88.120
10.1039/c0fd00009d
10.1063/1.1597491
10.1063/1.4738753
10.1016/j.jms.2012.08.003
10.1063/1.1136443
10.1103/PhysRevLett.90.033001
10.1080/00268976.2012.679632
10.1063/1.2919120
ContentType Journal Article
Copyright Springer Nature Limited 2013
2014 INIST-CNRS
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group May 23, 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: 2014 INIST-CNRS
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 23, 2013
DBID IQODW
NPM
AAYXX
CITATION
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature12150
DatabaseName Pascal-Francis
PubMed
CrossRef
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed



Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Chemistry
EISSN 1476-4687
EndPage 477
ExternalDocumentID 2992775501
A626152135
10_1038_nature12150
23698447
27375064
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAZLF
ABAWZ
ABDBF
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABVXF
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AFFNX
AFKRA
AFLOW
AFRAH
AFRQD
AFSHS
AGAYW
AGEZK
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B-7
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESTFP
ESX
EX3
EXGXG
F20
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YNT
YOC
YQT
YR2
YXB
YZZ
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
.-4
.GJ
.HR
08P
08R
0B8
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
68V
69O
6XO
79B
8W4
9M8
AADEA
AADWK
AAEXX
AAGJQ
AAJMP
AAJWC
AAJYS
AAPBV
AAVBQ
AAYJO
AAYOK
ABDEU
ABEEJ
ABEFU
ABFLS
ABGFU
ABGIJ
ABPTK
ABTAH
ACBMV
ACBNA
ACBRV
ACBTR
ACBYP
ACDSR
ACIGE
ACMLT
ACTDY
ACTTH
ACVWB
ADFPY
ADGIM
ADMDM
ADQMX
ADRHT
ADTIX
ADZGE
AEDAW
AEFTE
AETEA
AFDAS
AFFDN
AFHKK
AFMIJ
AGCDD
AGGBP
AHGBK
AIYXT
AJDOV
AJUXI
AMRJV
B4K
BBAFP
BCR
BES
BKOMP
DB5
FA8
G8K
HG6
I-U
IQODW
J5H
K78
L-9
MVM
N4W
N95
OHT
PQEST
PQUKI
PV9
QS-
R4F
RHI
SKT
TUD
U1R
UAO
UBY
UHB
USG
VOH
X7L
XFK
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZA5
ZCG
ZGI
ZHY
ZKG
ZY4
~G0
AAYZH
NPM
AAYXX
CITATION
NXXTH
AEQTP
AFNRJ
AGPPL
AHPSJ
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c612t-d083e3c35dee69726418647dccdfa4040ffe7466acf7288ed1b909b3fc1e65d53
IEDL.DBID 7X7
ISSN 0028-0836
IngestDate Fri Oct 25 06:44:27 EDT 2024
Thu Oct 10 21:13:02 EDT 2024
Thu Feb 22 23:57:08 EST 2024
Tue Dec 12 21:21:00 EST 2023
Thu Aug 01 19:12:49 EDT 2024
Thu Aug 01 20:10:35 EDT 2024
Thu Sep 26 19:05:27 EDT 2024
Tue Oct 15 23:46:44 EDT 2024
Fri Nov 25 13:52:43 EST 2022
Fri Oct 11 20:36:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7450
Keywords Diol
Chiral compound
Experimental study
Cryogenic temperature
Growth from vapor
Microwave spectrometry
Racemic
Analysis method
Chirality
Enantiomeric excess
Qualitative analysis
Measurement method
Propanediol
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-d083e3c35dee69726418647dccdfa4040ffe7466acf7288ed1b909b3fc1e65d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23698447
PQID 1366376868
PQPubID 40569
PageCount 3
ParticipantIDs proquest_miscellaneous_1355477068
proquest_journals_1366376868
gale_infotracmisc_A626152135
gale_infotraccpiq_626152135
gale_incontextgauss_ISR_A626152135
gale_incontextgauss_ATWCN_A626152135
crossref_primary_10_1038_nature12150
pubmed_primary_23698447
pascalfrancis_primary_27375064
springer_journals_10_1038_nature12150
PublicationCentury 2000
PublicationDate 2013-05-23
PublicationDateYYYYMMDD 2013-05-23
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SchnellMKüpperJTailored molecular samples for precision spectroscopy experimentsFaraday Discuss.201115033492011FaDi..150...33S1:CAS:528:DC%2BC3MXos1ejtb8%3D10.1039/c0fd00009d
MataSPeñaICabezasCLópezJAlonsoJA broadband Fourier transform microwave spectrometer with laser ablation source: the rotational spectrum of nicotinic acidJ. Mol. Spectrosc.201228091962012JMoSp.280...91M1:CAS:528:DC%2BC38Xhtlaiu7fN10.1016/j.jms.2012.08.004
TownesCSchawlowAMicrowave Spectroscopy1975
QuackMHow important is parity violation for molecular and biomolecular chirality?Angew. Chem. Int. Edn200241461846301:CAS:528:DC%2BD3sXhtFCjsg%3D%3D10.1002/anie.200290005
FischerPHacheFNonlinear optical spectroscopy of chiral moleculesChirality2005174214371:CAS:528:DC%2BD2MXhtVOrurfM10.1002/chir.20179
DarquiéBProgress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopyChirality20102287088410.1002/chir.20911
PattersonDDoyleJMCooling molecules in a cell for FTMW spectroscopyMol. Phys.2012110175717662012MolPh.110.1757P1:CAS:528:DC%2BC38Xmt1Grs7o%3D10.1080/00268976.2012.679632
BalleTJFlygareWHFabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle sourceRev. Sci. Instrum.19815233451981RScI...52...33B1:CAS:528:DyaL3MXhtFagtbg%3D10.1063/1.1136443
HirotaETriple resonance for a three-level system of a chiral moleculeProc. Jpn Acad. B2012881201281:CAS:528:DC%2BC38Xms12iu7o%3D10.2183/pjab.88.120
LovasFJMicrowave spectrum of 1,2-propanediolJ. Mol. Spectrosc.200925782932009JMoSp.257...82L1:CAS:528:DC%2BD1MXpvFeqsLs%3D10.1016/j.jms.2009.06.013
GrabowJ-URapid probe of the nicotine spectra by high-resolution rotational spectroscopyPhys. Chem. Chem. Phys.20111321063210692011gdgg.book.....G1:CAS:528:DC%2BC3MXhsFaiurbF10.1039/c1cp22197c
RheeHChoiJ-HChoMInfrared optical activity: electric field approaches in time domainAcc. Chem. Res.201043152715361:CAS:528:DC%2BC3cXht1KhsbnM10.1021/ar100090q
GerbasiDBrumerPThanopulosIKrálPShapiroMTheory of the two step enantiomeric purification of 1,3 dimethylalleneJ. Chem. Phys.200412011557115632004JChPh.12011557G1:CAS:528:DC%2BD2cXkvVans7o%3D10.1063/1.1753552
WesternCMPGOPHER, a Program for Simulating Rotational Structure2010
ThanopulosIKrálPShapiroMTheory of a two-step enantiomeric purification of racemic mixtures by optical means: the D2S2 moleculeJ. Chem. Phys.2003119510551162003JChPh.119.5105T1:CAS:528:DC%2BD3sXms1Chsbs%3D10.1063/1.1597491
FischerPWiersmaDSRighiniRChampagneBBuckinghamADThree-wave mixing in chiral liquidsPhys. Rev. Lett.200085425342562000PhRvL..85.4253F1:CAS:528:DC%2BD3cXnvFamu7g%3D10.1103/PhysRevLett.85.4253
LiYBruderCDynamic method to distinguish between left- and right-handed chiral moleculesPhys. Rev. A2008770154032008PhRvA..77a5403L10.1103/PhysRevA.77.015403
GuoCDetermination of enantiomeric excess in samples of chiral molecules using Fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoringAnal. Chem.200476695669661:CAS:528:DC%2BD2cXptFChtb0%3D10.1021/ac049366a
Busch K. W., Busch M. A., eds. Chiral Analysis (Elsevier, 2006)
BrownGGA broadband Fourier transform microwave spectrometer based on chirped pulse excitationRev. Sci. Instrum.2008790531032008RScI...79e3103B10.1063/1.2919120
PateBHDe LuciaFCSpecial issue: Broadband molecular rotational spectroscopyJ. Mol. Spectrosc.2012280122012JMoSp.280....1P1:CAS:528:DC%2BC38XhtlOnsbrJ10.1016/j.jms.2012.08.003
JacobAHornbergerKEffect of molecular rotation on enantioseparationJ. Chem. Phys.20121370443132012JChPh.137d4313J10.1063/1.4738753
KrálPThanopulosIShapiroMCohenDTwo-step enantio-selective optical switchPhys. Rev. Lett.2003900330012003PhRvL..90c3001K10.1103/PhysRevLett.90.033001
QuackMStohnerJWillekeMHigh-resolution spectroscopic studies and theory of parity violation in chiral moleculesAnnu. Rev. Phys. Chem.2008597417692008ARPC...59..741Q1:CAS:528:DC%2BD1cXlvFWrt7w%3D10.1146/annurev.physchem.58.032806.104511
HiramatsuKObservation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman scatteringPhys. Rev. Lett.20121090839012012PhRvL.109h3901H10.1103/PhysRevLett.109.083901
22450539 - Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(3):120-8
24123944 - Angew Chem Int Ed Engl. 2013 Nov 4;52(45):11698-700
16082658 - Chirality. 2005 Oct;17(8):421-37
20839292 - Chirality. 2010 Nov;22(10):870-84
22457943 - Faraday Discuss. 2011;150:33-49; discussion 113-60
18173376 - Annu Rev Phys Chem. 2008;59:741-69
18513057 - Rev Sci Instrum. 2008 May;79(5):053103
23698440 - Nature. 2013 May 23;497(7450):446-8
12481315 - Angew Chem Int Ed Engl. 2002 Dec 16;41(24):4618-30
15571347 - Anal Chem. 2004 Dec 1;76(23):6956-66
20931956 - Acc Chem Res. 2010 Dec 21;43(12):1527-36
11060611 - Phys Rev Lett. 2000 Nov 13;85(20):4253-6
23002745 - Phys Rev Lett. 2012 Aug 24;109(8):083901
22020263 - Phys Chem Chem Phys. 2011 Dec 21;13(47):21063-9
22852624 - J Chem Phys. 2012 Jul 28;137(4):044313
12570485 - Phys Rev Lett. 2003 Jan 24;90(3):033001
15268190 - J Chem Phys. 2004 Jun 22;120(24):11557-63
M Quack (BFnature12150_CR10) 2002; 41
P Fischer (BFnature12150_CR3) 2000; 85
P Fischer (BFnature12150_CR2) 2005; 17
C Guo (BFnature12150_CR17) 2004; 76
S Mata (BFnature12150_CR23) 2012; 280
I Thanopulos (BFnature12150_CR20) 2003; 119
Y Li (BFnature12150_CR4) 2008; 77
D Gerbasi (BFnature12150_CR21) 2004; 120
H Rhee (BFnature12150_CR5) 2010; 43
C Townes (BFnature12150_CR8) 1975
M Schnell (BFnature12150_CR11) 2011; 150
FJ Lovas (BFnature12150_CR14) 2009; 257
J-U Grabow (BFnature12150_CR24) 2011; 13
BFnature12150_CR1
D Patterson (BFnature12150_CR15) 2012; 110
BH Pate (BFnature12150_CR22) 2012; 280
M Quack (BFnature12150_CR12) 2008; 59
CM Western (BFnature12150_CR25) 2010
K Hiramatsu (BFnature12150_CR6) 2012; 109
A Jacob (BFnature12150_CR13) 2012; 137
B Darquié (BFnature12150_CR9) 2010; 22
TJ Balle (BFnature12150_CR16) 1981; 52
P Král (BFnature12150_CR19) 2003; 90
GG Brown (BFnature12150_CR18) 2008; 79
E Hirota (BFnature12150_CR7) 2012; 88
References_xml – ident: BFnature12150_CR1
– volume: 280
  start-page: 91
  year: 2012
  ident: BFnature12150_CR23
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2012.08.004
  contributor:
    fullname: S Mata
– volume-title: PGOPHER, a Program for Simulating Rotational Structure
  year: 2010
  ident: BFnature12150_CR25
  contributor:
    fullname: CM Western
– volume: 257
  start-page: 82
  year: 2009
  ident: BFnature12150_CR14
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2009.06.013
  contributor:
    fullname: FJ Lovas
– volume: 77
  start-page: 015403
  year: 2008
  ident: BFnature12150_CR4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.015403
  contributor:
    fullname: Y Li
– volume: 41
  start-page: 4618
  year: 2002
  ident: BFnature12150_CR10
  publication-title: Angew. Chem. Int. Edn
  doi: 10.1002/anie.200290005
  contributor:
    fullname: M Quack
– volume: 17
  start-page: 421
  year: 2005
  ident: BFnature12150_CR2
  publication-title: Chirality
  doi: 10.1002/chir.20179
  contributor:
    fullname: P Fischer
– volume: 59
  start-page: 741
  year: 2008
  ident: BFnature12150_CR12
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104511
  contributor:
    fullname: M Quack
– volume-title: Microwave Spectroscopy
  year: 1975
  ident: BFnature12150_CR8
  contributor:
    fullname: C Townes
– volume: 85
  start-page: 4253
  year: 2000
  ident: BFnature12150_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4253
  contributor:
    fullname: P Fischer
– volume: 120
  start-page: 11557
  year: 2004
  ident: BFnature12150_CR21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1753552
  contributor:
    fullname: D Gerbasi
– volume: 76
  start-page: 6956
  year: 2004
  ident: BFnature12150_CR17
  publication-title: Anal. Chem.
  doi: 10.1021/ac049366a
  contributor:
    fullname: C Guo
– volume: 43
  start-page: 1527
  year: 2010
  ident: BFnature12150_CR5
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100090q
  contributor:
    fullname: H Rhee
– volume: 13
  start-page: 21063
  year: 2011
  ident: BFnature12150_CR24
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22197c
  contributor:
    fullname: J-U Grabow
– volume: 22
  start-page: 870
  year: 2010
  ident: BFnature12150_CR9
  publication-title: Chirality
  doi: 10.1002/chir.20911
  contributor:
    fullname: B Darquié
– volume: 109
  start-page: 083901
  year: 2012
  ident: BFnature12150_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.083901
  contributor:
    fullname: K Hiramatsu
– volume: 88
  start-page: 120
  year: 2012
  ident: BFnature12150_CR7
  publication-title: Proc. Jpn Acad. B
  doi: 10.2183/pjab.88.120
  contributor:
    fullname: E Hirota
– volume: 150
  start-page: 33
  year: 2011
  ident: BFnature12150_CR11
  publication-title: Faraday Discuss.
  doi: 10.1039/c0fd00009d
  contributor:
    fullname: M Schnell
– volume: 119
  start-page: 5105
  year: 2003
  ident: BFnature12150_CR20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1597491
  contributor:
    fullname: I Thanopulos
– volume: 137
  start-page: 044313
  year: 2012
  ident: BFnature12150_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4738753
  contributor:
    fullname: A Jacob
– volume: 280
  start-page: 1
  year: 2012
  ident: BFnature12150_CR22
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2012.08.003
  contributor:
    fullname: BH Pate
– volume: 52
  start-page: 33
  year: 1981
  ident: BFnature12150_CR16
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1136443
  contributor:
    fullname: TJ Balle
– volume: 90
  start-page: 033001
  year: 2003
  ident: BFnature12150_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.033001
  contributor:
    fullname: P Král
– volume: 110
  start-page: 1757
  year: 2012
  ident: BFnature12150_CR15
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2012.679632
  contributor:
    fullname: D Patterson
– volume: 79
  start-page: 053103
  year: 2008
  ident: BFnature12150_CR18
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2919120
  contributor:
    fullname: GG Brown
SSID ssj0005174
Score 2.6263452
Snippet Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase...
Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains...
Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency -- which depends directly on the chirality of the molecule -- onto the...
SourceID proquest
gale
crossref
pubmed
pascalfrancis
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 475
SubjectTerms 639/638/11/873
639/638/440/527
639/766/930/12
639/766/930/527
Analytical chemistry
Animal behavior
Chemical reactions
Chemistry
Chirality
Cold
Electric fields
Enantiomers
Exact sciences and technology
Humanities and Social Sciences
letter
Methods
Microwave radiation
Microwave spectroscopy
Microwaves
multidisciplinary
Observations
Radiation (Physics)
Science
Spectrometric and optical methods
Spectroscopy
Spectrum analysis
Stereoisomers
Title Enantiomer-specific detection of chiral molecules via microwave spectroscopy
URI https://link.springer.com/article/10.1038/nature12150
https://www.ncbi.nlm.nih.gov/pubmed/23698447
https://www.proquest.com/docview/1366376868
https://search.proquest.com/docview/1355477068
Volume 497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8lY0qoCHBQ7QkTmznCZWqZSCo0NhE3yLHH9CHJVmTDvHfc5e4a8MmXvzis2WdffbP9u_uCDlKlVE6ipSvAC_7MVwIfHwv8xmLVCxzG0iJD_pfZ-zkPP48T-buwa12tMr1nthu1LpU-EZ-HFI4GwEbM_G-uvQxaxT-rroUGnfJbhgFDCldfM43FI9_ojA7_7yAiuMubCaGVgh6J5Lblx9UsgYd2S65xW3o88bPaXsgTR-Rhw5JeqNu6vfIHVPsk3sto1PV-2TPWW3tvXWhpd89Jl8myHtBj_uljz6WyBPytGlaPlbhldZTvxYg6l10WXOh9dVCehfI2vstr4zXOmZiAMyy-vOEnE8nZ-MT3-VT8BXgmMbXoANDFU20MSzlAIVCwWKuldJWxmDN1hoeMyaV5ZEQRod5GqQ5tSo0LNEJfUp2irIwz4kX2BSAlOaKhjoWigtAHYAl4bjPA0sjMSBHa51mVRc2I2u_u6nItlQPYqjvDANRFMh0-SlXdZ2Nzn6MZ9kI7lqILmgyIK9vE_v0_bQndOCEbNkspVLV4jLbqj3s1YIRqV7jYW_GrwcN6I5jTD9ov14CmbPyOtusyQF5dV2NXSNzrTDlCmUAsHEeoMyzbulsOqcsFXHMB-TNei1tdX5TXS_-P4gDcj9qk3UkfkQPyU6zXJmXAJmafNjaBZRiHGI5_Tgkux8ms2-nfwGEMRWU
link.rule.ids 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVgEwIJITa-ysYIaEjsIVoSJ3byhMrUqYOuQqMTe7Mcf0AflmRNOsS_597EXVs28exry7r2tY_t43MJ2c-UUTqKlK8AL_sxHAh8vC_zGYtULHMbSIkX-qdjNjyPv1wkF-7CrXa0ysWa2C7UulR4R34YUtgbARuz9FN15WPWKHxddSk07pNNlKqCw9fm58H429mS5PGPDrP7oRfQ9LATzkRxhWBtT3Ir8-NK1uAl26W3uAt_3no7bbek46fkicOSXr8b_C1yzxTb5EHL6VT1NtlycVt7H5249MEzMhog8wX_3M98_GWJTCFPm6ZlZBVeaT31awqm3mWXNxdqX0-ld4m8vd_y2njt10yUwCyrP8_J-fFgcjT0XUYFXwGSaXwNPjBU0UQbwzIOYChMWcy1UtrKGOLZWsNjxqSyPEpTo8M8C7KcWhUaluiEviAbRVmYV8QLbAZQSnNFQx2niqeAOwBNwoafB5ZGaY_sL3wqqk44Q7QP3jQVK64HM_S3QCmKArkuP-W8rkV_8uNoLPpw2kJ8QZMeeX-X2cn3szWjHWdky2YmlaqmV2KldHetFMJIrVXeWxvxm04DvuOo6gf1F1NAuDivxXJW9si7m2JsGrlrhSnnaAOQjfMAbV52U2fZOGVZGse8Rz4s5tJK47fd9fr_nXhLHg4npyMxOhl_3SGPojZ1R-JHdJdsNLO5eQMAqsn3XJT8BbTtFp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCISEEBtfZWMENCR4iJrEju08oaqs2mBUCDaxNyvxB_RhSdakQ_z33CXu1rKJZ58t63zn-9n--Y6QvUxbbZJEhxrwcsjgQBDifVnIeaJZXrgoz_FC_8uUH5ywT6fpqec_NZ5WudwTu43aVBrvyIcxhdgI2JjLofO0iK8fJx_q8xArSOFLqy-ncZvcgajIsJqBHK_QPf7JyOz_6kVUDvsUmphmIVqLTn6PflDnDejL9YUubkKi115Ru-A0eUQeelQZjHoz2CS3bLlF7nbsTt1skU3vwU3wzqeZfv-YHO0jBwZ_389D_G-JnKHA2LbjZpVB5QL9awaiwVlfQRd6X8zy4AwZfL_zCxt0nzQxGWZV_3lCTib7x-OD0NdWCDVgmjY0oANLNU2NtTwTAItiyZkwWhuXM_Bs56xgnOfaiURKa-Iii7KCOh1bnpqUPiUbZVXa5ySIXAagyghNY8OkFhIQCOBKCP1F5GgiB2RvqVNV9yk0VPf0TaVaUT2Iob4VJqUocXl_5oumUaPjH-OpGsG5C5EGTQfkzU1ih9-_rQlteyFXtfNc63p2rlZad9ZawaH0WufdtRW_nDQgPYH5_aD_0gSU9_hGXdnngLy-bMahkcVW2mqBMgDehIhQ5llvOleDU55JxsSAvF3a0srg19X14v-TeEXugXuoo8Pp521yP-lqeKRhQnfIRjtf2JeApNpit3ORv9q-GTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantiomer-specific+detection+of+chiral+molecules+via+microwave+spectroscopy&rft.jtitle=Nature+%28London%29&rft.au=Patterson%2C+David&rft.au=Schnell%2C+Melanie&rft.au=Doyle%2C+John+M&rft.date=2013-05-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=497&rft.issue=7450&rft.spage=475&rft_id=info:doi/10.1038%2Fnature12150&rft.externalDocID=A626152135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon