Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtai...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 12; pp. E690 - E697 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.03.2012
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. |
---|---|
AbstractList | Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. [PUBLICATION ABSTRACT] Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures. For decades people have studied how force affects the body, such as exercise leading to a bigger heart and stronger bones. Many of the biological effects of force at the molecular level have only started to be appreciated in recent years ( 3 ). Proteins that can turn activated chemical precursors into movement (termed molecular motors), such as those synthesizing RNA or moving cargo on tracks around the cell, are able to break the strongest noncovalent interactions in seconds ( 4 , 5 ). For this reason it has been difficult to provide barriers or locks to such motors inside cells. Using the atomic force microscope, one can tug on single molecules and by pulling hard enough even snap covalent bonds; SpyTag held on to SpyCatcher at forces dramatically greater than gold-standard noncovalent interactions. Molecular motors should not be able to break the covalent bond formed by SpyTag, so this system should provide a way to control motor activity and thereby determine the role of the motor’s force generation for the cell. Interactions among peptides or proteins in the cell nearly always occur through transient noncovalent interactions. This transience is because the macromolecular machines of the cell are not built to last, but are constantly dismantled and rebuilt so the cell can respond to rapidly changing circumstances. Exceptions are the covalent bonds formed between proteins that provide strength to hair and skin. When proteins interact through covalent bonds, such as those catalyzed by transglutaminase enzymes, proteins are often cross-linked indiscriminately. Hence transglutaminase is exploited in industry (and avant-garde haute cuisine) to bond together diverse proteins and so provide texture to food. Unlike transglutaminases, SpyTag and SpyCatcher formed a covalent bond with high specificity at the surface of human cells: SpyTag and SpyCatcher reacted with each other but not the many other proteins present. Many protein-catalyzed reactions are highly sensitive to their conditions, occurring only within a narrow range of pH values and temperatures and requiring particular cofactors or metal ions. The SpyTag reaction, by contrast, worked well in all buffers tested, including in the presence of detergents. The reaction also proceeded well over a range of temperatures, from ice-cold to body temperature, while bond formation proceeded efficiently at neutral pH and under the more acidic conditions found in certain cellular compartments. With this high tolerance to its surroundings and requiring no artificial amino acids or added cofactors, SpyTag may find use in a wide range of situations inside and outside of the cell. Abbreviating Streptococcus pyogenes to Spy, we termed the peptide “SpyTag” and the protein partner “SpyCatcher” ( Fig. P1 ). We found that SpyTag docked with SpyCatcher and then rapidly formed an amide bond, thereby locking the two partners together. Both SpyTag and SpyCatcher are composed of the usual 20 amino acids common to all organisms. Therefore, they can be genetically fused to any protein of interest and expressed in different organisms, or alternatively purified by overexpressing in biochemists’ favorite factotum, Escherichia coli . Fig. P1. A domain of a protein involved in binding to human cells, from an invasive strain of Streptococcus pyogenes (Spy), was genetically dissected to generate a protein partner (SpyCatcher) and a peptide tag (SpyTag) (cartoon based on the crystal structure 2X5P). Upon mixing, SpyCatcher and SpyTag reacted rapidly and specifically to form a spontaneous amide bond, which was not reversed by boiling or mechanical stress. Fusion to SpyTag should provide a simple tool for irreversibly grasping proteins inside or outside cells. Here, through rational protein engineering, we have harnessed the protein chemistry of this pathogen to develop a tool for biochemical research. The bacterium uses the protein FbaB to help invade human cells. We genetically split a domain of FbaB into two parts- a small peptide component and a larger protein component. Thus, rather than the amide bond formation occurring within the protein, amide bond formation could serve to lock two separate molecules together. The bacterium Streptococcus pyogenes causes a range of illnesses, from sore throats to life-threatening necrotizing fasciitis, also known as “flesh-eating bacteria syndrome.” While most organisms stabilize proteins by disulfide bonds (-S-S-), Streptococcus pyogenes grows well in low oxygen environments, where it is hard to form such bonds. Like a number of other bacterial species, Streptococcus pyogenes has evolved a special chemistry which endows some of its proteins with high stability ( 1 ): two amino acid side chains spontaneously react to form an amide bond (between lysine and aspartic acid or asparagine) ( 2 ). This reaction irreversibly locks together distant parts of the protein. Manipulating and observing proteins is at the heart of biochemical research. Antibodies are important observers, with the ability to recognize one type of protein amidst thousands. Rather than recognizing the whole protein, many antibodies recognize just a short stretch of the amino acids that comprise the protein, a ‘peptide tag.’ This peptide tag can often be genetically transferred to a new protein, so that one immediately can use the same antibody to follow where this new protein travels and what partners it associates with. However, antibodies and other binding proteins struggle to get a firm grip on tags, as a result of the tag’s small size and flexibility. Inspired by chemistry from a flesh-eating bacterium, we developed a way to rapidly bind a peptide tag and never let go. |
Author | Zakeri, Bijan Celik, Emrah Chittock, Emily C Schwarz-Linek, Ulrich Fierer, Jacob O Moy, Vincent T Howarth, Mark |
Author_xml | – sequence: 1 fullname: Zakeri, Bijan – sequence: 2 fullname: Fierer, Jacob O – sequence: 3 fullname: Celik, Emrah – sequence: 4 fullname: Chittock, Emily C – sequence: 5 fullname: Schwarz-Linek, Ulrich – sequence: 6 fullname: Moy, Vincent T – sequence: 7 fullname: Howarth, Mark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22366317$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9vFCEcxYmpsdvq2ZsSL3pwW77ADMzFxDT1R9JEE-2ZMMN3ZmlmYYSZJv73stm1qx68AMn3814ePM7ISYgBCXkO7AKYEpdTsPkCACqpK2DNI7IqK6xr2bATsmKMq7WWXJ6Ss5zvGGNNpdkTcsq5qGsBakXMV5xm75DOdqB9TFsfBmppspN3tIv3dsQw0zYGR-dYBlOKM_rwls6bFJdhQzEMPiCmva613VzOdqTWbTD78JQ87u2Y8dlhPye3H66_X31a33z5-Pnq_c26q4HP67ZqkWuNTvdSMBCO98icUA5YVSndglCoesYliqpTqrYcXC0620uplOIgzsm7ve-0tFt0XUmd7Gim5Lc2_TTRevP3JPiNGeK9EQKKOSsGrw8GKf5YMM9m63OH42gDxiWbRkheadXoQr75LwkMJLBaVrtUr_5B7-KSQnmI4lfVknMlC3S5h7oUc07YP6QGZnYtm13L5thyUbz487IP_O9aC_DyAOyUR7vGADfXdcOORG-jsUPy2dx-4yV5-SQaRNOIX8FjuAA |
CitedBy_id | crossref_primary_10_1002_bit_28303 crossref_primary_10_1021_acssynbio_0c00367 crossref_primary_10_1002_bip_22639 crossref_primary_10_1021_acs_jafc_1c03309 crossref_primary_10_1111_1462_2920_15051 crossref_primary_10_1093_protein_gzac011 crossref_primary_10_1093_protein_gzac014 crossref_primary_10_3389_fbioe_2022_915035 crossref_primary_10_1038_s41557_020_0528_y crossref_primary_10_3389_fbioe_2015_00191 crossref_primary_10_1007_s12551_021_00822_9 crossref_primary_10_3389_fbioe_2023_1096363 crossref_primary_10_1016_j_mattod_2015_04_002 crossref_primary_10_1038_s41565_020_00785_0 crossref_primary_10_1021_acs_jafc_3c08071 crossref_primary_10_3390_molecules25061472 crossref_primary_10_3390_fermentation8100498 crossref_primary_10_1021_acscatal_7b03445 crossref_primary_10_1016_j_celrep_2021_109084 crossref_primary_10_3390_vaccines11020219 crossref_primary_10_1002_bit_27460 crossref_primary_10_1021_acscatal_9b02413 crossref_primary_10_1002_ange_202013486 crossref_primary_10_1186_s12936_016_1574_1 crossref_primary_10_1016_j_pep_2015_09_021 crossref_primary_10_1021_acs_oprd_1c00424 crossref_primary_10_3390_pharmaceutics15020515 crossref_primary_10_1080_19420862_2023_2177978 crossref_primary_10_1016_j_giant_2022_100092 crossref_primary_10_1021_acssynbio_8b00266 crossref_primary_10_1021_acsmacrolett_8b00147 crossref_primary_10_1021_acs_bioconjchem_6b00138 crossref_primary_10_1021_acsnano_1c04556 crossref_primary_10_3389_fmicb_2020_01496 crossref_primary_10_1021_acs_analchem_0c03992 crossref_primary_10_1002_chem_201805506 crossref_primary_10_7554_eLife_38430 crossref_primary_10_1038_s42004_020_0267_4 crossref_primary_10_1038_s41467_018_05793_2 crossref_primary_10_2147_IJN_S329855 crossref_primary_10_3389_fpls_2019_00158 crossref_primary_10_1021_acs_orglett_9b00759 crossref_primary_10_1042_BST20190283 crossref_primary_10_1186_s12943_024_01938_8 crossref_primary_10_3389_fphar_2019_01450 crossref_primary_10_1002_ange_201705194 crossref_primary_10_3390_vaccines11020436 crossref_primary_10_1177_1535370219855401 crossref_primary_10_1021_acsami_9b21776 crossref_primary_10_1016_j_virol_2023_01_017 crossref_primary_10_3389_fcimb_2023_1216364 crossref_primary_10_7554_eLife_06638 crossref_primary_10_3389_fbioe_2015_00168 crossref_primary_10_1002_adbi_201800288 crossref_primary_10_1002_anie_201402519 crossref_primary_10_1186_s12951_016_0181_1 crossref_primary_10_1016_j_addr_2022_114358 crossref_primary_10_1021_acscatal_4c00056 crossref_primary_10_1186_s13045_022_01247_x crossref_primary_10_1038_s41467_022_28623_y crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1126_science_aaw8208 crossref_primary_10_1039_C7CC04507G crossref_primary_10_1186_s12915_019_0691_z crossref_primary_10_1039_C9ME00027E crossref_primary_10_1371_journal_pone_0179740 crossref_primary_10_1016_j_copbio_2017_10_006 crossref_primary_10_1039_D2MH01231F crossref_primary_10_1002_biot_201700195 crossref_primary_10_1021_acssynbio_7b00404 crossref_primary_10_1021_acsabm_0c00940 crossref_primary_10_1038_s41596_024_00965_5 crossref_primary_10_1038_srep07266 crossref_primary_10_1021_acschembio_3c00084 crossref_primary_10_1073_pnas_1519214113 crossref_primary_10_1039_C9PY00337A crossref_primary_10_1038_srep19234 crossref_primary_10_1073_pnas_2116871119 crossref_primary_10_3390_ijms21186551 crossref_primary_10_1021_acs_biomac_2c00765 crossref_primary_10_1084_jem_20221391 crossref_primary_10_1021_acsami_2c06924 crossref_primary_10_1016_j_bpj_2021_05_003 crossref_primary_10_7554_eLife_52716 crossref_primary_10_1016_j_mtbio_2022_100455 crossref_primary_10_1021_acschembio_3c00074 crossref_primary_10_1128_jvi_00383_22 crossref_primary_10_1002_bit_28523 crossref_primary_10_1039_C9SC04158C crossref_primary_10_1371_journal_ppat_1009897 crossref_primary_10_1016_j_nbt_2021_07_004 crossref_primary_10_1039_D4SM00131A crossref_primary_10_1002_ange_201904943 crossref_primary_10_1021_acs_bioconjchem_3c00060 crossref_primary_10_1038_s41586_023_06282_3 crossref_primary_10_3390_vaccines10040485 crossref_primary_10_1002_cbic_202300223 crossref_primary_10_1038_s41541_024_00891_3 crossref_primary_10_1246_cl_210307 crossref_primary_10_1002_ange_202216371 crossref_primary_10_1038_s41467_022_31193_8 crossref_primary_10_1128_spectrum_02457_22 crossref_primary_10_1021_acs_bioconjchem_7b00174 crossref_primary_10_1039_C8IB00118A crossref_primary_10_3389_fpls_2021_738619 crossref_primary_10_1038_s41594_022_00755_1 crossref_primary_10_1128_mBio_01973_19 crossref_primary_10_1073_pnas_1621350114 crossref_primary_10_3390_nano11092424 crossref_primary_10_3390_nano10051008 crossref_primary_10_1021_acsami_0c16478 crossref_primary_10_1016_j_vetmic_2024_110003 crossref_primary_10_1002_syst_202400027 crossref_primary_10_1038_srep39291 crossref_primary_10_1126_science_abf6840 crossref_primary_10_1002_advs_202400049 crossref_primary_10_1021_acssynbio_9b00504 crossref_primary_10_1039_D3GC01898A crossref_primary_10_1002_cam4_5778 crossref_primary_10_1002_cpz1_99 crossref_primary_10_1016_j_procbio_2023_10_003 crossref_primary_10_3390_ijms221910180 crossref_primary_10_1016_j_biomaterials_2023_121994 crossref_primary_10_1021_acs_nanolett_3c01163 crossref_primary_10_1016_j_jmb_2023_167975 crossref_primary_10_1038_s41598_019_54539_7 crossref_primary_10_1002_ange_201701419 crossref_primary_10_1016_j_aca_2021_338907 crossref_primary_10_1016_j_immuni_2020_11_015 crossref_primary_10_1093_nsr_nwz104 crossref_primary_10_1016_j_jchromb_2023_123591 crossref_primary_10_1016_j_tibtech_2020_10_009 crossref_primary_10_1093_protein_gzx059 crossref_primary_10_1002_cbic_201800538 crossref_primary_10_1016_j_biortech_2024_130786 crossref_primary_10_1016_j_bios_2022_114441 crossref_primary_10_1016_j_ymben_2019_04_011 crossref_primary_10_1002_psc_3474 crossref_primary_10_1103_PhysRevX_10_021001 crossref_primary_10_1002_jsfa_12907 crossref_primary_10_1021_acssynbio_2c00244 crossref_primary_10_1002_smll_201502429 crossref_primary_10_1016_j_bbrc_2020_05_169 crossref_primary_10_1038_s42004_021_00592_1 crossref_primary_10_1002_anie_201911383 crossref_primary_10_3390_ijms21197222 crossref_primary_10_1038_srep43564 crossref_primary_10_1016_j_biteb_2023_101695 crossref_primary_10_1073_pnas_2122900119 crossref_primary_10_3390_vaccines10050637 crossref_primary_10_1021_acs_biomac_8b00190 crossref_primary_10_1021_ma401724p crossref_primary_10_1016_j_ijbiomac_2022_12_006 crossref_primary_10_1002_smll_202101066 crossref_primary_10_1021_acs_biomac_2c00544 crossref_primary_10_1016_j_apmt_2020_100575 crossref_primary_10_1002_smll_202206160 crossref_primary_10_1016_j_enzmictec_2018_04_007 crossref_primary_10_3390_pathogens12121388 crossref_primary_10_1038_s41467_021_23812_7 crossref_primary_10_1088_1361_6528_ac842c crossref_primary_10_1126_scitranslmed_abk1533 crossref_primary_10_3390_ijms20143560 crossref_primary_10_1126_sciadv_aba1425 crossref_primary_10_1186_s12934_023_02229_5 crossref_primary_10_1002_bit_25637 crossref_primary_10_1021_jacs_6b13146 crossref_primary_10_1002_bit_25638 crossref_primary_10_1021_acs_bioconjchem_8b00458 crossref_primary_10_1007_s11426_017_9155_2 crossref_primary_10_1002_cbic_202100472 crossref_primary_10_1002_adfm_202313944 crossref_primary_10_1021_acsinfecdis_1c00276 crossref_primary_10_1038_s41593_021_00843_3 crossref_primary_10_1016_j_jconrel_2021_05_029 crossref_primary_10_1038_s42005_024_01650_5 crossref_primary_10_1002_cjoc_202000101 crossref_primary_10_1021_acs_analchem_8b04344 crossref_primary_10_1021_acs_langmuir_1c01699 crossref_primary_10_1021_acs_est_2c08971 crossref_primary_10_1016_j_bej_2021_108182 crossref_primary_10_1021_acsabm_1c01204 crossref_primary_10_1038_srep21151 crossref_primary_10_1016_j_ijbiomac_2021_10_135 crossref_primary_10_1021_acs_biomac_9b00183 crossref_primary_10_1016_j_arcmed_2023_02_003 crossref_primary_10_1016_j_ijbiomac_2023_127946 crossref_primary_10_1038_s41589_018_0169_2 crossref_primary_10_1039_D2CC05335G crossref_primary_10_3390_v15020375 crossref_primary_10_1007_s11274_020_2809_4 crossref_primary_10_1016_j_bmc_2020_115946 crossref_primary_10_3390_molecules25040978 crossref_primary_10_1073_pnas_1315776111 crossref_primary_10_1039_C7OB00391A crossref_primary_10_1002_cctc_202100604 crossref_primary_10_1021_acsnano_3c11559 crossref_primary_10_1038_s41589_018_0025_4 crossref_primary_10_1038_s41551_021_00734_9 crossref_primary_10_1073_pnas_1608271113 crossref_primary_10_1016_j_addr_2020_10_017 crossref_primary_10_1002_cbic_202100468 crossref_primary_10_1016_j_nantod_2021_101350 crossref_primary_10_1093_nar_gkad1108 crossref_primary_10_1021_acs_biomac_1c01314 crossref_primary_10_1021_acsapm_9b01061 crossref_primary_10_1038_s41586_019_1660_y crossref_primary_10_1016_j_biortech_2024_130505 crossref_primary_10_1016_j_ijbiomac_2022_04_213 crossref_primary_10_3390_cancers13235881 crossref_primary_10_1016_j_biotechadv_2020_107535 crossref_primary_10_3389_fmicb_2021_616508 crossref_primary_10_1016_j_polymer_2018_09_017 crossref_primary_10_1038_s42003_022_03443_4 crossref_primary_10_1002_anie_201707623 crossref_primary_10_1016_j_addr_2022_114321 crossref_primary_10_1021_acscatal_2c00846 crossref_primary_10_1021_jacs_9b01261 crossref_primary_10_3390_v16060936 crossref_primary_10_1021_acs_nanolett_3c04497 crossref_primary_10_1021_acs_nanolett_9b01974 crossref_primary_10_1371_journal_pone_0247963 crossref_primary_10_1016_j_biotechadv_2020_107547 crossref_primary_10_1038_srep24866 crossref_primary_10_1039_D2CS00595F crossref_primary_10_3390_v12010035 crossref_primary_10_1021_acsnano_2c07298 crossref_primary_10_1021_acsomega_0c03750 crossref_primary_10_1038_s41557_024_01520_1 crossref_primary_10_1016_j_trechm_2022_02_004 crossref_primary_10_3389_fimmu_2018_01432 crossref_primary_10_1021_acs_biomac_1c00481 crossref_primary_10_1002_smll_201801488 crossref_primary_10_1016_j_chroma_2024_465107 crossref_primary_10_1021_acsestwater_1c00208 crossref_primary_10_1021_acschembio_1c00835 crossref_primary_10_3390_ijms20092129 crossref_primary_10_1002_biot_202200560 crossref_primary_10_1002_adhm_202101844 crossref_primary_10_1128_AEM_02567_17 crossref_primary_10_1039_D1CS01004B crossref_primary_10_1021_acs_chemrev_3c00549 crossref_primary_10_1021_acs_biomac_2c01150 crossref_primary_10_1038_s41551_022_00871_9 crossref_primary_10_1002_1873_3468_14171 crossref_primary_10_3390_genes9070370 crossref_primary_10_1039_C9CC06374A crossref_primary_10_1038_s41541_021_00417_1 crossref_primary_10_1158_2326_6066_CIR_23_0926 crossref_primary_10_7554_eLife_64061 crossref_primary_10_1016_j_polymer_2017_08_008 crossref_primary_10_3390_ijms241512072 crossref_primary_10_1016_j_jbc_2021_100837 crossref_primary_10_26508_lsa_202201631 crossref_primary_10_3390_v13112237 crossref_primary_10_1016_j_crmeth_2022_100278 crossref_primary_10_1016_j_jmb_2013_09_016 crossref_primary_10_1016_j_bioeco_2023_100049 crossref_primary_10_1073_pnas_1700269114 crossref_primary_10_3390_catal11040409 crossref_primary_10_1002_cbic_202100381 crossref_primary_10_1085_jgp_202012729 crossref_primary_10_1021_jacs_2c00129 crossref_primary_10_3389_fbioe_2024_1344260 crossref_primary_10_1021_acs_jafc_4c00685 crossref_primary_10_1016_j_jconrel_2022_12_022 crossref_primary_10_1126_science_adf6591 crossref_primary_10_3389_fbioe_2022_903982 crossref_primary_10_1126_sciadv_abm5482 crossref_primary_10_1155_2019_4963289 crossref_primary_10_1016_j_scitotenv_2023_168098 crossref_primary_10_1088_1361_6528_acdf65 crossref_primary_10_3390_s22093144 crossref_primary_10_1021_jacs_1c03079 crossref_primary_10_1038_srep38019 crossref_primary_10_1016_j_trac_2016_01_024 crossref_primary_10_1002_ceat_201900073 crossref_primary_10_1016_j_ijbiomac_2022_10_126 crossref_primary_10_3390_molecules28030917 crossref_primary_10_1038_srep42753 crossref_primary_10_1016_j_bios_2021_113349 crossref_primary_10_3390_v15020346 crossref_primary_10_1016_j_jneumeth_2021_109348 crossref_primary_10_1016_j_ejps_2023_106460 crossref_primary_10_1038_s41467_020_15321_w crossref_primary_10_1002_cjoc_202000083 crossref_primary_10_3390_antib7010004 crossref_primary_10_1002_mabi_201600554 crossref_primary_10_1016_j_matt_2019_11_011 crossref_primary_10_1016_j_vaccine_2024_02_027 crossref_primary_10_1039_D3RA04591A crossref_primary_10_1093_jb_mvx023 crossref_primary_10_1016_j_jmb_2013_10_021 crossref_primary_10_1016_j_nbt_2018_12_003 crossref_primary_10_1021_acsomega_3c09741 crossref_primary_10_1021_acsabm_0c01195 crossref_primary_10_1002_adfm_202200799 crossref_primary_10_1002_anie_202308472 crossref_primary_10_1016_j_ijbiomac_2023_123577 crossref_primary_10_1016_j_celrep_2019_04_046 crossref_primary_10_1002_anie_202216371 crossref_primary_10_1016_j_immuni_2019_02_008 crossref_primary_10_1021_jacs_1c06169 crossref_primary_10_3390_vaccines9060539 crossref_primary_10_1021_acs_biochem_0c00205 crossref_primary_10_1021_acsami_8b02717 crossref_primary_10_3389_fpls_2021_710869 crossref_primary_10_5796_denkikagaku_24_FE0015 crossref_primary_10_1038_s41467_019_09678_w crossref_primary_10_1038_s41565_024_01655_9 crossref_primary_10_1021_acssynbio_1c00252 crossref_primary_10_5796_denkikagaku_24_FE0012 crossref_primary_10_5796_denkikagaku_24_FE0013 crossref_primary_10_1073_pnas_1909653116 crossref_primary_10_1002_cctc_202000145 crossref_primary_10_3389_fmats_2020_00202 crossref_primary_10_1021_bc500134w crossref_primary_10_1021_jacs_8b02665 crossref_primary_10_3390_ijms25052859 crossref_primary_10_1016_j_cbpa_2015_10_002 crossref_primary_10_1002_adtp_202000043 crossref_primary_10_1021_acs_jpclett_0c03852 crossref_primary_10_1021_acs_langmuir_2c03332 crossref_primary_10_1080_2162402X_2024_2316945 crossref_primary_10_1002_cbic_202000850 crossref_primary_10_1016_j_cogsc_2020_100380 crossref_primary_10_3389_fimmu_2023_1123805 crossref_primary_10_1038_s41423_021_00736_2 crossref_primary_10_1021_acsomega_0c04668 crossref_primary_10_1016_j_polymer_2023_125916 crossref_primary_10_3390_ijms20174228 crossref_primary_10_1186_s12934_021_01668_2 crossref_primary_10_3390_cells13050426 crossref_primary_10_1073_pnas_2102164118 crossref_primary_10_1007_s40259_022_00544_8 crossref_primary_10_1111_febs_15508 crossref_primary_10_1021_acssynbio_9b00407 crossref_primary_10_1186_s13068_016_0490_5 crossref_primary_10_1016_j_febslet_2014_04_033 crossref_primary_10_1002_biot_202000087 crossref_primary_10_1002_biot_202000086 crossref_primary_10_1002_smll_201805558 crossref_primary_10_1021_acsanm_8b00520 crossref_primary_10_1016_j_virusres_2018_06_014 crossref_primary_10_3389_fmicb_2020_00890 crossref_primary_10_1128_JCM_01689_20 crossref_primary_10_1158_0008_5472_CAN_12_2956 crossref_primary_10_1002_ange_201511640 crossref_primary_10_1039_C6CC09899A crossref_primary_10_1002_cbic_202200700 crossref_primary_10_1016_j_chembiol_2021_07_005 crossref_primary_10_1016_j_bej_2024_109319 crossref_primary_10_3390_catal9020164 crossref_primary_10_1021_acsabm_2c00275 crossref_primary_10_1002_cjoc_201800475 crossref_primary_10_1016_j_jcis_2023_08_016 crossref_primary_10_1038_s41467_018_07145_6 crossref_primary_10_1371_journal_pone_0273322 crossref_primary_10_1016_j_cclet_2017_08_052 crossref_primary_10_1016_j_ccr_2023_215385 crossref_primary_10_1002_bip_23563 crossref_primary_10_1016_j_ijbiomac_2024_129365 crossref_primary_10_3389_fimmu_2023_1131057 crossref_primary_10_2139_ssrn_4104072 crossref_primary_10_1016_j_greenca_2023_07_001 crossref_primary_10_1039_C9SC00034H crossref_primary_10_3390_ijerph19148408 crossref_primary_10_1002_cbic_201500372 crossref_primary_10_1016_j_chom_2019_07_007 crossref_primary_10_1038_s41467_023_37742_z crossref_primary_10_1101_cshperspect_a024018 crossref_primary_10_1021_acs_bioconjchem_4c00169 crossref_primary_10_1021_acsnano_2c08840 crossref_primary_10_1016_j_ijbiomac_2022_01_018 crossref_primary_10_1134_S0026893319030154 crossref_primary_10_1021_acssynbio_8b00423 crossref_primary_10_1002_elsc_202100087 crossref_primary_10_1016_j_jare_2021_06_010 crossref_primary_10_1021_acsmacrolett_8b00668 crossref_primary_10_1016_j_coche_2016_08_016 crossref_primary_10_1021_jacs_3c07811 crossref_primary_10_1016_j_vaccine_2023_06_070 crossref_primary_10_1016_j_isci_2024_110038 crossref_primary_10_1021_acs_bioconjchem_1c00325 crossref_primary_10_1002_cm_21516 crossref_primary_10_1016_j_bios_2021_113503 crossref_primary_10_1038_s41467_021_25425_6 crossref_primary_10_3390_vaccines11010002 crossref_primary_10_1016_j_molimm_2023_12_001 crossref_primary_10_1186_s12896_018_0466_6 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1371_journal_pone_0263792 crossref_primary_10_1016_j_virol_2022_10_011 crossref_primary_10_3390_mi10120795 crossref_primary_10_1002_adhm_202002140 crossref_primary_10_1111_mmi_14195 crossref_primary_10_1021_acs_bioconjchem_1c00338 crossref_primary_10_1021_acs_bioconjchem_1c00579 crossref_primary_10_1002_anie_202314980 crossref_primary_10_1146_annurev_biochem_032620_104637 crossref_primary_10_3389_fbioe_2020_00044 crossref_primary_10_1021_acsomega_6b00512 crossref_primary_10_3233_BLC_200382 crossref_primary_10_1016_j_vaccine_2017_05_054 crossref_primary_10_1038_s41467_020_20251_8 crossref_primary_10_3390_vaccines10030478 crossref_primary_10_1021_acs_bioconjchem_3c00317 crossref_primary_10_1021_acssynbio_8b00448 crossref_primary_10_1002_ange_202005490 crossref_primary_10_1038_s41467_020_20375_x crossref_primary_10_1002_anie_201701419 crossref_primary_10_1007_s10529_021_03098_x crossref_primary_10_1038_s41598_021_90593_w crossref_primary_10_1128_iai_00245_23 crossref_primary_10_1002_adma_202202972 crossref_primary_10_1016_j_coche_2019_03_002 crossref_primary_10_1039_D0CC00920B crossref_primary_10_1038_s41467_018_03931_4 crossref_primary_10_1101_sqb_2019_84_039222 crossref_primary_10_1021_acscentsci_1c01332 crossref_primary_10_1021_acs_analchem_2c05066 crossref_primary_10_1039_C8CC08720B crossref_primary_10_1038_s41557_020_00586_x crossref_primary_10_2116_analsci_20SCR07 crossref_primary_10_1039_D2TB00592A crossref_primary_10_1093_femsle_fny165 crossref_primary_10_1186_s12951_022_01710_4 crossref_primary_10_1007_s11274_023_03550_2 crossref_primary_10_1042_BST20230229 crossref_primary_10_1073_pnas_1601782113 crossref_primary_10_1002_ange_201810331 crossref_primary_10_1021_acs_biochem_1c00032 crossref_primary_10_1039_C7CC08880A crossref_primary_10_1002_cbic_202200765 crossref_primary_10_1016_j_talanta_2021_122638 crossref_primary_10_3389_fimmu_2023_1215323 crossref_primary_10_3390_biom12070997 crossref_primary_10_1038_s41419_021_03611_0 crossref_primary_10_1002_advs_202307549 crossref_primary_10_1002_ange_202214001 crossref_primary_10_1021_acs_biochem_0c00287 crossref_primary_10_1002_chem_202202157 crossref_primary_10_1002_bit_27261 crossref_primary_10_3390_cancers12113449 crossref_primary_10_1021_acssynbio_8b00223 crossref_primary_10_1016_j_mtbio_2021_100115 crossref_primary_10_1021_acssynbio_0c00616 crossref_primary_10_1016_j_ymeth_2013_03_029 crossref_primary_10_1021_acssynbio_9b00494 crossref_primary_10_1016_j_chroma_2020_460871 crossref_primary_10_1007_s12274_021_3832_y crossref_primary_10_1021_acssensors_3c02664 crossref_primary_10_3389_fimmu_2022_857440 crossref_primary_10_1016_j_ijbiomac_2020_06_141 crossref_primary_10_1016_j_virol_2022_11_013 crossref_primary_10_1038_s41598_019_49233_7 crossref_primary_10_1016_j_matt_2024_03_019 crossref_primary_10_1039_C9RA10983H crossref_primary_10_1038_s41570_023_00556_0 crossref_primary_10_1021_sb300101g crossref_primary_10_1038_s41467_022_33191_2 crossref_primary_10_1002_smll_202204620 crossref_primary_10_3390_ijms23031335 crossref_primary_10_1016_j_chembiol_2022_02_004 crossref_primary_10_1016_j_chroma_2023_463780 crossref_primary_10_1021_acssynbio_0c00636 crossref_primary_10_1021_acs_biomac_6b00566 crossref_primary_10_1021_ja4076452 crossref_primary_10_1002_btm2_10668 crossref_primary_10_1002_anie_201201717 crossref_primary_10_1039_C6CC07363H crossref_primary_10_1021_acsnano_3c01185 crossref_primary_10_1002_ange_201707623 crossref_primary_10_1021_acs_biomac_8b00306 crossref_primary_10_1021_acsmacrolett_8b00845 crossref_primary_10_1039_C9CC04661E crossref_primary_10_1002_cbic_202000473 crossref_primary_10_1038_s41598_020_74105_w crossref_primary_10_1042_BST20160348 crossref_primary_10_1103_PhysRevE_106_024404 crossref_primary_10_1016_j_btre_2021_e00670 crossref_primary_10_1021_jacs_3c12668 crossref_primary_10_1002_cbic_201700411 crossref_primary_10_3390_molecules25184090 crossref_primary_10_1002_ange_202314980 crossref_primary_10_1007_s12274_021_3713_4 crossref_primary_10_1002_cbic_202200316 crossref_primary_10_1016_j_vaccine_2019_09_004 crossref_primary_10_3389_fbioe_2020_00571 crossref_primary_10_3389_fimmu_2019_02931 crossref_primary_10_1021_acs_jpclett_9b01573 crossref_primary_10_1021_acsanm_2c01346 crossref_primary_10_1021_acs_bioconjchem_3c00122 crossref_primary_10_1021_jacs_8b11997 crossref_primary_10_1038_s41586_019_1250_z crossref_primary_10_1021_acscatal_7b02230 crossref_primary_10_1371_journal_ppat_1010573 crossref_primary_10_1016_j_biotechadv_2017_05_003 crossref_primary_10_1080_14760584_2018_1455505 crossref_primary_10_1111_1751_7915_14171 crossref_primary_10_1021_jacs_9b12002 crossref_primary_10_1161_CIRCRESAHA_119_315760 crossref_primary_10_3390_bioengineering10050583 crossref_primary_10_1021_acs_bioconjchem_0c00405 crossref_primary_10_1038_s41467_020_19391_8 crossref_primary_10_1038_s41598_020_74949_2 crossref_primary_10_1021_acs_bioconjchem_8b00783 crossref_primary_10_1038_s41598_020_69990_0 crossref_primary_10_1073_pnas_1720063115 crossref_primary_10_1042_BST20170564 crossref_primary_10_1016_j_trechm_2021_02_002 crossref_primary_10_1021_acssynbio_6b00292 crossref_primary_10_1039_C7SC02686B crossref_primary_10_1039_D0PY00423E crossref_primary_10_3389_fimmu_2021_733064 crossref_primary_10_1021_acs_chemrev_8b00253 crossref_primary_10_1126_sciadv_abg1037 crossref_primary_10_1007_s00449_023_02900_6 crossref_primary_10_7498_aps_65_183601 crossref_primary_10_1038_s41467_021_22634_x crossref_primary_10_1021_acsbiomaterials_1c00941 crossref_primary_10_1039_D3NR05952A crossref_primary_10_1021_acs_biomac_8b00457 crossref_primary_10_3390_molecules26020490 crossref_primary_10_3390_vaccines9030301 crossref_primary_10_1021_acsnano_9b04554 crossref_primary_10_1021_acsbiomedchemau_2c00042 crossref_primary_10_1002_smll_201702151 crossref_primary_10_1021_acs_analchem_9b02096 crossref_primary_10_1016_j_mcat_2022_112188 crossref_primary_10_1021_acsabm_8b00541 crossref_primary_10_1128_mBio_01813_21 crossref_primary_10_1016_j_cclet_2016_12_008 crossref_primary_10_1186_s12951_022_01601_8 crossref_primary_10_1126_sciimmunol_ade6364 crossref_primary_10_1007_s00216_015_8981_y crossref_primary_10_1016_j_copbio_2015_04_003 crossref_primary_10_1021_acschembio_0c00412 crossref_primary_10_1016_j_chempr_2022_07_003 crossref_primary_10_1186_s13007_020_00663_9 crossref_primary_10_1002_bit_27129 crossref_primary_10_1021_acsnano_0c08379 crossref_primary_10_1039_D0CC01174F crossref_primary_10_1002_anie_201705194 crossref_primary_10_1016_j_bioorg_2021_104766 crossref_primary_10_1016_j_ijbiomac_2020_09_237 crossref_primary_10_1021_acs_macromol_0c00664 crossref_primary_10_1039_D2PY00036A crossref_primary_10_1002_admi_202300934 crossref_primary_10_1016_j_jbc_2021_101119 crossref_primary_10_1016_j_jconrel_2022_07_004 crossref_primary_10_1007_s00705_022_05653_x crossref_primary_10_1002_ange_201402519 crossref_primary_10_1002_ange_201911383 crossref_primary_10_1016_j_drudis_2022_03_004 crossref_primary_10_1016_j_jmst_2023_03_036 crossref_primary_10_1021_acs_bioconjchem_0c00456 crossref_primary_10_1002_anie_202013486 crossref_primary_10_1016_j_tibtech_2023_06_009 crossref_primary_10_1002_pro_4335 crossref_primary_10_1038_s41467_019_11285_8 crossref_primary_10_1038_nmeth_4611 crossref_primary_10_1016_j_ijbiomac_2020_11_195 crossref_primary_10_1016_j_xcrm_2021_100448 crossref_primary_10_1038_s41467_021_22867_w crossref_primary_10_3389_fimmu_2023_1184863 crossref_primary_10_1021_acs_analchem_4c00509 crossref_primary_10_1016_j_jbiotec_2020_10_012 crossref_primary_10_1021_acsami_3c18699 crossref_primary_10_1021_acs_nanolett_9b02324 crossref_primary_10_1016_j_virol_2021_12_001 crossref_primary_10_1016_j_bios_2023_115364 crossref_primary_10_1073_pnas_1401291111 crossref_primary_10_1002_advs_202104012 crossref_primary_10_1039_D4CC00183D crossref_primary_10_7554_eLife_25235 crossref_primary_10_1021_acs_jpcb_0c00167 crossref_primary_10_1021_acssuschemeng_1c01742 crossref_primary_10_1002_ange_202010054 crossref_primary_10_1038_s41564_024_01648_3 crossref_primary_10_1111_jth_15528 crossref_primary_10_1016_j_pep_2019_105527 crossref_primary_10_1016_j_jsb_2016_01_009 crossref_primary_10_1039_C6MH00448B crossref_primary_10_1016_j_bios_2020_112885 crossref_primary_10_1016_j_matt_2023_10_012 crossref_primary_10_1016_S2666_5247_22_00337_8 crossref_primary_10_1021_acssuschemeng_3c02296 crossref_primary_10_1016_j_vaccine_2023_12_079 crossref_primary_10_1038_s41598_017_08787_0 crossref_primary_10_3390_ijms24031837 crossref_primary_10_1016_j_omtm_2023_101143 crossref_primary_10_1186_s12951_022_01429_2 crossref_primary_10_3390_mi10110783 crossref_primary_10_1016_j_tibs_2018_07_001 crossref_primary_10_1177_1758835920910347 crossref_primary_10_1016_j_actbio_2020_12_018 crossref_primary_10_1021_acsabm_2c00709 crossref_primary_10_1039_D2CS00848C crossref_primary_10_1021_bc400498p crossref_primary_10_1002_pro_4797 crossref_primary_10_1016_j_pep_2019_105526 crossref_primary_10_1016_j_rser_2024_114425 crossref_primary_10_1016_j_ymthe_2022_08_002 crossref_primary_10_1021_acs_biomac_8b01346 crossref_primary_10_1016_j_cell_2023_04_024 crossref_primary_10_1002_btpr_3190 crossref_primary_10_1016_j_msec_2018_11_002 crossref_primary_10_1016_j_jia_2024_05_002 crossref_primary_10_1016_j_smim_2020_101433 crossref_primary_10_1016_j_tibtech_2014_08_001 crossref_primary_10_1016_j_jhazmat_2023_132701 crossref_primary_10_3390_catal10040410 crossref_primary_10_1038_s41467_022_28424_3 crossref_primary_10_1021_acscatal_8b00986 crossref_primary_10_7567_JJAP_57_08NB06 crossref_primary_10_1038_s41467_024_48828_7 crossref_primary_10_1002_adhm_201700930 crossref_primary_10_1038_s41467_021_25737_7 crossref_primary_10_1016_j_mcat_2021_111673 crossref_primary_10_1002_cyto_a_24325 crossref_primary_10_3389_fmolb_2020_00085 crossref_primary_10_1002_smll_201802618 crossref_primary_10_1021_acs_jpclett_1c02767 crossref_primary_10_1134_S0003683819060115 crossref_primary_10_1002_admi_202201173 crossref_primary_10_1038_s41589_023_01409_z crossref_primary_10_1002_advs_202306716 crossref_primary_10_1002_smll_202106425 crossref_primary_10_1038_s41467_021_22623_0 crossref_primary_10_2174_1389201024666230330083640 crossref_primary_10_1021_acsanm_8b00077 crossref_primary_10_1002_anie_202310910 crossref_primary_10_1016_j_jpha_2021_07_008 crossref_primary_10_1016_j_jsb_2023_107999 crossref_primary_10_1073_pnas_2017871118 crossref_primary_10_1021_acsnano_7b02694 crossref_primary_10_1038_s42003_019_0589_x crossref_primary_10_1016_j_smim_2017_08_014 crossref_primary_10_1021_acs_bioconjchem_8b00131 crossref_primary_10_1038_s41541_021_00387_4 crossref_primary_10_2139_ssrn_3961037 crossref_primary_10_1038_s41467_018_05162_z crossref_primary_10_1016_j_omtm_2022_12_003 crossref_primary_10_1021_acs_chemrev_1c00877 crossref_primary_10_3390_pharmaceutics15030833 crossref_primary_10_1016_j_chembiol_2015_06_020 crossref_primary_10_3390_biom14040504 crossref_primary_10_7555_JBR_35_20210108 crossref_primary_10_1021_acsami_2c03337 crossref_primary_10_3390_molecules25204627 crossref_primary_10_1002_anie_201810331 crossref_primary_10_1016_j_matt_2019_09_013 crossref_primary_10_1038_s41598_023_45628_9 crossref_primary_10_1038_s41467_021_25890_z crossref_primary_10_1002_anie_202403539 crossref_primary_10_3390_fermentation8110578 crossref_primary_10_1038_s41522_022_00324_w crossref_primary_10_3390_nano11071656 crossref_primary_10_1021_acs_biomac_3c00409 crossref_primary_10_1021_acsbiomaterials_1c01192 crossref_primary_10_1128_AEM_01239_17 crossref_primary_10_1002_anie_201609590 crossref_primary_10_1021_jacs_8b05200 crossref_primary_10_1038_s41565_020_0648_y crossref_primary_10_1016_j_jsb_2016_02_011 crossref_primary_10_1016_j_biotechadv_2022_107932 crossref_primary_10_1016_j_ijbiomac_2024_132196 crossref_primary_10_1073_pnas_2309457121 crossref_primary_10_1002_cbic_201600431 crossref_primary_10_3390_vaccines12060629 crossref_primary_10_1016_j_jsb_2023_107981 crossref_primary_10_1002_anie_202005490 crossref_primary_10_1089_bioe_2023_0027 crossref_primary_10_1002_admi_202201126 crossref_primary_10_1039_D0SC01878C crossref_primary_10_1038_s41557_023_01152_x crossref_primary_10_1016_j_celrep_2019_10_046 crossref_primary_10_1002_pep2_24224 crossref_primary_10_1371_journal_pone_0139137 crossref_primary_10_1002_adma_202307106 crossref_primary_10_1016_j_ijbiomac_2021_02_015 crossref_primary_10_1021_acsbiomaterials_1c01181 crossref_primary_10_1021_acsomega_8b02226 crossref_primary_10_3390_v15112277 crossref_primary_10_1016_j_cell_2016_09_013 crossref_primary_10_1111_febs_16184 crossref_primary_10_1021_acsnano_9b03631 crossref_primary_10_1002_bkcs_12415 crossref_primary_10_1016_j_sbi_2019_01_020 crossref_primary_10_3390_ijms21072401 crossref_primary_10_1039_C8NR06225K crossref_primary_10_1038_nprot_2017_081 crossref_primary_10_1002_cbic_202100111 crossref_primary_10_3390_pharmaceutics13101621 crossref_primary_10_1371_journal_pone_0152774 crossref_primary_10_3390_pharmaceutics15020600 crossref_primary_10_1021_acsmacrolett_0c00109 crossref_primary_10_1016_j_drudis_2022_05_002 crossref_primary_10_1038_s41598_017_11214_z crossref_primary_10_1021_acs_biomac_1c00336 crossref_primary_10_1186_s13036_019_0183_2 crossref_primary_10_1016_j_checat_2023_100894 crossref_primary_10_1002_cbic_201900066 crossref_primary_10_1039_D1OB00411E crossref_primary_10_1039_D2SC03123J crossref_primary_10_1038_s42004_024_01100_x crossref_primary_10_1016_j_vaccine_2022_09_058 crossref_primary_10_1007_s00216_021_03841_3 crossref_primary_10_1016_j_molcel_2023_09_037 crossref_primary_10_7554_eLife_36764 crossref_primary_10_1038_s41598_023_40241_2 crossref_primary_10_1038_s41929_020_0433_1 crossref_primary_10_3390_ijms22041934 crossref_primary_10_1016_j_pep_2020_105650 crossref_primary_10_1080_14760584_2023_2227699 crossref_primary_10_3389_fctls_2023_1184959 crossref_primary_10_1016_j_molcel_2024_01_026 crossref_primary_10_3390_v12020185 crossref_primary_10_3390_membranes13050459 crossref_primary_10_1002_ps_7514 crossref_primary_10_1021_acsnano_6b03364 crossref_primary_10_2217_nnm_2018_0261 crossref_primary_10_1093_nar_gkaa270 crossref_primary_10_1039_D0CC04196C crossref_primary_10_1038_s41596_023_00938_0 crossref_primary_10_1016_j_chembiol_2021_05_017 crossref_primary_10_1016_j_pep_2018_02_010 crossref_primary_10_1016_j_coph_2021_04_009 crossref_primary_10_1038_s41467_020_20654_7 crossref_primary_10_3390_polym15244652 crossref_primary_10_1021_jacs_9b12265 crossref_primary_10_1021_acs_nanolett_0c04178 crossref_primary_10_1371_journal_pone_0162318 crossref_primary_10_3389_fmicb_2019_00558 crossref_primary_10_1002_biot_202400040 crossref_primary_10_1016_j_celrep_2021_108937 crossref_primary_10_3389_fimmu_2023_1139206 crossref_primary_10_1021_acs_accounts_9b00514 crossref_primary_10_1186_s13046_023_02655_8 crossref_primary_10_1038_s42003_018_0090_y crossref_primary_10_1021_acscentsci_7b00104 crossref_primary_10_1093_protein_gzy005 crossref_primary_10_1021_acs_bioconjchem_5b00238 crossref_primary_10_1128_mBio_01860_17 crossref_primary_10_1016_j_copbio_2021_06_002 crossref_primary_10_1021_acsanm_9b01018 crossref_primary_10_1002_elsc_201300052 crossref_primary_10_1002_btm2_10514 crossref_primary_10_1002_smll_202312286 crossref_primary_10_1021_acs_biomac_8b01093 crossref_primary_10_3390_jfb14080434 crossref_primary_10_1021_acssynbio_4c00058 crossref_primary_10_1021_acs_biomac_2c00179 crossref_primary_10_1016_j_bioorg_2024_107162 crossref_primary_10_1007_s11426_016_0436_x crossref_primary_10_3389_fimmu_2023_1088501 crossref_primary_10_1002_anie_201511640 crossref_primary_10_1021_acs_biomac_4c00115 crossref_primary_10_1002_cbic_202300600 crossref_primary_10_1002_adma_202105765 crossref_primary_10_1039_C9SC04074A crossref_primary_10_1093_glycob_cwaa039 crossref_primary_10_1016_j_procbio_2020_02_019 crossref_primary_10_1016_j_nantod_2023_102075 crossref_primary_10_1073_pnas_2009707117 crossref_primary_10_1038_s41467_020_18323_w crossref_primary_10_1016_j_jhazmat_2022_129517 crossref_primary_10_1080_09168451_2018_1475212 crossref_primary_10_1021_acsami_1c14670 crossref_primary_10_1063_1_5013259 crossref_primary_10_1002_ange_201201717 crossref_primary_10_1021_acsabm_0c01293 crossref_primary_10_1038_s41598_023_27780_4 crossref_primary_10_1128_mSystems_00903_20 crossref_primary_10_1038_ncomms5945 crossref_primary_10_1039_D1RA05710C crossref_primary_10_3389_fimmu_2023_1302354 crossref_primary_10_1016_j_cjche_2020_05_022 crossref_primary_10_1021_acsbiomaterials_6b00447 crossref_primary_10_1038_s41598_017_03798_3 crossref_primary_10_3389_fimmu_2022_1015840 crossref_primary_10_5812_ijpr_127042 crossref_primary_10_1002_ejoc_202100749 crossref_primary_10_1002_wnan_1685 crossref_primary_10_3390_biom12121841 crossref_primary_10_1002_syst_202100025 crossref_primary_10_1021_jacs_1c03198 crossref_primary_10_1039_D1NR01907D crossref_primary_10_1261_rna_075812_120 crossref_primary_10_1016_j_aca_2023_341593 crossref_primary_10_1039_D1SC05672G crossref_primary_10_1016_j_chembiol_2021_01_011 crossref_primary_10_1002_cbic_202100251 crossref_primary_10_1021_jacs_7b02958 crossref_primary_10_1002_anie_201800828 crossref_primary_10_1002_anie_201800827 crossref_primary_10_1016_j_actbio_2021_11_041 crossref_primary_10_1042_BST20150066 crossref_primary_10_1002_anie_202214001 crossref_primary_10_1021_jacs_2c03961 crossref_primary_10_1016_j_tibtech_2023_10_011 crossref_primary_10_1002_adfm_202402097 crossref_primary_10_1039_C9LC01028A crossref_primary_10_1002_cjoc_202300190 crossref_primary_10_1039_C7PY01206C crossref_primary_10_1038_nmat3912 crossref_primary_10_1002_ange_201609590 crossref_primary_10_1021_acs_jafc_3c07785 crossref_primary_10_1021_acsanm_3c01446 crossref_primary_10_3390_nano11061467 crossref_primary_10_1002_cbic_201900200 crossref_primary_10_1016_j_jclepro_2021_127994 crossref_primary_10_1002_adhm_201801374 crossref_primary_10_1016_j_biomaterials_2018_07_020 crossref_primary_10_1002_smll_202306817 crossref_primary_10_3390_gels9060481 crossref_primary_10_1038_s41467_021_20963_5 crossref_primary_10_1002_cbic_202000797 crossref_primary_10_1021_ja4056382 crossref_primary_10_1002_chem_202400582 crossref_primary_10_1007_s00253_023_12608_y crossref_primary_10_1039_C5CC05208D crossref_primary_10_1016_j_crmeth_2023_100484 crossref_primary_10_3390_vaccines9060651 crossref_primary_10_1016_j_procbio_2023_01_005 crossref_primary_10_1002_pro_2952 crossref_primary_10_1002_anie_201904943 crossref_primary_10_1002_cbic_202400123 crossref_primary_10_1002_wnan_1869 crossref_primary_10_1126_sciadv_abc4824 crossref_primary_10_1007_s11307_018_1222_y crossref_primary_10_1016_j_bbrc_2021_12_028 crossref_primary_10_1039_D3CC01578E crossref_primary_10_1016_j_nano_2020_102223 crossref_primary_10_1021_acsami_3c14653 crossref_primary_10_1007_s10529_023_03385_9 crossref_primary_10_1002_cbic_201700177 crossref_primary_10_1016_j_cogsc_2021_100538 crossref_primary_10_1042_BCJ20200514 crossref_primary_10_1021_acsomega_4c02303 crossref_primary_10_1021_acssensors_8b00821 crossref_primary_10_3390_vaccines10020173 crossref_primary_10_1021_acs_analchem_8b04083 crossref_primary_10_3390_vaccines10020189 crossref_primary_10_1021_jacs_4c00224 crossref_primary_10_1002_adfm_201706046 crossref_primary_10_1002_advs_202102991 crossref_primary_10_1021_acsnano_3c01910 crossref_primary_10_1159_000449503 crossref_primary_10_1021_acs_orglett_0c01815 crossref_primary_10_1038_s41586_020_03120_8 crossref_primary_10_1021_acsmacrolett_9b00333 crossref_primary_10_1080_21505594_2020_1867438 crossref_primary_10_1177_2472555220979584 crossref_primary_10_1146_annurev_chembioeng_101519_121526 crossref_primary_10_1039_D0TB01429J crossref_primary_10_1021_acssuschemeng_1c06647 crossref_primary_10_3390_pathogens13060458 crossref_primary_10_1021_acssuschemeng_1c02045 crossref_primary_10_1016_j_molcel_2015_01_008 crossref_primary_10_1016_j_virol_2022_03_009 crossref_primary_10_1557_mrc_2019_28 crossref_primary_10_1021_acsbiomaterials_6b00437 crossref_primary_10_1038_s41467_019_10696_x crossref_primary_10_1103_PhysRevLett_125_198101 crossref_primary_10_1016_j_btre_2020_e00418 crossref_primary_10_1002_ange_202310910 crossref_primary_10_1186_s12951_023_02273_8 crossref_primary_10_3390_v16060884 crossref_primary_10_1515_mr_2023_0001 crossref_primary_10_1007_s00018_016_2374_z crossref_primary_10_1002_adhm_202000714 crossref_primary_10_1186_s12951_022_01762_6 crossref_primary_10_1021_acs_analchem_2c01190 crossref_primary_10_1021_acs_biomac_7b01369 crossref_primary_10_1021_jacs_7b07798 crossref_primary_10_1038_s41598_021_03675_0 crossref_primary_10_1002_adma_202107781 crossref_primary_10_1002_anie_202010054 crossref_primary_10_1038_s42003_020_01132_8 crossref_primary_10_1097_QCO_0000000000000262 crossref_primary_10_1039_D2CS00756H crossref_primary_10_1038_s41589_018_0055_y crossref_primary_10_1021_acsami_2c10684 crossref_primary_10_1021_acs_bioconjchem_4c00050 crossref_primary_10_1016_j_copbio_2016_01_003 crossref_primary_10_1088_1674_1056_ad3dcd crossref_primary_10_1021_acs_bioconjchem_4c00052 crossref_primary_10_1021_acssynbio_9b00187 crossref_primary_10_1021_acs_bioconjchem_1c00476 crossref_primary_10_1093_nar_gkaa933 crossref_primary_10_3389_fmolb_2023_1143274 crossref_primary_10_1002_smll_202202104 crossref_primary_10_3390_ph14040343 crossref_primary_10_1002_ange_202308472 crossref_primary_10_1016_j_nano_2018_11_009 crossref_primary_10_1021_acsbiomaterials_0c01549 crossref_primary_10_1002_ange_201800827 crossref_primary_10_1021_acs_biochem_0c00363 crossref_primary_10_1103_PhysRevResearch_6_023170 crossref_primary_10_1021_ja505584f crossref_primary_10_1146_annurev_neuro_110520_030031 crossref_primary_10_1007_s10529_022_03246_x crossref_primary_10_1002_ange_201800828 crossref_primary_10_3390_antib11040064 crossref_primary_10_1002_cite_202200167 crossref_primary_10_1021_acs_bioconjchem_0c00476 crossref_primary_10_1016_j_jconrel_2018_04_039 crossref_primary_10_3389_fbioe_2020_00156 crossref_primary_10_1016_j_chempr_2021_01_010 crossref_primary_10_1111_jth_14962 crossref_primary_10_1002_cctc_202300061 crossref_primary_10_1021_acs_accounts_3c00372 crossref_primary_10_1021_acsami_3c19202 crossref_primary_10_1002_jev2_12192 crossref_primary_10_1016_j_bios_2020_112052 crossref_primary_10_1021_acsnano_9b08756 crossref_primary_10_3389_fmolb_2022_1039324 crossref_primary_10_3390_antib12040075 crossref_primary_10_1128_spectrum_04998_22 crossref_primary_10_1038_s41587_023_01713_y crossref_primary_10_1039_D1CB00246E crossref_primary_10_1038_s41598_018_30790_2 crossref_primary_10_1038_s41594_020_0397_5 crossref_primary_10_1371_journal_pone_0165074 crossref_primary_10_1016_j_cclet_2020_04_034 crossref_primary_10_1038_s44222_023_00110_z crossref_primary_10_1039_C6OB00126B crossref_primary_10_1016_j_mtbio_2022_100504 crossref_primary_10_1002_adfm_202209441 crossref_primary_10_1021_bc300606b crossref_primary_10_3390_biomedicines10112881 crossref_primary_10_1007_s00253_023_12837_1 crossref_primary_10_1021_acsbiomaterials_8b00279 crossref_primary_10_1007_s10295_018_2027_3 crossref_primary_10_1007_s11816_023_00821_0 crossref_primary_10_1021_acscentsci_1c00120 crossref_primary_10_1021_jacs_8b08250 crossref_primary_10_1002_cbic_202000102 crossref_primary_10_1021_acs_jafc_9b01459 crossref_primary_10_7554_eLife_85882 crossref_primary_10_2147_IJN_S387160 crossref_primary_10_1021_acsami_3c09690 crossref_primary_10_1038_nprot_2013_056 crossref_primary_10_1007_s12257_019_0363_4 crossref_primary_10_1002_ange_202403539 crossref_primary_10_1016_j_bios_2024_116331 crossref_primary_10_1038_s41467_021_22308_8 crossref_primary_10_1039_D3TB00445G crossref_primary_10_1016_j_ymthe_2022_02_011 crossref_primary_10_1021_acsnano_1c07856 crossref_primary_10_1007_s40259_023_00627_0 crossref_primary_10_1016_j_molcel_2023_03_027 crossref_primary_10_1021_acs_jpcb_8b00168 crossref_primary_10_1002_cctc_201800162 crossref_primary_10_1039_D4FD00067F crossref_primary_10_1021_acsami_5b08811 crossref_primary_10_1016_j_snb_2020_128312 crossref_primary_10_1126_sciadv_abf1591 crossref_primary_10_1021_acssynbio_6b00370 crossref_primary_10_3390_vaccines11091506 crossref_primary_10_1039_D3MA00071K crossref_primary_10_1021_acssynbio_9b00131 crossref_primary_10_1186_s12951_021_00772_0 crossref_primary_10_1021_acs_chemrev_7b00522 crossref_primary_10_1038_s41594_022_00775_x crossref_primary_10_1021_acs_chemrev_7b00767 crossref_primary_10_1371_journal_pbio_3000549 crossref_primary_10_1002_cbic_201700117 crossref_primary_10_1038_s42005_019_0192_y crossref_primary_10_1021_jacs_9b11622 crossref_primary_10_1016_j_vetmic_2023_109799 crossref_primary_10_1021_acsnano_8b02805 crossref_primary_10_1021_acsnano_9b09405 crossref_primary_10_1021_acs_bioconjchem_2c00003 crossref_primary_10_1007_s11426_021_1183_x crossref_primary_10_1021_acs_chemmater_0c01518 crossref_primary_10_1073_pnas_1807689115 crossref_primary_10_1002_pro_4944 crossref_primary_10_1021_jacs_7b00513 crossref_primary_10_1021_acs_bioconjchem_4c00223 crossref_primary_10_1038_s41589_021_00802_w crossref_primary_10_1007_s11426_016_5571_6 crossref_primary_10_1039_C8CS00121A crossref_primary_10_3390_biom8030051 crossref_primary_10_1021_acs_molpharmaceut_1c00788 crossref_primary_10_15252_embr_202153471 |
Cites_doi | 10.1038/nmeth.1450 10.1002/anie.200200565 10.1002/anie.201004340 10.1016/j.ceb.2009.01.002 10.1126/science.7939660 10.1016/j.febslet.2005.12.052 10.1038/nprot.2007.152 10.1126/science.1145806 10.1016/j.sbi.2010.05.005 10.1007/s00018-006-6288-z 10.1038/nchembio.2007.31 10.1016/S0958-1669(98)80092-X 10.1016/j.bbamcr.2004.04.014 10.1016/j.tibs.2010.09.007 10.1016/0959-440X(95)80015-S 10.1021/ja807872s 10.1021/ja074176d 10.1073/pnas.0804621105 10.1021/bi901756n 10.1016/j.febslet.2009.02.003 10.1016/j.bmcl.2009.07.011 10.1016/S0301-4622(02)00012-1 10.1007/BF01025491 10.1016/S0006-3495(02)75664-6 10.1016/j.ymeth.2010.02.011 10.1021/ar800009n 10.1021/ja910795a 10.1126/science.281.5374.269 10.1074/jbc.M110.102962 10.1146/annurev.genet.32.1.601 10.1038/nature02026 10.1021/cr030697h 10.1016/j.jmb.2009.07.067 10.1073/pnas.0914067107 10.1038/47083 10.1007/s10969-010-9090-y 10.1021/ja042287w 10.1021/ja027007w 10.1039/B700141J 10.1016/j.cbpa.2010.01.004 10.1002/jmr.2152 10.1038/nmeth752 10.1074/mcp.M800272-MCP200 10.1110/ps.4150102 10.1111/j.1462-5822.2011.01610.x 10.1002/cbic.200700647 10.1021/ja104609m 10.1021/ja107513t 10.1016/S0065-3233(05)70004-8 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 20, 2012 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 20, 2012 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1115485109 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1091-6490 |
EndPage | E697 |
ExternalDocumentID | 2616516831 10_1073_pnas_1115485109 22366317 109_12_E690 US201400081399 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 091911 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ABXSQ ADACV AQVQM CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c612t-b5be288ed8f43013d2fe0d37d105578b137e7f024e35c776a21d63caf44777213 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:03:05 EDT 2024 Sat Aug 17 01:50:36 EDT 2024 Fri Oct 25 05:04:48 EDT 2024 Thu Oct 10 20:17:16 EDT 2024 Fri Dec 06 01:56:42 EST 2024 Sat Sep 28 08:47:56 EDT 2024 Wed Nov 11 00:29:46 EST 2020 Wed Dec 27 19:31:08 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-b5be288ed8f43013d2fe0d37d105578b137e7f024e35c776a21d63caf44777213 |
Notes | http://dx.doi.org/10.1073/pnas.1115485109 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: B.Z., J.O.F., E.C., U.S.-L., V.T.M., and M.H. designed research; B.Z., J.O.F., E.C., E.C.C., U.S.-L., and M.H. performed research; B.Z., J.O.F., E.C., U.S.-L., V.T.M., and M.H. analyzed data; and M.H. wrote the paper. 1B.Z. and J.O.F. contributed equally to this work. Edited by James A. Wells, University of California, San Francisco, CA, and approved January 17, 2012 (received for review September 21, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/12/E690.full.pdf |
PMID | 22366317 |
PQID | 935642274 |
PQPubID | 42026 |
ParticipantIDs | proquest_journals_935642274 proquest_miscellaneous_934258798 fao_agris_US201400081399 proquest_miscellaneous_1014106451 pnas_primary_109_12_E690 crossref_primary_10_1073_pnas_1115485109 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3311370 pubmed_primary_22366317 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2012-03-20 |
PublicationDateYYYYMMDD | 2012-03-20 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 18695247 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11933-8 18293290 - Chembiochem. 2008 Mar 25;9(5):677-80 17891153 - Nat Chem Biol. 2007 Nov;3(11):707-8 11910031 - Protein Sci. 2002 Apr;11(4):883-93 19169452 - Chem Soc Rev. 2009 Feb;38(2):338-51 18063798 - Science. 2007 Dec 7;318(5856):1625-8 20925334 - J Am Chem Soc. 2010 Oct 27;132(42):14819-24 21142157 - J Am Chem Soc. 2011 Jan 26;133(3):478-85 20534555 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10914-9 9503596 - Curr Opin Biotechnol. 1998 Feb;9(1):102-8 16388805 - FEBS Lett. 2006 Jan 23;580(2):505-9 20419351 - J Struct Funct Genomics. 2010 Jun;11(2):167-80 15546671 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):269-78 19643606 - Bioorg Med Chem Lett. 2009 Sep 1;19(17):5222-4 18923192 - Mol Cell Proteomics. 2009 Feb;8(2):287-301 20139067 - J Biol Chem. 2010 Apr 9;285(15):11235-42 19217273 - Curr Opin Cell Biol. 2009 Feb;21(1):38-46 19646997 - J Mol Biol. 2009 Oct 9;392(5):1221-31 7939660 - Science. 1994 Oct 14;266(5183):257-9 21615663 - Cell Microbiol. 2011 Aug;13(8):1200-11 7773739 - Curr Opin Struct Biol. 1995 Feb;5(1):103-13 12148987 - J Am Chem Soc. 2002 Aug 7;124(31):9026-7 16092823 - Chem Rev. 2005 Aug;105(8):2921-48 15837514 - Adv Protein Chem. 2005;70:79-112 18052248 - J Am Chem Soc. 2007 Dec 26;129(51):15777-9 19105691 - J Am Chem Soc. 2009 Jan 21;131(2):438-9 14562095 - Nature. 2003 Oct 16;425(6959):686-91 19302791 - FEBS Lett. 2009 Mar 4;583(5):909-14 20542682 - Curr Opin Struct Biol. 2010 Aug;20(4):508-17 15853324 - J Am Chem Soc. 2005 May 4;127(17):6198-206 15782218 - Nat Methods. 2005 Apr;2(4):261-7 14579432 - Angew Chem Int Ed Engl. 2003 Oct 20;42(40):4872-97 9928493 - Annu Rev Genet. 1998;32:601-18 18590282 - Acc Chem Res. 2008 Oct;41(10):1399-408 12034438 - Biophys Chem. 2002 May 2;96(2-3):163-71 12023246 - Biophys J. 2002 Jun;82(6):3214-23 20383133 - Nat Methods. 2010 May;7(5):391-3 17546003 - Nat Protoc. 2007;2(5):1126-33 17086379 - Cell Mol Life Sci. 2006 Dec;63(24):2992-3017 10573426 - Nature. 1999 Nov 4;402(6757):100-3 20878961 - Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8421-5 21055949 - Trends Biochem Sci. 2011 Apr;36(4):229-37 20235501 - J Am Chem Soc. 2010 Apr 7;132(13):4526-7 16888367 - Methods Mol Biol. 2006;338:305-23 9657724 - Science. 1998 Jul 10;281(5374):269-72 19928925 - Biochemistry. 2009 Dec 22;48(50):11834-6 20170733 - Methods. 2010 Jul;51(3):277-88 20102793 - Curr Opin Chem Biol. 2010 Apr;14(2):247-54 22213450 - J Mol Recognit. 2012 Jan;25(1):53-6 Beyer MK (e_1_3_4_18_2) 2005; 105 Lee HS (e_1_3_4_38_2) 2009; 19 McDonald CA (e_1_3_4_17_2) 2009; 8 Jarvik JW (e_1_3_4_1_2) 1998; 32 Amelung S (e_1_3_4_13_2) 2011; 13 e_1_1_2_17_10_4_2 Tavassoli A (e_1_3_4_42_2) 2007; 2 e_1_1_2_17_10_2_2 Korndorfer IP (e_1_3_4_7_2) 2002; 11 Shi J (e_1_3_4_41_2) 2005; 127 Huang J (e_1_3_4_30_2) 2009; 392 Oke M (e_1_3_4_11_2) 2010; 11 Houk KN (e_1_3_4_8_2) 2003; 42 Hancock SM (e_1_3_4_40_2) 2010; 132 Celik E (e_1_3_4_22_2) 2012; 25 Alegre-Cebollada J (e_1_3_4_27_2) 2010; 285 Pierres A (e_1_3_4_48_2) 2002; 82 Neuert G (e_1_3_4_21_2) 2006; 580 Ton-That H (e_1_3_4_26_2) 2004; 1694 Huh WK (e_1_3_4_5_2) 2003; 425 Popp MW (e_1_3_4_15_2) 2007; 3 Stanfield RL (e_1_3_4_6_2) 1995; 5 Laitinen OH (e_1_3_4_45_2) 2006; 63 Zettler J (e_1_3_4_14_2) 2009; 583 Griffiths AD (e_1_3_4_44_2) 1998; 9 Griffin BA (e_1_3_4_2_2) 1998; 281 Hagan RM (e_1_3_4_12_2) 2010; 49 Chivers CE (e_1_3_4_46_2) 2010; 7 Perumal SK (e_1_3_4_47_2) 2010; 51 Nonaka H (e_1_3_4_32_2) 2007; 129 Hu XQ (e_1_3_4_28_2) 2011; 133 Moy VT (e_1_3_4_20_2) 1994; 266 e_1_1_2_17_10_5_2 e_1_1_2_17_10_3_2 Vogel V (e_1_3_4_49_2) 2009; 21 e_1_1_2_17_10_1_2 Horne WS (e_1_3_4_9_2) 2008; 41 Huang J (e_1_3_4_24_2) 2009; 48 Crampton N (e_1_3_4_23_2) 2010; 20 Uttamapinant C (e_1_3_4_33_2) 2010; 107 Allen KN (e_1_3_4_3_2) 2010; 14 Chin JW (e_1_3_4_37_2) 2002; 124 Kang HJ (e_1_3_4_10_2) 2010; 36 Chattopadhaya S (e_1_3_4_36_2) 2008; 9 Rodriguez P (e_1_3_4_31_2) 2006; 338 Kang HJ (e_1_3_4_25_2) 2007; 318 Siebold C (e_1_3_4_43_2) 2002; 96 Suchanek M (e_1_3_4_39_2) 2005; 2 Halo TL (e_1_3_4_4_2) 2009; 131 Kent SB (e_1_3_4_35_2) 2009; 38 Woolfson DN (e_1_3_4_34_2) 2005; 70 Kullmann W (e_1_3_4_16_2) 1985; 4 Zakeri B (e_1_3_4_29_2) 2010; 132 Marszalek PE (e_1_3_4_19_2) 1999; 402 |
References_xml | – volume: 7 start-page: 391 year: 2010 ident: e_1_3_4_46_2 article-title: A streptavidin variant with slower biotin dissociation and increased mechanostability publication-title: Nat Methods doi: 10.1038/nmeth.1450 contributor: fullname: Chivers CE – volume: 42 start-page: 4872 year: 2003 ident: e_1_3_4_8_2 article-title: Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.200200565 contributor: fullname: Houk KN – volume: 49 start-page: 8421 year: 2010 ident: e_1_3_4_12_2 article-title: NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201004340 contributor: fullname: Hagan RM – ident: e_1_1_2_17_10_3_2 doi: 10.1016/j.ceb.2009.01.002 – volume: 21 start-page: 38 year: 2009 ident: e_1_3_4_49_2 article-title: Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2009.01.002 contributor: fullname: Vogel V – volume: 266 start-page: 257 year: 1994 ident: e_1_3_4_20_2 article-title: Intermolecular forces and energies between ligands and receptors publication-title: Science doi: 10.1126/science.7939660 contributor: fullname: Moy VT – volume: 580 start-page: 505 year: 2006 ident: e_1_3_4_21_2 article-title: Dynamic force spectroscopy of the digoxigenin-antibody complex publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.12.052 contributor: fullname: Neuert G – volume: 2 start-page: 1126 year: 2007 ident: e_1_3_4_42_2 article-title: Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli publication-title: Nat Protoc doi: 10.1038/nprot.2007.152 contributor: fullname: Tavassoli A – volume: 318 start-page: 1625 year: 2007 ident: e_1_3_4_25_2 article-title: Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure publication-title: Science doi: 10.1126/science.1145806 contributor: fullname: Kang HJ – volume: 20 start-page: 508 year: 2010 ident: e_1_3_4_23_2 article-title: Unravelling the design principles for single protein mechanical strength publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.05.005 contributor: fullname: Crampton N – volume: 63 start-page: 2992 year: 2006 ident: e_1_3_4_45_2 article-title: Genetically engineered avidins and streptavidins publication-title: Cell Mol Life Sci doi: 10.1007/s00018-006-6288-z contributor: fullname: Laitinen OH – volume: 3 start-page: 707 year: 2007 ident: e_1_3_4_15_2 article-title: Sortagging: a versatile method for protein labeling publication-title: Nat Chem Biol doi: 10.1038/nchembio.2007.31 contributor: fullname: Popp MW – volume: 9 start-page: 102 year: 1998 ident: e_1_3_4_44_2 article-title: Strategies for selection of antibodies by phage display publication-title: Curr Opin Biotechnol doi: 10.1016/S0958-1669(98)80092-X contributor: fullname: Griffiths AD – volume: 1694 start-page: 269 year: 2004 ident: e_1_3_4_26_2 article-title: Protein sorting to the cell wall envelope of Gram-positive bacteria publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2004.04.014 contributor: fullname: Ton-That H – ident: e_1_1_2_17_10_2_2 doi: 10.1016/j.tibs.2010.09.007 – volume: 5 start-page: 103 year: 1995 ident: e_1_3_4_6_2 article-title: Protein-peptide interactions publication-title: Curr Opin Struct Biol doi: 10.1016/0959-440X(95)80015-S contributor: fullname: Stanfield RL – volume: 131 start-page: 438 year: 2009 ident: e_1_3_4_4_2 article-title: Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid publication-title: J Am Chem Soc doi: 10.1021/ja807872s contributor: fullname: Halo TL – volume: 129 start-page: 15777 year: 2007 ident: e_1_3_4_32_2 article-title: Non-enzymatic covalent protein labeling using a reactive tag publication-title: J Am Chem Soc doi: 10.1021/ja074176d contributor: fullname: Nonaka H – ident: e_1_1_2_17_10_1_2 doi: 10.1073/pnas.0804621105 – volume: 48 start-page: 11834 year: 2009 ident: e_1_3_4_24_2 article-title: A peptide tag system for facile purification and single-molecule immobilization publication-title: Biochemistry doi: 10.1021/bi901756n contributor: fullname: Huang J – volume: 583 start-page: 909 year: 2009 ident: e_1_3_4_14_2 article-title: The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.02.003 contributor: fullname: Zettler J – volume: 19 start-page: 5222 year: 2009 ident: e_1_3_4_38_2 article-title: Protein-DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.07.011 contributor: fullname: Lee HS – volume: 96 start-page: 163 year: 2002 ident: e_1_3_4_43_2 article-title: Intein-mediated cyclization of a soluble and a membrane protein in vivo: function and stability publication-title: Biophys Chem doi: 10.1016/S0301-4622(02)00012-1 contributor: fullname: Siebold C – volume: 4 start-page: 1 year: 1985 ident: e_1_3_4_16_2 article-title: Proteases as catalytic agents in peptide synthetic chemistry—shifting the extent of peptide-bond synthesis from a quantite negligible to a quantite considerable publication-title: J Protein Chem doi: 10.1007/BF01025491 contributor: fullname: Kullmann W – volume: 82 start-page: 3214 year: 2002 ident: e_1_3_4_48_2 article-title: Dissecting streptavidin-biotin interaction with a laminar flow chamber publication-title: Biophys J doi: 10.1016/S0006-3495(02)75664-6 contributor: fullname: Pierres A – ident: e_1_1_2_17_10_4_2 doi: 10.1016/j.ymeth.2010.02.011 – ident: e_1_1_2_17_10_5_2 doi: 10.1038/nmeth.1450 – volume: 41 start-page: 1399 year: 2008 ident: e_1_3_4_9_2 article-title: Foldamers with heterogeneous backbones publication-title: Acc Chem Res doi: 10.1021/ar800009n contributor: fullname: Horne WS – volume: 51 start-page: 277 year: 2010 ident: e_1_3_4_47_2 article-title: Analysis of the DNA translocation and unwinding activities of T4 phage helicases publication-title: Methods doi: 10.1016/j.ymeth.2010.02.011 contributor: fullname: Perumal SK – volume: 132 start-page: 4526 year: 2010 ident: e_1_3_4_29_2 article-title: Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting publication-title: J Am Chem Soc doi: 10.1021/ja910795a contributor: fullname: Zakeri B – volume: 281 start-page: 269 year: 1998 ident: e_1_3_4_2_2 article-title: Specific covalent labeling of recombinant protein molecules inside live cells publication-title: Science doi: 10.1126/science.281.5374.269 contributor: fullname: Griffin BA – volume: 338 start-page: 305 year: 2006 ident: e_1_3_4_31_2 article-title: Isolation of transcription factor complexes by in vivo biotinylation tagging and direct binding to streptavidin beads publication-title: Methods Mol Biol contributor: fullname: Rodriguez P – volume: 285 start-page: 11235 year: 2010 ident: e_1_3_4_27_2 article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes publication-title: J Biol Chem doi: 10.1074/jbc.M110.102962 contributor: fullname: Alegre-Cebollada J – volume: 32 start-page: 601 year: 1998 ident: e_1_3_4_1_2 article-title: Epitope tagging publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.32.1.601 contributor: fullname: Jarvik JW – volume: 425 start-page: 686 year: 2003 ident: e_1_3_4_5_2 article-title: Global analysis of protein localization in budding yeast publication-title: Nature doi: 10.1038/nature02026 contributor: fullname: Huh WK – volume: 105 start-page: 2921 year: 2005 ident: e_1_3_4_18_2 article-title: Mechanochemistry: the mechanical activation of covalent bonds publication-title: Chem Rev doi: 10.1021/cr030697h contributor: fullname: Beyer MK – volume: 392 start-page: 1221 year: 2009 ident: e_1_3_4_30_2 article-title: Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.07.067 contributor: fullname: Huang J – volume: 107 start-page: 10914 year: 2010 ident: e_1_3_4_33_2 article-title: A fluorophore ligase for site-specific protein labeling inside living cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914067107 contributor: fullname: Uttamapinant C – volume: 402 start-page: 100 year: 1999 ident: e_1_3_4_19_2 article-title: Mechanical unfolding intermediates in titin modules publication-title: Nature doi: 10.1038/47083 contributor: fullname: Marszalek PE – volume: 11 start-page: 167 year: 2010 ident: e_1_3_4_11_2 article-title: The scottish structural proteomics facility: targets, methods and outputs publication-title: Journal of Structural and Functional Genomics doi: 10.1007/s10969-010-9090-y contributor: fullname: Oke M – volume: 127 start-page: 6198 year: 2005 ident: e_1_3_4_41_2 article-title: Development of a tandem protein trans-splicing system based on native and engineered split inteins publication-title: J Am Chem Soc doi: 10.1021/ja042287w contributor: fullname: Shi J – volume: 124 start-page: 9026 year: 2002 ident: e_1_3_4_37_2 article-title: Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli publication-title: J Am Chem Soc doi: 10.1021/ja027007w contributor: fullname: Chin JW – volume: 38 start-page: 338 year: 2009 ident: e_1_3_4_35_2 article-title: Total chemical synthesis of proteins publication-title: Chem Soc Rev doi: 10.1039/B700141J contributor: fullname: Kent SB – volume: 14 start-page: 247 year: 2010 ident: e_1_3_4_3_2 article-title: Lanthanide-tagged proteins--an illuminating partnership publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2010.01.004 contributor: fullname: Allen KN – volume: 25 start-page: 53 year: 2012 ident: e_1_3_4_22_2 article-title: Nonspecific interactions in AFM force spectroscopy measurements publication-title: J Mol Recognit doi: 10.1002/jmr.2152 contributor: fullname: Celik E – volume: 2 start-page: 261 year: 2005 ident: e_1_3_4_39_2 article-title: Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells publication-title: Nat Methods doi: 10.1038/nmeth752 contributor: fullname: Suchanek M – volume: 8 start-page: 287 year: 2009 ident: e_1_3_4_17_2 article-title: Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M800272-MCP200 contributor: fullname: McDonald CA – volume: 11 start-page: 883 year: 2002 ident: e_1_3_4_7_2 article-title: Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site publication-title: Protein Sci doi: 10.1110/ps.4150102 contributor: fullname: Korndorfer IP – volume: 13 start-page: 1200 year: 2011 ident: e_1_3_4_13_2 article-title: The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01610.x contributor: fullname: Amelung S – volume: 36 start-page: 229 year: 2010 ident: e_1_3_4_10_2 article-title: Intramolecular isopeptide bonds: protein crosslinks built for stress? publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2010.09.007 contributor: fullname: Kang HJ – volume: 9 start-page: 677 year: 2008 ident: e_1_3_4_36_2 article-title: In vivo imaging of a bacterial cell division protein using a protease-assisted small-molecule labeling approach publication-title: Chembiochem doi: 10.1002/cbic.200700647 contributor: fullname: Chattopadhaya S – volume: 132 start-page: 14819 year: 2010 ident: e_1_3_4_40_2 article-title: Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair publication-title: J Am Chem Soc doi: 10.1021/ja104609m contributor: fullname: Hancock SM – volume: 133 start-page: 478 year: 2011 ident: e_1_3_4_28_2 article-title: Autocatalytic intramolecular isopeptide bond formation in gram-positive bacterial pili: a QM/MM simulation publication-title: J Am Chem Soc doi: 10.1021/ja107513t contributor: fullname: Hu XQ – volume: 70 start-page: 79 year: 2005 ident: e_1_3_4_34_2 article-title: The design of coiled-coil structures and assemblies publication-title: Adv Protein Chem doi: 10.1016/S0065-3233(05)70004-8 contributor: fullname: Woolfson DN |
SSID | ssj0009580 |
Score | 2.6450307 |
Snippet | Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains... Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains... |
SourceID | pubmedcentral proquest crossref pubmed pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E690 |
SubjectTerms | Adhesins Adhesins, Bacterial - metabolism amides Amides - chemistry Bacteria Biological Sciences Biophysics - methods Boiling Cell Membrane - metabolism Cell surface Cells Chemical bonds engineering Fibronectin-binding protein Fibronectins - chemistry HeLa Cells Humans Hydrogen-Ion Concentration Mammalian cells mammals Microscopy, Atomic Force - methods mixing Molecular Sequence Data Molecules Peptides Peptides - chemistry pH effects PNAS Plus Protein Binding Protein Engineering - methods Protein interaction Protein Structure, Tertiary Proteins Spectrometry, Mass, Electrospray Ionization - methods Spectroscopy Spectrum analysis Splitting Streptococcus pyogenes Streptococcus pyogenes - metabolism Temperature Temperature effects Thermodynamics |
Title | Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin |
URI | http://www.pnas.org/content/109/12/E690.abstract https://www.ncbi.nlm.nih.gov/pubmed/22366317 https://www.proquest.com/docview/935642274 https://search.proquest.com/docview/1014106451 https://search.proquest.com/docview/934258798 https://pubmed.ncbi.nlm.nih.gov/PMC3311370 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2yOfVSmn7FTRtU6CGFOmtL8ko-lpAQCi2BdiE3IVlSYmjkJXb-f0eyvduU9tLzjC0xmtG8QaMngA81ggBqqjK3xtOcV5bmWq5kzhoqini5xLjE9vltdbnmX66r6z2o5rswqWm_Me1p-Hl3Gtrb1Fu5uWuWc5_Y8urrGWNlyUSxXMAC0-9com-ZduV474Ti9sspn_l8BFtugu7jHoEoHV0xEoZicsSUm14r22Wlhddd5DpF7b_hzj_bJ3_LRxfP4OkEJMnnccIHsOfCcziYQrUnJxOf9McXoK5i54p1ZNA3JGJUzFZEk3u9aS1pOnQ1HIGYLlgydChI1A1t-ESmN3yI23EWotiM_M44tra3rm_DS1hfnP84u8yndxXyBvHMkJvKOCqls9JzjG9mqXeFZcLGxzKFNGhbJzwmb8eqRoiVpqVdsUZ7zgWC8ZK9gv3QBXcIxNUaIYY00nnNS6uNrwrurdbU6doLncHJbFe1GekzVDr2FkxF-6rdamRwiHZX-gY3N7X-TmPpFwELIigUJeXdH2pVUnWOlX0GR_MCqSn6elWzCssqrLczeL-VYtjEsxAdXPfQx842XkauvjID8g-dmuGGJkUtM3g9rvh2BrPfZCAe-cJWIbJ2P5agMyf27sl53_z3l0fwBI1DYyMcLd7C_nD_4N4hMhrMccxL1XGKh1-TWQtk |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbSXCvoipQ9X6oFKDRs_snaOFQJtW0BIZSVulh07EAmcFVn-P-M8dkvVXnqeSWyNZzzfyOPPAJ8LBAHM5jR1tmKpyB1LjZqqlJdMZvFyifUd2-fZdDYXPy7zyw3Ix7swXdN-aeuDcHN7EOrrrrdycVtOxj6xyfnpIeeUcplNNuFJzmVBxyJ9xbWr-psnDDdgwcTI6CP5ZBFMG3cJxOnojJEyFNMjJt3uvbJ1XtqsTBPZTlH7b8jzzwbK3zLS8TY8H6Ak-dZPeQc2fHgBO0OwtmR_YJT-8hL0eexdcZ4szRWJKBXzFTHkzixqR8oGnQ1HILYJjiwbFHTkDXX4SoZXfIhfsxai2PYMzzi2cde-rcMrmB8fXRzO0uFlhbRERLNMbW49U8o7VQmMcO5Y5TPHpYvPZUpl0bpeVpi-Pc9LKaeGUTflpamEkAjHKX8NW6EJfheILwyCDGWVr4ygztgqz0TljGHeFJU0CeyPdtWLnkBDdwffkutoX71ejQR20e7aXOH2pue_WCz-ImRBDIWiTnn9h0JTpo-wtk9gb1wgPcRfqwueY2GFFXcCn1ZSDJx4GmKCb-7b2NsmaGTrowmQf-gUHLc0JQuVwJt-xVczGP0mAfnIF1YKkbf7sQTduePvHtz37X9_-RGezi5OT_TJ97Ofe_AMDcViWxzL3sHW8u7ev0ectLQfuqh4AH0RDdM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6aFEovJekrbvpQoYcU6tiW7JV8LGmW9BUW2oXchGRJiSGRl9j5_xn5sZuU9tLzyJYYzWi-QaNvAD6UCAKoLrLYaEfjvDA0VmImYlZRnobHJdr2bJ-ns5Nl_u2sOLvT6qsv2q90fegvrw59fdHXVq6uqmSqE0sWP48YyzLG02RlXLIFDwuGRjYl6mu-XTG8PqF4COc0n1h9OEtWXrXhpECsjgYZaEMxRGLg7XuWbWLTllNNYDzF0X9Dn38WUd6JSvMdeDLCSfJ5WPYuPLD-KeyODtuSg5FV-uMzkItQv2Is6dQ5CUgVYxZR5FqtakOqBg0OZyC68YZ0DQp6AofafyJjJx9iN8yFKNYDyzPOrcyFbWv_HJbz499HJ_HYXSGuENV0sS60pUJYI1yOXs4MdTY1jJvQMpMLjRq23GEIt6yoOJ8pmpkZq5TLc46QPGMvYNs33u4BsaVCoCG0sE7lmVHaFWnujFLUqtJxFcHBpFe5Gkg0ZH_5zZkM-pWb3YhgD_Uu1TkecXL5i4YEMMAWxFEo6gdv_lDKjMpjzO8j2J82SI4-2MqSFZhcYdYdwfu1FJ0n3Igob5ubNtS35Vlg7MsiIP8YUzI81gQvRQQvhx1fr2Cymwj4PVtYDwjc3fclaNI9h_dowq_--8t38GjxZS5_fD39vg-PUU80VMbR9DVsd9c39g1CpU6_7Z3iFmhZDuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+tag+forming+a+rapid+covalent+bond+to+a+protein%2C+through+engineering+a+bacterial+adhesin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bijan+Zakeri&rft.au=Jacob+O.+Fierer&rft.au=Emrah+Celik&rft.au=Emily+C.+Chittock&rft.date=2012-03-20&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=12&rft.spage=E690&rft_id=info:doi/10.1073%2Fpnas.1115485109&rft_id=info%3Apmid%2F22366317&rft.externalDBID=n%2Fa&rft.externalDocID=109_12_E690 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F12.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F12.cover.gif |