Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin

Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtai...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 12; pp. E690 - E697
Main Authors Zakeri, Bijan, Fierer, Jacob O, Celik, Emrah, Chittock, Emily C, Schwarz-Linek, Ulrich, Moy, Vincent T, Howarth, Mark
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.03.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
AbstractList Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. [PUBLICATION ABSTRACT]
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. For decades people have studied how force affects the body, such as exercise leading to a bigger heart and stronger bones. Many of the biological effects of force at the molecular level have only started to be appreciated in recent years ( 3 ). Proteins that can turn activated chemical precursors into movement (termed molecular motors), such as those synthesizing RNA or moving cargo on tracks around the cell, are able to break the strongest noncovalent interactions in seconds ( 4 , 5 ). For this reason it has been difficult to provide barriers or locks to such motors inside cells. Using the atomic force microscope, one can tug on single molecules and by pulling hard enough even snap covalent bonds; SpyTag held on to SpyCatcher at forces dramatically greater than gold-standard noncovalent interactions. Molecular motors should not be able to break the covalent bond formed by SpyTag, so this system should provide a way to control motor activity and thereby determine the role of the motor’s force generation for the cell. Interactions among peptides or proteins in the cell nearly always occur through transient noncovalent interactions. This transience is because the macromolecular machines of the cell are not built to last, but are constantly dismantled and rebuilt so the cell can respond to rapidly changing circumstances. Exceptions are the covalent bonds formed between proteins that provide strength to hair and skin. When proteins interact through covalent bonds, such as those catalyzed by transglutaminase enzymes, proteins are often cross-linked indiscriminately. Hence transglutaminase is exploited in industry (and avant-garde haute cuisine) to bond together diverse proteins and so provide texture to food. Unlike transglutaminases, SpyTag and SpyCatcher formed a covalent bond with high specificity at the surface of human cells: SpyTag and SpyCatcher reacted with each other but not the many other proteins present. Many protein-catalyzed reactions are highly sensitive to their conditions, occurring only within a narrow range of pH values and temperatures and requiring particular cofactors or metal ions. The SpyTag reaction, by contrast, worked well in all buffers tested, including in the presence of detergents. The reaction also proceeded well over a range of temperatures, from ice-cold to body temperature, while bond formation proceeded efficiently at neutral pH and under the more acidic conditions found in certain cellular compartments. With this high tolerance to its surroundings and requiring no artificial amino acids or added cofactors, SpyTag may find use in a wide range of situations inside and outside of the cell. Abbreviating Streptococcus pyogenes to Spy, we termed the peptide “SpyTag” and the protein partner “SpyCatcher” ( Fig. P1 ). We found that SpyTag docked with SpyCatcher and then rapidly formed an amide bond, thereby locking the two partners together. Both SpyTag and SpyCatcher are composed of the usual 20 amino acids common to all organisms. Therefore, they can be genetically fused to any protein of interest and expressed in different organisms, or alternatively purified by overexpressing in biochemists’ favorite factotum, Escherichia coli . Fig. P1. A domain of a protein involved in binding to human cells, from an invasive strain of Streptococcus pyogenes (Spy), was genetically dissected to generate a protein partner (SpyCatcher) and a peptide tag (SpyTag) (cartoon based on the crystal structure 2X5P). Upon mixing, SpyCatcher and SpyTag reacted rapidly and specifically to form a spontaneous amide bond, which was not reversed by boiling or mechanical stress. Fusion to SpyTag should provide a simple tool for irreversibly grasping proteins inside or outside cells. Here, through rational protein engineering, we have harnessed the protein chemistry of this pathogen to develop a tool for biochemical research. The bacterium uses the protein FbaB to help invade human cells. We genetically split a domain of FbaB into two parts- a small peptide component and a larger protein component. Thus, rather than the amide bond formation occurring within the protein, amide bond formation could serve to lock two separate molecules together. The bacterium Streptococcus pyogenes causes a range of illnesses, from sore throats to life-threatening necrotizing fasciitis, also known as “flesh-eating bacteria syndrome.” While most organisms stabilize proteins by disulfide bonds (-S-S-), Streptococcus pyogenes grows well in low oxygen environments, where it is hard to form such bonds. Like a number of other bacterial species, Streptococcus pyogenes has evolved a special chemistry which endows some of its proteins with high stability ( 1 ): two amino acid side chains spontaneously react to form an amide bond (between lysine and aspartic acid or asparagine) ( 2 ). This reaction irreversibly locks together distant parts of the protein. Manipulating and observing proteins is at the heart of biochemical research. Antibodies are important observers, with the ability to recognize one type of protein amidst thousands. Rather than recognizing the whole protein, many antibodies recognize just a short stretch of the amino acids that comprise the protein, a ‘peptide tag.’ This peptide tag can often be genetically transferred to a new protein, so that one immediately can use the same antibody to follow where this new protein travels and what partners it associates with. However, antibodies and other binding proteins struggle to get a firm grip on tags, as a result of the tag’s small size and flexibility. Inspired by chemistry from a flesh-eating bacterium, we developed a way to rapidly bind a peptide tag and never let go.
Author Zakeri, Bijan
Celik, Emrah
Chittock, Emily C
Schwarz-Linek, Ulrich
Fierer, Jacob O
Moy, Vincent T
Howarth, Mark
Author_xml – sequence: 1
  fullname: Zakeri, Bijan
– sequence: 2
  fullname: Fierer, Jacob O
– sequence: 3
  fullname: Celik, Emrah
– sequence: 4
  fullname: Chittock, Emily C
– sequence: 5
  fullname: Schwarz-Linek, Ulrich
– sequence: 6
  fullname: Moy, Vincent T
– sequence: 7
  fullname: Howarth, Mark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22366317$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEcxYmpsdvq2ZsSL3pwW77ADMzFxDT1R9JEE-2ZMMN3ZmlmYYSZJv73stm1qx68AMn3814ePM7ISYgBCXkO7AKYEpdTsPkCACqpK2DNI7IqK6xr2bATsmKMq7WWXJ6Ss5zvGGNNpdkTcsq5qGsBakXMV5xm75DOdqB9TFsfBmppspN3tIv3dsQw0zYGR-dYBlOKM_rwls6bFJdhQzEMPiCmva613VzOdqTWbTD78JQ87u2Y8dlhPye3H66_X31a33z5-Pnq_c26q4HP67ZqkWuNTvdSMBCO98icUA5YVSndglCoesYliqpTqrYcXC0620uplOIgzsm7ve-0tFt0XUmd7Gim5Lc2_TTRevP3JPiNGeK9EQKKOSsGrw8GKf5YMM9m63OH42gDxiWbRkheadXoQr75LwkMJLBaVrtUr_5B7-KSQnmI4lfVknMlC3S5h7oUc07YP6QGZnYtm13L5thyUbz487IP_O9aC_DyAOyUR7vGADfXdcOORG-jsUPy2dx-4yV5-SQaRNOIX8FjuAA
CitedBy_id crossref_primary_10_1002_bit_28303
crossref_primary_10_1021_acssynbio_0c00367
crossref_primary_10_1002_bip_22639
crossref_primary_10_1021_acs_jafc_1c03309
crossref_primary_10_1111_1462_2920_15051
crossref_primary_10_1093_protein_gzac011
crossref_primary_10_1093_protein_gzac014
crossref_primary_10_3389_fbioe_2022_915035
crossref_primary_10_1038_s41557_020_0528_y
crossref_primary_10_3389_fbioe_2015_00191
crossref_primary_10_1007_s12551_021_00822_9
crossref_primary_10_3389_fbioe_2023_1096363
crossref_primary_10_1016_j_mattod_2015_04_002
crossref_primary_10_1038_s41565_020_00785_0
crossref_primary_10_1021_acs_jafc_3c08071
crossref_primary_10_3390_molecules25061472
crossref_primary_10_3390_fermentation8100498
crossref_primary_10_1021_acscatal_7b03445
crossref_primary_10_1016_j_celrep_2021_109084
crossref_primary_10_3390_vaccines11020219
crossref_primary_10_1002_bit_27460
crossref_primary_10_1021_acscatal_9b02413
crossref_primary_10_1002_ange_202013486
crossref_primary_10_1186_s12936_016_1574_1
crossref_primary_10_1016_j_pep_2015_09_021
crossref_primary_10_1021_acs_oprd_1c00424
crossref_primary_10_3390_pharmaceutics15020515
crossref_primary_10_1080_19420862_2023_2177978
crossref_primary_10_1016_j_giant_2022_100092
crossref_primary_10_1021_acssynbio_8b00266
crossref_primary_10_1021_acsmacrolett_8b00147
crossref_primary_10_1021_acs_bioconjchem_6b00138
crossref_primary_10_1021_acsnano_1c04556
crossref_primary_10_3389_fmicb_2020_01496
crossref_primary_10_1021_acs_analchem_0c03992
crossref_primary_10_1002_chem_201805506
crossref_primary_10_7554_eLife_38430
crossref_primary_10_1038_s42004_020_0267_4
crossref_primary_10_1038_s41467_018_05793_2
crossref_primary_10_2147_IJN_S329855
crossref_primary_10_3389_fpls_2019_00158
crossref_primary_10_1021_acs_orglett_9b00759
crossref_primary_10_1042_BST20190283
crossref_primary_10_1186_s12943_024_01938_8
crossref_primary_10_3389_fphar_2019_01450
crossref_primary_10_1002_ange_201705194
crossref_primary_10_3390_vaccines11020436
crossref_primary_10_1177_1535370219855401
crossref_primary_10_1021_acsami_9b21776
crossref_primary_10_1016_j_virol_2023_01_017
crossref_primary_10_3389_fcimb_2023_1216364
crossref_primary_10_7554_eLife_06638
crossref_primary_10_3389_fbioe_2015_00168
crossref_primary_10_1002_adbi_201800288
crossref_primary_10_1002_anie_201402519
crossref_primary_10_1186_s12951_016_0181_1
crossref_primary_10_1016_j_addr_2022_114358
crossref_primary_10_1021_acscatal_4c00056
crossref_primary_10_1186_s13045_022_01247_x
crossref_primary_10_1038_s41467_022_28623_y
crossref_primary_10_1016_j_celrep_2022_110561
crossref_primary_10_1126_science_aaw8208
crossref_primary_10_1039_C7CC04507G
crossref_primary_10_1186_s12915_019_0691_z
crossref_primary_10_1039_C9ME00027E
crossref_primary_10_1371_journal_pone_0179740
crossref_primary_10_1016_j_copbio_2017_10_006
crossref_primary_10_1039_D2MH01231F
crossref_primary_10_1002_biot_201700195
crossref_primary_10_1021_acssynbio_7b00404
crossref_primary_10_1021_acsabm_0c00940
crossref_primary_10_1038_s41596_024_00965_5
crossref_primary_10_1038_srep07266
crossref_primary_10_1021_acschembio_3c00084
crossref_primary_10_1073_pnas_1519214113
crossref_primary_10_1039_C9PY00337A
crossref_primary_10_1038_srep19234
crossref_primary_10_1073_pnas_2116871119
crossref_primary_10_3390_ijms21186551
crossref_primary_10_1021_acs_biomac_2c00765
crossref_primary_10_1084_jem_20221391
crossref_primary_10_1021_acsami_2c06924
crossref_primary_10_1016_j_bpj_2021_05_003
crossref_primary_10_7554_eLife_52716
crossref_primary_10_1016_j_mtbio_2022_100455
crossref_primary_10_1021_acschembio_3c00074
crossref_primary_10_1128_jvi_00383_22
crossref_primary_10_1002_bit_28523
crossref_primary_10_1039_C9SC04158C
crossref_primary_10_1371_journal_ppat_1009897
crossref_primary_10_1016_j_nbt_2021_07_004
crossref_primary_10_1039_D4SM00131A
crossref_primary_10_1002_ange_201904943
crossref_primary_10_1021_acs_bioconjchem_3c00060
crossref_primary_10_1038_s41586_023_06282_3
crossref_primary_10_3390_vaccines10040485
crossref_primary_10_1002_cbic_202300223
crossref_primary_10_1038_s41541_024_00891_3
crossref_primary_10_1246_cl_210307
crossref_primary_10_1002_ange_202216371
crossref_primary_10_1038_s41467_022_31193_8
crossref_primary_10_1128_spectrum_02457_22
crossref_primary_10_1021_acs_bioconjchem_7b00174
crossref_primary_10_1039_C8IB00118A
crossref_primary_10_3389_fpls_2021_738619
crossref_primary_10_1038_s41594_022_00755_1
crossref_primary_10_1128_mBio_01973_19
crossref_primary_10_1073_pnas_1621350114
crossref_primary_10_3390_nano11092424
crossref_primary_10_3390_nano10051008
crossref_primary_10_1021_acsami_0c16478
crossref_primary_10_1016_j_vetmic_2024_110003
crossref_primary_10_1002_syst_202400027
crossref_primary_10_1038_srep39291
crossref_primary_10_1126_science_abf6840
crossref_primary_10_1002_advs_202400049
crossref_primary_10_1021_acssynbio_9b00504
crossref_primary_10_1039_D3GC01898A
crossref_primary_10_1002_cam4_5778
crossref_primary_10_1002_cpz1_99
crossref_primary_10_1016_j_procbio_2023_10_003
crossref_primary_10_3390_ijms221910180
crossref_primary_10_1016_j_biomaterials_2023_121994
crossref_primary_10_1021_acs_nanolett_3c01163
crossref_primary_10_1016_j_jmb_2023_167975
crossref_primary_10_1038_s41598_019_54539_7
crossref_primary_10_1002_ange_201701419
crossref_primary_10_1016_j_aca_2021_338907
crossref_primary_10_1016_j_immuni_2020_11_015
crossref_primary_10_1093_nsr_nwz104
crossref_primary_10_1016_j_jchromb_2023_123591
crossref_primary_10_1016_j_tibtech_2020_10_009
crossref_primary_10_1093_protein_gzx059
crossref_primary_10_1002_cbic_201800538
crossref_primary_10_1016_j_biortech_2024_130786
crossref_primary_10_1016_j_bios_2022_114441
crossref_primary_10_1016_j_ymben_2019_04_011
crossref_primary_10_1002_psc_3474
crossref_primary_10_1103_PhysRevX_10_021001
crossref_primary_10_1002_jsfa_12907
crossref_primary_10_1021_acssynbio_2c00244
crossref_primary_10_1002_smll_201502429
crossref_primary_10_1016_j_bbrc_2020_05_169
crossref_primary_10_1038_s42004_021_00592_1
crossref_primary_10_1002_anie_201911383
crossref_primary_10_3390_ijms21197222
crossref_primary_10_1038_srep43564
crossref_primary_10_1016_j_biteb_2023_101695
crossref_primary_10_1073_pnas_2122900119
crossref_primary_10_3390_vaccines10050637
crossref_primary_10_1021_acs_biomac_8b00190
crossref_primary_10_1021_ma401724p
crossref_primary_10_1016_j_ijbiomac_2022_12_006
crossref_primary_10_1002_smll_202101066
crossref_primary_10_1021_acs_biomac_2c00544
crossref_primary_10_1016_j_apmt_2020_100575
crossref_primary_10_1002_smll_202206160
crossref_primary_10_1016_j_enzmictec_2018_04_007
crossref_primary_10_3390_pathogens12121388
crossref_primary_10_1038_s41467_021_23812_7
crossref_primary_10_1088_1361_6528_ac842c
crossref_primary_10_1126_scitranslmed_abk1533
crossref_primary_10_3390_ijms20143560
crossref_primary_10_1126_sciadv_aba1425
crossref_primary_10_1186_s12934_023_02229_5
crossref_primary_10_1002_bit_25637
crossref_primary_10_1021_jacs_6b13146
crossref_primary_10_1002_bit_25638
crossref_primary_10_1021_acs_bioconjchem_8b00458
crossref_primary_10_1007_s11426_017_9155_2
crossref_primary_10_1002_cbic_202100472
crossref_primary_10_1002_adfm_202313944
crossref_primary_10_1021_acsinfecdis_1c00276
crossref_primary_10_1038_s41593_021_00843_3
crossref_primary_10_1016_j_jconrel_2021_05_029
crossref_primary_10_1038_s42005_024_01650_5
crossref_primary_10_1002_cjoc_202000101
crossref_primary_10_1021_acs_analchem_8b04344
crossref_primary_10_1021_acs_langmuir_1c01699
crossref_primary_10_1021_acs_est_2c08971
crossref_primary_10_1016_j_bej_2021_108182
crossref_primary_10_1021_acsabm_1c01204
crossref_primary_10_1038_srep21151
crossref_primary_10_1016_j_ijbiomac_2021_10_135
crossref_primary_10_1021_acs_biomac_9b00183
crossref_primary_10_1016_j_arcmed_2023_02_003
crossref_primary_10_1016_j_ijbiomac_2023_127946
crossref_primary_10_1038_s41589_018_0169_2
crossref_primary_10_1039_D2CC05335G
crossref_primary_10_3390_v15020375
crossref_primary_10_1007_s11274_020_2809_4
crossref_primary_10_1016_j_bmc_2020_115946
crossref_primary_10_3390_molecules25040978
crossref_primary_10_1073_pnas_1315776111
crossref_primary_10_1039_C7OB00391A
crossref_primary_10_1002_cctc_202100604
crossref_primary_10_1021_acsnano_3c11559
crossref_primary_10_1038_s41589_018_0025_4
crossref_primary_10_1038_s41551_021_00734_9
crossref_primary_10_1073_pnas_1608271113
crossref_primary_10_1016_j_addr_2020_10_017
crossref_primary_10_1002_cbic_202100468
crossref_primary_10_1016_j_nantod_2021_101350
crossref_primary_10_1093_nar_gkad1108
crossref_primary_10_1021_acs_biomac_1c01314
crossref_primary_10_1021_acsapm_9b01061
crossref_primary_10_1038_s41586_019_1660_y
crossref_primary_10_1016_j_biortech_2024_130505
crossref_primary_10_1016_j_ijbiomac_2022_04_213
crossref_primary_10_3390_cancers13235881
crossref_primary_10_1016_j_biotechadv_2020_107535
crossref_primary_10_3389_fmicb_2021_616508
crossref_primary_10_1016_j_polymer_2018_09_017
crossref_primary_10_1038_s42003_022_03443_4
crossref_primary_10_1002_anie_201707623
crossref_primary_10_1016_j_addr_2022_114321
crossref_primary_10_1021_acscatal_2c00846
crossref_primary_10_1021_jacs_9b01261
crossref_primary_10_3390_v16060936
crossref_primary_10_1021_acs_nanolett_3c04497
crossref_primary_10_1021_acs_nanolett_9b01974
crossref_primary_10_1371_journal_pone_0247963
crossref_primary_10_1016_j_biotechadv_2020_107547
crossref_primary_10_1038_srep24866
crossref_primary_10_1039_D2CS00595F
crossref_primary_10_3390_v12010035
crossref_primary_10_1021_acsnano_2c07298
crossref_primary_10_1021_acsomega_0c03750
crossref_primary_10_1038_s41557_024_01520_1
crossref_primary_10_1016_j_trechm_2022_02_004
crossref_primary_10_3389_fimmu_2018_01432
crossref_primary_10_1021_acs_biomac_1c00481
crossref_primary_10_1002_smll_201801488
crossref_primary_10_1016_j_chroma_2024_465107
crossref_primary_10_1021_acsestwater_1c00208
crossref_primary_10_1021_acschembio_1c00835
crossref_primary_10_3390_ijms20092129
crossref_primary_10_1002_biot_202200560
crossref_primary_10_1002_adhm_202101844
crossref_primary_10_1128_AEM_02567_17
crossref_primary_10_1039_D1CS01004B
crossref_primary_10_1021_acs_chemrev_3c00549
crossref_primary_10_1021_acs_biomac_2c01150
crossref_primary_10_1038_s41551_022_00871_9
crossref_primary_10_1002_1873_3468_14171
crossref_primary_10_3390_genes9070370
crossref_primary_10_1039_C9CC06374A
crossref_primary_10_1038_s41541_021_00417_1
crossref_primary_10_1158_2326_6066_CIR_23_0926
crossref_primary_10_7554_eLife_64061
crossref_primary_10_1016_j_polymer_2017_08_008
crossref_primary_10_3390_ijms241512072
crossref_primary_10_1016_j_jbc_2021_100837
crossref_primary_10_26508_lsa_202201631
crossref_primary_10_3390_v13112237
crossref_primary_10_1016_j_crmeth_2022_100278
crossref_primary_10_1016_j_jmb_2013_09_016
crossref_primary_10_1016_j_bioeco_2023_100049
crossref_primary_10_1073_pnas_1700269114
crossref_primary_10_3390_catal11040409
crossref_primary_10_1002_cbic_202100381
crossref_primary_10_1085_jgp_202012729
crossref_primary_10_1021_jacs_2c00129
crossref_primary_10_3389_fbioe_2024_1344260
crossref_primary_10_1021_acs_jafc_4c00685
crossref_primary_10_1016_j_jconrel_2022_12_022
crossref_primary_10_1126_science_adf6591
crossref_primary_10_3389_fbioe_2022_903982
crossref_primary_10_1126_sciadv_abm5482
crossref_primary_10_1155_2019_4963289
crossref_primary_10_1016_j_scitotenv_2023_168098
crossref_primary_10_1088_1361_6528_acdf65
crossref_primary_10_3390_s22093144
crossref_primary_10_1021_jacs_1c03079
crossref_primary_10_1038_srep38019
crossref_primary_10_1016_j_trac_2016_01_024
crossref_primary_10_1002_ceat_201900073
crossref_primary_10_1016_j_ijbiomac_2022_10_126
crossref_primary_10_3390_molecules28030917
crossref_primary_10_1038_srep42753
crossref_primary_10_1016_j_bios_2021_113349
crossref_primary_10_3390_v15020346
crossref_primary_10_1016_j_jneumeth_2021_109348
crossref_primary_10_1016_j_ejps_2023_106460
crossref_primary_10_1038_s41467_020_15321_w
crossref_primary_10_1002_cjoc_202000083
crossref_primary_10_3390_antib7010004
crossref_primary_10_1002_mabi_201600554
crossref_primary_10_1016_j_matt_2019_11_011
crossref_primary_10_1016_j_vaccine_2024_02_027
crossref_primary_10_1039_D3RA04591A
crossref_primary_10_1093_jb_mvx023
crossref_primary_10_1016_j_jmb_2013_10_021
crossref_primary_10_1016_j_nbt_2018_12_003
crossref_primary_10_1021_acsomega_3c09741
crossref_primary_10_1021_acsabm_0c01195
crossref_primary_10_1002_adfm_202200799
crossref_primary_10_1002_anie_202308472
crossref_primary_10_1016_j_ijbiomac_2023_123577
crossref_primary_10_1016_j_celrep_2019_04_046
crossref_primary_10_1002_anie_202216371
crossref_primary_10_1016_j_immuni_2019_02_008
crossref_primary_10_1021_jacs_1c06169
crossref_primary_10_3390_vaccines9060539
crossref_primary_10_1021_acs_biochem_0c00205
crossref_primary_10_1021_acsami_8b02717
crossref_primary_10_3389_fpls_2021_710869
crossref_primary_10_5796_denkikagaku_24_FE0015
crossref_primary_10_1038_s41467_019_09678_w
crossref_primary_10_1038_s41565_024_01655_9
crossref_primary_10_1021_acssynbio_1c00252
crossref_primary_10_5796_denkikagaku_24_FE0012
crossref_primary_10_5796_denkikagaku_24_FE0013
crossref_primary_10_1073_pnas_1909653116
crossref_primary_10_1002_cctc_202000145
crossref_primary_10_3389_fmats_2020_00202
crossref_primary_10_1021_bc500134w
crossref_primary_10_1021_jacs_8b02665
crossref_primary_10_3390_ijms25052859
crossref_primary_10_1016_j_cbpa_2015_10_002
crossref_primary_10_1002_adtp_202000043
crossref_primary_10_1021_acs_jpclett_0c03852
crossref_primary_10_1021_acs_langmuir_2c03332
crossref_primary_10_1080_2162402X_2024_2316945
crossref_primary_10_1002_cbic_202000850
crossref_primary_10_1016_j_cogsc_2020_100380
crossref_primary_10_3389_fimmu_2023_1123805
crossref_primary_10_1038_s41423_021_00736_2
crossref_primary_10_1021_acsomega_0c04668
crossref_primary_10_1016_j_polymer_2023_125916
crossref_primary_10_3390_ijms20174228
crossref_primary_10_1186_s12934_021_01668_2
crossref_primary_10_3390_cells13050426
crossref_primary_10_1073_pnas_2102164118
crossref_primary_10_1007_s40259_022_00544_8
crossref_primary_10_1111_febs_15508
crossref_primary_10_1021_acssynbio_9b00407
crossref_primary_10_1186_s13068_016_0490_5
crossref_primary_10_1016_j_febslet_2014_04_033
crossref_primary_10_1002_biot_202000087
crossref_primary_10_1002_biot_202000086
crossref_primary_10_1002_smll_201805558
crossref_primary_10_1021_acsanm_8b00520
crossref_primary_10_1016_j_virusres_2018_06_014
crossref_primary_10_3389_fmicb_2020_00890
crossref_primary_10_1128_JCM_01689_20
crossref_primary_10_1158_0008_5472_CAN_12_2956
crossref_primary_10_1002_ange_201511640
crossref_primary_10_1039_C6CC09899A
crossref_primary_10_1002_cbic_202200700
crossref_primary_10_1016_j_chembiol_2021_07_005
crossref_primary_10_1016_j_bej_2024_109319
crossref_primary_10_3390_catal9020164
crossref_primary_10_1021_acsabm_2c00275
crossref_primary_10_1002_cjoc_201800475
crossref_primary_10_1016_j_jcis_2023_08_016
crossref_primary_10_1038_s41467_018_07145_6
crossref_primary_10_1371_journal_pone_0273322
crossref_primary_10_1016_j_cclet_2017_08_052
crossref_primary_10_1016_j_ccr_2023_215385
crossref_primary_10_1002_bip_23563
crossref_primary_10_1016_j_ijbiomac_2024_129365
crossref_primary_10_3389_fimmu_2023_1131057
crossref_primary_10_2139_ssrn_4104072
crossref_primary_10_1016_j_greenca_2023_07_001
crossref_primary_10_1039_C9SC00034H
crossref_primary_10_3390_ijerph19148408
crossref_primary_10_1002_cbic_201500372
crossref_primary_10_1016_j_chom_2019_07_007
crossref_primary_10_1038_s41467_023_37742_z
crossref_primary_10_1101_cshperspect_a024018
crossref_primary_10_1021_acs_bioconjchem_4c00169
crossref_primary_10_1021_acsnano_2c08840
crossref_primary_10_1016_j_ijbiomac_2022_01_018
crossref_primary_10_1134_S0026893319030154
crossref_primary_10_1021_acssynbio_8b00423
crossref_primary_10_1002_elsc_202100087
crossref_primary_10_1016_j_jare_2021_06_010
crossref_primary_10_1021_acsmacrolett_8b00668
crossref_primary_10_1016_j_coche_2016_08_016
crossref_primary_10_1021_jacs_3c07811
crossref_primary_10_1016_j_vaccine_2023_06_070
crossref_primary_10_1016_j_isci_2024_110038
crossref_primary_10_1021_acs_bioconjchem_1c00325
crossref_primary_10_1002_cm_21516
crossref_primary_10_1016_j_bios_2021_113503
crossref_primary_10_1038_s41467_021_25425_6
crossref_primary_10_3390_vaccines11010002
crossref_primary_10_1016_j_molimm_2023_12_001
crossref_primary_10_1186_s12896_018_0466_6
crossref_primary_10_1126_science_abq0839
crossref_primary_10_1371_journal_pone_0263792
crossref_primary_10_1016_j_virol_2022_10_011
crossref_primary_10_3390_mi10120795
crossref_primary_10_1002_adhm_202002140
crossref_primary_10_1111_mmi_14195
crossref_primary_10_1021_acs_bioconjchem_1c00338
crossref_primary_10_1021_acs_bioconjchem_1c00579
crossref_primary_10_1002_anie_202314980
crossref_primary_10_1146_annurev_biochem_032620_104637
crossref_primary_10_3389_fbioe_2020_00044
crossref_primary_10_1021_acsomega_6b00512
crossref_primary_10_3233_BLC_200382
crossref_primary_10_1016_j_vaccine_2017_05_054
crossref_primary_10_1038_s41467_020_20251_8
crossref_primary_10_3390_vaccines10030478
crossref_primary_10_1021_acs_bioconjchem_3c00317
crossref_primary_10_1021_acssynbio_8b00448
crossref_primary_10_1002_ange_202005490
crossref_primary_10_1038_s41467_020_20375_x
crossref_primary_10_1002_anie_201701419
crossref_primary_10_1007_s10529_021_03098_x
crossref_primary_10_1038_s41598_021_90593_w
crossref_primary_10_1128_iai_00245_23
crossref_primary_10_1002_adma_202202972
crossref_primary_10_1016_j_coche_2019_03_002
crossref_primary_10_1039_D0CC00920B
crossref_primary_10_1038_s41467_018_03931_4
crossref_primary_10_1101_sqb_2019_84_039222
crossref_primary_10_1021_acscentsci_1c01332
crossref_primary_10_1021_acs_analchem_2c05066
crossref_primary_10_1039_C8CC08720B
crossref_primary_10_1038_s41557_020_00586_x
crossref_primary_10_2116_analsci_20SCR07
crossref_primary_10_1039_D2TB00592A
crossref_primary_10_1093_femsle_fny165
crossref_primary_10_1186_s12951_022_01710_4
crossref_primary_10_1007_s11274_023_03550_2
crossref_primary_10_1042_BST20230229
crossref_primary_10_1073_pnas_1601782113
crossref_primary_10_1002_ange_201810331
crossref_primary_10_1021_acs_biochem_1c00032
crossref_primary_10_1039_C7CC08880A
crossref_primary_10_1002_cbic_202200765
crossref_primary_10_1016_j_talanta_2021_122638
crossref_primary_10_3389_fimmu_2023_1215323
crossref_primary_10_3390_biom12070997
crossref_primary_10_1038_s41419_021_03611_0
crossref_primary_10_1002_advs_202307549
crossref_primary_10_1002_ange_202214001
crossref_primary_10_1021_acs_biochem_0c00287
crossref_primary_10_1002_chem_202202157
crossref_primary_10_1002_bit_27261
crossref_primary_10_3390_cancers12113449
crossref_primary_10_1021_acssynbio_8b00223
crossref_primary_10_1016_j_mtbio_2021_100115
crossref_primary_10_1021_acssynbio_0c00616
crossref_primary_10_1016_j_ymeth_2013_03_029
crossref_primary_10_1021_acssynbio_9b00494
crossref_primary_10_1016_j_chroma_2020_460871
crossref_primary_10_1007_s12274_021_3832_y
crossref_primary_10_1021_acssensors_3c02664
crossref_primary_10_3389_fimmu_2022_857440
crossref_primary_10_1016_j_ijbiomac_2020_06_141
crossref_primary_10_1016_j_virol_2022_11_013
crossref_primary_10_1038_s41598_019_49233_7
crossref_primary_10_1016_j_matt_2024_03_019
crossref_primary_10_1039_C9RA10983H
crossref_primary_10_1038_s41570_023_00556_0
crossref_primary_10_1021_sb300101g
crossref_primary_10_1038_s41467_022_33191_2
crossref_primary_10_1002_smll_202204620
crossref_primary_10_3390_ijms23031335
crossref_primary_10_1016_j_chembiol_2022_02_004
crossref_primary_10_1016_j_chroma_2023_463780
crossref_primary_10_1021_acssynbio_0c00636
crossref_primary_10_1021_acs_biomac_6b00566
crossref_primary_10_1021_ja4076452
crossref_primary_10_1002_btm2_10668
crossref_primary_10_1002_anie_201201717
crossref_primary_10_1039_C6CC07363H
crossref_primary_10_1021_acsnano_3c01185
crossref_primary_10_1002_ange_201707623
crossref_primary_10_1021_acs_biomac_8b00306
crossref_primary_10_1021_acsmacrolett_8b00845
crossref_primary_10_1039_C9CC04661E
crossref_primary_10_1002_cbic_202000473
crossref_primary_10_1038_s41598_020_74105_w
crossref_primary_10_1042_BST20160348
crossref_primary_10_1103_PhysRevE_106_024404
crossref_primary_10_1016_j_btre_2021_e00670
crossref_primary_10_1021_jacs_3c12668
crossref_primary_10_1002_cbic_201700411
crossref_primary_10_3390_molecules25184090
crossref_primary_10_1002_ange_202314980
crossref_primary_10_1007_s12274_021_3713_4
crossref_primary_10_1002_cbic_202200316
crossref_primary_10_1016_j_vaccine_2019_09_004
crossref_primary_10_3389_fbioe_2020_00571
crossref_primary_10_3389_fimmu_2019_02931
crossref_primary_10_1021_acs_jpclett_9b01573
crossref_primary_10_1021_acsanm_2c01346
crossref_primary_10_1021_acs_bioconjchem_3c00122
crossref_primary_10_1021_jacs_8b11997
crossref_primary_10_1038_s41586_019_1250_z
crossref_primary_10_1021_acscatal_7b02230
crossref_primary_10_1371_journal_ppat_1010573
crossref_primary_10_1016_j_biotechadv_2017_05_003
crossref_primary_10_1080_14760584_2018_1455505
crossref_primary_10_1111_1751_7915_14171
crossref_primary_10_1021_jacs_9b12002
crossref_primary_10_1161_CIRCRESAHA_119_315760
crossref_primary_10_3390_bioengineering10050583
crossref_primary_10_1021_acs_bioconjchem_0c00405
crossref_primary_10_1038_s41467_020_19391_8
crossref_primary_10_1038_s41598_020_74949_2
crossref_primary_10_1021_acs_bioconjchem_8b00783
crossref_primary_10_1038_s41598_020_69990_0
crossref_primary_10_1073_pnas_1720063115
crossref_primary_10_1042_BST20170564
crossref_primary_10_1016_j_trechm_2021_02_002
crossref_primary_10_1021_acssynbio_6b00292
crossref_primary_10_1039_C7SC02686B
crossref_primary_10_1039_D0PY00423E
crossref_primary_10_3389_fimmu_2021_733064
crossref_primary_10_1021_acs_chemrev_8b00253
crossref_primary_10_1126_sciadv_abg1037
crossref_primary_10_1007_s00449_023_02900_6
crossref_primary_10_7498_aps_65_183601
crossref_primary_10_1038_s41467_021_22634_x
crossref_primary_10_1021_acsbiomaterials_1c00941
crossref_primary_10_1039_D3NR05952A
crossref_primary_10_1021_acs_biomac_8b00457
crossref_primary_10_3390_molecules26020490
crossref_primary_10_3390_vaccines9030301
crossref_primary_10_1021_acsnano_9b04554
crossref_primary_10_1021_acsbiomedchemau_2c00042
crossref_primary_10_1002_smll_201702151
crossref_primary_10_1021_acs_analchem_9b02096
crossref_primary_10_1016_j_mcat_2022_112188
crossref_primary_10_1021_acsabm_8b00541
crossref_primary_10_1128_mBio_01813_21
crossref_primary_10_1016_j_cclet_2016_12_008
crossref_primary_10_1186_s12951_022_01601_8
crossref_primary_10_1126_sciimmunol_ade6364
crossref_primary_10_1007_s00216_015_8981_y
crossref_primary_10_1016_j_copbio_2015_04_003
crossref_primary_10_1021_acschembio_0c00412
crossref_primary_10_1016_j_chempr_2022_07_003
crossref_primary_10_1186_s13007_020_00663_9
crossref_primary_10_1002_bit_27129
crossref_primary_10_1021_acsnano_0c08379
crossref_primary_10_1039_D0CC01174F
crossref_primary_10_1002_anie_201705194
crossref_primary_10_1016_j_bioorg_2021_104766
crossref_primary_10_1016_j_ijbiomac_2020_09_237
crossref_primary_10_1021_acs_macromol_0c00664
crossref_primary_10_1039_D2PY00036A
crossref_primary_10_1002_admi_202300934
crossref_primary_10_1016_j_jbc_2021_101119
crossref_primary_10_1016_j_jconrel_2022_07_004
crossref_primary_10_1007_s00705_022_05653_x
crossref_primary_10_1002_ange_201402519
crossref_primary_10_1002_ange_201911383
crossref_primary_10_1016_j_drudis_2022_03_004
crossref_primary_10_1016_j_jmst_2023_03_036
crossref_primary_10_1021_acs_bioconjchem_0c00456
crossref_primary_10_1002_anie_202013486
crossref_primary_10_1016_j_tibtech_2023_06_009
crossref_primary_10_1002_pro_4335
crossref_primary_10_1038_s41467_019_11285_8
crossref_primary_10_1038_nmeth_4611
crossref_primary_10_1016_j_ijbiomac_2020_11_195
crossref_primary_10_1016_j_xcrm_2021_100448
crossref_primary_10_1038_s41467_021_22867_w
crossref_primary_10_3389_fimmu_2023_1184863
crossref_primary_10_1021_acs_analchem_4c00509
crossref_primary_10_1016_j_jbiotec_2020_10_012
crossref_primary_10_1021_acsami_3c18699
crossref_primary_10_1021_acs_nanolett_9b02324
crossref_primary_10_1016_j_virol_2021_12_001
crossref_primary_10_1016_j_bios_2023_115364
crossref_primary_10_1073_pnas_1401291111
crossref_primary_10_1002_advs_202104012
crossref_primary_10_1039_D4CC00183D
crossref_primary_10_7554_eLife_25235
crossref_primary_10_1021_acs_jpcb_0c00167
crossref_primary_10_1021_acssuschemeng_1c01742
crossref_primary_10_1002_ange_202010054
crossref_primary_10_1038_s41564_024_01648_3
crossref_primary_10_1111_jth_15528
crossref_primary_10_1016_j_pep_2019_105527
crossref_primary_10_1016_j_jsb_2016_01_009
crossref_primary_10_1039_C6MH00448B
crossref_primary_10_1016_j_bios_2020_112885
crossref_primary_10_1016_j_matt_2023_10_012
crossref_primary_10_1016_S2666_5247_22_00337_8
crossref_primary_10_1021_acssuschemeng_3c02296
crossref_primary_10_1016_j_vaccine_2023_12_079
crossref_primary_10_1038_s41598_017_08787_0
crossref_primary_10_3390_ijms24031837
crossref_primary_10_1016_j_omtm_2023_101143
crossref_primary_10_1186_s12951_022_01429_2
crossref_primary_10_3390_mi10110783
crossref_primary_10_1016_j_tibs_2018_07_001
crossref_primary_10_1177_1758835920910347
crossref_primary_10_1016_j_actbio_2020_12_018
crossref_primary_10_1021_acsabm_2c00709
crossref_primary_10_1039_D2CS00848C
crossref_primary_10_1021_bc400498p
crossref_primary_10_1002_pro_4797
crossref_primary_10_1016_j_pep_2019_105526
crossref_primary_10_1016_j_rser_2024_114425
crossref_primary_10_1016_j_ymthe_2022_08_002
crossref_primary_10_1021_acs_biomac_8b01346
crossref_primary_10_1016_j_cell_2023_04_024
crossref_primary_10_1002_btpr_3190
crossref_primary_10_1016_j_msec_2018_11_002
crossref_primary_10_1016_j_jia_2024_05_002
crossref_primary_10_1016_j_smim_2020_101433
crossref_primary_10_1016_j_tibtech_2014_08_001
crossref_primary_10_1016_j_jhazmat_2023_132701
crossref_primary_10_3390_catal10040410
crossref_primary_10_1038_s41467_022_28424_3
crossref_primary_10_1021_acscatal_8b00986
crossref_primary_10_7567_JJAP_57_08NB06
crossref_primary_10_1038_s41467_024_48828_7
crossref_primary_10_1002_adhm_201700930
crossref_primary_10_1038_s41467_021_25737_7
crossref_primary_10_1016_j_mcat_2021_111673
crossref_primary_10_1002_cyto_a_24325
crossref_primary_10_3389_fmolb_2020_00085
crossref_primary_10_1002_smll_201802618
crossref_primary_10_1021_acs_jpclett_1c02767
crossref_primary_10_1134_S0003683819060115
crossref_primary_10_1002_admi_202201173
crossref_primary_10_1038_s41589_023_01409_z
crossref_primary_10_1002_advs_202306716
crossref_primary_10_1002_smll_202106425
crossref_primary_10_1038_s41467_021_22623_0
crossref_primary_10_2174_1389201024666230330083640
crossref_primary_10_1021_acsanm_8b00077
crossref_primary_10_1002_anie_202310910
crossref_primary_10_1016_j_jpha_2021_07_008
crossref_primary_10_1016_j_jsb_2023_107999
crossref_primary_10_1073_pnas_2017871118
crossref_primary_10_1021_acsnano_7b02694
crossref_primary_10_1038_s42003_019_0589_x
crossref_primary_10_1016_j_smim_2017_08_014
crossref_primary_10_1021_acs_bioconjchem_8b00131
crossref_primary_10_1038_s41541_021_00387_4
crossref_primary_10_2139_ssrn_3961037
crossref_primary_10_1038_s41467_018_05162_z
crossref_primary_10_1016_j_omtm_2022_12_003
crossref_primary_10_1021_acs_chemrev_1c00877
crossref_primary_10_3390_pharmaceutics15030833
crossref_primary_10_1016_j_chembiol_2015_06_020
crossref_primary_10_3390_biom14040504
crossref_primary_10_7555_JBR_35_20210108
crossref_primary_10_1021_acsami_2c03337
crossref_primary_10_3390_molecules25204627
crossref_primary_10_1002_anie_201810331
crossref_primary_10_1016_j_matt_2019_09_013
crossref_primary_10_1038_s41598_023_45628_9
crossref_primary_10_1038_s41467_021_25890_z
crossref_primary_10_1002_anie_202403539
crossref_primary_10_3390_fermentation8110578
crossref_primary_10_1038_s41522_022_00324_w
crossref_primary_10_3390_nano11071656
crossref_primary_10_1021_acs_biomac_3c00409
crossref_primary_10_1021_acsbiomaterials_1c01192
crossref_primary_10_1128_AEM_01239_17
crossref_primary_10_1002_anie_201609590
crossref_primary_10_1021_jacs_8b05200
crossref_primary_10_1038_s41565_020_0648_y
crossref_primary_10_1016_j_jsb_2016_02_011
crossref_primary_10_1016_j_biotechadv_2022_107932
crossref_primary_10_1016_j_ijbiomac_2024_132196
crossref_primary_10_1073_pnas_2309457121
crossref_primary_10_1002_cbic_201600431
crossref_primary_10_3390_vaccines12060629
crossref_primary_10_1016_j_jsb_2023_107981
crossref_primary_10_1002_anie_202005490
crossref_primary_10_1089_bioe_2023_0027
crossref_primary_10_1002_admi_202201126
crossref_primary_10_1039_D0SC01878C
crossref_primary_10_1038_s41557_023_01152_x
crossref_primary_10_1016_j_celrep_2019_10_046
crossref_primary_10_1002_pep2_24224
crossref_primary_10_1371_journal_pone_0139137
crossref_primary_10_1002_adma_202307106
crossref_primary_10_1016_j_ijbiomac_2021_02_015
crossref_primary_10_1021_acsbiomaterials_1c01181
crossref_primary_10_1021_acsomega_8b02226
crossref_primary_10_3390_v15112277
crossref_primary_10_1016_j_cell_2016_09_013
crossref_primary_10_1111_febs_16184
crossref_primary_10_1021_acsnano_9b03631
crossref_primary_10_1002_bkcs_12415
crossref_primary_10_1016_j_sbi_2019_01_020
crossref_primary_10_3390_ijms21072401
crossref_primary_10_1039_C8NR06225K
crossref_primary_10_1038_nprot_2017_081
crossref_primary_10_1002_cbic_202100111
crossref_primary_10_3390_pharmaceutics13101621
crossref_primary_10_1371_journal_pone_0152774
crossref_primary_10_3390_pharmaceutics15020600
crossref_primary_10_1021_acsmacrolett_0c00109
crossref_primary_10_1016_j_drudis_2022_05_002
crossref_primary_10_1038_s41598_017_11214_z
crossref_primary_10_1021_acs_biomac_1c00336
crossref_primary_10_1186_s13036_019_0183_2
crossref_primary_10_1016_j_checat_2023_100894
crossref_primary_10_1002_cbic_201900066
crossref_primary_10_1039_D1OB00411E
crossref_primary_10_1039_D2SC03123J
crossref_primary_10_1038_s42004_024_01100_x
crossref_primary_10_1016_j_vaccine_2022_09_058
crossref_primary_10_1007_s00216_021_03841_3
crossref_primary_10_1016_j_molcel_2023_09_037
crossref_primary_10_7554_eLife_36764
crossref_primary_10_1038_s41598_023_40241_2
crossref_primary_10_1038_s41929_020_0433_1
crossref_primary_10_3390_ijms22041934
crossref_primary_10_1016_j_pep_2020_105650
crossref_primary_10_1080_14760584_2023_2227699
crossref_primary_10_3389_fctls_2023_1184959
crossref_primary_10_1016_j_molcel_2024_01_026
crossref_primary_10_3390_v12020185
crossref_primary_10_3390_membranes13050459
crossref_primary_10_1002_ps_7514
crossref_primary_10_1021_acsnano_6b03364
crossref_primary_10_2217_nnm_2018_0261
crossref_primary_10_1093_nar_gkaa270
crossref_primary_10_1039_D0CC04196C
crossref_primary_10_1038_s41596_023_00938_0
crossref_primary_10_1016_j_chembiol_2021_05_017
crossref_primary_10_1016_j_pep_2018_02_010
crossref_primary_10_1016_j_coph_2021_04_009
crossref_primary_10_1038_s41467_020_20654_7
crossref_primary_10_3390_polym15244652
crossref_primary_10_1021_jacs_9b12265
crossref_primary_10_1021_acs_nanolett_0c04178
crossref_primary_10_1371_journal_pone_0162318
crossref_primary_10_3389_fmicb_2019_00558
crossref_primary_10_1002_biot_202400040
crossref_primary_10_1016_j_celrep_2021_108937
crossref_primary_10_3389_fimmu_2023_1139206
crossref_primary_10_1021_acs_accounts_9b00514
crossref_primary_10_1186_s13046_023_02655_8
crossref_primary_10_1038_s42003_018_0090_y
crossref_primary_10_1021_acscentsci_7b00104
crossref_primary_10_1093_protein_gzy005
crossref_primary_10_1021_acs_bioconjchem_5b00238
crossref_primary_10_1128_mBio_01860_17
crossref_primary_10_1016_j_copbio_2021_06_002
crossref_primary_10_1021_acsanm_9b01018
crossref_primary_10_1002_elsc_201300052
crossref_primary_10_1002_btm2_10514
crossref_primary_10_1002_smll_202312286
crossref_primary_10_1021_acs_biomac_8b01093
crossref_primary_10_3390_jfb14080434
crossref_primary_10_1021_acssynbio_4c00058
crossref_primary_10_1021_acs_biomac_2c00179
crossref_primary_10_1016_j_bioorg_2024_107162
crossref_primary_10_1007_s11426_016_0436_x
crossref_primary_10_3389_fimmu_2023_1088501
crossref_primary_10_1002_anie_201511640
crossref_primary_10_1021_acs_biomac_4c00115
crossref_primary_10_1002_cbic_202300600
crossref_primary_10_1002_adma_202105765
crossref_primary_10_1039_C9SC04074A
crossref_primary_10_1093_glycob_cwaa039
crossref_primary_10_1016_j_procbio_2020_02_019
crossref_primary_10_1016_j_nantod_2023_102075
crossref_primary_10_1073_pnas_2009707117
crossref_primary_10_1038_s41467_020_18323_w
crossref_primary_10_1016_j_jhazmat_2022_129517
crossref_primary_10_1080_09168451_2018_1475212
crossref_primary_10_1021_acsami_1c14670
crossref_primary_10_1063_1_5013259
crossref_primary_10_1002_ange_201201717
crossref_primary_10_1021_acsabm_0c01293
crossref_primary_10_1038_s41598_023_27780_4
crossref_primary_10_1128_mSystems_00903_20
crossref_primary_10_1038_ncomms5945
crossref_primary_10_1039_D1RA05710C
crossref_primary_10_3389_fimmu_2023_1302354
crossref_primary_10_1016_j_cjche_2020_05_022
crossref_primary_10_1021_acsbiomaterials_6b00447
crossref_primary_10_1038_s41598_017_03798_3
crossref_primary_10_3389_fimmu_2022_1015840
crossref_primary_10_5812_ijpr_127042
crossref_primary_10_1002_ejoc_202100749
crossref_primary_10_1002_wnan_1685
crossref_primary_10_3390_biom12121841
crossref_primary_10_1002_syst_202100025
crossref_primary_10_1021_jacs_1c03198
crossref_primary_10_1039_D1NR01907D
crossref_primary_10_1261_rna_075812_120
crossref_primary_10_1016_j_aca_2023_341593
crossref_primary_10_1039_D1SC05672G
crossref_primary_10_1016_j_chembiol_2021_01_011
crossref_primary_10_1002_cbic_202100251
crossref_primary_10_1021_jacs_7b02958
crossref_primary_10_1002_anie_201800828
crossref_primary_10_1002_anie_201800827
crossref_primary_10_1016_j_actbio_2021_11_041
crossref_primary_10_1042_BST20150066
crossref_primary_10_1002_anie_202214001
crossref_primary_10_1021_jacs_2c03961
crossref_primary_10_1016_j_tibtech_2023_10_011
crossref_primary_10_1002_adfm_202402097
crossref_primary_10_1039_C9LC01028A
crossref_primary_10_1002_cjoc_202300190
crossref_primary_10_1039_C7PY01206C
crossref_primary_10_1038_nmat3912
crossref_primary_10_1002_ange_201609590
crossref_primary_10_1021_acs_jafc_3c07785
crossref_primary_10_1021_acsanm_3c01446
crossref_primary_10_3390_nano11061467
crossref_primary_10_1002_cbic_201900200
crossref_primary_10_1016_j_jclepro_2021_127994
crossref_primary_10_1002_adhm_201801374
crossref_primary_10_1016_j_biomaterials_2018_07_020
crossref_primary_10_1002_smll_202306817
crossref_primary_10_3390_gels9060481
crossref_primary_10_1038_s41467_021_20963_5
crossref_primary_10_1002_cbic_202000797
crossref_primary_10_1021_ja4056382
crossref_primary_10_1002_chem_202400582
crossref_primary_10_1007_s00253_023_12608_y
crossref_primary_10_1039_C5CC05208D
crossref_primary_10_1016_j_crmeth_2023_100484
crossref_primary_10_3390_vaccines9060651
crossref_primary_10_1016_j_procbio_2023_01_005
crossref_primary_10_1002_pro_2952
crossref_primary_10_1002_anie_201904943
crossref_primary_10_1002_cbic_202400123
crossref_primary_10_1002_wnan_1869
crossref_primary_10_1126_sciadv_abc4824
crossref_primary_10_1007_s11307_018_1222_y
crossref_primary_10_1016_j_bbrc_2021_12_028
crossref_primary_10_1039_D3CC01578E
crossref_primary_10_1016_j_nano_2020_102223
crossref_primary_10_1021_acsami_3c14653
crossref_primary_10_1007_s10529_023_03385_9
crossref_primary_10_1002_cbic_201700177
crossref_primary_10_1016_j_cogsc_2021_100538
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_1021_acsomega_4c02303
crossref_primary_10_1021_acssensors_8b00821
crossref_primary_10_3390_vaccines10020173
crossref_primary_10_1021_acs_analchem_8b04083
crossref_primary_10_3390_vaccines10020189
crossref_primary_10_1021_jacs_4c00224
crossref_primary_10_1002_adfm_201706046
crossref_primary_10_1002_advs_202102991
crossref_primary_10_1021_acsnano_3c01910
crossref_primary_10_1159_000449503
crossref_primary_10_1021_acs_orglett_0c01815
crossref_primary_10_1038_s41586_020_03120_8
crossref_primary_10_1021_acsmacrolett_9b00333
crossref_primary_10_1080_21505594_2020_1867438
crossref_primary_10_1177_2472555220979584
crossref_primary_10_1146_annurev_chembioeng_101519_121526
crossref_primary_10_1039_D0TB01429J
crossref_primary_10_1021_acssuschemeng_1c06647
crossref_primary_10_3390_pathogens13060458
crossref_primary_10_1021_acssuschemeng_1c02045
crossref_primary_10_1016_j_molcel_2015_01_008
crossref_primary_10_1016_j_virol_2022_03_009
crossref_primary_10_1557_mrc_2019_28
crossref_primary_10_1021_acsbiomaterials_6b00437
crossref_primary_10_1038_s41467_019_10696_x
crossref_primary_10_1103_PhysRevLett_125_198101
crossref_primary_10_1016_j_btre_2020_e00418
crossref_primary_10_1002_ange_202310910
crossref_primary_10_1186_s12951_023_02273_8
crossref_primary_10_3390_v16060884
crossref_primary_10_1515_mr_2023_0001
crossref_primary_10_1007_s00018_016_2374_z
crossref_primary_10_1002_adhm_202000714
crossref_primary_10_1186_s12951_022_01762_6
crossref_primary_10_1021_acs_analchem_2c01190
crossref_primary_10_1021_acs_biomac_7b01369
crossref_primary_10_1021_jacs_7b07798
crossref_primary_10_1038_s41598_021_03675_0
crossref_primary_10_1002_adma_202107781
crossref_primary_10_1002_anie_202010054
crossref_primary_10_1038_s42003_020_01132_8
crossref_primary_10_1097_QCO_0000000000000262
crossref_primary_10_1039_D2CS00756H
crossref_primary_10_1038_s41589_018_0055_y
crossref_primary_10_1021_acsami_2c10684
crossref_primary_10_1021_acs_bioconjchem_4c00050
crossref_primary_10_1016_j_copbio_2016_01_003
crossref_primary_10_1088_1674_1056_ad3dcd
crossref_primary_10_1021_acs_bioconjchem_4c00052
crossref_primary_10_1021_acssynbio_9b00187
crossref_primary_10_1021_acs_bioconjchem_1c00476
crossref_primary_10_1093_nar_gkaa933
crossref_primary_10_3389_fmolb_2023_1143274
crossref_primary_10_1002_smll_202202104
crossref_primary_10_3390_ph14040343
crossref_primary_10_1002_ange_202308472
crossref_primary_10_1016_j_nano_2018_11_009
crossref_primary_10_1021_acsbiomaterials_0c01549
crossref_primary_10_1002_ange_201800827
crossref_primary_10_1021_acs_biochem_0c00363
crossref_primary_10_1103_PhysRevResearch_6_023170
crossref_primary_10_1021_ja505584f
crossref_primary_10_1146_annurev_neuro_110520_030031
crossref_primary_10_1007_s10529_022_03246_x
crossref_primary_10_1002_ange_201800828
crossref_primary_10_3390_antib11040064
crossref_primary_10_1002_cite_202200167
crossref_primary_10_1021_acs_bioconjchem_0c00476
crossref_primary_10_1016_j_jconrel_2018_04_039
crossref_primary_10_3389_fbioe_2020_00156
crossref_primary_10_1016_j_chempr_2021_01_010
crossref_primary_10_1111_jth_14962
crossref_primary_10_1002_cctc_202300061
crossref_primary_10_1021_acs_accounts_3c00372
crossref_primary_10_1021_acsami_3c19202
crossref_primary_10_1002_jev2_12192
crossref_primary_10_1016_j_bios_2020_112052
crossref_primary_10_1021_acsnano_9b08756
crossref_primary_10_3389_fmolb_2022_1039324
crossref_primary_10_3390_antib12040075
crossref_primary_10_1128_spectrum_04998_22
crossref_primary_10_1038_s41587_023_01713_y
crossref_primary_10_1039_D1CB00246E
crossref_primary_10_1038_s41598_018_30790_2
crossref_primary_10_1038_s41594_020_0397_5
crossref_primary_10_1371_journal_pone_0165074
crossref_primary_10_1016_j_cclet_2020_04_034
crossref_primary_10_1038_s44222_023_00110_z
crossref_primary_10_1039_C6OB00126B
crossref_primary_10_1016_j_mtbio_2022_100504
crossref_primary_10_1002_adfm_202209441
crossref_primary_10_1021_bc300606b
crossref_primary_10_3390_biomedicines10112881
crossref_primary_10_1007_s00253_023_12837_1
crossref_primary_10_1021_acsbiomaterials_8b00279
crossref_primary_10_1007_s10295_018_2027_3
crossref_primary_10_1007_s11816_023_00821_0
crossref_primary_10_1021_acscentsci_1c00120
crossref_primary_10_1021_jacs_8b08250
crossref_primary_10_1002_cbic_202000102
crossref_primary_10_1021_acs_jafc_9b01459
crossref_primary_10_7554_eLife_85882
crossref_primary_10_2147_IJN_S387160
crossref_primary_10_1021_acsami_3c09690
crossref_primary_10_1038_nprot_2013_056
crossref_primary_10_1007_s12257_019_0363_4
crossref_primary_10_1002_ange_202403539
crossref_primary_10_1016_j_bios_2024_116331
crossref_primary_10_1038_s41467_021_22308_8
crossref_primary_10_1039_D3TB00445G
crossref_primary_10_1016_j_ymthe_2022_02_011
crossref_primary_10_1021_acsnano_1c07856
crossref_primary_10_1007_s40259_023_00627_0
crossref_primary_10_1016_j_molcel_2023_03_027
crossref_primary_10_1021_acs_jpcb_8b00168
crossref_primary_10_1002_cctc_201800162
crossref_primary_10_1039_D4FD00067F
crossref_primary_10_1021_acsami_5b08811
crossref_primary_10_1016_j_snb_2020_128312
crossref_primary_10_1126_sciadv_abf1591
crossref_primary_10_1021_acssynbio_6b00370
crossref_primary_10_3390_vaccines11091506
crossref_primary_10_1039_D3MA00071K
crossref_primary_10_1021_acssynbio_9b00131
crossref_primary_10_1186_s12951_021_00772_0
crossref_primary_10_1021_acs_chemrev_7b00522
crossref_primary_10_1038_s41594_022_00775_x
crossref_primary_10_1021_acs_chemrev_7b00767
crossref_primary_10_1371_journal_pbio_3000549
crossref_primary_10_1002_cbic_201700117
crossref_primary_10_1038_s42005_019_0192_y
crossref_primary_10_1021_jacs_9b11622
crossref_primary_10_1016_j_vetmic_2023_109799
crossref_primary_10_1021_acsnano_8b02805
crossref_primary_10_1021_acsnano_9b09405
crossref_primary_10_1021_acs_bioconjchem_2c00003
crossref_primary_10_1007_s11426_021_1183_x
crossref_primary_10_1021_acs_chemmater_0c01518
crossref_primary_10_1073_pnas_1807689115
crossref_primary_10_1002_pro_4944
crossref_primary_10_1021_jacs_7b00513
crossref_primary_10_1021_acs_bioconjchem_4c00223
crossref_primary_10_1038_s41589_021_00802_w
crossref_primary_10_1007_s11426_016_5571_6
crossref_primary_10_1039_C8CS00121A
crossref_primary_10_3390_biom8030051
crossref_primary_10_1021_acs_molpharmaceut_1c00788
crossref_primary_10_15252_embr_202153471
Cites_doi 10.1038/nmeth.1450
10.1002/anie.200200565
10.1002/anie.201004340
10.1016/j.ceb.2009.01.002
10.1126/science.7939660
10.1016/j.febslet.2005.12.052
10.1038/nprot.2007.152
10.1126/science.1145806
10.1016/j.sbi.2010.05.005
10.1007/s00018-006-6288-z
10.1038/nchembio.2007.31
10.1016/S0958-1669(98)80092-X
10.1016/j.bbamcr.2004.04.014
10.1016/j.tibs.2010.09.007
10.1016/0959-440X(95)80015-S
10.1021/ja807872s
10.1021/ja074176d
10.1073/pnas.0804621105
10.1021/bi901756n
10.1016/j.febslet.2009.02.003
10.1016/j.bmcl.2009.07.011
10.1016/S0301-4622(02)00012-1
10.1007/BF01025491
10.1016/S0006-3495(02)75664-6
10.1016/j.ymeth.2010.02.011
10.1021/ar800009n
10.1021/ja910795a
10.1126/science.281.5374.269
10.1074/jbc.M110.102962
10.1146/annurev.genet.32.1.601
10.1038/nature02026
10.1021/cr030697h
10.1016/j.jmb.2009.07.067
10.1073/pnas.0914067107
10.1038/47083
10.1007/s10969-010-9090-y
10.1021/ja042287w
10.1021/ja027007w
10.1039/B700141J
10.1016/j.cbpa.2010.01.004
10.1002/jmr.2152
10.1038/nmeth752
10.1074/mcp.M800272-MCP200
10.1110/ps.4150102
10.1111/j.1462-5822.2011.01610.x
10.1002/cbic.200700647
10.1021/ja104609m
10.1021/ja107513t
10.1016/S0065-3233(05)70004-8
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 20, 2012
Copyright_xml – notice: Copyright National Academy of Sciences Mar 20, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1115485109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


Virology and AIDS Abstracts
CrossRef

Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1091-6490
EndPage E697
ExternalDocumentID 2616516831
10_1073_pnas_1115485109
22366317
109_12_E690
US201400081399
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 091911
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ABXSQ
ADACV
AQVQM
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c612t-b5be288ed8f43013d2fe0d37d105578b137e7f024e35c776a21d63caf44777213
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:03:05 EDT 2024
Sat Aug 17 01:50:36 EDT 2024
Fri Oct 25 05:04:48 EDT 2024
Thu Oct 10 20:17:16 EDT 2024
Fri Dec 06 01:56:42 EST 2024
Sat Sep 28 08:47:56 EDT 2024
Wed Nov 11 00:29:46 EST 2020
Wed Dec 27 19:31:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-b5be288ed8f43013d2fe0d37d105578b137e7f024e35c776a21d63caf44777213
Notes http://dx.doi.org/10.1073/pnas.1115485109
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: B.Z., J.O.F., E.C., U.S.-L., V.T.M., and M.H. designed research; B.Z., J.O.F., E.C., E.C.C., U.S.-L., and M.H. performed research; B.Z., J.O.F., E.C., U.S.-L., V.T.M., and M.H. analyzed data; and M.H. wrote the paper.
1B.Z. and J.O.F. contributed equally to this work.
Edited by James A. Wells, University of California, San Francisco, CA, and approved January 17, 2012 (received for review September 21, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/12/E690.full.pdf
PMID 22366317
PQID 935642274
PQPubID 42026
ParticipantIDs proquest_journals_935642274
proquest_miscellaneous_934258798
fao_agris_US201400081399
proquest_miscellaneous_1014106451
pnas_primary_109_12_E690
crossref_primary_10_1073_pnas_1115485109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3311370
pubmed_primary_22366317
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-03-20
PublicationDateYYYYMMDD 2012-03-20
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 18695247 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11933-8
18293290 - Chembiochem. 2008 Mar 25;9(5):677-80
17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8
11910031 - Protein Sci. 2002 Apr;11(4):883-93
19169452 - Chem Soc Rev. 2009 Feb;38(2):338-51
18063798 - Science. 2007 Dec 7;318(5856):1625-8
20925334 - J Am Chem Soc. 2010 Oct 27;132(42):14819-24
21142157 - J Am Chem Soc. 2011 Jan 26;133(3):478-85
20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9
9503596 - Curr Opin Biotechnol. 1998 Feb;9(1):102-8
16388805 - FEBS Lett. 2006 Jan 23;580(2):505-9
20419351 - J Struct Funct Genomics. 2010 Jun;11(2):167-80
15546671 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):269-78
19643606 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5222-4
18923192 - Mol Cell Proteomics. 2009 Feb;8(2):287-301
20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42
19217273 - Curr Opin Cell Biol. 2009 Feb;21(1):38-46
19646997 - J Mol Biol. 2009 Oct 9;392(5):1221-31
7939660 - Science. 1994 Oct 14;266(5183):257-9
21615663 - Cell Microbiol. 2011 Aug;13(8):1200-11
7773739 - Curr Opin Struct Biol. 1995 Feb;5(1):103-13
12148987 - J Am Chem Soc. 2002 Aug 7;124(31):9026-7
16092823 - Chem Rev. 2005 Aug;105(8):2921-48
15837514 - Adv Protein Chem. 2005;70:79-112
18052248 - J Am Chem Soc. 2007 Dec 26;129(51):15777-9
19105691 - J Am Chem Soc. 2009 Jan 21;131(2):438-9
14562095 - Nature. 2003 Oct 16;425(6959):686-91
19302791 - FEBS Lett. 2009 Mar 4;583(5):909-14
20542682 - Curr Opin Struct Biol. 2010 Aug;20(4):508-17
15853324 - J Am Chem Soc. 2005 May 4;127(17):6198-206
15782218 - Nat Methods. 2005 Apr;2(4):261-7
14579432 - Angew Chem Int Ed Engl. 2003 Oct 20;42(40):4872-97
9928493 - Annu Rev Genet. 1998;32:601-18
18590282 - Acc Chem Res. 2008 Oct;41(10):1399-408
12034438 - Biophys Chem. 2002 May 2;96(2-3):163-71
12023246 - Biophys J. 2002 Jun;82(6):3214-23
20383133 - Nat Methods. 2010 May;7(5):391-3
17546003 - Nat Protoc. 2007;2(5):1126-33
17086379 - Cell Mol Life Sci. 2006 Dec;63(24):2992-3017
10573426 - Nature. 1999 Nov 4;402(6757):100-3
20878961 - Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8421-5
21055949 - Trends Biochem Sci. 2011 Apr;36(4):229-37
20235501 - J Am Chem Soc. 2010 Apr 7;132(13):4526-7
16888367 - Methods Mol Biol. 2006;338:305-23
9657724 - Science. 1998 Jul 10;281(5374):269-72
19928925 - Biochemistry. 2009 Dec 22;48(50):11834-6
20170733 - Methods. 2010 Jul;51(3):277-88
20102793 - Curr Opin Chem Biol. 2010 Apr;14(2):247-54
22213450 - J Mol Recognit. 2012 Jan;25(1):53-6
Beyer MK (e_1_3_4_18_2) 2005; 105
Lee HS (e_1_3_4_38_2) 2009; 19
McDonald CA (e_1_3_4_17_2) 2009; 8
Jarvik JW (e_1_3_4_1_2) 1998; 32
Amelung S (e_1_3_4_13_2) 2011; 13
e_1_1_2_17_10_4_2
Tavassoli A (e_1_3_4_42_2) 2007; 2
e_1_1_2_17_10_2_2
Korndorfer IP (e_1_3_4_7_2) 2002; 11
Shi J (e_1_3_4_41_2) 2005; 127
Huang J (e_1_3_4_30_2) 2009; 392
Oke M (e_1_3_4_11_2) 2010; 11
Houk KN (e_1_3_4_8_2) 2003; 42
Hancock SM (e_1_3_4_40_2) 2010; 132
Celik E (e_1_3_4_22_2) 2012; 25
Alegre-Cebollada J (e_1_3_4_27_2) 2010; 285
Pierres A (e_1_3_4_48_2) 2002; 82
Neuert G (e_1_3_4_21_2) 2006; 580
Ton-That H (e_1_3_4_26_2) 2004; 1694
Huh WK (e_1_3_4_5_2) 2003; 425
Popp MW (e_1_3_4_15_2) 2007; 3
Stanfield RL (e_1_3_4_6_2) 1995; 5
Laitinen OH (e_1_3_4_45_2) 2006; 63
Zettler J (e_1_3_4_14_2) 2009; 583
Griffiths AD (e_1_3_4_44_2) 1998; 9
Griffin BA (e_1_3_4_2_2) 1998; 281
Hagan RM (e_1_3_4_12_2) 2010; 49
Chivers CE (e_1_3_4_46_2) 2010; 7
Perumal SK (e_1_3_4_47_2) 2010; 51
Nonaka H (e_1_3_4_32_2) 2007; 129
Hu XQ (e_1_3_4_28_2) 2011; 133
Moy VT (e_1_3_4_20_2) 1994; 266
e_1_1_2_17_10_5_2
e_1_1_2_17_10_3_2
Vogel V (e_1_3_4_49_2) 2009; 21
e_1_1_2_17_10_1_2
Horne WS (e_1_3_4_9_2) 2008; 41
Huang J (e_1_3_4_24_2) 2009; 48
Crampton N (e_1_3_4_23_2) 2010; 20
Uttamapinant C (e_1_3_4_33_2) 2010; 107
Allen KN (e_1_3_4_3_2) 2010; 14
Chin JW (e_1_3_4_37_2) 2002; 124
Kang HJ (e_1_3_4_10_2) 2010; 36
Chattopadhaya S (e_1_3_4_36_2) 2008; 9
Rodriguez P (e_1_3_4_31_2) 2006; 338
Kang HJ (e_1_3_4_25_2) 2007; 318
Siebold C (e_1_3_4_43_2) 2002; 96
Suchanek M (e_1_3_4_39_2) 2005; 2
Halo TL (e_1_3_4_4_2) 2009; 131
Kent SB (e_1_3_4_35_2) 2009; 38
Woolfson DN (e_1_3_4_34_2) 2005; 70
Kullmann W (e_1_3_4_16_2) 1985; 4
Zakeri B (e_1_3_4_29_2) 2010; 132
Marszalek PE (e_1_3_4_19_2) 1999; 402
References_xml – volume: 7
  start-page: 391
  year: 2010
  ident: e_1_3_4_46_2
  article-title: A streptavidin variant with slower biotin dissociation and increased mechanostability
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1450
  contributor:
    fullname: Chivers CE
– volume: 42
  start-page: 4872
  year: 2003
  ident: e_1_3_4_8_2
  article-title: Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.200200565
  contributor:
    fullname: Houk KN
– volume: 49
  start-page: 8421
  year: 2010
  ident: e_1_3_4_12_2
  article-title: NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201004340
  contributor:
    fullname: Hagan RM
– ident: e_1_1_2_17_10_3_2
  doi: 10.1016/j.ceb.2009.01.002
– volume: 21
  start-page: 38
  year: 2009
  ident: e_1_3_4_49_2
  article-title: Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2009.01.002
  contributor:
    fullname: Vogel V
– volume: 266
  start-page: 257
  year: 1994
  ident: e_1_3_4_20_2
  article-title: Intermolecular forces and energies between ligands and receptors
  publication-title: Science
  doi: 10.1126/science.7939660
  contributor:
    fullname: Moy VT
– volume: 580
  start-page: 505
  year: 2006
  ident: e_1_3_4_21_2
  article-title: Dynamic force spectroscopy of the digoxigenin-antibody complex
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.12.052
  contributor:
    fullname: Neuert G
– volume: 2
  start-page: 1126
  year: 2007
  ident: e_1_3_4_42_2
  article-title: Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.152
  contributor:
    fullname: Tavassoli A
– volume: 318
  start-page: 1625
  year: 2007
  ident: e_1_3_4_25_2
  article-title: Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure
  publication-title: Science
  doi: 10.1126/science.1145806
  contributor:
    fullname: Kang HJ
– volume: 20
  start-page: 508
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Unravelling the design principles for single protein mechanical strength
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2010.05.005
  contributor:
    fullname: Crampton N
– volume: 63
  start-page: 2992
  year: 2006
  ident: e_1_3_4_45_2
  article-title: Genetically engineered avidins and streptavidins
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-006-6288-z
  contributor:
    fullname: Laitinen OH
– volume: 3
  start-page: 707
  year: 2007
  ident: e_1_3_4_15_2
  article-title: Sortagging: a versatile method for protein labeling
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2007.31
  contributor:
    fullname: Popp MW
– volume: 9
  start-page: 102
  year: 1998
  ident: e_1_3_4_44_2
  article-title: Strategies for selection of antibodies by phage display
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/S0958-1669(98)80092-X
  contributor:
    fullname: Griffiths AD
– volume: 1694
  start-page: 269
  year: 2004
  ident: e_1_3_4_26_2
  article-title: Protein sorting to the cell wall envelope of Gram-positive bacteria
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2004.04.014
  contributor:
    fullname: Ton-That H
– ident: e_1_1_2_17_10_2_2
  doi: 10.1016/j.tibs.2010.09.007
– volume: 5
  start-page: 103
  year: 1995
  ident: e_1_3_4_6_2
  article-title: Protein-peptide interactions
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/0959-440X(95)80015-S
  contributor:
    fullname: Stanfield RL
– volume: 131
  start-page: 438
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid
  publication-title: J Am Chem Soc
  doi: 10.1021/ja807872s
  contributor:
    fullname: Halo TL
– volume: 129
  start-page: 15777
  year: 2007
  ident: e_1_3_4_32_2
  article-title: Non-enzymatic covalent protein labeling using a reactive tag
  publication-title: J Am Chem Soc
  doi: 10.1021/ja074176d
  contributor:
    fullname: Nonaka H
– ident: e_1_1_2_17_10_1_2
  doi: 10.1073/pnas.0804621105
– volume: 48
  start-page: 11834
  year: 2009
  ident: e_1_3_4_24_2
  article-title: A peptide tag system for facile purification and single-molecule immobilization
  publication-title: Biochemistry
  doi: 10.1021/bi901756n
  contributor:
    fullname: Huang J
– volume: 583
  start-page: 909
  year: 2009
  ident: e_1_3_4_14_2
  article-title: The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.02.003
  contributor:
    fullname: Zettler J
– volume: 19
  start-page: 5222
  year: 2009
  ident: e_1_3_4_38_2
  article-title: Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.07.011
  contributor:
    fullname: Lee HS
– volume: 96
  start-page: 163
  year: 2002
  ident: e_1_3_4_43_2
  article-title: Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability
  publication-title: Biophys Chem
  doi: 10.1016/S0301-4622(02)00012-1
  contributor:
    fullname: Siebold C
– volume: 4
  start-page: 1
  year: 1985
  ident: e_1_3_4_16_2
  article-title: Proteases as catalytic agents in peptide synthetic chemistry—shifting the extent of peptide-bond synthesis from a quantite negligible to a quantite considerable
  publication-title: J Protein Chem
  doi: 10.1007/BF01025491
  contributor:
    fullname: Kullmann W
– volume: 82
  start-page: 3214
  year: 2002
  ident: e_1_3_4_48_2
  article-title: Dissecting streptavidin-biotin interaction with a laminar flow chamber
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75664-6
  contributor:
    fullname: Pierres A
– ident: e_1_1_2_17_10_4_2
  doi: 10.1016/j.ymeth.2010.02.011
– ident: e_1_1_2_17_10_5_2
  doi: 10.1038/nmeth.1450
– volume: 41
  start-page: 1399
  year: 2008
  ident: e_1_3_4_9_2
  article-title: Foldamers with heterogeneous backbones
  publication-title: Acc Chem Res
  doi: 10.1021/ar800009n
  contributor:
    fullname: Horne WS
– volume: 51
  start-page: 277
  year: 2010
  ident: e_1_3_4_47_2
  article-title: Analysis of the DNA translocation and unwinding activities of T4 phage helicases
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.02.011
  contributor:
    fullname: Perumal SK
– volume: 132
  start-page: 4526
  year: 2010
  ident: e_1_3_4_29_2
  article-title: Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting
  publication-title: J Am Chem Soc
  doi: 10.1021/ja910795a
  contributor:
    fullname: Zakeri B
– volume: 281
  start-page: 269
  year: 1998
  ident: e_1_3_4_2_2
  article-title: Specific covalent labeling of recombinant protein molecules inside live cells
  publication-title: Science
  doi: 10.1126/science.281.5374.269
  contributor:
    fullname: Griffin BA
– volume: 338
  start-page: 305
  year: 2006
  ident: e_1_3_4_31_2
  article-title: Isolation of transcription factor complexes by in vivo biotinylation tagging and direct binding to streptavidin beads
  publication-title: Methods Mol Biol
  contributor:
    fullname: Rodriguez P
– volume: 285
  start-page: 11235
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.102962
  contributor:
    fullname: Alegre-Cebollada J
– volume: 32
  start-page: 601
  year: 1998
  ident: e_1_3_4_1_2
  article-title: Epitope tagging
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.32.1.601
  contributor:
    fullname: Jarvik JW
– volume: 425
  start-page: 686
  year: 2003
  ident: e_1_3_4_5_2
  article-title: Global analysis of protein localization in budding yeast
  publication-title: Nature
  doi: 10.1038/nature02026
  contributor:
    fullname: Huh WK
– volume: 105
  start-page: 2921
  year: 2005
  ident: e_1_3_4_18_2
  article-title: Mechanochemistry: the mechanical activation of covalent bonds
  publication-title: Chem Rev
  doi: 10.1021/cr030697h
  contributor:
    fullname: Beyer MK
– volume: 392
  start-page: 1221
  year: 2009
  ident: e_1_3_4_30_2
  article-title: Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.07.067
  contributor:
    fullname: Huang J
– volume: 107
  start-page: 10914
  year: 2010
  ident: e_1_3_4_33_2
  article-title: A fluorophore ligase for site-specific protein labeling inside living cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914067107
  contributor:
    fullname: Uttamapinant C
– volume: 402
  start-page: 100
  year: 1999
  ident: e_1_3_4_19_2
  article-title: Mechanical unfolding intermediates in titin modules
  publication-title: Nature
  doi: 10.1038/47083
  contributor:
    fullname: Marszalek PE
– volume: 11
  start-page: 167
  year: 2010
  ident: e_1_3_4_11_2
  article-title: The scottish structural proteomics facility: targets, methods and outputs
  publication-title: Journal of Structural and Functional Genomics
  doi: 10.1007/s10969-010-9090-y
  contributor:
    fullname: Oke M
– volume: 127
  start-page: 6198
  year: 2005
  ident: e_1_3_4_41_2
  article-title: Development of a tandem protein trans-splicing system based on native and engineered split inteins
  publication-title: J Am Chem Soc
  doi: 10.1021/ja042287w
  contributor:
    fullname: Shi J
– volume: 124
  start-page: 9026
  year: 2002
  ident: e_1_3_4_37_2
  article-title: Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli
  publication-title: J Am Chem Soc
  doi: 10.1021/ja027007w
  contributor:
    fullname: Chin JW
– volume: 38
  start-page: 338
  year: 2009
  ident: e_1_3_4_35_2
  article-title: Total chemical synthesis of proteins
  publication-title: Chem Soc Rev
  doi: 10.1039/B700141J
  contributor:
    fullname: Kent SB
– volume: 14
  start-page: 247
  year: 2010
  ident: e_1_3_4_3_2
  article-title: Lanthanide-tagged proteins--an illuminating partnership
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2010.01.004
  contributor:
    fullname: Allen KN
– volume: 25
  start-page: 53
  year: 2012
  ident: e_1_3_4_22_2
  article-title: Nonspecific interactions in AFM force spectroscopy measurements
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.2152
  contributor:
    fullname: Celik E
– volume: 2
  start-page: 261
  year: 2005
  ident: e_1_3_4_39_2
  article-title: Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth752
  contributor:
    fullname: Suchanek M
– volume: 8
  start-page: 287
  year: 2009
  ident: e_1_3_4_17_2
  article-title: Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M800272-MCP200
  contributor:
    fullname: McDonald CA
– volume: 11
  start-page: 883
  year: 2002
  ident: e_1_3_4_7_2
  article-title: Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site
  publication-title: Protein Sci
  doi: 10.1110/ps.4150102
  contributor:
    fullname: Korndorfer IP
– volume: 13
  start-page: 1200
  year: 2011
  ident: e_1_3_4_13_2
  article-title: The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2011.01610.x
  contributor:
    fullname: Amelung S
– volume: 36
  start-page: 229
  year: 2010
  ident: e_1_3_4_10_2
  article-title: Intramolecular isopeptide bonds: protein crosslinks built for stress?
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2010.09.007
  contributor:
    fullname: Kang HJ
– volume: 9
  start-page: 677
  year: 2008
  ident: e_1_3_4_36_2
  article-title: In vivo imaging of a bacterial cell division protein using a protease-assisted small-molecule labeling approach
  publication-title: Chembiochem
  doi: 10.1002/cbic.200700647
  contributor:
    fullname: Chattopadhaya S
– volume: 132
  start-page: 14819
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104609m
  contributor:
    fullname: Hancock SM
– volume: 133
  start-page: 478
  year: 2011
  ident: e_1_3_4_28_2
  article-title: Autocatalytic intramolecular isopeptide bond formation in gram-positive bacterial pili: a QM/MM simulation
  publication-title: J Am Chem Soc
  doi: 10.1021/ja107513t
  contributor:
    fullname: Hu XQ
– volume: 70
  start-page: 79
  year: 2005
  ident: e_1_3_4_34_2
  article-title: The design of coiled-coil structures and assemblies
  publication-title: Adv Protein Chem
  doi: 10.1016/S0065-3233(05)70004-8
  contributor:
    fullname: Woolfson DN
SSID ssj0009580
Score 2.6450307
Snippet Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains...
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E690
SubjectTerms Adhesins
Adhesins, Bacterial - metabolism
amides
Amides - chemistry
Bacteria
Biological Sciences
Biophysics - methods
Boiling
Cell Membrane - metabolism
Cell surface
Cells
Chemical bonds
engineering
Fibronectin-binding protein
Fibronectins - chemistry
HeLa Cells
Humans
Hydrogen-Ion Concentration
Mammalian cells
mammals
Microscopy, Atomic Force - methods
mixing
Molecular Sequence Data
Molecules
Peptides
Peptides - chemistry
pH effects
PNAS Plus
Protein Binding
Protein Engineering - methods
Protein interaction
Protein Structure, Tertiary
Proteins
Spectrometry, Mass, Electrospray Ionization - methods
Spectroscopy
Spectrum analysis
Splitting
Streptococcus pyogenes
Streptococcus pyogenes - metabolism
Temperature
Temperature effects
Thermodynamics
Title Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
URI http://www.pnas.org/content/109/12/E690.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22366317
https://www.proquest.com/docview/935642274
https://search.proquest.com/docview/1014106451
https://search.proquest.com/docview/934258798
https://pubmed.ncbi.nlm.nih.gov/PMC3311370
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2yOfVSmn7FTRtU6CGFOmtL8ko-lpAQCi2BdiE3IVlSYmjkJXb-f0eyvduU9tLzjC0xmtG8QaMngA81ggBqqjK3xtOcV5bmWq5kzhoqini5xLjE9vltdbnmX66r6z2o5rswqWm_Me1p-Hl3Gtrb1Fu5uWuWc5_Y8urrGWNlyUSxXMAC0-9com-ZduV474Ti9sspn_l8BFtugu7jHoEoHV0xEoZicsSUm14r22Wlhddd5DpF7b_hzj_bJ3_LRxfP4OkEJMnnccIHsOfCcziYQrUnJxOf9McXoK5i54p1ZNA3JGJUzFZEk3u9aS1pOnQ1HIGYLlgydChI1A1t-ESmN3yI23EWotiM_M44tra3rm_DS1hfnP84u8yndxXyBvHMkJvKOCqls9JzjG9mqXeFZcLGxzKFNGhbJzwmb8eqRoiVpqVdsUZ7zgWC8ZK9gv3QBXcIxNUaIYY00nnNS6uNrwrurdbU6doLncHJbFe1GekzVDr2FkxF-6rdamRwiHZX-gY3N7X-TmPpFwELIigUJeXdH2pVUnWOlX0GR_MCqSn6elWzCssqrLczeL-VYtjEsxAdXPfQx842XkauvjID8g-dmuGGJkUtM3g9rvh2BrPfZCAe-cJWIbJ2P5agMyf27sl53_z3l0fwBI1DYyMcLd7C_nD_4N4hMhrMccxL1XGKh1-TWQtk
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbSXCvoipQ9X6oFKDRs_snaOFQJtW0BIZSVulh07EAmcFVn-P-M8dkvVXnqeSWyNZzzfyOPPAJ8LBAHM5jR1tmKpyB1LjZqqlJdMZvFyifUd2-fZdDYXPy7zyw3Ix7swXdN-aeuDcHN7EOrrrrdycVtOxj6xyfnpIeeUcplNNuFJzmVBxyJ9xbWr-psnDDdgwcTI6CP5ZBFMG3cJxOnojJEyFNMjJt3uvbJ1XtqsTBPZTlH7b8jzzwbK3zLS8TY8H6Ak-dZPeQc2fHgBO0OwtmR_YJT-8hL0eexdcZ4szRWJKBXzFTHkzixqR8oGnQ1HILYJjiwbFHTkDXX4SoZXfIhfsxai2PYMzzi2cde-rcMrmB8fXRzO0uFlhbRERLNMbW49U8o7VQmMcO5Y5TPHpYvPZUpl0bpeVpi-Pc9LKaeGUTflpamEkAjHKX8NW6EJfheILwyCDGWVr4ygztgqz0TljGHeFJU0CeyPdtWLnkBDdwffkutoX71ejQR20e7aXOH2pue_WCz-ImRBDIWiTnn9h0JTpo-wtk9gb1wgPcRfqwueY2GFFXcCn1ZSDJx4GmKCb-7b2NsmaGTrowmQf-gUHLc0JQuVwJt-xVczGP0mAfnIF1YKkbf7sQTduePvHtz37X9_-RGezi5OT_TJ97Ofe_AMDcViWxzL3sHW8u7ev0ectLQfuqh4AH0RDdM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6aFEovJekrbvpQoYcU6tiW7JV8LGmW9BUW2oXchGRJiSGRl9j5_xn5sZuU9tLzyJYYzWi-QaNvAD6UCAKoLrLYaEfjvDA0VmImYlZRnobHJdr2bJ-ns5Nl_u2sOLvT6qsv2q90fegvrw59fdHXVq6uqmSqE0sWP48YyzLG02RlXLIFDwuGRjYl6mu-XTG8PqF4COc0n1h9OEtWXrXhpECsjgYZaEMxRGLg7XuWbWLTllNNYDzF0X9Dn38WUd6JSvMdeDLCSfJ5WPYuPLD-KeyODtuSg5FV-uMzkItQv2Is6dQ5CUgVYxZR5FqtakOqBg0OZyC68YZ0DQp6AofafyJjJx9iN8yFKNYDyzPOrcyFbWv_HJbz499HJ_HYXSGuENV0sS60pUJYI1yOXs4MdTY1jJvQMpMLjRq23GEIt6yoOJ8pmpkZq5TLc46QPGMvYNs33u4BsaVCoCG0sE7lmVHaFWnujFLUqtJxFcHBpFe5Gkg0ZH_5zZkM-pWb3YhgD_Uu1TkecXL5i4YEMMAWxFEo6gdv_lDKjMpjzO8j2J82SI4-2MqSFZhcYdYdwfu1FJ0n3Igob5ubNtS35Vlg7MsiIP8YUzI81gQvRQQvhx1fr2Cymwj4PVtYDwjc3fclaNI9h_dowq_--8t38GjxZS5_fD39vg-PUU80VMbR9DVsd9c39g1CpU6_7Z3iFmhZDuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+tag+forming+a+rapid+covalent+bond+to+a+protein%2C+through+engineering+a+bacterial+adhesin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bijan+Zakeri&rft.au=Jacob+O.+Fierer&rft.au=Emrah+Celik&rft.au=Emily+C.+Chittock&rft.date=2012-03-20&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=12&rft.spage=E690&rft_id=info:doi/10.1073%2Fpnas.1115485109&rft_id=info%3Apmid%2F22366317&rft.externalDBID=n%2Fa&rft.externalDocID=109_12_E690
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F12.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F12.cover.gif