Moving magnetoencephalography towards real-world applications with a wearable system

A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners in motion Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 555; no. 7698; pp. 657 - 661
Main Authors Boto, Elena, Holmes, Niall, Leggett, James, Roberts, Gillian, Shah, Vishal, Meyer, Sofie S., Muñoz, Leonardo Duque, Mullinger, Karen J., Tierney, Tim M., Bestmann, Sven, Barnes, Gareth R., Bowtell, Richard, Brookes, Matthew J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.03.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners in motion Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept still inside a restrictive scanner. This limits the experimental questions that can be asked. Matthew Brookes and colleagues have developed a new MEG system that incorporates quantum sensors, which do not require superconducting technology, and a new technique for cancelling ambient magnetic fields. This technology can be used in a relatively lightweight helmet system that allows some natural head movement. The new system supports measurement of MEG data at millisecond resolution while subjects make movements, including head nodding, stretching and ball play. The system opens up new possibilities for MEG scanning in situations where current technology is too restrictive, such as in subjects with movement disorders. Imaging human brain function with techniques such as magnetoencephalography 1 typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors 2 , 3 , which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.
AbstractList Imaging human brain function with techniques such as magnetoencephalography 1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors 2 , 3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders.
A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners in motion Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept still inside a restrictive scanner. This limits the experimental questions that can be asked. Matthew Brookes and colleagues have developed a new MEG system that incorporates quantum sensors, which do not require superconducting technology, and a new technique for cancelling ambient magnetic fields. This technology can be used in a relatively lightweight helmet system that allows some natural head movement. The new system supports measurement of MEG data at millisecond resolution while subjects make movements, including head nodding, stretching and ball play. The system opens up new possibilities for MEG scanning in situations where current technology is too restrictive, such as in subjects with movement disorders. Imaging human brain function with techniques such as magnetoencephalography 1 typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors 2 , 3 , which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.
Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.
Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.
Audience Academic
Author Mullinger, Karen J.
Muñoz, Leonardo Duque
Brookes, Matthew J.
Boto, Elena
Roberts, Gillian
Holmes, Niall
Barnes, Gareth R.
Bowtell, Richard
Meyer, Sofie S.
Bestmann, Sven
Shah, Vishal
Tierney, Tim M.
Leggett, James
AuthorAffiliation 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
3 QuSpin Inc., 331 South 104 th Street, Suite 130, Louisville, Colorado, 80027, USA
6 School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom
2 Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
4 Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AZ, United Kingdom
5 Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London, WC1N 3BG, United Kingdom
AuthorAffiliation_xml – name: 2 Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
– name: 4 Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AZ, United Kingdom
– name: 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
– name: 5 Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London, WC1N 3BG, United Kingdom
– name: 6 School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom
– name: 3 QuSpin Inc., 331 South 104 th Street, Suite 130, Louisville, Colorado, 80027, USA
Author_xml – sequence: 1
  givenname: Elena
  surname: Boto
  fullname: Boto, Elena
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 2
  givenname: Niall
  surname: Holmes
  fullname: Holmes, Niall
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 3
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 4
  givenname: Gillian
  surname: Roberts
  fullname: Roberts, Gillian
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 5
  givenname: Vishal
  surname: Shah
  fullname: Shah, Vishal
  organization: QuSpin Inc
– sequence: 6
  givenname: Sofie S.
  surname: Meyer
  fullname: Meyer, Sofie S.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, Institute of Cognitive Neuroscience, University College London
– sequence: 7
  givenname: Leonardo Duque
  surname: Muñoz
  fullname: Muñoz, Leonardo Duque
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London
– sequence: 8
  givenname: Karen J.
  surname: Mullinger
  fullname: Mullinger, Karen J.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Centre for Human Brain Health, School of Psychology, University of Birmingham
– sequence: 9
  givenname: Tim M.
  surname: Tierney
  fullname: Tierney, Tim M.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London
– sequence: 10
  givenname: Sven
  surname: Bestmann
  fullname: Bestmann, Sven
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House
– sequence: 11
  givenname: Gareth R.
  surname: Barnes
  fullname: Barnes, Gareth R.
  organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London
– sequence: 12
  givenname: Richard
  surname: Bowtell
  fullname: Bowtell, Richard
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
– sequence: 13
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  email: matthew.brookes@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29562238$$D View this record in MEDLINE/PubMed
BookMark eNp10l1v0zAUBmALDbFucMU9itgNCDIcfyW5QZomPiYNIcG4tlznJPWU2JntrPTf49KxtVNRrERynvPGsc8ROrDOAkIvC3xaYFp9sCpOHogoWPkEzdJd5ExU5QGaYUyqHFdUHKKjEK4xxrwo2TN0SGouCKHVDF19c7fGdtmgOgvRgdUwLlTvOq_GxSqLbql8EzIPqs-XzvdNpsaxN1pF42zIliYuMpUtQXk17yELqxBheI6etqoP8OLueYx-ff50df41v_z-5eL87DLXoiAxVy3gqipxzURLCZCy5DUDBrwulW4oZpzVZD1aqLhQc15TWjRzMmcALZQNPUYfN7njNB-g0WCjV70cvRmUX0mnjNx9Y81Cdu5WCiwo5SwFvLkL8O5mghDlYIKGvlcW3BQkwUWJuaC4TPTkEb12k7fp95IiCdQVEw-qUz1IY1uXvqvXofKMUyIqxguSVL5HdWAhLTIdbmvS9I5_vcfr0dzIbXS6B6WrgcHovalvdwqSifA7dmoKQV78_LFrX23v9P0W_2ukBN5tgPYuBA_tPSmwXLep3GrTpItHWpv4t6XSmk3_n5r3m5qQkm0H_uEA9vE_-rD4eQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120991
crossref_primary_10_1364_OE_500875
crossref_primary_10_1038_s41598_022_17346_1
crossref_primary_10_1016_j_measurement_2022_111878
crossref_primary_10_1088_1742_6596_1697_1_012175
crossref_primary_10_1177_20552076241305233
crossref_primary_10_1109_JSEN_2018_2872894
crossref_primary_10_1109_TIM_2024_3449978
crossref_primary_10_1016_j_neuroimage_2021_118834
crossref_primary_10_2139_ssrn_4132033
crossref_primary_10_1007_s00723_023_01592_1
crossref_primary_10_1016_j_sna_2024_115431
crossref_primary_10_1116_5_0106099
crossref_primary_10_1080_10400419_2023_2277042
crossref_primary_10_1016_j_cogsys_2020_08_006
crossref_primary_10_3389_fpsyg_2023_1210960
crossref_primary_10_3390_s23094218
crossref_primary_10_1103_PhysRevApplied_18_014036
crossref_primary_10_1109_TBME_2019_2938688
crossref_primary_10_1080_17470919_2024_2380725
crossref_primary_10_1162_imag_a_00414
crossref_primary_10_1038_s41378_024_00758_6
crossref_primary_10_1097_01_NT_0000533822_92630_a2
crossref_primary_10_1016_j_neuroimage_2021_118604
crossref_primary_10_4103_1673_5374_391307
crossref_primary_10_1103_PhysRevLett_127_193601
crossref_primary_10_1088_1367_2630_acb840
crossref_primary_10_1109_TIM_2022_3144737
crossref_primary_10_1016_j_neuroimage_2023_120252
crossref_primary_10_1098_rsos_240762
crossref_primary_10_1109_JSEN_2021_3128944
crossref_primary_10_1177_1073858418775355
crossref_primary_10_1016_j_tins_2022_05_008
crossref_primary_10_1177_15459683221138751
crossref_primary_10_1016_j_neuroimage_2020_117447
crossref_primary_10_1016_j_neuroimage_2020_117443
crossref_primary_10_3390_s23052801
crossref_primary_10_3390_bioengineering11080773
crossref_primary_10_1016_j_neuroimage_2019_06_055
crossref_primary_10_1016_j_sna_2024_115456
crossref_primary_10_1002_adfm_202001604
crossref_primary_10_1016_j_jmmm_2024_171983
crossref_primary_10_1016_j_neuroimage_2023_120024
crossref_primary_10_1088_1361_6528_adb635
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_neuroimage_2021_118818
crossref_primary_10_1016_j_neuroimage_2021_117969
crossref_primary_10_1109_JSEN_2023_3270325
crossref_primary_10_1080_17434440_2021_1969913
crossref_primary_10_1016_j_sna_2022_113928
crossref_primary_10_1103_PhysRevA_103_033113
crossref_primary_10_1016_j_neuroimage_2024_120953
crossref_primary_10_1103_PhysRevApplied_23_034008
crossref_primary_10_1016_j_neuroimage_2022_119165
crossref_primary_10_1109_TIM_2023_3295475
crossref_primary_10_1038_s41467_021_21256_7
crossref_primary_10_1103_PhysRevA_101_053427
crossref_primary_10_1111_cns_14602
crossref_primary_10_3390_photonics11020182
crossref_primary_10_1038_s41467_023_41676_x
crossref_primary_10_1038_s41398_024_03047_y
crossref_primary_10_1109_JSEN_2020_3002193
crossref_primary_10_1103_PhysRevApplied_21_014003
crossref_primary_10_1103_PhysRevA_105_063509
crossref_primary_10_1038_s41582_019_0224_y
crossref_primary_10_1016_j_jmr_2020_106723
crossref_primary_10_1016_j_measurement_2024_115983
crossref_primary_10_1103_PhysRevA_101_053436
crossref_primary_10_1016_j_optlastec_2025_112833
crossref_primary_10_3389_fnimg_2022_903191
crossref_primary_10_1016_j_measurement_2023_113904
crossref_primary_10_1016_j_cobme_2021_100285
crossref_primary_10_3390_s23094256
crossref_primary_10_1016_j_ynirp_2022_100093
crossref_primary_10_1063_5_0080764
crossref_primary_10_3390_s24186044
crossref_primary_10_3390_s25010234
crossref_primary_10_1002_jbio_201960188
crossref_primary_10_3390_brainsci10100687
crossref_primary_10_3390_s23084007
crossref_primary_10_1109_TIM_2020_3033933
crossref_primary_10_1016_j_neuroimage_2020_116556
crossref_primary_10_1002_hbm_24795
crossref_primary_10_3390_brainsci13040663
crossref_primary_10_1038_s41598_019_50697_w
crossref_primary_10_7554_eLife_94561_3
crossref_primary_10_1016_j_nicl_2021_102697
crossref_primary_10_1063_1_5055029
crossref_primary_10_1016_j_neuron_2019_07_001
crossref_primary_10_1088_1361_6463_ac2f13
crossref_primary_10_1063_5_0151899
crossref_primary_10_1016_j_bbe_2023_11_004
crossref_primary_10_3390_s24113503
crossref_primary_10_1016_j_neuroimage_2024_120996
crossref_primary_10_1016_j_rinp_2023_107017
crossref_primary_10_1111_1541_4337_13327
crossref_primary_10_1515_revneuro_2019_0030
crossref_primary_10_3390_s22249862
crossref_primary_10_3389_fnrgo_2020_583733
crossref_primary_10_3390_mi14111985
crossref_primary_10_1016_j_tics_2021_02_008
crossref_primary_10_1038_s42256_023_00742_1
crossref_primary_10_3389_fpsyg_2021_568921
crossref_primary_10_1113_JP277899
crossref_primary_10_1002_mop_33497
crossref_primary_10_1038_s41378_022_00468_x
crossref_primary_10_1088_1742_6596_2058_1_012030
crossref_primary_10_1109_TIE_2022_3159961
crossref_primary_10_1016_j_measurement_2024_115149
crossref_primary_10_1063_5_0141434
crossref_primary_10_1109_TIM_2020_3043947
crossref_primary_10_1109_TIM_2025_3547076
crossref_primary_10_1109_TMAG_2023_3282634
crossref_primary_10_1109_TIM_2021_3112797
crossref_primary_10_1016_j_sna_2024_115043
crossref_primary_10_1016_j_nanoen_2022_107852
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1103_PhysRevApplied_15_064075
crossref_primary_10_1103_PhysRevApplied_15_014004
crossref_primary_10_1016_j_optlastec_2023_109534
crossref_primary_10_1063_5_0216850
crossref_primary_10_3390_s20164563
crossref_primary_10_1002_mp_17301
crossref_primary_10_1016_j_cmpb_2022_107127
crossref_primary_10_1002_nbm_5243
crossref_primary_10_1116_5_0025186
crossref_primary_10_1088_1361_6501_ad89e6
crossref_primary_10_1109_TIM_2024_3502873
crossref_primary_10_1002_piuz_202270508
crossref_primary_10_1016_j_neuroimage_2019_116099
crossref_primary_10_1016_j_vrih_2022_01_003
crossref_primary_10_1103_PhysRevD_105_055020
crossref_primary_10_1063_5_0149388
crossref_primary_10_1109_JSEN_2021_3112522
crossref_primary_10_1103_PhysRevApplied_15_024033
crossref_primary_10_1364_OE_420031
crossref_primary_10_1109_TIE_2022_3229347
crossref_primary_10_1109_TIE_2022_3179547
crossref_primary_10_3390_s21072527
crossref_primary_10_1109_JLT_2019_2892479
crossref_primary_10_1103_PhysRevA_105_043109
crossref_primary_10_35848_1347_4065_ab77f3
crossref_primary_10_1016_j_measurement_2024_114266
crossref_primary_10_1021_acsbiomaterials_2c01147
crossref_primary_10_1177_19375867221133135
crossref_primary_10_1016_j_measurement_2023_113059
crossref_primary_10_1134_S0030400X19100084
crossref_primary_10_1109_TIE_2021_3050351
crossref_primary_10_1021_acsami_0c01182
crossref_primary_10_1016_j_neuroimage_2019_03_022
crossref_primary_10_3390_photonics10030332
crossref_primary_10_1038_s41467_019_10787_9
crossref_primary_10_1088_1674_1056_28_4_040703
crossref_primary_10_1088_1674_1056_28_4_040702
crossref_primary_10_1002_adma_201808138
crossref_primary_10_1038_s42254_019_0040_8
crossref_primary_10_1002_admt_202100919
crossref_primary_10_1103_PhysRevA_99_053417
crossref_primary_10_1016_j_neuroimage_2020_117497
crossref_primary_10_1109_JSEN_2019_2904719
crossref_primary_10_1016_j_neuroimage_2021_118401
crossref_primary_10_1016_j_neuroimage_2020_117254
crossref_primary_10_1021_acs_chemrev_2c00534
crossref_primary_10_1088_2058_9565_ad8678
crossref_primary_10_3390_s20154241
crossref_primary_10_1109_LMAG_2019_2944116
crossref_primary_10_1103_PhysRevA_101_063408
crossref_primary_10_1109_ACCESS_2021_3063054
crossref_primary_10_1109_JLT_2022_3210466
crossref_primary_10_1016_j_infbeh_2019_101393
crossref_primary_10_1038_s41598_022_10155_6
crossref_primary_10_1088_1361_6463_abbe4b
crossref_primary_10_1364_OE_459995
crossref_primary_10_7498_aps_70_20210247
crossref_primary_10_1002_hbm_24707
crossref_primary_10_1016_j_neuroimage_2018_09_006
crossref_primary_10_1038_s41598_021_96933_0
crossref_primary_10_1093_brain_awab430
crossref_primary_10_1088_1674_1056_ad401b
crossref_primary_10_1038_s41928_018_0165_2
crossref_primary_10_1523_JNEUROSCI_0742_19_2019
crossref_primary_10_3389_fneur_2021_744749
crossref_primary_10_1007_s11920_023_01462_4
crossref_primary_10_1103_PhysRevApplied_15_064006
crossref_primary_10_1111_epi_17368
crossref_primary_10_1021_acsphotonics_4c02361
crossref_primary_10_1364_OL_465832
crossref_primary_10_1016_j_isci_2022_105177
crossref_primary_10_1016_j_sna_2023_114868
crossref_primary_10_1016_j_measurement_2024_116095
crossref_primary_10_1016_j_measurement_2025_117228
crossref_primary_10_1140_epjqt_s40507_020_00083_7
crossref_primary_10_1038_s41587_019_0230_z
crossref_primary_10_1523_JNEUROSCI_2237_23_2024
crossref_primary_10_1002_ecj_12278
crossref_primary_10_1109_MPRV_2019_2898536
crossref_primary_10_1109_TIE_2020_2987267
crossref_primary_10_3390_technologies12120254
crossref_primary_10_1364_OL_540032
crossref_primary_10_1038_s41598_018_30264_5
crossref_primary_10_1016_j_sna_2021_113195
crossref_primary_10_1088_1741_2552_acfcd9
crossref_primary_10_1098_rstb_2019_0633
crossref_primary_10_1016_j_tibtech_2020_03_003
crossref_primary_10_1016_j_expneurol_2021_113807
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1016_j_physc_2024_1354575
crossref_primary_10_1039_D0TC01112F
crossref_primary_10_1523_ENEURO_0222_23_2023
crossref_primary_10_1109_TIM_2024_3394482
crossref_primary_10_1109_TIM_2023_3304705
crossref_primary_10_1007_s13320_019_0539_8
crossref_primary_10_1364_OE_489172
crossref_primary_10_1038_s41598_024_77089_z
crossref_primary_10_3389_fneur_2018_01148
crossref_primary_10_1007_s00521_020_04873_z
crossref_primary_10_1364_OE_550538
crossref_primary_10_1103_PhysRevApplied_22_014084
crossref_primary_10_7498_aps_70_20202131
crossref_primary_10_1109_JSEN_2020_3041832
crossref_primary_10_1109_TIE_2021_3125561
crossref_primary_10_1109_TIE_2020_3032868
crossref_primary_10_1109_TIM_2023_3346516
crossref_primary_10_1162_imag_a_00283
crossref_primary_10_1002_qute_202400289
crossref_primary_10_1016_j_biopsycho_2023_108566
crossref_primary_10_1016_j_measurement_2024_116295
crossref_primary_10_1016_j_jmmm_2024_172335
crossref_primary_10_1038_nbt_4240
crossref_primary_10_1080_17461391_2019_1675765
crossref_primary_10_3390_s23020646
crossref_primary_10_1103_PhysRevA_110_063122
crossref_primary_10_1016_j_cobeha_2021_02_016
crossref_primary_10_3390_app12031329
crossref_primary_10_1109_LMAG_2019_2957491
crossref_primary_10_1364_JOSAB_501179
crossref_primary_10_1016_j_sna_2025_116394
crossref_primary_10_1016_j_neuroimage_2021_118368
crossref_primary_10_1088_1361_6463_ac49b5
crossref_primary_10_1103_PhysRevApplied_14_011002
crossref_primary_10_1109_JSYST_2020_3021485
crossref_primary_10_1364_OE_500278
crossref_primary_10_1103_PhysRevApplied_18_054019
crossref_primary_10_1002_qute_202300287
crossref_primary_10_1016_j_scib_2020_08_001
crossref_primary_10_1126_sciadv_adr9139
crossref_primary_10_3390_s22093184
crossref_primary_10_3390_s23146537
crossref_primary_10_1016_j_neuroimage_2022_119747
crossref_primary_10_1162_imag_a_00020
crossref_primary_10_1016_j_pnmrs_2025_101558
crossref_primary_10_1016_j_sna_2025_116385
crossref_primary_10_1016_j_neuroimage_2018_07_028
crossref_primary_10_1021_acsphotonics_4c01694
crossref_primary_10_1109_TIM_2022_3216411
crossref_primary_10_1364_OE_27_000597
crossref_primary_10_1109_JSEN_2023_3334710
crossref_primary_10_1126_sciadv_abp9242
crossref_primary_10_1109_LSENS_2024_3517345
crossref_primary_10_1364_OE_408486
crossref_primary_10_1111_epi_17770
crossref_primary_10_3389_fnhum_2021_749017
crossref_primary_10_1364_OE_517961
crossref_primary_10_3788_LOP222049
crossref_primary_10_1080_23273798_2023_2226268
crossref_primary_10_1111_nyas_14890
crossref_primary_10_1364_OE_27_033027
crossref_primary_10_1016_j_sna_2025_116372
crossref_primary_10_1109_LMAG_2021_3132851
crossref_primary_10_1016_j_measurement_2024_116022
crossref_primary_10_1109_JSEN_2023_3299690
crossref_primary_10_1088_1361_6439_ab8dd0
crossref_primary_10_1093_cercor_bhae108
crossref_primary_10_1088_1361_6501_abdb79
crossref_primary_10_1016_j_sna_2023_114467
crossref_primary_10_3389_fnins_2022_931265
crossref_primary_10_1016_j_jmmm_2022_169495
crossref_primary_10_1016_j_sna_2023_114464
crossref_primary_10_1364_AO_479580
crossref_primary_10_1109_JSEN_2021_3131734
crossref_primary_10_31083_j_jin2105145
crossref_primary_10_3390_s23125454
crossref_primary_10_1177_1745691620953773
crossref_primary_10_1364_OE_474777
crossref_primary_10_1016_j_cortex_2019_04_004
crossref_primary_10_1038_s42254_023_00558_3
crossref_primary_10_1162_imag_a_00489
crossref_primary_10_3390_bios12020129
crossref_primary_10_1002_hbm_26118
crossref_primary_10_1515_nanoph_2021_0256
crossref_primary_10_1371_journal_pone_0262669
crossref_primary_10_1002_hbm_26596
crossref_primary_10_1016_j_neubiorev_2023_105036
crossref_primary_10_1103_PhysRevApplied_21_064010
crossref_primary_10_7554_eLife_33977
crossref_primary_10_1364_OE_463651
crossref_primary_10_35848_1347_4065_ad43ce
crossref_primary_10_1016_j_neuroimage_2025_121056
crossref_primary_10_1088_1674_1056_ac6010
crossref_primary_10_1001_jamaneurol_2019_2384
crossref_primary_10_3390_bios12030165
crossref_primary_10_1016_j_measurement_2024_115824
crossref_primary_10_1063_5_0167372
crossref_primary_10_1038_s41598_024_51857_3
crossref_primary_10_1016_j_sbsr_2024_100658
crossref_primary_10_1002_qute_202300084
crossref_primary_10_3389_fped_2021_626734
crossref_primary_10_3389_fphy_2022_1059487
crossref_primary_10_3390_brainsci9080181
crossref_primary_10_1016_j_neuroimage_2018_06_041
crossref_primary_10_1162_imag_a_00495
crossref_primary_10_1088_1361_6463_abf169
crossref_primary_10_1088_1681_7575_accd74
crossref_primary_10_1016_j_sna_2023_114247
crossref_primary_10_1364_OE_550716
crossref_primary_10_1038_s41598_022_21870_5
crossref_primary_10_12688_f1000research_22296_1
crossref_primary_10_1088_1361_6560_ac18fb
crossref_primary_10_1109_JSEN_2024_3438990
crossref_primary_10_35848_1882_0786_ac00d9
crossref_primary_10_1016_j_measurement_2023_112860
crossref_primary_10_35848_1882_0786_acaa1c
crossref_primary_10_1016_j_jneumeth_2021_109181
crossref_primary_10_7498_aps_71_20211122
crossref_primary_10_1016_j_copsyc_2019_08_026
crossref_primary_10_1126_sciadv_adg1760
crossref_primary_10_1016_j_neuroimage_2020_116995
crossref_primary_10_1109_LED_2018_2870731
crossref_primary_10_4266_acc_2023_01382
crossref_primary_10_1002_qute_202400226
crossref_primary_10_1016_j_measurement_2025_117286
crossref_primary_10_1103_PhysRevLett_128_163602
crossref_primary_10_1021_acsphotonics_4c01638
crossref_primary_10_1109_JSEN_2024_3438765
crossref_primary_10_1111_ejn_70060
crossref_primary_10_1016_j_measurement_2024_114711
crossref_primary_10_1109_JSEN_2023_3291361
crossref_primary_10_1002_qute_202400475
crossref_primary_10_1109_TIM_2022_3150588
crossref_primary_10_1016_j_measurement_2023_113729
crossref_primary_10_1002_qute_202400238
crossref_primary_10_1088_1361_6633_ad99e6
crossref_primary_10_1364_OE_450571
crossref_primary_10_1038_s41598_018_34535_z
crossref_primary_10_1038_s41467_022_32150_1
crossref_primary_10_1088_1741_2552_ac2c4d
crossref_primary_10_1364_OE_523114
crossref_primary_10_3389_fnins_2021_706785
crossref_primary_10_1016_j_measurement_2025_117052
crossref_primary_10_1016_j_sna_2023_114663
crossref_primary_10_1371_journal_pbio_3002828
crossref_primary_10_1016_j_neubiorev_2023_105463
crossref_primary_10_1002_advs_202405099
crossref_primary_10_1002_qute_202200146
crossref_primary_10_1016_j_mtadv_2024_100487
crossref_primary_10_1016_j_nanoen_2018_11_065
crossref_primary_10_1038_s41598_023_31111_y
crossref_primary_10_1109_TIM_2023_3277096
crossref_primary_10_1108_EJM_01_2021_0003
crossref_primary_10_1109_JSEN_2021_3102146
crossref_primary_10_1162_imag_a_00219
crossref_primary_10_3390_biomimetics10020074
crossref_primary_10_1109_TIM_2022_3188525
crossref_primary_10_1134_S1063785023900686
crossref_primary_10_1016_j_cmpb_2024_108292
crossref_primary_10_1109_JSEN_2021_3116312
crossref_primary_10_1103_PhysRevA_109_032608
crossref_primary_10_1016_j_neuroimage_2022_119559
crossref_primary_10_1364_BOE_474862
crossref_primary_10_1152_jn_00530_2020
crossref_primary_10_3390_s20071826
crossref_primary_10_1063_5_0105945
crossref_primary_10_1038_s42256_023_00714_5
crossref_primary_10_61186_ijop_17_2_155
crossref_primary_10_1002_qute_202000078
crossref_primary_10_1038_d41586_023_01663_0
crossref_primary_10_1016_j_neubiorev_2021_09_034
crossref_primary_10_1109_TII_2024_3353928
crossref_primary_10_1016_j_measurement_2025_117237
crossref_primary_10_1364_BOE_380314
crossref_primary_10_1016_j_biopsych_2022_08_016
crossref_primary_10_1177_23982128221075430
crossref_primary_10_3390_s25020433
crossref_primary_10_1016_j_measurement_2025_117004
crossref_primary_10_3389_fnins_2018_00273
crossref_primary_10_1016_j_sna_2023_114207
crossref_primary_10_1109_TIM_2023_3331425
crossref_primary_10_1093_scan_nsaa061
crossref_primary_10_1016_j_neuroimage_2025_121078
crossref_primary_10_1103_PhysRevA_99_013420
crossref_primary_10_1109_TIM_2022_3214619
crossref_primary_10_1088_1361_6560_ab4c06
crossref_primary_10_1016_j_neuroimage_2022_119338
crossref_primary_10_1186_s13229_022_00498_2
crossref_primary_10_1038_s41598_024_56878_6
crossref_primary_10_3788_COL202422_051201
crossref_primary_10_4085_1062_6050_54_084
crossref_primary_10_1103_PhysRevResearch_1_033087
crossref_primary_10_1371_journal_pone_0227684
crossref_primary_10_1016_j_neuroimage_2018_05_029
crossref_primary_10_1088_1402_4896_ad7234
crossref_primary_10_3390_photonics9110792
crossref_primary_10_1109_TIM_2025_3545997
crossref_primary_10_1088_1361_6501_ab3505
crossref_primary_10_1038_s41587_019_0226_8
crossref_primary_10_1109_TIM_2024_3460884
crossref_primary_10_3390_photonics10121302
crossref_primary_10_1016_j_jmr_2019_106580
crossref_primary_10_1016_j_sna_2023_114188
crossref_primary_10_1111_epi_17806
crossref_primary_10_3390_photonics10040458
crossref_primary_10_1109_TIM_2022_3162282
crossref_primary_10_1038_s41583_021_00485_1
crossref_primary_10_1186_s12915_021_01073_6
crossref_primary_10_1002_lpor_202301276
crossref_primary_10_1109_JSEN_2024_3366312
crossref_primary_10_1109_JSEN_2022_3156814
crossref_primary_10_1016_j_measurement_2024_114594
crossref_primary_10_1088_1674_1056_ad0b00
crossref_primary_10_1109_TIM_2025_3545841
crossref_primary_10_1016_j_neuroimage_2022_119084
crossref_primary_10_1063_5_0071986
crossref_primary_10_1109_TIM_2022_3201500
crossref_primary_10_1109_TIM_2024_3353279
crossref_primary_10_1007_s11432_022_3550_1
crossref_primary_10_1111_spc3_12707
crossref_primary_10_35848_1882_0786_ad9078
crossref_primary_10_1016_j_nic_2020_02_004
crossref_primary_10_1016_j_nicl_2021_102797
crossref_primary_10_1088_1361_6463_abf53c
crossref_primary_10_3390_s21041517
crossref_primary_10_1002_hbm_24445
crossref_primary_10_1103_PhysRevA_104_L041306
crossref_primary_10_3902_jnns_30_159
crossref_primary_10_1038_s44159_022_00065_9
crossref_primary_10_1016_j_measurement_2024_115410
crossref_primary_10_1080_27706710_2024_2322930
crossref_primary_10_1109_JSEN_2024_3435882
crossref_primary_10_1364_OL_514866
crossref_primary_10_1364_OE_404259
crossref_primary_10_1109_JSEN_2021_3136213
crossref_primary_10_1016_j_plrev_2023_07_006
crossref_primary_10_3390_ma16155238
crossref_primary_10_1088_1742_6596_2103_1_012182
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1038_s41467_020_16202_y
crossref_primary_10_1364_BOE_528275
crossref_primary_10_1016_j_clinph_2020_03_041
crossref_primary_10_1109_JPHOT_2018_2889578
crossref_primary_10_1088_1674_1056_aca6d5
crossref_primary_10_1148_radiol_220609
crossref_primary_10_1109_TIM_2022_3147901
crossref_primary_10_3788_COL202523_021201
crossref_primary_10_1109_TIE_2022_3161799
crossref_primary_10_1177_10738584211054742
crossref_primary_10_1063_1_5066250
crossref_primary_10_1109_TIM_2025_3541674
crossref_primary_10_1103_PhysRevApplied_11_044034
crossref_primary_10_1016_j_neuroimage_2022_119047
crossref_primary_10_1126_sciadv_adg1746
crossref_primary_10_1016_j_jneumeth_2019_108378
crossref_primary_10_1364_OE_443679
crossref_primary_10_1016_j_neuroimage_2021_117815
crossref_primary_10_1088_1742_6596_1837_1_012002
crossref_primary_10_1038_s41593_020_00709_0
crossref_primary_10_1364_OE_476113
crossref_primary_10_1002_hbm_25987
crossref_primary_10_1063_5_0079429
crossref_primary_10_3389_fnbeh_2019_00044
crossref_primary_10_1016_j_neubiorev_2023_105197
crossref_primary_10_1038_s41598_021_81828_x
crossref_primary_10_1038_s41598_023_39539_y
crossref_primary_10_1103_PhysRevApplied_11_054075
crossref_primary_10_1016_j_aap_2021_106093
crossref_primary_10_1103_PhysRevApplied_12_011004
crossref_primary_10_1016_j_neuroimage_2020_116686
crossref_primary_10_1016_j_tins_2024_02_003
crossref_primary_10_1103_PhysRevApplied_19_044042
crossref_primary_10_1111_dmcn_15689
crossref_primary_10_1016_j_dcn_2024_101433
crossref_primary_10_3389_fnins_2022_984036
crossref_primary_10_1007_s10548_024_01086_8
crossref_primary_10_1103_PhysRevApplied_22_034030
crossref_primary_10_1109_TIM_2022_3232658
crossref_primary_10_1109_TMI_2019_2937670
crossref_primary_10_1109_ACCESS_2019_2891162
crossref_primary_10_3788_gzxb20245305_0553108
crossref_primary_10_1063_5_0218708
crossref_primary_10_1016_j_neuroimage_2020_116679
crossref_primary_10_1063_5_0193131
crossref_primary_10_1364_OE_464361
crossref_primary_10_1016_j_isci_2024_109250
crossref_primary_10_1038_s43856_024_00547_2
crossref_primary_10_1016_j_sna_2024_115305
crossref_primary_10_1021_acs_nanolett_0c01987
crossref_primary_10_1016_j_measurement_2024_114753
crossref_primary_10_1103_PhysRevLett_129_051802
crossref_primary_10_1039_D3NA00016H
crossref_primary_10_1021_acsnano_2c09509
crossref_primary_10_3389_fnhum_2020_00039
crossref_primary_10_1109_JSEN_2019_2927086
crossref_primary_10_1038_s41598_020_77589_8
crossref_primary_10_1038_s41378_024_00715_3
crossref_primary_10_1109_TNSRE_2019_2926965
crossref_primary_10_1109_TIE_2023_3314921
crossref_primary_10_3389_fnins_2021_599549
crossref_primary_10_3389_fphy_2022_969129
crossref_primary_10_1016_j_radmp_2024_09_001
crossref_primary_10_1016_j_optlastec_2023_109876
crossref_primary_10_1103_PhysRevApplied_22_044011
crossref_primary_10_1038_nrn_2018_38
crossref_primary_10_1109_TIM_2018_2851458
crossref_primary_10_1109_TIM_2024_3522373
crossref_primary_10_1364_OE_553202
crossref_primary_10_1364_JOSAB_501086
crossref_primary_10_1016_j_neuroimage_2019_116192
crossref_primary_10_1002_piuz_202401715
crossref_primary_10_1016_j_neuroimage_2019_01_059
crossref_primary_10_1016_j_ymeth_2018_09_009
crossref_primary_10_3389_fphy_2023_1212368
crossref_primary_10_1016_j_dcn_2022_101069
crossref_primary_10_1364_OE_435841
crossref_primary_10_3390_s20082248
crossref_primary_10_1117_1_JOM_3_4_044501
crossref_primary_10_3389_fnhum_2018_00398
crossref_primary_10_1063_5_0164896
crossref_primary_10_1007_s10118_019_2286_0
crossref_primary_10_3390_biology14010091
crossref_primary_10_1002_adfm_201906813
crossref_primary_10_1103_PhysRevLett_133_133202
crossref_primary_10_1007_s11060_019_03386_7
crossref_primary_10_1073_pnas_1912326116
crossref_primary_10_1038_s41598_024_69829_y
crossref_primary_10_1109_JSEN_2020_3015562
crossref_primary_10_1109_TIM_2022_3186078
crossref_primary_10_1364_OL_496076
crossref_primary_10_1109_JSEN_2024_3421631
crossref_primary_10_1021_acsami_3c15519
crossref_primary_10_1038_s41467_025_58095_9
crossref_primary_10_1073_pnas_1916787117
crossref_primary_10_1038_s41598_020_80590_w
crossref_primary_10_1016_j_measurement_2023_113161
crossref_primary_10_1088_1361_6501_abc89c
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_35848_1347_4065_abfc32
crossref_primary_10_1109_TIM_2023_3265750
crossref_primary_10_1186_s13195_023_01287_6
crossref_primary_10_1016_j_esci_2024_100292
crossref_primary_10_1063_5_0062650
crossref_primary_10_3390_ma15196971
crossref_primary_10_1109_TIM_2023_3311064
crossref_primary_10_1016_j_nicl_2024_103608
crossref_primary_10_1016_j_physo_2024_100227
crossref_primary_10_1016_j_sna_2022_113884
crossref_primary_10_1103_PhysRevA_104_043103
crossref_primary_10_1016_j_neuroimage_2023_120157
crossref_primary_10_1016_j_trechm_2021_01_001
crossref_primary_10_1109_JSEN_2022_3146415
crossref_primary_10_1364_OE_530764
crossref_primary_10_3390_ma17235906
crossref_primary_10_1364_OE_425851
crossref_primary_10_1016_j_isci_2022_103752
crossref_primary_10_1016_j_neubiorev_2022_104649
crossref_primary_10_1103_PhysRevApplied_20_024042
crossref_primary_10_1364_OE_470656
crossref_primary_10_1016_j_bandc_2020_105677
crossref_primary_10_1016_j_neuroimage_2019_01_017
crossref_primary_10_1177_10597123211072613
crossref_primary_10_1088_1361_6668_aacb14
crossref_primary_10_1016_j_measurement_2024_115223
crossref_primary_10_1103_PhysRevA_106_063102
crossref_primary_10_1002_admt_202000185
crossref_primary_10_1002_hipo_23149
crossref_primary_10_1063_5_0002146
crossref_primary_10_1109_ACCESS_2019_2917894
crossref_primary_10_3389_fneur_2022_827529
crossref_primary_10_1063_5_0083306
crossref_primary_10_1214_19_AOAS1321
crossref_primary_10_1016_j_neuroimage_2021_118528
crossref_primary_10_1016_j_neuropsychologia_2023_108632
crossref_primary_10_1162_jocn_a_01653
crossref_primary_10_1126_sciadv_adt3938
crossref_primary_10_1016_j_measurement_2024_116306
crossref_primary_10_1088_1741_2552_ad44d8
crossref_primary_10_1103_PhysRevA_110_043102
crossref_primary_10_3389_fnhum_2021_741918
crossref_primary_10_1088_1741_2552_ad9680
crossref_primary_10_1016_j_measurement_2024_115695
crossref_primary_10_1016_j_measurement_2024_115697
crossref_primary_10_1364_OE_385489
crossref_primary_10_1109_JSEN_2019_2931159
crossref_primary_10_3390_math11122716
crossref_primary_10_1515_aot_2020_0024
crossref_primary_10_1364_OE_26_028682
crossref_primary_10_3389_fnsys_2022_995375
crossref_primary_10_1515_aot_2020_0027
crossref_primary_10_3805_eands_16_71
crossref_primary_10_1016_j_measurement_2024_114373
crossref_primary_10_1063_5_0232183
crossref_primary_10_1103_PhysRevApplied_22_064055
crossref_primary_10_1541_ieejfms_144_306
crossref_primary_10_3390_brainsci12010086
crossref_primary_10_1063_5_0213432
crossref_primary_10_1063_9_0000694
crossref_primary_10_1016_j_neuroimage_2020_117353
crossref_primary_10_1016_j_clinph_2023_10_006
crossref_primary_10_1016_j_bspc_2024_106215
crossref_primary_10_1103_PhysRevA_108_052822
crossref_primary_10_3390_app13148225
crossref_primary_10_1002_brb3_1706
crossref_primary_10_1063_5_0168990
crossref_primary_10_1007_s13320_023_0684_y
crossref_primary_10_1016_j_sna_2023_114509
crossref_primary_10_3390_bioengineering11050428
crossref_primary_10_1038_s41562_019_0767_3
crossref_primary_10_1016_j_neuroimage_2021_118034
crossref_primary_10_1016_j_jneumeth_2022_109726
crossref_primary_10_1109_JSEN_2021_3122990
crossref_primary_10_1063_5_0054842
crossref_primary_10_1109_TIM_2024_3502819
crossref_primary_10_1002_hipo_23060
crossref_primary_10_1016_j_measurement_2023_113423
crossref_primary_10_1103_PhysRevA_108_062610
crossref_primary_10_1364_OL_518697
crossref_primary_10_1155_2022_9935192
crossref_primary_10_1016_j_seizure_2018_05_019
crossref_primary_10_1038_s41583_023_00692_y
crossref_primary_10_1109_TIM_2025_3527604
crossref_primary_10_1016_j_rinp_2023_106546
crossref_primary_10_1002_qute_202300377
crossref_primary_10_1103_PhysRevApplied_14_064067
crossref_primary_10_1016_j_neuroimage_2022_119420
crossref_primary_10_1109_JSEN_2023_3299596
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_3788_COL202422_101201
crossref_primary_10_1088_1361_6463_ac6f99
crossref_primary_10_3389_fneur_2022_831546
crossref_primary_10_1109_JSEN_2018_2877771
crossref_primary_10_1016_j_jneumeth_2024_110131
crossref_primary_10_1109_TIM_2024_3381287
crossref_primary_10_1016_j_sna_2023_114753
crossref_primary_10_1016_j_sna_2024_115901
crossref_primary_10_1016_j_nbd_2025_106858
crossref_primary_10_1016_j_measurement_2023_113449
crossref_primary_10_1016_j_neuroimage_2023_119953
crossref_primary_10_1155_2021_6645270
crossref_primary_10_1021_acs_nanolett_4c02784
crossref_primary_10_3390_photonics10060637
crossref_primary_10_1088_1674_1056_ab7801
crossref_primary_10_1134_S1063785019100304
crossref_primary_10_1109_TIM_2022_3162607
crossref_primary_10_1088_1361_6463_acc412
crossref_primary_10_1016_j_neuroimage_2021_118025
crossref_primary_10_1097_WNP_0000000000000743
crossref_primary_10_1109_TIM_2019_2905308
crossref_primary_10_3138_jmvfh_2019_0029
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1097_WNP_0000000000000744
crossref_primary_10_1109_TIM_2024_3413176
crossref_primary_10_1016_j_clinph_2021_07_007
crossref_primary_10_1016_j_neuroimage_2021_118479
crossref_primary_10_3390_ma15238704
crossref_primary_10_3389_fmedt_2024_1470970
crossref_primary_10_1007_s00521_021_06105_4
crossref_primary_10_1109_JSEN_2023_3329043
crossref_primary_10_1063_5_0218065
crossref_primary_10_1080_00107514_2023_2182950
crossref_primary_10_1364_OE_458367
crossref_primary_10_1088_1361_6463_ac9cea
crossref_primary_10_3390_ma17235877
crossref_primary_10_1103_PhysRevA_108_013521
crossref_primary_10_1088_1361_6463_ac3c73
crossref_primary_10_1162_netn_a_00077
crossref_primary_10_1148_radiol_212453
crossref_primary_10_1016_j_clinph_2018_03_042
crossref_primary_10_3233_JAD_215240
crossref_primary_10_1515_bmt_2021_0019
crossref_primary_10_1016_j_neuroimage_2021_118484
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_1016_j_neubiorev_2023_105503
crossref_primary_10_3389_fneur_2021_752271
crossref_primary_10_1109_TIM_2022_3203456
crossref_primary_10_1088_1361_6463_ac677b
crossref_primary_10_1016_j_bspc_2024_106236
crossref_primary_10_3390_bios12121098
crossref_primary_10_1016_j_sna_2025_116260
crossref_primary_10_1109_JSEN_2021_3075445
crossref_primary_10_1063_1_5095241
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_1016_j_invent_2024_100785
crossref_primary_10_1016_j_neuroimage_2021_118210
crossref_primary_10_1109_TIM_2022_3192287
crossref_primary_10_1109_JSEN_2024_3395694
crossref_primary_10_1109_TIM_2024_3375422
crossref_primary_10_1038_s41598_020_76201_3
crossref_primary_10_1002_hbm_26295
crossref_primary_10_1109_JSEN_2024_3509679
crossref_primary_10_1016_j_rinp_2023_106728
crossref_primary_10_1016_j_ceramint_2023_05_048
crossref_primary_10_1038_nbt_4139
crossref_primary_10_1038_s41380_021_01299_4
crossref_primary_10_1002_qute_202300185
crossref_primary_10_1103_PhysRevA_100_023416
crossref_primary_10_1016_j_measurement_2024_116381
crossref_primary_10_1016_j_tics_2020_12_006
crossref_primary_10_7554_eLife_94561
crossref_primary_10_1109_TIM_2023_3341139
crossref_primary_10_1103_PhysRevLett_133_153601
crossref_primary_10_3389_fmedt_2025_1515548
crossref_primary_10_1021_acs_analchem_3c02087
crossref_primary_10_1126_sciadv_abn7192
crossref_primary_10_1109_TIM_2025_3545202
crossref_primary_10_1364_OE_447041
crossref_primary_10_1088_1367_2630_ac3b71
crossref_primary_10_1016_j_rinp_2023_107231
crossref_primary_10_1109_JIOT_2023_3292232
crossref_primary_10_1016_j_vacuum_2025_114103
crossref_primary_10_1016_j_measurement_2023_112733
crossref_primary_10_1109_TIM_2023_3267356
crossref_primary_10_1364_OE_27_016169
crossref_primary_10_1103_PhysRevResearch_2_013213
crossref_primary_10_1109_TIM_2021_3106677
crossref_primary_10_1364_OE_416797
crossref_primary_10_1016_j_neuroimage_2022_119027
crossref_primary_10_1109_ACCESS_2019_2954103
crossref_primary_10_1016_j_optlastec_2024_111217
crossref_primary_10_1088_1361_6463_ad4b2c
crossref_primary_10_1088_1674_1056_ac7e38
crossref_primary_10_1021_acsami_4c05252
crossref_primary_10_1016_j_jneumeth_2023_110010
crossref_primary_10_1088_1361_6501_ac72f9
crossref_primary_10_3389_fphy_2020_522536
crossref_primary_10_1109_JSEN_2024_3488002
crossref_primary_10_1140_epjqt_s40507_020_00086_4
crossref_primary_10_1016_j_sna_2022_114055
crossref_primary_10_1126_sciadv_aba8792
crossref_primary_10_1016_j_sna_2023_114591
crossref_primary_10_1103_PhysRevA_110_013125
crossref_primary_10_1364_OE_483108
crossref_primary_10_1016_j_neuron_2021_05_021
crossref_primary_10_1016_j_jneumeth_2019_108540
crossref_primary_10_3233_JAD_215464
crossref_primary_10_1109_JSEN_2024_3504580
crossref_primary_10_3389_fnins_2021_619591
crossref_primary_10_1016_j_neuroimage_2020_116862
crossref_primary_10_1016_j_sna_2023_114781
crossref_primary_10_1044_2024_JSLHR_24_00046
crossref_primary_10_1103_PhysRevResearch_2_023239
crossref_primary_10_1109_TBME_2022_3161830
crossref_primary_10_1088_1674_1056_ac6163
crossref_primary_10_1063_5_0114760
crossref_primary_10_3389_fnhum_2022_874199
crossref_primary_10_1089_neu_2022_0220
crossref_primary_10_1103_PhysRevApplied_14_054004
crossref_primary_10_1007_s11571_024_10085_1
crossref_primary_10_1364_OE_390375
crossref_primary_10_1115_1_4067350
crossref_primary_10_1109_JSEN_2020_2973201
crossref_primary_10_3389_fnrgo_2021_678981
crossref_primary_10_1080_13854046_2018_1521993
crossref_primary_10_1002_hbm_25582
crossref_primary_10_1142_S0219843619500191
crossref_primary_10_1002_hbm_25586
crossref_primary_10_1016_j_neunet_2023_11_016
crossref_primary_10_1371_journal_pbio_3000511
crossref_primary_10_12693_APhysPolA_146_521
crossref_primary_10_1109_TIM_2023_3246473
crossref_primary_10_3390_batteries10060200
crossref_primary_10_1016_j_measurement_2024_115909
crossref_primary_10_1038_s41598_021_01894_z
crossref_primary_10_1038_s41467_019_12486_x
crossref_primary_10_3390_s21062193
crossref_primary_10_1364_OE_418776
crossref_primary_10_1016_j_neuroimage_2022_119461
crossref_primary_10_3390_electronics11162559
crossref_primary_10_1016_j_ijleo_2020_165510
crossref_primary_10_1109_JSEN_2021_3076133
crossref_primary_10_1016_j_optlaseng_2025_108866
crossref_primary_10_1093_bjr_tqae123
crossref_primary_10_1016_j_sna_2022_114005
crossref_primary_10_1016_j_tins_2021_04_006
crossref_primary_10_3389_fnins_2020_00290
crossref_primary_10_1016_j_neuroimage_2019_06_010
crossref_primary_10_1016_j_sna_2024_115947
crossref_primary_10_1016_j_measurement_2023_113405
crossref_primary_10_1134_S0030400X23040215
crossref_primary_10_7498_aps_70_20210920
crossref_primary_10_1109_TBME_2021_3100770
crossref_primary_10_1038_s41467_024_47566_0
crossref_primary_10_1088_1361_6463_ac19e3
crossref_primary_10_1109_ACCESS_2020_3028831
crossref_primary_10_1126_sciadv_abd1505
crossref_primary_10_3390_ma17225469
crossref_primary_10_1103_PhysRevApplied_17_024034
crossref_primary_10_1109_TBME_2024_3465654
crossref_primary_10_1016_j_jneumeth_2020_108948
crossref_primary_10_1364_OL_471557
Cites_doi 10.1109/10.623056
10.1016/j.neuroimage.2010.01.077
10.1038/nphoton.2007.201
10.1002/hbm.23531
10.1016/j.neuroimage.2014.10.010
10.1073/pnas.0609632104
10.1002/cmr.b.20091
10.1038/nn.3101
10.1523/JNEUROSCI.3495-14.2014
10.1016/j.neuroimage.2012.10.001
10.1364/OE.25.007849
10.1126/science.175.4022.664
10.1088/0031-9155/58/17/6065
10.1088/1361-6560/aa93d1
10.1111/j.1365-246X.1968.tb00216.x
10.1103/PhysRevLett.89.130801
10.1016/j.neuroimage.2013.10.040
10.1006/meth.2001.1238
10.1038/nature01484
10.1088/0031-9155/58/22/8153
10.7567/JJAP.54.026601
10.1002/mrm.1910260202
10.1103/RevModPhys.65.413
10.1063/1.3522648
10.1063/1.344953
10.1088/0031-9155/32/1/004
10.1016/S1388-2457(99)00141-8
10.1016/j.nicl.2015.08.005
10.1016/j.neuroimage.2007.09.050
10.1038/nn.4504
10.1073/pnas.1112685108
10.1038/nrn2774
10.1016/j.neuroimage.2017.01.034
10.1016/0375-9601(69)90480-0
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Mar 29, 2018
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 29, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature26147
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 661
ExternalDocumentID PMC6063354
A532684512
29562238
10_1038_nature26147
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R44 MH110288
– fundername: Wellcome Trust
  grantid: 203257BARNES
– fundername: Medical Research Council
  grantid: MR/M006301/1
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
– fundername: NICHD NIH HHS
  grantid: R44 HD074495
– fundername: Medical Research Council
  grantid: MR/K005464/1
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
TUS
ID FETCH-LOGICAL-c612t-afe08870946f32e277594e4e597acd30454924924fe856ab59331db2b4eefe7d3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:14:54 EDT 2025
Fri Jul 11 12:41:52 EDT 2025
Fri Jul 25 09:04:45 EDT 2025
Tue Jun 17 21:32:32 EDT 2025
Thu Jun 12 23:55:11 EDT 2025
Tue Jun 10 15:33:54 EDT 2025
Tue Jun 10 20:14:05 EDT 2025
Fri Jun 27 04:51:47 EDT 2025
Mon Jul 21 06:05:44 EDT 2025
Tue Jul 01 00:57:13 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Fri Feb 21 02:37:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7698
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-afe08870946f32e277594e4e597acd30454924924fe856ab59331db2b4eefe7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6063354
PMID 29562238
PQID 2020739846
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063354
proquest_miscellaneous_2017056307
proquest_journals_2020739846
gale_infotracmisc_A532684512
gale_infotracgeneralonefile_A532684512
gale_infotraccpiq_532684512
gale_infotracacademiconefile_A532684512
gale_incontextgauss_ISR_A532684512
pubmed_primary_29562238
crossref_primary_10_1038_nature26147
crossref_citationtrail_10_1038_nature26147
springer_journals_10_1038_nature26147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-29
PublicationDateYYYYMMDD 2018-03-29
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Boto (CR12) 2017; 149
Johnson, Schwindt, Weisend (CR13) 2010; 97
Gross (CR5) 2013; 65
Yoda (CR31) 1990; 67
Carlson, Derby, Hawryszko, Weideman (CR26) 1992; 26
Kominis, Kornack, Allred, Romalis (CR2) 2003; 422
Robson (CR20) 2016; 12
Brookes (CR23) 2008; 39
Kamada (CR15) 2015; 54
CR33
Hipp, Hawellek, Corbetta, Siegel, Engel (CR29) 2012; 15
Dupont-Roc, Haroche, Cohen-Tannoudji (CR8) 1969; 28
Cohen (CR1) 1972; 175
Pfurtscheller, Lopes da Silva (CR17) 1999; 110
Alem, Benison, Barth, Kitching, Knappe (CR10) 2014; 34
Barratt (CR22) 2017; 38
Mary (CR19) 2015; 104
Baillet (CR27) 2017; 20
Allred, Lyman, Kornack, Romalis (CR6) 2002; 89
Uhlhaas, Singer (CR21) 2010; 11
Jerbi (CR30) 2007; 104
Gaetz, Macdonald, Cheyne, Snead (CR18) 2010; 51
Shah, Knappe, Schwindt, Kitching (CR7) 2007; 1
Alem (CR11) 2017; 25
Kim (CR16) 2014; 89
Vrba, Robinson (CR32) 2001; 25
Poole, Bowtell (CR25) 2007; 31
Johnson, Schwindt, Weisend (CR14) 2013; 58
Shah, Wakai (CR3) 2013; 58
Van Veen, van Drongelen, Yuchtman, Suzuki (CR24) 1997; 44
Backus, Gilbert (CR34) 1968; 16
Sarvas (CR35) 1987; 32
Borna (CR9) 2017; 62
Brookes (CR28) 2011; 108
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasma (CR4) 1993; 65
J Dupont-Roc (BFnature26147_CR8) 1969; 28
K Yoda (BFnature26147_CR31) 1990; 67
W Gaetz (BFnature26147_CR18) 2010; 51
VK Shah (BFnature26147_CR3) 2013; 58
V Shah (BFnature26147_CR7) 2007; 1
A Borna (BFnature26147_CR9) 2017; 62
EL Barratt (BFnature26147_CR22) 2017; 38
JC Allred (BFnature26147_CR6) 2002; 89
J Sarvas (BFnature26147_CR35) 1987; 32
K Jerbi (BFnature26147_CR30) 2007; 104
SE Robson (BFnature26147_CR20) 2016; 12
MJ Brookes (BFnature26147_CR23) 2008; 39
IK Kominis (BFnature26147_CR2) 2003; 422
MJ Brookes (BFnature26147_CR28) 2011; 108
BFnature26147_CR33
JF Hipp (BFnature26147_CR29) 2012; 15
CN Johnson (BFnature26147_CR14) 2013; 58
D Cohen (BFnature26147_CR1) 1972; 175
A Mary (BFnature26147_CR19) 2015; 104
K Kamada (BFnature26147_CR15) 2015; 54
J Vrba (BFnature26147_CR32) 2001; 25
J Gross (BFnature26147_CR5) 2013; 65
BD Van Veen (BFnature26147_CR24) 1997; 44
O Alem (BFnature26147_CR10) 2014; 34
E Boto (BFnature26147_CR12) 2017; 149
G Pfurtscheller (BFnature26147_CR17) 1999; 110
M Poole (BFnature26147_CR25) 2007; 31
S Baillet (BFnature26147_CR27) 2017; 20
GE Backus (BFnature26147_CR34) 1968; 16
MS Hämäläinen (BFnature26147_CR4) 1993; 65
PJ Uhlhaas (BFnature26147_CR21) 2010; 11
JW Carlson (BFnature26147_CR26) 1992; 26
K Kim (BFnature26147_CR16) 2014; 89
C Johnson (BFnature26147_CR13) 2010; 97
O Alem (BFnature26147_CR11) 2017; 25
References_xml – volume: 44
  start-page: 867
  year: 1997
  end-page: 880
  ident: CR24
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 51
  start-page: 792
  year: 2010
  end-page: 807
  ident: CR18
  article-title: Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.077
– volume: 1
  start-page: 649
  year: 2007
  end-page: 652
  ident: CR7
  article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2007.201
– volume: 38
  start-page: 2441
  year: 2017
  end-page: 2453
  ident: CR22
  article-title: Abnormal task driven neural oscillations in multiple sclerosis: A visuomotor MEG study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23531
– volume: 104
  start-page: 59
  year: 2015
  end-page: 68
  ident: CR19
  article-title: Aging reduces experience-induced sensorimotor plasticity. a magnetoencephalographic study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.010
– volume: 104
  start-page: 7676
  year: 2007
  end-page: 7681
  ident: CR30
  article-title: Coherent neural representation of hand speed in humans revealed by MEG imaging
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609632104
– volume: 31
  start-page: 162
  year: 2007
  end-page: 175
  ident: CR25
  article-title: Novel gradient coils designed using a boundary element method
  publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng.
  doi: 10.1002/cmr.b.20091
– volume: 15
  start-page: 884
  year: 2012
  end-page: 890
  ident: CR29
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– ident: CR33
– volume: 34
  start-page: 14324
  year: 2014
  end-page: 14327
  ident: CR10
  article-title: Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3495-14.2014
– volume: 65
  start-page: 349
  year: 2013
  end-page: 363
  ident: CR5
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.001
– volume: 25
  start-page: 7849
  year: 2017
  end-page: 7858
  ident: CR11
  article-title: Magnetic field imaging with microfabricated optically-pumped magnetometers
  publication-title: Opt. Express
  doi: 10.1364/OE.25.007849
– volume: 175
  start-page: 664
  year: 1972
  end-page: 666
  ident: CR1
  article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer
  publication-title: Science
  doi: 10.1126/science.175.4022.664
– volume: 58
  start-page: 6065
  year: 2013
  end-page: 6077
  ident: CR14
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– volume: 62
  start-page: 8909
  year: 2017
  end-page: 8923
  ident: CR9
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d1
– volume: 16
  start-page: 169
  year: 1968
  end-page: 205
  ident: CR34
  article-title: The resolving power of gross Earth data
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– volume: 89
  start-page: 130801
  year: 2002
  ident: CR6
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.130801
– volume: 89
  start-page: 143
  year: 2014
  end-page: 151
  ident: CR16
  article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.040
– volume: 25
  start-page: 249
  year: 2001
  end-page: 271
  ident: CR32
  article-title: Signal processing in magnetoencephalography
  publication-title: Methods
  doi: 10.1006/meth.2001.1238
– volume: 422
  start-page: 596
  year: 2003
  end-page: 599
  ident: CR2
  article-title: A subfemtotesla multichannel atomic magnetometer
  publication-title: Nature
  doi: 10.1038/nature01484
– volume: 58
  start-page: 8153
  year: 2013
  end-page: 8161
  ident: CR3
  article-title: A compact, high performance atomic magnetometer for biomedical applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
– volume: 54
  start-page: 026601
  year: 2015
  ident: CR15
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– volume: 26
  start-page: 191
  year: 1992
  end-page: 206
  ident: CR26
  article-title: Design and evaluation of shielded gradient coils
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910260202
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: CR4
  article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 97
  start-page: 243703
  year: 2010
  ident: CR13
  article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3522648
– volume: 67
  start-page: 4349
  year: 1990
  ident: CR31
  article-title: Analytical design method of shelf shielded planar coils
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.344953
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: CR35
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: CR17
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 12
  start-page: 869
  year: 2016
  end-page: 878
  ident: CR20
  article-title: Abnormal visuomotor processing in schizophrenia
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.08.005
– volume: 39
  start-page: 1788
  year: 2008
  end-page: 1802
  ident: CR23
  article-title: Optimising experimental design for MEG beamformer imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.050
– volume: 20
  start-page: 327
  year: 2017
  end-page: 339
  ident: CR27
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  ident: CR28
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1112685108
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: CR21
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2774
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: CR12
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 28
  start-page: 638
  year: 1969
  end-page: 639
  ident: CR8
  article-title: Detection of very weak magnetic fields (10–9 gauss) by Rb zero-field level crossing resonances
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(69)90480-0
– volume: 149
  start-page: 404
  year: 2017
  ident: BFnature26147_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 89
  start-page: 143
  year: 2014
  ident: BFnature26147_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.040
– volume: 25
  start-page: 249
  year: 2001
  ident: BFnature26147_CR32
  publication-title: Methods
  doi: 10.1006/meth.2001.1238
– volume: 110
  start-page: 1842
  year: 1999
  ident: BFnature26147_CR17
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 51
  start-page: 792
  year: 2010
  ident: BFnature26147_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.077
– volume: 62
  start-page: 8909
  year: 2017
  ident: BFnature26147_CR9
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d1
– volume: 12
  start-page: 869
  year: 2016
  ident: BFnature26147_CR20
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.08.005
– volume: 104
  start-page: 7676
  year: 2007
  ident: BFnature26147_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0609632104
– volume: 44
  start-page: 867
  year: 1997
  ident: BFnature26147_CR24
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 39
  start-page: 1788
  year: 2008
  ident: BFnature26147_CR23
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.050
– volume: 16
  start-page: 169
  year: 1968
  ident: BFnature26147_CR34
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– volume: 104
  start-page: 59
  year: 2015
  ident: BFnature26147_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.010
– volume: 15
  start-page: 884
  year: 2012
  ident: BFnature26147_CR29
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3101
– volume: 108
  start-page: 16783
  year: 2011
  ident: BFnature26147_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1112685108
– volume: 65
  start-page: 413
  year: 1993
  ident: BFnature26147_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 67
  start-page: 4349
  year: 1990
  ident: BFnature26147_CR31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.344953
– volume: 25
  start-page: 7849
  year: 2017
  ident: BFnature26147_CR11
  publication-title: Opt. Express
  doi: 10.1364/OE.25.007849
– volume: 58
  start-page: 8153
  year: 2013
  ident: BFnature26147_CR3
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
– volume: 11
  start-page: 100
  year: 2010
  ident: BFnature26147_CR21
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2774
– volume: 89
  start-page: 130801
  year: 2002
  ident: BFnature26147_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.130801
– volume: 54
  start-page: 026601
  year: 2015
  ident: BFnature26147_CR15
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– volume: 65
  start-page: 349
  year: 2013
  ident: BFnature26147_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.001
– volume: 175
  start-page: 664
  year: 1972
  ident: BFnature26147_CR1
  publication-title: Science
  doi: 10.1126/science.175.4022.664
– volume: 34
  start-page: 14324
  year: 2014
  ident: BFnature26147_CR10
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3495-14.2014
– volume: 28
  start-page: 638
  year: 1969
  ident: BFnature26147_CR8
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(69)90480-0
– volume: 31
  start-page: 162
  year: 2007
  ident: BFnature26147_CR25
  publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng.
  doi: 10.1002/cmr.b.20091
– volume: 26
  start-page: 191
  year: 1992
  ident: BFnature26147_CR26
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910260202
– volume: 58
  start-page: 6065
  year: 2013
  ident: BFnature26147_CR14
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– volume: 32
  start-page: 11
  year: 1987
  ident: BFnature26147_CR35
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 422
  start-page: 596
  year: 2003
  ident: BFnature26147_CR2
  publication-title: Nature
  doi: 10.1038/nature01484
– volume: 97
  start-page: 243703
  year: 2010
  ident: BFnature26147_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3522648
– volume: 38
  start-page: 2441
  year: 2017
  ident: BFnature26147_CR22
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23531
– volume: 1
  start-page: 649
  year: 2007
  ident: BFnature26147_CR7
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2007.201
– volume: 20
  start-page: 327
  year: 2017
  ident: BFnature26147_CR27
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
– ident: BFnature26147_CR33
SSID ssj0005174
Score 2.700799
Snippet A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners...
Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within...
Imaging human brain function with techniques such as magnetoencephalography 1 (MEG) typically requires a subject to perform tasks whilst their head remains...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 657
SubjectTerms 639/766/930/2735
692/308/575
Adult
Adults
Babies
Brain
Children
Cognitive ability
Design
Drinking - physiology
Equipment and supplies
Female
Head
Head - physiology
Head movement
Humanities and Social Sciences
Humans
Investigations
Lasers
letter
Magnetic Fields
Magnetoencephalography
Magnetoencephalography - instrumentation
Magnetoencephalography - methods
Medical imaging
Methods
Movement
Movement disorders
multidisciplinary
Navigation behavior
Neuroimaging
Neurology
NMR
Nuclear magnetic resonance
Protective equipment
Quantum sensors
Scanners
Scanning
Schizophrenia
Science
Sensors
Sports - physiology
Substrates
Superconductivity
Virtual environments
Wearable computers
Wearable Electronic Devices
Title Moving magnetoencephalography towards real-world applications with a wearable system
URI https://link.springer.com/article/10.1038/nature26147
https://www.ncbi.nlm.nih.gov/pubmed/29562238
https://www.proquest.com/docview/2020739846
https://www.proquest.com/docview/2017056307
https://pubmed.ncbi.nlm.nih.gov/PMC6063354
Volume 555
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYaNJepsG-OhgKE_uUql2b9OtpAsSNTQJNDKR7i9I2PZBYe6w97d-fnaZ37enES1_stlFiO3bs_AxwWBBgSpF7qEg6d4X2lJsGgXITPw2LlI9GuQFxPb8Iz67Fz0kwsQdutS2r7GyiMdR5ldEZOQXplFTC7fLb7N6lrlGUXbUtNB7BFkGXUUlXNImWJR4rKMz2ft6Ix19b2EwMH6ivSm9HWrXLvY1ptWhyJXNqNqTxM3hqPUl21C79Nmzocgcem4rOrN6Bbau1NftkoaU_P4erc3OAwP6oaambiuizG9XBVrPG1NDWDB3JO9dgqbJ-gpvRoS1T7B9qB924Yi0M9Au4Hp9enZy5tq-Cm6E_07iq0GRbMLALC-5rP4qCRGihMbZQWU6pU0FRmS8KHQehSoOEcy9P_VRoXego5y9hs6xK_RqY5mGMIV0ueJqIIojjjKMPkGiPo18V6ciBL93cysyCjlPviztpkt88lr2FcOBwwTxrsTbWs72jRZKEXlFSecxUzeta_vh9KY8CTug16MQ48NEyFRX-MFP2tgEOmwCvBpy7A85sdnsve9QPA-q0XbF1n9kbMKKWZkNyJ1LSWolaLmXagYMFmd6kyrdSV3PiIcCjEE2xA69aCVxMjo_BLbp3sQPRQDYXDIQdPqSUtzcGQxzjVs4D4cD7ToqXw1oz528eHv4uPMFxmruafrIHm83fuX6LzlqT7huNxGd84tFz_H0fto5PL35d_gfMWEGl
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtMCCWihIFol3_TogVAFVQpseIJVyW9b2Oq1U7BQ7qvhT_EZm1nZiRxG3nmfirHZn57Ez8w3AXkqAKWnSx4ukE1vovrIj11V26EReGvFeLzEgrqNTb3Amvk3cyQb8bXphqKyy0YlGUSd5TG_kFKRTUgnN5afZlU1Toyi72ozQqMTiWP-5xpCt-Dj8gue77zhHX8efB3Y9VcCO0ZqXtko13SwMa7yUO9rxfTcUWmj0rFWcUOJQUEziiFQHrqciF0P-fhI5kdA61X7C8bu34DYa3h7dKH_iL0tKVlCf637AHg8-VDCdGK7QHJeWBVy1Ay1DuFqkuZKpNQbw6AHcrz1XdliJ2hZs6Gwb7pgK0rjYhq1aSxTsoIayfvcQxiPzYMF-qWmmy5zos3PVwGSz0tTsFgwd10vbYLeydkKd0SMxU-wat506vFgFO_0Izm5kxx_DZpZn-ikwzb0AQ8hE8CgUqRsEMUefI9R9jn6cr30L3jd7K-Ma5JxmbVxKk2zngWwdhAV7C-ZZhe2xnu01HZIktIyMynGmal4Ucvjjuzx0OaHloNNkwduaKc3xD2NVdzfgsglgq8O50-GMZxdXskV906FOqxNb95ndDiNqhbhLbkRK1lqpkMs7ZMGrBZl-SZV2mc7nxEMASx6qfgueVBK42BwHg2l0JwML_I5sLhgIq7xLyS7ODWY5xsmcu8KC_UaKl8tas-fP_r_8l3B3MB6dyJPh6fEO3MM1mz5RJ9yFzfL3XD9HR7GMXpjbyeDnTauDfzZxenE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIdBeEBsfCxtg0AYDKVoT5_MBoYlRrYxNCDapb8ZJnG7SSDrSauJf46_jznHapKp42_NdU-t8n77zzwA7OQGm5JmDhqQy21OOtBPfl3bsJkGe8F4v0yCuJ6fB0bn3ZegPV-BvcxeGxiobn6gddVamdEZORTo1lTBc7udmLOLbYf_j-NqmF6So09o8p1GryLH6c4PlW_VhcIh7veu6_c9nn45s88KAnWJkn9gyV2RlWOIEOXeVG4Z-7ClPYZYt04yaiB7VJ66Xq8gPZOJj-e9kiZt4SuUqzDh-9w7cDbnvkI2Fw3A-XrKAAG3uBvZ4tF9DdmLpQm-6tKLhYkxoBcXFgc2Frq0Ohv2H8MBkseygVrt1WFHFBtzT06RptQHrxmNUbM_AWr97BGcn-vCC_ZKjQk1Koo8vZAOZzSZ6frdimMRe2RrHlbWb64wOjJlkNyh2uu3Fagjqx3B-KxJ_AqtFWahNYIoHEZaTmceT2Mv9KEo55h-xcjjmdKEKLXjfyFakBvCc3t24ErrxziPR2ggLdmbM4xrnYznba9okQcgZBengSE6rSgx-fBcHPifkHEygLHhrmPIS_zCV5qYDLpvAtjqcWx3OdHx5LVrUNx3qqN6xZZ_Z7jCih0i75EalhPFQlZjbkwWvZmT6JU3dFaqcEg-BLQUYBix4WmvgTDguFtaYWkYWhB3dnDEQbnmXUlxeaPxyrJk59z0Ldhstni9ricyf_X_5L-E-OgLxdXB6vAVruGR9ZdSNt2F18nuqnmPOOEleaONk8PO2vcE_-Xx-pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+magnetoencephalography+towards+real-world+applications+with+a+wearable+system&rft.jtitle=Nature+%28London%29&rft.au=Boto%2C+Elena&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.au=Roberts%2C+Gillian&rft.date=2018-03-29&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=555&rft.issue=7698&rft.spage=657&rft_id=info:doi/10.1038%2Fnature26147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon