Enantiomer-specific detection of chiral molecules via microwave spectroscopy
Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Microwave spectroscopy measures chirality Chir...
Saved in:
Published in | Nature (London) Vol. 497; no. 7450; pp. 475 - 477 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.05.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules.
Microwave spectroscopy measures chirality
Chiral molecules exist as enantiomers that form non-superimposable mirror images, and chirality has a fundamental role in many aspects of chemistry and biology. It is notoriously difficult to detect and quantify chirality because conventional spectroscopic methods exploit weak effects that produce weak signals. Patterson
et al
. now show that microwave spectroscopy combined with a switched electric field can map the sign of an electric dipole Rabi frequency — a variable that depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation. The effect is then used to determine the chirality of cold gas-phase molecules, illustrated with
S
and
R
enantiomers of 1,2-propanediol and their racemic mixture. The method produces large and definitive signatures of chirality, and is both sensitive and species-selective — making it a potentially ideal and unique tool for determining the chirality of multiple species in a mixture.
Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging
1
. The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation
2
. The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples
3
,
4
,
5
,
6
,
7
. Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the
S
and
R
enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture. |
---|---|
AbstractList | Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency -- which depends directly on the chirality of the molecule -- onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging. The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation. The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples. Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture. Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging1. The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation2. The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples3-7. Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture. [PUBLICATION ABSTRACT] Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation, thereby determining the chirality of cold gas-phase molecules. Microwave spectroscopy measures chirality Chiral molecules exist as enantiomers that form non-superimposable mirror images, and chirality has a fundamental role in many aspects of chemistry and biology. It is notoriously difficult to detect and quantify chirality because conventional spectroscopic methods exploit weak effects that produce weak signals. Patterson et al . now show that microwave spectroscopy combined with a switched electric field can map the sign of an electric dipole Rabi frequency — a variable that depends directly on the chirality of the molecule — onto the phase of emitted microwave radiation. The effect is then used to determine the chirality of cold gas-phase molecules, illustrated with S and R enantiomers of 1,2-propanediol and their racemic mixture. The method produces large and definitive signatures of chirality, and is both sensitive and species-selective — making it a potentially ideal and unique tool for determining the chirality of multiple species in a mixture. Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains challenging 1 . The spectroscopic methods of choice are usually circular dichroism and vibrational circular dichroism, methods that are forbidden in the electric dipole approximation 2 . The resultant weak effects produce weak signals, and thus require high sample densities. In contrast, nonlinear techniques probing electric-dipole-allowed effects have been used for sensitive chiral analyses of liquid samples 3 , 4 , 5 , 6 , 7 . Here we extend this class of approaches by carrying out nonlinear resonant phase-sensitive microwave spectroscopy of gas phase samples in the presence of an adiabatically switched non-resonant orthogonal electric field; we use this technique to map the enantiomer-dependent sign of an electric dipole Rabi frequency onto the phase of emitted microwave radiation. We outline theoretically how this results in a sensitive and species-selective method for determining the chirality of cold gas-phase molecules, and implement it experimentally to distinguish between the S and R enantiomers of 1,2-propanediol and their racemic mixture. This technique produces a large and definitive signature of chirality, and has the potential to determine the chirality of multiple species in a mixture. |
Audience | Academic |
Author | Schnell, Melanie Patterson, David Doyle, John M. |
Author_xml | – sequence: 1 givenname: David surname: Patterson fullname: Patterson, David email: dave@cua.harvard.edu organization: Department of Physics, Harvard University – sequence: 2 givenname: Melanie surname: Schnell fullname: Schnell, Melanie organization: Center for Free-Electron Laser Science, D-22607 Hamburg, Germany, Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany – sequence: 3 givenname: John M. surname: Doyle fullname: Doyle, John M. organization: Department of Physics, Harvard University |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27375064$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23698447$$D View this record in MEDLINE/PubMed |
BookMark | eNp10s9rFDEUB_AgFbutnrzLoAiKjiaTn3tclqqFRUErHkM287KmzCTTZKba_94sXXUr6ymQfPLNy0tO0FGIARB6TPAbgql6G8w4JSAN4fgemhEmRc2EkkdohnGjaqyoOEYnOV9ijDmR7AE6bqiYK8bkDK3Oggmjjz2kOg9gvfO2amEEWyZDFV1lv_tkuqqPHdipg1xde1P13qb4w1xDtd00pphtHG4eovvOdBke7cZT9PXd2cXyQ7369P58uVjVVpBmrNtSElBLeQsg5rIRjCjBZGtt6wzDDDsHkglhrJONUtCS9RzP19RZAoK3nJ6iF7e5Q4pXE-RR9z5b6DoTIE5ZE8o5kxILVeizf-hlnFIo1RUlBJVC7auN6UD74OKYjN2G6oVoBOFNiSzq6QFlB3-l99HLO8jGMMLPcWOmnPX5l893A1_93y4uvi0_HtSl9TkncHpIvjfpRhOstz9B7_2Eop_sLj6te2j_2N9PX8DzHTDZms4lE6zPf52kkmPBint963JZChtIex08cO4v5xTJLA |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_automatica_2023_111028 crossref_primary_10_1103_PhysRevLett_124_083901 crossref_primary_10_1021_acs_joc_6b00816 crossref_primary_10_1016_j_jms_2017_01_006 crossref_primary_10_1063_1_5091773 crossref_primary_10_1002_anie_202219045 crossref_primary_10_1039_c4ay00759j crossref_primary_10_1016_j_molstruc_2020_128277 crossref_primary_10_1016_j_jms_2022_111705 crossref_primary_10_1021_acsphotonics_7b00608 crossref_primary_10_1063_5_0008157 crossref_primary_10_1080_00268976_2022_2146541 crossref_primary_10_1021_acs_jpclett_1c04161 crossref_primary_10_1016_j_synthmet_2020_116603 crossref_primary_10_1088_1361_648X_ac4b2b crossref_primary_10_1021_jz502312t crossref_primary_10_1103_PhysRevA_104_053115 crossref_primary_10_1103_RevModPhys_91_035005 crossref_primary_10_1103_PhysRevX_14_011015 crossref_primary_10_1039_D0CP00470G crossref_primary_10_1016_j_jms_2020_111396 crossref_primary_10_1051_refdp_202375004 crossref_primary_10_1021_acs_jpca_8b11528 crossref_primary_10_1103_PhysRevA_99_043416 crossref_primary_10_1039_D2CP04060C crossref_primary_10_1007_s10762_017_0406_x crossref_primary_10_1088_1361_6501_ab2ab6 crossref_primary_10_1002_nadc_201490248 crossref_primary_10_1021_acs_jpca_2c08646 crossref_primary_10_1103_PhysRevA_98_063428 crossref_primary_10_1063_1_5097406 crossref_primary_10_1126_sciadv_abm3749 crossref_primary_10_1364_OL_496226 crossref_primary_10_1515_nanoph_2022_0802 crossref_primary_10_1002_nadc_20164047466 crossref_primary_10_1038_s41598_017_05692_4 crossref_primary_10_1021_acs_jpclett_3c01622 crossref_primary_10_1039_C7NR01527E crossref_primary_10_1039_D1CP05427A crossref_primary_10_1103_PhysRevA_106_013321 crossref_primary_10_1103_PhysRevA_99_043417 crossref_primary_10_1002_ardp_201300285 crossref_primary_10_1103_PhysRevA_108_052810 crossref_primary_10_1021_acscentsci_9b01277 crossref_primary_10_1039_C6CP00244G crossref_primary_10_1364_OL_40_000677 crossref_primary_10_1002_ange_202212020 crossref_primary_10_1002_cphc_201402643 crossref_primary_10_3390_sym14050871 crossref_primary_10_1021_acs_jpca_9b02115 crossref_primary_10_1021_acs_jchemed_0c00934 crossref_primary_10_1103_PhysRevLett_111_023008 crossref_primary_10_1021_jp505290v crossref_primary_10_1039_C4AN02218A crossref_primary_10_1002_ange_202006486 crossref_primary_10_1103_PhysRevLett_129_103201 crossref_primary_10_1016_j_epsl_2018_05_026 crossref_primary_10_1103_PhysRevA_99_062703 crossref_primary_10_1021_acs_jpclett_2c00671 crossref_primary_10_1039_C6CP01293K crossref_primary_10_2183_pjab_93_053 crossref_primary_10_1021_acs_langmuir_0c00961 crossref_primary_10_1038_s41566_019_0531_2 crossref_primary_10_1002_anie_201307159 crossref_primary_10_1063_1_5045052 crossref_primary_10_1002_chem_201805986 crossref_primary_10_1038_ncomms8511 crossref_primary_10_1002_chir_23596 crossref_primary_10_1051_0004_6361_202244295 crossref_primary_10_1063_1_4994273 crossref_primary_10_1103_PhysRevLett_132_043602 crossref_primary_10_1073_pnas_1907189116 crossref_primary_10_1088_1367_2630_aa6de4 crossref_primary_10_1002_ange_201709438 crossref_primary_10_1063_1_4958866 crossref_primary_10_1088_1674_1056_abdda6 crossref_primary_10_1103_PhysRevLett_118_123002 crossref_primary_10_1063_1_4952762 crossref_primary_10_1103_PhysRevLett_128_173001 crossref_primary_10_1103_PhysRevResearch_3_013249 crossref_primary_10_1016_j_rinp_2021_105007 crossref_primary_10_1038_s41467_018_07609_9 crossref_primary_10_1039_D0CP01376E crossref_primary_10_1063_1_4944089 crossref_primary_10_1364_OE_436211 crossref_primary_10_3175_molsci_14_A0111 crossref_primary_10_1073_pnas_2020941118 crossref_primary_10_1103_PhysRevA_105_043110 crossref_primary_10_1002_anie_201906630 crossref_primary_10_1103_PhysRevA_102_033727 crossref_primary_10_1002_anie_201709438 crossref_primary_10_1088_1361_6455_aaae5e crossref_primary_10_1103_PhysRevA_100_033411 crossref_primary_10_1177_1934578X1701200501 crossref_primary_10_1103_PhysRevX_11_031056 crossref_primary_10_1007_s10043_017_0315_1 crossref_primary_10_1021_acs_jpclett_8b01815 crossref_primary_10_1007_s00245_022_09821_y crossref_primary_10_1364_OE_25_023502 crossref_primary_10_1002_chir_23379 crossref_primary_10_1039_D0SC03752D crossref_primary_10_3390_photonics2020483 crossref_primary_10_1002_ijch_201600111 crossref_primary_10_1103_PhysRevA_90_032703 crossref_primary_10_1021_ph500293u crossref_primary_10_1039_D0CP00539H crossref_primary_10_1007_s44214_023_00045_x crossref_primary_10_1088_1361_648X_aa9730 crossref_primary_10_1016_j_aca_2020_08_046 crossref_primary_10_1088_1361_6455_aa77a9 crossref_primary_10_1103_PhysRevLett_126_123001 crossref_primary_10_1002_advs_202308362 crossref_primary_10_1002_andp_202100573 crossref_primary_10_3390_sym14050848 crossref_primary_10_1039_D2CP01418A crossref_primary_10_1364_OE_435006 crossref_primary_10_1038_ncomms15897 crossref_primary_10_1021_acs_jpca_5b08958 crossref_primary_10_1021_acs_jpclett_9b00978 crossref_primary_10_1021_jacs_7b07884 crossref_primary_10_1103_PhysRevLett_120_143401 crossref_primary_10_1021_acsphotonics_8b01555 crossref_primary_10_1039_C3CP55352C crossref_primary_10_1016_S1872_2040_14_60767_2 crossref_primary_10_1039_c4cp00417e crossref_primary_10_1103_PhysRevA_102_063103 crossref_primary_10_1103_PhysRevResearch_2_043235 crossref_primary_10_1038_ncomms8868 crossref_primary_10_1002_anie_201600030 crossref_primary_10_1021_acs_jpclett_1c02196 crossref_primary_10_1177_1934578X1501001036 crossref_primary_10_1016_j_jpba_2020_113474 crossref_primary_10_1021_acs_jpca_9b04210 crossref_primary_10_1039_C5CP06522D crossref_primary_10_1088_1361_648X_aaa1c8 crossref_primary_10_1088_1367_2630_ad2db4 crossref_primary_10_1039_C3CP53741B crossref_primary_10_1038_s42005_022_00883_6 crossref_primary_10_1080_00268976_2018_1547845 crossref_primary_10_1002_cphc_201600811 crossref_primary_10_1080_23746149_2016_1203732 crossref_primary_10_1073_pnas_1516704112 crossref_primary_10_1039_D0CP03523H crossref_primary_10_1016_j_jms_2018_05_003 crossref_primary_10_1088_1367_2630_16_10_103021 crossref_primary_10_1038_srep09416 crossref_primary_10_1063_5_0029792 crossref_primary_10_1103_PhysRevA_104_013113 crossref_primary_10_1098_rsta_2015_0433 crossref_primary_10_1021_acsnano_2c08090 crossref_primary_10_1007_s11468_021_01416_7 crossref_primary_10_3390_life11060568 crossref_primary_10_1007_s11468_023_01811_2 crossref_primary_10_1002_admt_202201394 crossref_primary_10_1002_chem_201704644 crossref_primary_10_1002_chem_201901666 crossref_primary_10_1038_497446b crossref_primary_10_1063_1_5040476 crossref_primary_10_1088_1361_648X_aa84d5 crossref_primary_10_1103_PhysRevLett_120_083204 crossref_primary_10_1002_anie_202011727 crossref_primary_10_1103_PhysRevA_98_063401 crossref_primary_10_1364_OPTICA_423618 crossref_primary_10_1039_D1CP05468F crossref_primary_10_1002_anie_202006486 crossref_primary_10_1021_acs_jpca_4c00426 crossref_primary_10_1002_adfm_202208641 crossref_primary_10_1103_PhysRevA_105_033113 crossref_primary_10_1016_j_jms_2017_03_004 crossref_primary_10_1021_jp500319x crossref_primary_10_1103_PhysRevA_109_053104 crossref_primary_10_1364_OE_445743 crossref_primary_10_34133_2020_2547609 crossref_primary_10_1021_acs_jpcc_6b09435 crossref_primary_10_1021_acs_jpclett_3c02616 crossref_primary_10_1103_PhysRevA_102_053519 crossref_primary_10_1038_srep18003 crossref_primary_10_1016_j_cplett_2017_12_009 crossref_primary_10_1021_jp5014785 crossref_primary_10_1088_1367_2630_16_1_013020 crossref_primary_10_1103_PhysRevX_9_031004 crossref_primary_10_1103_PhysRevX_9_031002 crossref_primary_10_1126_science_1240362 crossref_primary_10_1002_ange_202011727 crossref_primary_10_1016_j_orgel_2015_12_027 crossref_primary_10_3390_sym14061262 crossref_primary_10_1080_0144235X_2015_1077838 crossref_primary_10_1103_PhysRevA_98_063410 crossref_primary_10_1103_PhysRevX_8_031060 crossref_primary_10_1007_s11467_020_1037_6 crossref_primary_10_1002_cphc_201800647 crossref_primary_10_1063_1_4818137 crossref_primary_10_1039_C4CP05641H crossref_primary_10_1103_PhysRevResearch_3_L032006 crossref_primary_10_1002_ange_201600030 crossref_primary_10_1063_1_4921833 crossref_primary_10_1364_OE_462558 crossref_primary_10_1080_23746149_2018_1477530 crossref_primary_10_1364_OE_444210 crossref_primary_10_1002_ange_201307159 crossref_primary_10_1103_PhysRevA_94_032505 crossref_primary_10_1039_D4CC00735B crossref_primary_10_1103_PhysRevResearch_4_013100 crossref_primary_10_1002_nadc_201390230 crossref_primary_10_1007_s00340_017_6685_z crossref_primary_10_1103_PhysRevA_105_013102 crossref_primary_10_1088_1361_6455_abc143 crossref_primary_10_1103_PhysRevLett_121_193201 crossref_primary_10_1364_OL_398859 crossref_primary_10_1021_acs_jpclett_3c01900 crossref_primary_10_1146_annurev_physchem_040513_103744 crossref_primary_10_1364_JOSAB_32_000B25 crossref_primary_10_1103_PhysRevA_109_012810 crossref_primary_10_1063_1_4936403 crossref_primary_10_1209_0295_5075_134_27003 crossref_primary_10_1063_5_0152203 crossref_primary_10_1021_acsami_8b13517 crossref_primary_10_1088_1361_6455_ab8b42 crossref_primary_10_1016_j_elspec_2015_04_008 crossref_primary_10_1051_0004_6361_201424320 crossref_primary_10_1021_acs_jpclett_5b02443 crossref_primary_10_1038_s41467_021_24118_4 crossref_primary_10_1364_OE_502410 crossref_primary_10_1007_s11128_023_04109_8 crossref_primary_10_1021_acs_jpclett_6b02653 crossref_primary_10_1038_s41567_017_0038_z crossref_primary_10_1021_acs_jpca_0c00327 crossref_primary_10_1021_jacsau_2c00661 crossref_primary_10_1002_anie_201709966 crossref_primary_10_1103_PhysRevLett_122_173202 crossref_primary_10_1364_OE_24_024824 crossref_primary_10_1016_j_cej_2024_152229 crossref_primary_10_1021_acs_chemrev_9b00547 crossref_primary_10_1021_acs_jpclett_5b00494 crossref_primary_10_1016_j_cplett_2020_137345 crossref_primary_10_1103_PhysRevA_109_L060802 crossref_primary_10_1364_OE_22_004357 crossref_primary_10_1021_acs_jpclett_3c02899 crossref_primary_10_1103_PhysRevB_88_041407 crossref_primary_10_1146_annurev_biophys_051013_022708 crossref_primary_10_1088_1367_2630_ad121e crossref_primary_10_1039_D1CP05833A crossref_primary_10_1002_cphc_201500334 crossref_primary_10_1039_D0SC01853H crossref_primary_10_1126_sciadv_adj1429 crossref_primary_10_1364_OE_404089 crossref_primary_10_1002_ange_202219045 crossref_primary_10_1103_PhysRevResearch_2_033064 crossref_primary_10_1016_j_ijpharm_2024_124412 crossref_primary_10_1146_annurev_astro_091918_104438 crossref_primary_10_1002_ange_201709966 crossref_primary_10_1103_PhysRevA_109_023114 crossref_primary_10_3788_AOS231950 crossref_primary_10_1098_rspa_2022_0806 crossref_primary_10_1016_j_jms_2018_12_005 crossref_primary_10_1021_acs_jpclett_1c03813 crossref_primary_10_1002_chem_201901113 crossref_primary_10_1103_PhysRevE_107_L042103 crossref_primary_10_1002_cssc_201601269 crossref_primary_10_1088_0256_307X_40_5_054202 crossref_primary_10_1021_acs_jpclett_7b03416 crossref_primary_10_1063_5_0014917 crossref_primary_10_1103_PhysRevA_91_032706 crossref_primary_10_1063_1_5093912 crossref_primary_10_1002_ange_201906630 crossref_primary_10_1021_acs_jpca_9b09982 crossref_primary_10_1021_acsnano_8b09784 crossref_primary_10_1002_cphc_202200575 crossref_primary_10_1063_4_0000213 crossref_primary_10_1103_PhysRevLett_116_163001 crossref_primary_10_1088_1361_6455_ac09c3 crossref_primary_10_1103_PhysRevLett_115_073202 crossref_primary_10_1002_ange_201306271 crossref_primary_10_1016_j_jms_2017_09_003 crossref_primary_10_1038_s42004_022_00641_3 crossref_primary_10_1103_PhysRevA_107_053714 crossref_primary_10_1038_ncomms4648 crossref_primary_10_1038_nphys3369 crossref_primary_10_1088_1367_2630_acf150 crossref_primary_10_3390_app10217650 crossref_primary_10_1063_5_0144743 crossref_primary_10_1038_s41467_023_36653_3 crossref_primary_10_1063_1_4944072 crossref_primary_10_1088_0953_4075_48_23_234005 crossref_primary_10_1088_1361_6455_ab26d7 crossref_primary_10_1103_PhysRevLett_122_013204 crossref_primary_10_1016_j_cplett_2015_02_051 crossref_primary_10_1126_science_adj8342 crossref_primary_10_1039_D3CP01057K crossref_primary_10_1103_PhysRevA_97_063849 crossref_primary_10_1002_asia_201901480 crossref_primary_10_1063_5_0025006 crossref_primary_10_1103_PhysRevA_101_063401 crossref_primary_10_1063_1_4982614 crossref_primary_10_1088_1555_6611_ab8d2e crossref_primary_10_1021_acs_jpclett_6b01814 crossref_primary_10_1088_1361_6455_aabc95 crossref_primary_10_1039_C5AN00878F crossref_primary_10_1038_s41377_019_0136_z crossref_primary_10_1063_1_4844295 crossref_primary_10_1039_C4AN01751J crossref_primary_10_1088_1367_2630_ace7ee crossref_primary_10_1002_anie_202207275 crossref_primary_10_1002_chem_201400296 crossref_primary_10_1103_PhysRevX_13_041025 crossref_primary_10_3389_fchem_2018_00025 crossref_primary_10_1016_j_jms_2014_04_002 crossref_primary_10_1002_ange_202103900 crossref_primary_10_1039_C9SM00778D crossref_primary_10_1063_1_4964096 crossref_primary_10_1039_C6CP02876D crossref_primary_10_1364_OE_412474 crossref_primary_10_1039_D2CP02776C crossref_primary_10_1021_acs_jpclett_8b00256 crossref_primary_10_1016_j_optlastec_2022_108842 crossref_primary_10_1002_ansa_202300021 crossref_primary_10_1021_acs_jpca_8b02550 crossref_primary_10_1103_PhysRevA_107_013718 crossref_primary_10_1109_TMTT_2023_3293804 crossref_primary_10_1146_annurev_physchem_052516_050629 crossref_primary_10_1038_srep38334 crossref_primary_10_1103_PhysRevLett_123_243202 crossref_primary_10_1002_anie_201704901 crossref_primary_10_1103_PhysRevLett_117_033001 crossref_primary_10_1063_5_0205481 crossref_primary_10_1103_PhysRevA_92_033411 crossref_primary_10_1039_D3CP01058A crossref_primary_10_1088_1361_6455_aaf666 crossref_primary_10_1016_j_nantod_2023_101963 crossref_primary_10_1063_5_0154875 crossref_primary_10_1142_S0217732314500564 crossref_primary_10_1002_ange_202207275 crossref_primary_10_1002_anie_202212020 crossref_primary_10_1364_OE_466143 crossref_primary_10_1016_j_optcom_2022_128514 crossref_primary_10_1002_anie_202103900 crossref_primary_10_1021_acsami_8b00149 crossref_primary_10_1021_acs_oprd_3c00028 crossref_primary_10_1021_jz501158r crossref_primary_10_1063_5_0156273 crossref_primary_10_1103_PhysRevA_103_022830 crossref_primary_10_1109_LCSYS_2022_3162250 crossref_primary_10_1021_acs_analchem_0c04651 crossref_primary_10_1039_C6FD00113K crossref_primary_10_1103_PhysRevA_100_043413 crossref_primary_10_1016_j_aca_2017_06_051 crossref_primary_10_1021_acs_jpcc_0c02584 crossref_primary_10_1002_ange_201704901 crossref_primary_10_1002_anie_201306271 crossref_primary_10_1103_PhysRevLett_122_223201 crossref_primary_10_1002_advs_202003681 crossref_primary_10_1063_5_0092114 crossref_primary_10_1088_0953_4075_49_23_234001 crossref_primary_10_1038_nature13680 crossref_primary_10_1007_s11468_020_01218_3 crossref_primary_10_1039_D2CP01009G crossref_primary_10_1002_cphc_201402502 crossref_primary_10_1103_PhysRevA_100_043403 crossref_primary_10_1103_PhysRevApplied_13_044021 crossref_primary_10_1126_sciadv_abq2811 crossref_primary_10_1063_1_4947551 crossref_primary_10_1103_PhysRevA_100_043406 crossref_primary_10_1126_sciadv_abq1962 crossref_primary_10_1364_PRJ_412904 crossref_primary_10_1016_j_jphotochemrev_2017_12_001 crossref_primary_10_1016_j_comptc_2021_113446 crossref_primary_10_1038_s41377_020_00367_8 crossref_primary_10_1016_j_cplett_2020_138125 |
Cites_doi | 10.1016/j.jms.2012.08.004 10.1016/j.jms.2009.06.013 10.1103/PhysRevA.77.015403 10.1002/anie.200290005 10.1002/chir.20179 10.1146/annurev.physchem.58.032806.104511 10.1103/PhysRevLett.85.4253 10.1063/1.1753552 10.1021/ac049366a 10.1021/ar100090q 10.1039/c1cp22197c 10.1002/chir.20911 10.1103/PhysRevLett.109.083901 10.2183/pjab.88.120 10.1039/c0fd00009d 10.1063/1.1597491 10.1063/1.4738753 10.1016/j.jms.2012.08.003 10.1063/1.1136443 10.1103/PhysRevLett.90.033001 10.1080/00268976.2012.679632 10.1063/1.2919120 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 2014 INIST-CNRS COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group May 23, 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group May 23, 2013 |
DBID | IQODW NPM AAYXX CITATION ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature12150 |
DatabaseName | Pascal-Francis PubMed CrossRef Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Chemistry |
EISSN | 1476-4687 |
EndPage | 477 |
ExternalDocumentID | 2992775501 A626152135 10_1038_nature12150 23698447 27375064 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAZLF ABAWZ ABDBF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YZZ ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM .-4 .GJ .HR 08P 08R 0B8 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 68V 69O 6XO 79B 8W4 9M8 AADEA AADWK AAEXX AAGJQ AAJMP AAJWC AAJYS AAPBV AAVBQ AAYJO AAYOK ABDEU ABEEJ ABEFU ABFLS ABGFU ABGIJ ABPTK ABTAH ACBMV ACBNA ACBRV ACBTR ACBYP ACDSR ACIGE ACMLT ACTDY ACTTH ACVWB ADFPY ADGIM ADMDM ADQMX ADRHT ADTIX ADZGE AEDAW AEFTE AETEA AFDAS AFFDN AFHKK AFMIJ AGCDD AGGBP AHGBK AIYXT AJDOV AJUXI AMRJV B4K BBAFP BCR BES BKOMP DB5 FA8 G8K HG6 I-U IQODW J5H K78 L-9 MVM N4W N95 OHT PQEST PQUKI PV9 QS- R4F RHI SKT TUD U1R UAO UBY UHB USG VOH X7L XFK XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZA5 ZCG ZGI ZHY ZKG ZY4 ~G0 AAYZH NPM AAYXX CITATION NXXTH AEQTP AFNRJ AGPPL AHPSJ 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c612t-d083e3c35dee69726418647dccdfa4040ffe7466acf7288ed1b909b3fc1e65d53 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 |
IngestDate | Fri Oct 25 06:44:27 EDT 2024 Thu Oct 10 21:13:02 EDT 2024 Thu Feb 22 23:57:08 EST 2024 Tue Dec 12 21:21:00 EST 2023 Thu Aug 01 19:12:49 EDT 2024 Thu Aug 01 20:10:35 EDT 2024 Thu Sep 26 19:05:27 EDT 2024 Tue Oct 15 23:46:44 EDT 2024 Fri Nov 25 13:52:43 EST 2022 Fri Oct 11 20:36:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7450 |
Keywords | Diol Chiral compound Experimental study Cryogenic temperature Growth from vapor Microwave spectrometry Racemic Analysis method Chirality Enantiomeric excess Qualitative analysis Measurement method Propanediol Organic compounds |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-d083e3c35dee69726418647dccdfa4040ffe7466acf7288ed1b909b3fc1e65d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23698447 |
PQID | 1366376868 |
PQPubID | 40569 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_1355477068 proquest_journals_1366376868 gale_infotracmisc_A626152135 gale_infotraccpiq_626152135 gale_incontextgauss_ISR_A626152135 gale_incontextgauss_ATWCN_A626152135 crossref_primary_10_1038_nature12150 pubmed_primary_23698447 pascalfrancis_primary_27375064 springer_journals_10_1038_nature12150 |
PublicationCentury | 2000 |
PublicationDate | 2013-05-23 |
PublicationDateYYYYMMDD | 2013-05-23 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SchnellMKüpperJTailored molecular samples for precision spectroscopy experimentsFaraday Discuss.201115033492011FaDi..150...33S1:CAS:528:DC%2BC3MXos1ejtb8%3D10.1039/c0fd00009d MataSPeñaICabezasCLópezJAlonsoJA broadband Fourier transform microwave spectrometer with laser ablation source: the rotational spectrum of nicotinic acidJ. Mol. Spectrosc.201228091962012JMoSp.280...91M1:CAS:528:DC%2BC38Xhtlaiu7fN10.1016/j.jms.2012.08.004 TownesCSchawlowAMicrowave Spectroscopy1975 QuackMHow important is parity violation for molecular and biomolecular chirality?Angew. Chem. Int. Edn200241461846301:CAS:528:DC%2BD3sXhtFCjsg%3D%3D10.1002/anie.200290005 FischerPHacheFNonlinear optical spectroscopy of chiral moleculesChirality2005174214371:CAS:528:DC%2BD2MXhtVOrurfM10.1002/chir.20179 DarquiéBProgress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopyChirality20102287088410.1002/chir.20911 PattersonDDoyleJMCooling molecules in a cell for FTMW spectroscopyMol. Phys.2012110175717662012MolPh.110.1757P1:CAS:528:DC%2BC38Xmt1Grs7o%3D10.1080/00268976.2012.679632 BalleTJFlygareWHFabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle sourceRev. Sci. Instrum.19815233451981RScI...52...33B1:CAS:528:DyaL3MXhtFagtbg%3D10.1063/1.1136443 HirotaETriple resonance for a three-level system of a chiral moleculeProc. Jpn Acad. B2012881201281:CAS:528:DC%2BC38Xms12iu7o%3D10.2183/pjab.88.120 LovasFJMicrowave spectrum of 1,2-propanediolJ. Mol. Spectrosc.200925782932009JMoSp.257...82L1:CAS:528:DC%2BD1MXpvFeqsLs%3D10.1016/j.jms.2009.06.013 GrabowJ-URapid probe of the nicotine spectra by high-resolution rotational spectroscopyPhys. Chem. Chem. Phys.20111321063210692011gdgg.book.....G1:CAS:528:DC%2BC3MXhsFaiurbF10.1039/c1cp22197c RheeHChoiJ-HChoMInfrared optical activity: electric field approaches in time domainAcc. Chem. Res.201043152715361:CAS:528:DC%2BC3cXht1KhsbnM10.1021/ar100090q GerbasiDBrumerPThanopulosIKrálPShapiroMTheory of the two step enantiomeric purification of 1,3 dimethylalleneJ. Chem. Phys.200412011557115632004JChPh.12011557G1:CAS:528:DC%2BD2cXkvVans7o%3D10.1063/1.1753552 WesternCMPGOPHER, a Program for Simulating Rotational Structure2010 ThanopulosIKrálPShapiroMTheory of a two-step enantiomeric purification of racemic mixtures by optical means: the D2S2 moleculeJ. Chem. Phys.2003119510551162003JChPh.119.5105T1:CAS:528:DC%2BD3sXms1Chsbs%3D10.1063/1.1597491 FischerPWiersmaDSRighiniRChampagneBBuckinghamADThree-wave mixing in chiral liquidsPhys. Rev. Lett.200085425342562000PhRvL..85.4253F1:CAS:528:DC%2BD3cXnvFamu7g%3D10.1103/PhysRevLett.85.4253 LiYBruderCDynamic method to distinguish between left- and right-handed chiral moleculesPhys. Rev. A2008770154032008PhRvA..77a5403L10.1103/PhysRevA.77.015403 GuoCDetermination of enantiomeric excess in samples of chiral molecules using Fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoringAnal. Chem.200476695669661:CAS:528:DC%2BD2cXptFChtb0%3D10.1021/ac049366a Busch K. W., Busch M. A., eds. Chiral Analysis (Elsevier, 2006) BrownGGA broadband Fourier transform microwave spectrometer based on chirped pulse excitationRev. Sci. Instrum.2008790531032008RScI...79e3103B10.1063/1.2919120 PateBHDe LuciaFCSpecial issue: Broadband molecular rotational spectroscopyJ. Mol. Spectrosc.2012280122012JMoSp.280....1P1:CAS:528:DC%2BC38XhtlOnsbrJ10.1016/j.jms.2012.08.003 JacobAHornbergerKEffect of molecular rotation on enantioseparationJ. Chem. Phys.20121370443132012JChPh.137d4313J10.1063/1.4738753 KrálPThanopulosIShapiroMCohenDTwo-step enantio-selective optical switchPhys. Rev. Lett.2003900330012003PhRvL..90c3001K10.1103/PhysRevLett.90.033001 QuackMStohnerJWillekeMHigh-resolution spectroscopic studies and theory of parity violation in chiral moleculesAnnu. Rev. Phys. Chem.2008597417692008ARPC...59..741Q1:CAS:528:DC%2BD1cXlvFWrt7w%3D10.1146/annurev.physchem.58.032806.104511 HiramatsuKObservation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman scatteringPhys. Rev. Lett.20121090839012012PhRvL.109h3901H10.1103/PhysRevLett.109.083901 22450539 - Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(3):120-8 24123944 - Angew Chem Int Ed Engl. 2013 Nov 4;52(45):11698-700 16082658 - Chirality. 2005 Oct;17(8):421-37 20839292 - Chirality. 2010 Nov;22(10):870-84 22457943 - Faraday Discuss. 2011;150:33-49; discussion 113-60 18173376 - Annu Rev Phys Chem. 2008;59:741-69 18513057 - Rev Sci Instrum. 2008 May;79(5):053103 23698440 - Nature. 2013 May 23;497(7450):446-8 12481315 - Angew Chem Int Ed Engl. 2002 Dec 16;41(24):4618-30 15571347 - Anal Chem. 2004 Dec 1;76(23):6956-66 20931956 - Acc Chem Res. 2010 Dec 21;43(12):1527-36 11060611 - Phys Rev Lett. 2000 Nov 13;85(20):4253-6 23002745 - Phys Rev Lett. 2012 Aug 24;109(8):083901 22020263 - Phys Chem Chem Phys. 2011 Dec 21;13(47):21063-9 22852624 - J Chem Phys. 2012 Jul 28;137(4):044313 12570485 - Phys Rev Lett. 2003 Jan 24;90(3):033001 15268190 - J Chem Phys. 2004 Jun 22;120(24):11557-63 M Quack (BFnature12150_CR10) 2002; 41 P Fischer (BFnature12150_CR3) 2000; 85 P Fischer (BFnature12150_CR2) 2005; 17 C Guo (BFnature12150_CR17) 2004; 76 S Mata (BFnature12150_CR23) 2012; 280 I Thanopulos (BFnature12150_CR20) 2003; 119 Y Li (BFnature12150_CR4) 2008; 77 D Gerbasi (BFnature12150_CR21) 2004; 120 H Rhee (BFnature12150_CR5) 2010; 43 C Townes (BFnature12150_CR8) 1975 M Schnell (BFnature12150_CR11) 2011; 150 FJ Lovas (BFnature12150_CR14) 2009; 257 J-U Grabow (BFnature12150_CR24) 2011; 13 BFnature12150_CR1 D Patterson (BFnature12150_CR15) 2012; 110 BH Pate (BFnature12150_CR22) 2012; 280 M Quack (BFnature12150_CR12) 2008; 59 CM Western (BFnature12150_CR25) 2010 K Hiramatsu (BFnature12150_CR6) 2012; 109 A Jacob (BFnature12150_CR13) 2012; 137 B Darquié (BFnature12150_CR9) 2010; 22 TJ Balle (BFnature12150_CR16) 1981; 52 P Král (BFnature12150_CR19) 2003; 90 GG Brown (BFnature12150_CR18) 2008; 79 E Hirota (BFnature12150_CR7) 2012; 88 |
References_xml | – ident: BFnature12150_CR1 – volume: 280 start-page: 91 year: 2012 ident: BFnature12150_CR23 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2012.08.004 contributor: fullname: S Mata – volume-title: PGOPHER, a Program for Simulating Rotational Structure year: 2010 ident: BFnature12150_CR25 contributor: fullname: CM Western – volume: 257 start-page: 82 year: 2009 ident: BFnature12150_CR14 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2009.06.013 contributor: fullname: FJ Lovas – volume: 77 start-page: 015403 year: 2008 ident: BFnature12150_CR4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.015403 contributor: fullname: Y Li – volume: 41 start-page: 4618 year: 2002 ident: BFnature12150_CR10 publication-title: Angew. Chem. Int. Edn doi: 10.1002/anie.200290005 contributor: fullname: M Quack – volume: 17 start-page: 421 year: 2005 ident: BFnature12150_CR2 publication-title: Chirality doi: 10.1002/chir.20179 contributor: fullname: P Fischer – volume: 59 start-page: 741 year: 2008 ident: BFnature12150_CR12 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104511 contributor: fullname: M Quack – volume-title: Microwave Spectroscopy year: 1975 ident: BFnature12150_CR8 contributor: fullname: C Townes – volume: 85 start-page: 4253 year: 2000 ident: BFnature12150_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4253 contributor: fullname: P Fischer – volume: 120 start-page: 11557 year: 2004 ident: BFnature12150_CR21 publication-title: J. Chem. Phys. doi: 10.1063/1.1753552 contributor: fullname: D Gerbasi – volume: 76 start-page: 6956 year: 2004 ident: BFnature12150_CR17 publication-title: Anal. Chem. doi: 10.1021/ac049366a contributor: fullname: C Guo – volume: 43 start-page: 1527 year: 2010 ident: BFnature12150_CR5 publication-title: Acc. Chem. Res. doi: 10.1021/ar100090q contributor: fullname: H Rhee – volume: 13 start-page: 21063 year: 2011 ident: BFnature12150_CR24 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22197c contributor: fullname: J-U Grabow – volume: 22 start-page: 870 year: 2010 ident: BFnature12150_CR9 publication-title: Chirality doi: 10.1002/chir.20911 contributor: fullname: B Darquié – volume: 109 start-page: 083901 year: 2012 ident: BFnature12150_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.083901 contributor: fullname: K Hiramatsu – volume: 88 start-page: 120 year: 2012 ident: BFnature12150_CR7 publication-title: Proc. Jpn Acad. B doi: 10.2183/pjab.88.120 contributor: fullname: E Hirota – volume: 150 start-page: 33 year: 2011 ident: BFnature12150_CR11 publication-title: Faraday Discuss. doi: 10.1039/c0fd00009d contributor: fullname: M Schnell – volume: 119 start-page: 5105 year: 2003 ident: BFnature12150_CR20 publication-title: J. Chem. Phys. doi: 10.1063/1.1597491 contributor: fullname: I Thanopulos – volume: 137 start-page: 044313 year: 2012 ident: BFnature12150_CR13 publication-title: J. Chem. Phys. doi: 10.1063/1.4738753 contributor: fullname: A Jacob – volume: 280 start-page: 1 year: 2012 ident: BFnature12150_CR22 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2012.08.003 contributor: fullname: BH Pate – volume: 52 start-page: 33 year: 1981 ident: BFnature12150_CR16 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1136443 contributor: fullname: TJ Balle – volume: 90 start-page: 033001 year: 2003 ident: BFnature12150_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.033001 contributor: fullname: P Král – volume: 110 start-page: 1757 year: 2012 ident: BFnature12150_CR15 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.679632 contributor: fullname: D Patterson – volume: 79 start-page: 053103 year: 2008 ident: BFnature12150_CR18 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2919120 contributor: fullname: GG Brown |
SSID | ssj0005174 |
Score | 2.6263452 |
Snippet | Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency — which depends directly on the chirality of the molecule — onto the phase... Chirality plays a fundamental part in the activity of biological molecules and broad classes of chemical reactions, but detecting and quantifying it remains... Microwave spectroscopy is used to map the sign of an electric dipole Rabi frequency -- which depends directly on the chirality of the molecule -- onto the... |
SourceID | proquest gale crossref pubmed pascalfrancis springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 475 |
SubjectTerms | 639/638/11/873 639/638/440/527 639/766/930/12 639/766/930/527 Analytical chemistry Animal behavior Chemical reactions Chemistry Chirality Cold Electric fields Enantiomers Exact sciences and technology Humanities and Social Sciences letter Methods Microwave radiation Microwave spectroscopy Microwaves multidisciplinary Observations Radiation (Physics) Science Spectrometric and optical methods Spectroscopy Spectrum analysis Stereoisomers |
Title | Enantiomer-specific detection of chiral molecules via microwave spectroscopy |
URI | https://link.springer.com/article/10.1038/nature12150 https://www.ncbi.nlm.nih.gov/pubmed/23698447 https://www.proquest.com/docview/1366376868 https://search.proquest.com/docview/1355477068 |
Volume | 497 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8lY0qoCHBQ7QkTmznCZWqZSCo0NhE3yLHH9CHJVmTDvHfc5e4a8MmXvzis2WdffbP9u_uCDlKlVE6ipSvAC_7MVwIfHwv8xmLVCxzG0iJD_pfZ-zkPP48T-buwa12tMr1nthu1LpU-EZ-HFI4GwEbM_G-uvQxaxT-rroUGnfJbhgFDCldfM43FI9_ojA7_7yAiuMubCaGVgh6J5Lblx9UsgYd2S65xW3o88bPaXsgTR-Rhw5JeqNu6vfIHVPsk3sto1PV-2TPWW3tvXWhpd89Jl8myHtBj_uljz6WyBPytGlaPlbhldZTvxYg6l10WXOh9dVCehfI2vstr4zXOmZiAMyy-vOEnE8nZ-MT3-VT8BXgmMbXoANDFU20MSzlAIVCwWKuldJWxmDN1hoeMyaV5ZEQRod5GqQ5tSo0LNEJfUp2irIwz4kX2BSAlOaKhjoWigtAHYAl4bjPA0sjMSBHa51mVRc2I2u_u6nItlQPYqjvDANRFMh0-SlXdZ2Nzn6MZ9kI7lqILmgyIK9vE_v0_bQndOCEbNkspVLV4jLbqj3s1YIRqV7jYW_GrwcN6I5jTD9ov14CmbPyOtusyQF5dV2NXSNzrTDlCmUAsHEeoMyzbulsOqcsFXHMB-TNei1tdX5TXS_-P4gDcj9qk3UkfkQPyU6zXJmXAJmafNjaBZRiHGI5_Tgkux8ms2-nfwGEMRWU |
link.rule.ids | 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVgEwIJITa-ysYIaEjsIVoSJ3byhMrUqYOuQqMTe7Mcf0AflmRNOsS_597EXVs28exry7r2tY_t43MJ2c-UUTqKlK8AL_sxHAh8vC_zGYtULHMbSIkX-qdjNjyPv1wkF-7CrXa0ysWa2C7UulR4R34YUtgbARuz9FN15WPWKHxddSk07pNNlKqCw9fm58H429mS5PGPDrP7oRfQ9LATzkRxhWBtT3Ir8-NK1uAl26W3uAt_3no7bbek46fkicOSXr8b_C1yzxTb5EHL6VT1NtlycVt7H5249MEzMhog8wX_3M98_GWJTCFPm6ZlZBVeaT31awqm3mWXNxdqX0-ld4m8vd_y2njt10yUwCyrP8_J-fFgcjT0XUYFXwGSaXwNPjBU0UQbwzIOYChMWcy1UtrKGOLZWsNjxqSyPEpTo8M8C7KcWhUaluiEviAbRVmYV8QLbAZQSnNFQx2niqeAOwBNwoafB5ZGaY_sL3wqqk44Q7QP3jQVK64HM_S3QCmKArkuP-W8rkV_8uNoLPpw2kJ8QZMeeX-X2cn3szWjHWdky2YmlaqmV2KldHetFMJIrVXeWxvxm04DvuOo6gf1F1NAuDivxXJW9si7m2JsGrlrhSnnaAOQjfMAbV52U2fZOGVZGse8Rz4s5tJK47fd9fr_nXhLHg4npyMxOhl_3SGPojZ1R-JHdJdsNLO5eQMAqsn3XJT8BbTtFp0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCISEEBtfZWMENCR4iJrEju08oaqs2mBUCDaxNyvxB_RhSdakQ_z33CXu1rKJZ58t63zn-9n--Y6QvUxbbZJEhxrwcsjgQBDifVnIeaJZXrgoz_FC_8uUH5ywT6fpqec_NZ5WudwTu43aVBrvyIcxhdgI2JjLofO0iK8fJx_q8xArSOFLqy-ncZvcgajIsJqBHK_QPf7JyOz_6kVUDvsUmphmIVqLTn6PflDnDejL9YUubkKi115Ru-A0eUQeelQZjHoz2CS3bLlF7nbsTt1skU3vwU3wzqeZfv-YHO0jBwZ_389D_G-JnKHA2LbjZpVB5QL9awaiwVlfQRd6X8zy4AwZfL_zCxt0nzQxGWZV_3lCTib7x-OD0NdWCDVgmjY0oANLNU2NtTwTAItiyZkwWhuXM_Bs56xgnOfaiURKa-Iii7KCOh1bnpqUPiUbZVXa5ySIXAagyghNY8OkFhIQCOBKCP1F5GgiB2RvqVNV9yk0VPf0TaVaUT2Iob4VJqUocXl_5oumUaPjH-OpGsG5C5EGTQfkzU1ih9-_rQlteyFXtfNc63p2rlZad9ZawaH0WufdtRW_nDQgPYH5_aD_0gSU9_hGXdnngLy-bMahkcVW2mqBMgDehIhQ5llvOleDU55JxsSAvF3a0srg19X14v-TeEXugXuoo8Pp521yP-lqeKRhQnfIRjtf2JeApNpit3ORv9q-GTE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantiomer-specific+detection+of+chiral+molecules+via+microwave+spectroscopy&rft.jtitle=Nature+%28London%29&rft.au=Patterson%2C+David&rft.au=Schnell%2C+Melanie&rft.au=Doyle%2C+John+M&rft.date=2013-05-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=497&rft.issue=7450&rft.spage=475&rft_id=info:doi/10.1038%2Fnature12150&rft.externalDocID=A626152135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |