Moving magnetoencephalography towards real-world applications with a wearable system
A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners in motion Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept...
Saved in:
Published in | Nature (London) Vol. 555; no. 7698; pp. 657 - 661 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.03.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects.
Setting wearable brain scanners in motion
Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept still inside a restrictive scanner. This limits the experimental questions that can be asked. Matthew Brookes and colleagues have developed a new MEG system that incorporates quantum sensors, which do not require superconducting technology, and a new technique for cancelling ambient magnetic fields. This technology can be used in a relatively lightweight helmet system that allows some natural head movement. The new system supports measurement of MEG data at millisecond resolution while subjects make movements, including head nodding, stretching and ball play. The system opens up new possibilities for MEG scanning in situations where current technology is too restrictive, such as in subjects with movement disorders.
Imaging human brain function with techniques such as magnetoencephalography
1
typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors
2
,
3
, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders. |
---|---|
AbstractList | Imaging human brain function with techniques such as magnetoencephalography
1
(MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors
2
,
3
that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders. A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects. Setting wearable brain scanners in motion Magnetoencephalography (MEG) images human brain function, but typically requires a subject to perform tasks while their head is kept still inside a restrictive scanner. This limits the experimental questions that can be asked. Matthew Brookes and colleagues have developed a new MEG system that incorporates quantum sensors, which do not require superconducting technology, and a new technique for cancelling ambient magnetic fields. This technology can be used in a relatively lightweight helmet system that allows some natural head movement. The new system supports measurement of MEG data at millisecond resolution while subjects make movements, including head nodding, stretching and ball play. The system opens up new possibilities for MEG scanning in situations where current technology is too restrictive, such as in subjects with movement disorders. Imaging human brain function with techniques such as magnetoencephalography 1 typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors 2 , 3 , which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders. Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders. Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders. |
Audience | Academic |
Author | Mullinger, Karen J. Muñoz, Leonardo Duque Brookes, Matthew J. Boto, Elena Roberts, Gillian Holmes, Niall Barnes, Gareth R. Bowtell, Richard Meyer, Sofie S. Bestmann, Sven Shah, Vishal Tierney, Tim M. Leggett, James |
AuthorAffiliation | 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom 3 QuSpin Inc., 331 South 104 th Street, Suite 130, Louisville, Colorado, 80027, USA 6 School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom 2 Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom 4 Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AZ, United Kingdom 5 Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London, WC1N 3BG, United Kingdom |
AuthorAffiliation_xml | – name: 2 Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom – name: 4 Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AZ, United Kingdom – name: 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom – name: 5 Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House, Queen Square, London, WC1N 3BG, United Kingdom – name: 6 School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT United Kingdom – name: 3 QuSpin Inc., 331 South 104 th Street, Suite 130, Louisville, Colorado, 80027, USA |
Author_xml | – sequence: 1 givenname: Elena surname: Boto fullname: Boto, Elena organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham – sequence: 2 givenname: Niall surname: Holmes fullname: Holmes, Niall organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham – sequence: 3 givenname: James surname: Leggett fullname: Leggett, James organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham – sequence: 4 givenname: Gillian surname: Roberts fullname: Roberts, Gillian organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham – sequence: 5 givenname: Vishal surname: Shah fullname: Shah, Vishal organization: QuSpin Inc – sequence: 6 givenname: Sofie S. surname: Meyer fullname: Meyer, Sofie S. organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, Institute of Cognitive Neuroscience, University College London – sequence: 7 givenname: Leonardo Duque surname: Muñoz fullname: Muñoz, Leonardo Duque organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London – sequence: 8 givenname: Karen J. surname: Mullinger fullname: Mullinger, Karen J. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Centre for Human Brain Health, School of Psychology, University of Birmingham – sequence: 9 givenname: Tim M. surname: Tierney fullname: Tierney, Tim M. organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London – sequence: 10 givenname: Sven surname: Bestmann fullname: Bestmann, Sven organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square House – sequence: 11 givenname: Gareth R. surname: Barnes fullname: Barnes, Gareth R. organization: Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London – sequence: 12 givenname: Richard surname: Bowtell fullname: Bowtell, Richard organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham – sequence: 13 givenname: Matthew J. surname: Brookes fullname: Brookes, Matthew J. email: matthew.brookes@nottingham.ac.uk organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29562238$$D View this record in MEDLINE/PubMed |
BookMark | eNp10l1v0zAUBmALDbFucMU9itgNCDIcfyW5QZomPiYNIcG4tlznJPWU2JntrPTf49KxtVNRrERynvPGsc8ROrDOAkIvC3xaYFp9sCpOHogoWPkEzdJd5ExU5QGaYUyqHFdUHKKjEK4xxrwo2TN0SGouCKHVDF19c7fGdtmgOgvRgdUwLlTvOq_GxSqLbql8EzIPqs-XzvdNpsaxN1pF42zIliYuMpUtQXk17yELqxBheI6etqoP8OLueYx-ff50df41v_z-5eL87DLXoiAxVy3gqipxzURLCZCy5DUDBrwulW4oZpzVZD1aqLhQc15TWjRzMmcALZQNPUYfN7njNB-g0WCjV70cvRmUX0mnjNx9Y81Cdu5WCiwo5SwFvLkL8O5mghDlYIKGvlcW3BQkwUWJuaC4TPTkEb12k7fp95IiCdQVEw-qUz1IY1uXvqvXofKMUyIqxguSVL5HdWAhLTIdbmvS9I5_vcfr0dzIbXS6B6WrgcHovalvdwqSifA7dmoKQV78_LFrX23v9P0W_2ukBN5tgPYuBA_tPSmwXLep3GrTpItHWpv4t6XSmk3_n5r3m5qQkm0H_uEA9vE_-rD4eQ |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120991 crossref_primary_10_1364_OE_500875 crossref_primary_10_1038_s41598_022_17346_1 crossref_primary_10_1016_j_measurement_2022_111878 crossref_primary_10_1088_1742_6596_1697_1_012175 crossref_primary_10_1177_20552076241305233 crossref_primary_10_1109_JSEN_2018_2872894 crossref_primary_10_1109_TIM_2024_3449978 crossref_primary_10_1016_j_neuroimage_2021_118834 crossref_primary_10_2139_ssrn_4132033 crossref_primary_10_1007_s00723_023_01592_1 crossref_primary_10_1016_j_sna_2024_115431 crossref_primary_10_1116_5_0106099 crossref_primary_10_1080_10400419_2023_2277042 crossref_primary_10_1016_j_cogsys_2020_08_006 crossref_primary_10_3389_fpsyg_2023_1210960 crossref_primary_10_3390_s23094218 crossref_primary_10_1103_PhysRevApplied_18_014036 crossref_primary_10_1109_TBME_2019_2938688 crossref_primary_10_1080_17470919_2024_2380725 crossref_primary_10_1162_imag_a_00414 crossref_primary_10_1038_s41378_024_00758_6 crossref_primary_10_1097_01_NT_0000533822_92630_a2 crossref_primary_10_1016_j_neuroimage_2021_118604 crossref_primary_10_4103_1673_5374_391307 crossref_primary_10_1103_PhysRevLett_127_193601 crossref_primary_10_1088_1367_2630_acb840 crossref_primary_10_1109_TIM_2022_3144737 crossref_primary_10_1016_j_neuroimage_2023_120252 crossref_primary_10_1098_rsos_240762 crossref_primary_10_1109_JSEN_2021_3128944 crossref_primary_10_1177_1073858418775355 crossref_primary_10_1016_j_tins_2022_05_008 crossref_primary_10_1177_15459683221138751 crossref_primary_10_1016_j_neuroimage_2020_117447 crossref_primary_10_1016_j_neuroimage_2020_117443 crossref_primary_10_3390_s23052801 crossref_primary_10_3390_bioengineering11080773 crossref_primary_10_1016_j_neuroimage_2019_06_055 crossref_primary_10_1016_j_sna_2024_115456 crossref_primary_10_1002_adfm_202001604 crossref_primary_10_1016_j_jmmm_2024_171983 crossref_primary_10_1016_j_neuroimage_2023_120024 crossref_primary_10_1088_1361_6528_adb635 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1016_j_neuroimage_2021_118818 crossref_primary_10_1016_j_neuroimage_2021_117969 crossref_primary_10_1109_JSEN_2023_3270325 crossref_primary_10_1080_17434440_2021_1969913 crossref_primary_10_1016_j_sna_2022_113928 crossref_primary_10_1103_PhysRevA_103_033113 crossref_primary_10_1016_j_neuroimage_2024_120953 crossref_primary_10_1103_PhysRevApplied_23_034008 crossref_primary_10_1016_j_neuroimage_2022_119165 crossref_primary_10_1109_TIM_2023_3295475 crossref_primary_10_1038_s41467_021_21256_7 crossref_primary_10_1103_PhysRevA_101_053427 crossref_primary_10_1111_cns_14602 crossref_primary_10_3390_photonics11020182 crossref_primary_10_1038_s41467_023_41676_x crossref_primary_10_1038_s41398_024_03047_y crossref_primary_10_1109_JSEN_2020_3002193 crossref_primary_10_1103_PhysRevApplied_21_014003 crossref_primary_10_1103_PhysRevA_105_063509 crossref_primary_10_1038_s41582_019_0224_y crossref_primary_10_1016_j_jmr_2020_106723 crossref_primary_10_1016_j_measurement_2024_115983 crossref_primary_10_1103_PhysRevA_101_053436 crossref_primary_10_1016_j_optlastec_2025_112833 crossref_primary_10_3389_fnimg_2022_903191 crossref_primary_10_1016_j_measurement_2023_113904 crossref_primary_10_1016_j_cobme_2021_100285 crossref_primary_10_3390_s23094256 crossref_primary_10_1016_j_ynirp_2022_100093 crossref_primary_10_1063_5_0080764 crossref_primary_10_3390_s24186044 crossref_primary_10_3390_s25010234 crossref_primary_10_1002_jbio_201960188 crossref_primary_10_3390_brainsci10100687 crossref_primary_10_3390_s23084007 crossref_primary_10_1109_TIM_2020_3033933 crossref_primary_10_1016_j_neuroimage_2020_116556 crossref_primary_10_1002_hbm_24795 crossref_primary_10_3390_brainsci13040663 crossref_primary_10_1038_s41598_019_50697_w crossref_primary_10_7554_eLife_94561_3 crossref_primary_10_1016_j_nicl_2021_102697 crossref_primary_10_1063_1_5055029 crossref_primary_10_1016_j_neuron_2019_07_001 crossref_primary_10_1088_1361_6463_ac2f13 crossref_primary_10_1063_5_0151899 crossref_primary_10_1016_j_bbe_2023_11_004 crossref_primary_10_3390_s24113503 crossref_primary_10_1016_j_neuroimage_2024_120996 crossref_primary_10_1016_j_rinp_2023_107017 crossref_primary_10_1111_1541_4337_13327 crossref_primary_10_1515_revneuro_2019_0030 crossref_primary_10_3390_s22249862 crossref_primary_10_3389_fnrgo_2020_583733 crossref_primary_10_3390_mi14111985 crossref_primary_10_1016_j_tics_2021_02_008 crossref_primary_10_1038_s42256_023_00742_1 crossref_primary_10_3389_fpsyg_2021_568921 crossref_primary_10_1113_JP277899 crossref_primary_10_1002_mop_33497 crossref_primary_10_1038_s41378_022_00468_x crossref_primary_10_1088_1742_6596_2058_1_012030 crossref_primary_10_1109_TIE_2022_3159961 crossref_primary_10_1016_j_measurement_2024_115149 crossref_primary_10_1063_5_0141434 crossref_primary_10_1109_TIM_2020_3043947 crossref_primary_10_1109_TIM_2025_3547076 crossref_primary_10_1109_TMAG_2023_3282634 crossref_primary_10_1109_TIM_2021_3112797 crossref_primary_10_1016_j_sna_2024_115043 crossref_primary_10_1016_j_nanoen_2022_107852 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1103_PhysRevApplied_15_064075 crossref_primary_10_1103_PhysRevApplied_15_014004 crossref_primary_10_1016_j_optlastec_2023_109534 crossref_primary_10_1063_5_0216850 crossref_primary_10_3390_s20164563 crossref_primary_10_1002_mp_17301 crossref_primary_10_1016_j_cmpb_2022_107127 crossref_primary_10_1002_nbm_5243 crossref_primary_10_1116_5_0025186 crossref_primary_10_1088_1361_6501_ad89e6 crossref_primary_10_1109_TIM_2024_3502873 crossref_primary_10_1002_piuz_202270508 crossref_primary_10_1016_j_neuroimage_2019_116099 crossref_primary_10_1016_j_vrih_2022_01_003 crossref_primary_10_1103_PhysRevD_105_055020 crossref_primary_10_1063_5_0149388 crossref_primary_10_1109_JSEN_2021_3112522 crossref_primary_10_1103_PhysRevApplied_15_024033 crossref_primary_10_1364_OE_420031 crossref_primary_10_1109_TIE_2022_3229347 crossref_primary_10_1109_TIE_2022_3179547 crossref_primary_10_3390_s21072527 crossref_primary_10_1109_JLT_2019_2892479 crossref_primary_10_1103_PhysRevA_105_043109 crossref_primary_10_35848_1347_4065_ab77f3 crossref_primary_10_1016_j_measurement_2024_114266 crossref_primary_10_1021_acsbiomaterials_2c01147 crossref_primary_10_1177_19375867221133135 crossref_primary_10_1016_j_measurement_2023_113059 crossref_primary_10_1134_S0030400X19100084 crossref_primary_10_1109_TIE_2021_3050351 crossref_primary_10_1021_acsami_0c01182 crossref_primary_10_1016_j_neuroimage_2019_03_022 crossref_primary_10_3390_photonics10030332 crossref_primary_10_1038_s41467_019_10787_9 crossref_primary_10_1088_1674_1056_28_4_040703 crossref_primary_10_1088_1674_1056_28_4_040702 crossref_primary_10_1002_adma_201808138 crossref_primary_10_1038_s42254_019_0040_8 crossref_primary_10_1002_admt_202100919 crossref_primary_10_1103_PhysRevA_99_053417 crossref_primary_10_1016_j_neuroimage_2020_117497 crossref_primary_10_1109_JSEN_2019_2904719 crossref_primary_10_1016_j_neuroimage_2021_118401 crossref_primary_10_1016_j_neuroimage_2020_117254 crossref_primary_10_1021_acs_chemrev_2c00534 crossref_primary_10_1088_2058_9565_ad8678 crossref_primary_10_3390_s20154241 crossref_primary_10_1109_LMAG_2019_2944116 crossref_primary_10_1103_PhysRevA_101_063408 crossref_primary_10_1109_ACCESS_2021_3063054 crossref_primary_10_1109_JLT_2022_3210466 crossref_primary_10_1016_j_infbeh_2019_101393 crossref_primary_10_1038_s41598_022_10155_6 crossref_primary_10_1088_1361_6463_abbe4b crossref_primary_10_1364_OE_459995 crossref_primary_10_7498_aps_70_20210247 crossref_primary_10_1002_hbm_24707 crossref_primary_10_1016_j_neuroimage_2018_09_006 crossref_primary_10_1038_s41598_021_96933_0 crossref_primary_10_1093_brain_awab430 crossref_primary_10_1088_1674_1056_ad401b crossref_primary_10_1038_s41928_018_0165_2 crossref_primary_10_1523_JNEUROSCI_0742_19_2019 crossref_primary_10_3389_fneur_2021_744749 crossref_primary_10_1007_s11920_023_01462_4 crossref_primary_10_1103_PhysRevApplied_15_064006 crossref_primary_10_1111_epi_17368 crossref_primary_10_1021_acsphotonics_4c02361 crossref_primary_10_1364_OL_465832 crossref_primary_10_1016_j_isci_2022_105177 crossref_primary_10_1016_j_sna_2023_114868 crossref_primary_10_1016_j_measurement_2024_116095 crossref_primary_10_1016_j_measurement_2025_117228 crossref_primary_10_1140_epjqt_s40507_020_00083_7 crossref_primary_10_1038_s41587_019_0230_z crossref_primary_10_1523_JNEUROSCI_2237_23_2024 crossref_primary_10_1002_ecj_12278 crossref_primary_10_1109_MPRV_2019_2898536 crossref_primary_10_1109_TIE_2020_2987267 crossref_primary_10_3390_technologies12120254 crossref_primary_10_1364_OL_540032 crossref_primary_10_1038_s41598_018_30264_5 crossref_primary_10_1016_j_sna_2021_113195 crossref_primary_10_1088_1741_2552_acfcd9 crossref_primary_10_1098_rstb_2019_0633 crossref_primary_10_1016_j_tibtech_2020_03_003 crossref_primary_10_1016_j_expneurol_2021_113807 crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1016_j_physc_2024_1354575 crossref_primary_10_1039_D0TC01112F crossref_primary_10_1523_ENEURO_0222_23_2023 crossref_primary_10_1109_TIM_2024_3394482 crossref_primary_10_1109_TIM_2023_3304705 crossref_primary_10_1007_s13320_019_0539_8 crossref_primary_10_1364_OE_489172 crossref_primary_10_1038_s41598_024_77089_z crossref_primary_10_3389_fneur_2018_01148 crossref_primary_10_1007_s00521_020_04873_z crossref_primary_10_1364_OE_550538 crossref_primary_10_1103_PhysRevApplied_22_014084 crossref_primary_10_7498_aps_70_20202131 crossref_primary_10_1109_JSEN_2020_3041832 crossref_primary_10_1109_TIE_2021_3125561 crossref_primary_10_1109_TIE_2020_3032868 crossref_primary_10_1109_TIM_2023_3346516 crossref_primary_10_1162_imag_a_00283 crossref_primary_10_1002_qute_202400289 crossref_primary_10_1016_j_biopsycho_2023_108566 crossref_primary_10_1016_j_measurement_2024_116295 crossref_primary_10_1016_j_jmmm_2024_172335 crossref_primary_10_1038_nbt_4240 crossref_primary_10_1080_17461391_2019_1675765 crossref_primary_10_3390_s23020646 crossref_primary_10_1103_PhysRevA_110_063122 crossref_primary_10_1016_j_cobeha_2021_02_016 crossref_primary_10_3390_app12031329 crossref_primary_10_1109_LMAG_2019_2957491 crossref_primary_10_1364_JOSAB_501179 crossref_primary_10_1016_j_sna_2025_116394 crossref_primary_10_1016_j_neuroimage_2021_118368 crossref_primary_10_1088_1361_6463_ac49b5 crossref_primary_10_1103_PhysRevApplied_14_011002 crossref_primary_10_1109_JSYST_2020_3021485 crossref_primary_10_1364_OE_500278 crossref_primary_10_1103_PhysRevApplied_18_054019 crossref_primary_10_1002_qute_202300287 crossref_primary_10_1016_j_scib_2020_08_001 crossref_primary_10_1126_sciadv_adr9139 crossref_primary_10_3390_s22093184 crossref_primary_10_3390_s23146537 crossref_primary_10_1016_j_neuroimage_2022_119747 crossref_primary_10_1162_imag_a_00020 crossref_primary_10_1016_j_pnmrs_2025_101558 crossref_primary_10_1016_j_sna_2025_116385 crossref_primary_10_1016_j_neuroimage_2018_07_028 crossref_primary_10_1021_acsphotonics_4c01694 crossref_primary_10_1109_TIM_2022_3216411 crossref_primary_10_1364_OE_27_000597 crossref_primary_10_1109_JSEN_2023_3334710 crossref_primary_10_1126_sciadv_abp9242 crossref_primary_10_1109_LSENS_2024_3517345 crossref_primary_10_1364_OE_408486 crossref_primary_10_1111_epi_17770 crossref_primary_10_3389_fnhum_2021_749017 crossref_primary_10_1364_OE_517961 crossref_primary_10_3788_LOP222049 crossref_primary_10_1080_23273798_2023_2226268 crossref_primary_10_1111_nyas_14890 crossref_primary_10_1364_OE_27_033027 crossref_primary_10_1016_j_sna_2025_116372 crossref_primary_10_1109_LMAG_2021_3132851 crossref_primary_10_1016_j_measurement_2024_116022 crossref_primary_10_1109_JSEN_2023_3299690 crossref_primary_10_1088_1361_6439_ab8dd0 crossref_primary_10_1093_cercor_bhae108 crossref_primary_10_1088_1361_6501_abdb79 crossref_primary_10_1016_j_sna_2023_114467 crossref_primary_10_3389_fnins_2022_931265 crossref_primary_10_1016_j_jmmm_2022_169495 crossref_primary_10_1016_j_sna_2023_114464 crossref_primary_10_1364_AO_479580 crossref_primary_10_1109_JSEN_2021_3131734 crossref_primary_10_31083_j_jin2105145 crossref_primary_10_3390_s23125454 crossref_primary_10_1177_1745691620953773 crossref_primary_10_1364_OE_474777 crossref_primary_10_1016_j_cortex_2019_04_004 crossref_primary_10_1038_s42254_023_00558_3 crossref_primary_10_1162_imag_a_00489 crossref_primary_10_3390_bios12020129 crossref_primary_10_1002_hbm_26118 crossref_primary_10_1515_nanoph_2021_0256 crossref_primary_10_1371_journal_pone_0262669 crossref_primary_10_1002_hbm_26596 crossref_primary_10_1016_j_neubiorev_2023_105036 crossref_primary_10_1103_PhysRevApplied_21_064010 crossref_primary_10_7554_eLife_33977 crossref_primary_10_1364_OE_463651 crossref_primary_10_35848_1347_4065_ad43ce crossref_primary_10_1016_j_neuroimage_2025_121056 crossref_primary_10_1088_1674_1056_ac6010 crossref_primary_10_1001_jamaneurol_2019_2384 crossref_primary_10_3390_bios12030165 crossref_primary_10_1016_j_measurement_2024_115824 crossref_primary_10_1063_5_0167372 crossref_primary_10_1038_s41598_024_51857_3 crossref_primary_10_1016_j_sbsr_2024_100658 crossref_primary_10_1002_qute_202300084 crossref_primary_10_3389_fped_2021_626734 crossref_primary_10_3389_fphy_2022_1059487 crossref_primary_10_3390_brainsci9080181 crossref_primary_10_1016_j_neuroimage_2018_06_041 crossref_primary_10_1162_imag_a_00495 crossref_primary_10_1088_1361_6463_abf169 crossref_primary_10_1088_1681_7575_accd74 crossref_primary_10_1016_j_sna_2023_114247 crossref_primary_10_1364_OE_550716 crossref_primary_10_1038_s41598_022_21870_5 crossref_primary_10_12688_f1000research_22296_1 crossref_primary_10_1088_1361_6560_ac18fb crossref_primary_10_1109_JSEN_2024_3438990 crossref_primary_10_35848_1882_0786_ac00d9 crossref_primary_10_1016_j_measurement_2023_112860 crossref_primary_10_35848_1882_0786_acaa1c crossref_primary_10_1016_j_jneumeth_2021_109181 crossref_primary_10_7498_aps_71_20211122 crossref_primary_10_1016_j_copsyc_2019_08_026 crossref_primary_10_1126_sciadv_adg1760 crossref_primary_10_1016_j_neuroimage_2020_116995 crossref_primary_10_1109_LED_2018_2870731 crossref_primary_10_4266_acc_2023_01382 crossref_primary_10_1002_qute_202400226 crossref_primary_10_1016_j_measurement_2025_117286 crossref_primary_10_1103_PhysRevLett_128_163602 crossref_primary_10_1021_acsphotonics_4c01638 crossref_primary_10_1109_JSEN_2024_3438765 crossref_primary_10_1111_ejn_70060 crossref_primary_10_1016_j_measurement_2024_114711 crossref_primary_10_1109_JSEN_2023_3291361 crossref_primary_10_1002_qute_202400475 crossref_primary_10_1109_TIM_2022_3150588 crossref_primary_10_1016_j_measurement_2023_113729 crossref_primary_10_1002_qute_202400238 crossref_primary_10_1088_1361_6633_ad99e6 crossref_primary_10_1364_OE_450571 crossref_primary_10_1038_s41598_018_34535_z crossref_primary_10_1038_s41467_022_32150_1 crossref_primary_10_1088_1741_2552_ac2c4d crossref_primary_10_1364_OE_523114 crossref_primary_10_3389_fnins_2021_706785 crossref_primary_10_1016_j_measurement_2025_117052 crossref_primary_10_1016_j_sna_2023_114663 crossref_primary_10_1371_journal_pbio_3002828 crossref_primary_10_1016_j_neubiorev_2023_105463 crossref_primary_10_1002_advs_202405099 crossref_primary_10_1002_qute_202200146 crossref_primary_10_1016_j_mtadv_2024_100487 crossref_primary_10_1016_j_nanoen_2018_11_065 crossref_primary_10_1038_s41598_023_31111_y crossref_primary_10_1109_TIM_2023_3277096 crossref_primary_10_1108_EJM_01_2021_0003 crossref_primary_10_1109_JSEN_2021_3102146 crossref_primary_10_1162_imag_a_00219 crossref_primary_10_3390_biomimetics10020074 crossref_primary_10_1109_TIM_2022_3188525 crossref_primary_10_1134_S1063785023900686 crossref_primary_10_1016_j_cmpb_2024_108292 crossref_primary_10_1109_JSEN_2021_3116312 crossref_primary_10_1103_PhysRevA_109_032608 crossref_primary_10_1016_j_neuroimage_2022_119559 crossref_primary_10_1364_BOE_474862 crossref_primary_10_1152_jn_00530_2020 crossref_primary_10_3390_s20071826 crossref_primary_10_1063_5_0105945 crossref_primary_10_1038_s42256_023_00714_5 crossref_primary_10_61186_ijop_17_2_155 crossref_primary_10_1002_qute_202000078 crossref_primary_10_1038_d41586_023_01663_0 crossref_primary_10_1016_j_neubiorev_2021_09_034 crossref_primary_10_1109_TII_2024_3353928 crossref_primary_10_1016_j_measurement_2025_117237 crossref_primary_10_1364_BOE_380314 crossref_primary_10_1016_j_biopsych_2022_08_016 crossref_primary_10_1177_23982128221075430 crossref_primary_10_3390_s25020433 crossref_primary_10_1016_j_measurement_2025_117004 crossref_primary_10_3389_fnins_2018_00273 crossref_primary_10_1016_j_sna_2023_114207 crossref_primary_10_1109_TIM_2023_3331425 crossref_primary_10_1093_scan_nsaa061 crossref_primary_10_1016_j_neuroimage_2025_121078 crossref_primary_10_1103_PhysRevA_99_013420 crossref_primary_10_1109_TIM_2022_3214619 crossref_primary_10_1088_1361_6560_ab4c06 crossref_primary_10_1016_j_neuroimage_2022_119338 crossref_primary_10_1186_s13229_022_00498_2 crossref_primary_10_1038_s41598_024_56878_6 crossref_primary_10_3788_COL202422_051201 crossref_primary_10_4085_1062_6050_54_084 crossref_primary_10_1103_PhysRevResearch_1_033087 crossref_primary_10_1371_journal_pone_0227684 crossref_primary_10_1016_j_neuroimage_2018_05_029 crossref_primary_10_1088_1402_4896_ad7234 crossref_primary_10_3390_photonics9110792 crossref_primary_10_1109_TIM_2025_3545997 crossref_primary_10_1088_1361_6501_ab3505 crossref_primary_10_1038_s41587_019_0226_8 crossref_primary_10_1109_TIM_2024_3460884 crossref_primary_10_3390_photonics10121302 crossref_primary_10_1016_j_jmr_2019_106580 crossref_primary_10_1016_j_sna_2023_114188 crossref_primary_10_1111_epi_17806 crossref_primary_10_3390_photonics10040458 crossref_primary_10_1109_TIM_2022_3162282 crossref_primary_10_1038_s41583_021_00485_1 crossref_primary_10_1186_s12915_021_01073_6 crossref_primary_10_1002_lpor_202301276 crossref_primary_10_1109_JSEN_2024_3366312 crossref_primary_10_1109_JSEN_2022_3156814 crossref_primary_10_1016_j_measurement_2024_114594 crossref_primary_10_1088_1674_1056_ad0b00 crossref_primary_10_1109_TIM_2025_3545841 crossref_primary_10_1016_j_neuroimage_2022_119084 crossref_primary_10_1063_5_0071986 crossref_primary_10_1109_TIM_2022_3201500 crossref_primary_10_1109_TIM_2024_3353279 crossref_primary_10_1007_s11432_022_3550_1 crossref_primary_10_1111_spc3_12707 crossref_primary_10_35848_1882_0786_ad9078 crossref_primary_10_1016_j_nic_2020_02_004 crossref_primary_10_1016_j_nicl_2021_102797 crossref_primary_10_1088_1361_6463_abf53c crossref_primary_10_3390_s21041517 crossref_primary_10_1002_hbm_24445 crossref_primary_10_1103_PhysRevA_104_L041306 crossref_primary_10_3902_jnns_30_159 crossref_primary_10_1038_s44159_022_00065_9 crossref_primary_10_1016_j_measurement_2024_115410 crossref_primary_10_1080_27706710_2024_2322930 crossref_primary_10_1109_JSEN_2024_3435882 crossref_primary_10_1364_OL_514866 crossref_primary_10_1364_OE_404259 crossref_primary_10_1109_JSEN_2021_3136213 crossref_primary_10_1016_j_plrev_2023_07_006 crossref_primary_10_3390_ma16155238 crossref_primary_10_1088_1742_6596_2103_1_012182 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_1038_s41467_020_16202_y crossref_primary_10_1364_BOE_528275 crossref_primary_10_1016_j_clinph_2020_03_041 crossref_primary_10_1109_JPHOT_2018_2889578 crossref_primary_10_1088_1674_1056_aca6d5 crossref_primary_10_1148_radiol_220609 crossref_primary_10_1109_TIM_2022_3147901 crossref_primary_10_3788_COL202523_021201 crossref_primary_10_1109_TIE_2022_3161799 crossref_primary_10_1177_10738584211054742 crossref_primary_10_1063_1_5066250 crossref_primary_10_1109_TIM_2025_3541674 crossref_primary_10_1103_PhysRevApplied_11_044034 crossref_primary_10_1016_j_neuroimage_2022_119047 crossref_primary_10_1126_sciadv_adg1746 crossref_primary_10_1016_j_jneumeth_2019_108378 crossref_primary_10_1364_OE_443679 crossref_primary_10_1016_j_neuroimage_2021_117815 crossref_primary_10_1088_1742_6596_1837_1_012002 crossref_primary_10_1038_s41593_020_00709_0 crossref_primary_10_1364_OE_476113 crossref_primary_10_1002_hbm_25987 crossref_primary_10_1063_5_0079429 crossref_primary_10_3389_fnbeh_2019_00044 crossref_primary_10_1016_j_neubiorev_2023_105197 crossref_primary_10_1038_s41598_021_81828_x crossref_primary_10_1038_s41598_023_39539_y crossref_primary_10_1103_PhysRevApplied_11_054075 crossref_primary_10_1016_j_aap_2021_106093 crossref_primary_10_1103_PhysRevApplied_12_011004 crossref_primary_10_1016_j_neuroimage_2020_116686 crossref_primary_10_1016_j_tins_2024_02_003 crossref_primary_10_1103_PhysRevApplied_19_044042 crossref_primary_10_1111_dmcn_15689 crossref_primary_10_1016_j_dcn_2024_101433 crossref_primary_10_3389_fnins_2022_984036 crossref_primary_10_1007_s10548_024_01086_8 crossref_primary_10_1103_PhysRevApplied_22_034030 crossref_primary_10_1109_TIM_2022_3232658 crossref_primary_10_1109_TMI_2019_2937670 crossref_primary_10_1109_ACCESS_2019_2891162 crossref_primary_10_3788_gzxb20245305_0553108 crossref_primary_10_1063_5_0218708 crossref_primary_10_1016_j_neuroimage_2020_116679 crossref_primary_10_1063_5_0193131 crossref_primary_10_1364_OE_464361 crossref_primary_10_1016_j_isci_2024_109250 crossref_primary_10_1038_s43856_024_00547_2 crossref_primary_10_1016_j_sna_2024_115305 crossref_primary_10_1021_acs_nanolett_0c01987 crossref_primary_10_1016_j_measurement_2024_114753 crossref_primary_10_1103_PhysRevLett_129_051802 crossref_primary_10_1039_D3NA00016H crossref_primary_10_1021_acsnano_2c09509 crossref_primary_10_3389_fnhum_2020_00039 crossref_primary_10_1109_JSEN_2019_2927086 crossref_primary_10_1038_s41598_020_77589_8 crossref_primary_10_1038_s41378_024_00715_3 crossref_primary_10_1109_TNSRE_2019_2926965 crossref_primary_10_1109_TIE_2023_3314921 crossref_primary_10_3389_fnins_2021_599549 crossref_primary_10_3389_fphy_2022_969129 crossref_primary_10_1016_j_radmp_2024_09_001 crossref_primary_10_1016_j_optlastec_2023_109876 crossref_primary_10_1103_PhysRevApplied_22_044011 crossref_primary_10_1038_nrn_2018_38 crossref_primary_10_1109_TIM_2018_2851458 crossref_primary_10_1109_TIM_2024_3522373 crossref_primary_10_1364_OE_553202 crossref_primary_10_1364_JOSAB_501086 crossref_primary_10_1016_j_neuroimage_2019_116192 crossref_primary_10_1002_piuz_202401715 crossref_primary_10_1016_j_neuroimage_2019_01_059 crossref_primary_10_1016_j_ymeth_2018_09_009 crossref_primary_10_3389_fphy_2023_1212368 crossref_primary_10_1016_j_dcn_2022_101069 crossref_primary_10_1364_OE_435841 crossref_primary_10_3390_s20082248 crossref_primary_10_1117_1_JOM_3_4_044501 crossref_primary_10_3389_fnhum_2018_00398 crossref_primary_10_1063_5_0164896 crossref_primary_10_1007_s10118_019_2286_0 crossref_primary_10_3390_biology14010091 crossref_primary_10_1002_adfm_201906813 crossref_primary_10_1103_PhysRevLett_133_133202 crossref_primary_10_1007_s11060_019_03386_7 crossref_primary_10_1073_pnas_1912326116 crossref_primary_10_1038_s41598_024_69829_y crossref_primary_10_1109_JSEN_2020_3015562 crossref_primary_10_1109_TIM_2022_3186078 crossref_primary_10_1364_OL_496076 crossref_primary_10_1109_JSEN_2024_3421631 crossref_primary_10_1021_acsami_3c15519 crossref_primary_10_1038_s41467_025_58095_9 crossref_primary_10_1073_pnas_1916787117 crossref_primary_10_1038_s41598_020_80590_w crossref_primary_10_1016_j_measurement_2023_113161 crossref_primary_10_1088_1361_6501_abc89c crossref_primary_10_1109_JSEN_2023_3297109 crossref_primary_10_35848_1347_4065_abfc32 crossref_primary_10_1109_TIM_2023_3265750 crossref_primary_10_1186_s13195_023_01287_6 crossref_primary_10_1016_j_esci_2024_100292 crossref_primary_10_1063_5_0062650 crossref_primary_10_3390_ma15196971 crossref_primary_10_1109_TIM_2023_3311064 crossref_primary_10_1016_j_nicl_2024_103608 crossref_primary_10_1016_j_physo_2024_100227 crossref_primary_10_1016_j_sna_2022_113884 crossref_primary_10_1103_PhysRevA_104_043103 crossref_primary_10_1016_j_neuroimage_2023_120157 crossref_primary_10_1016_j_trechm_2021_01_001 crossref_primary_10_1109_JSEN_2022_3146415 crossref_primary_10_1364_OE_530764 crossref_primary_10_3390_ma17235906 crossref_primary_10_1364_OE_425851 crossref_primary_10_1016_j_isci_2022_103752 crossref_primary_10_1016_j_neubiorev_2022_104649 crossref_primary_10_1103_PhysRevApplied_20_024042 crossref_primary_10_1364_OE_470656 crossref_primary_10_1016_j_bandc_2020_105677 crossref_primary_10_1016_j_neuroimage_2019_01_017 crossref_primary_10_1177_10597123211072613 crossref_primary_10_1088_1361_6668_aacb14 crossref_primary_10_1016_j_measurement_2024_115223 crossref_primary_10_1103_PhysRevA_106_063102 crossref_primary_10_1002_admt_202000185 crossref_primary_10_1002_hipo_23149 crossref_primary_10_1063_5_0002146 crossref_primary_10_1109_ACCESS_2019_2917894 crossref_primary_10_3389_fneur_2022_827529 crossref_primary_10_1063_5_0083306 crossref_primary_10_1214_19_AOAS1321 crossref_primary_10_1016_j_neuroimage_2021_118528 crossref_primary_10_1016_j_neuropsychologia_2023_108632 crossref_primary_10_1162_jocn_a_01653 crossref_primary_10_1126_sciadv_adt3938 crossref_primary_10_1016_j_measurement_2024_116306 crossref_primary_10_1088_1741_2552_ad44d8 crossref_primary_10_1103_PhysRevA_110_043102 crossref_primary_10_3389_fnhum_2021_741918 crossref_primary_10_1088_1741_2552_ad9680 crossref_primary_10_1016_j_measurement_2024_115695 crossref_primary_10_1016_j_measurement_2024_115697 crossref_primary_10_1364_OE_385489 crossref_primary_10_1109_JSEN_2019_2931159 crossref_primary_10_3390_math11122716 crossref_primary_10_1515_aot_2020_0024 crossref_primary_10_1364_OE_26_028682 crossref_primary_10_3389_fnsys_2022_995375 crossref_primary_10_1515_aot_2020_0027 crossref_primary_10_3805_eands_16_71 crossref_primary_10_1016_j_measurement_2024_114373 crossref_primary_10_1063_5_0232183 crossref_primary_10_1103_PhysRevApplied_22_064055 crossref_primary_10_1541_ieejfms_144_306 crossref_primary_10_3390_brainsci12010086 crossref_primary_10_1063_5_0213432 crossref_primary_10_1063_9_0000694 crossref_primary_10_1016_j_neuroimage_2020_117353 crossref_primary_10_1016_j_clinph_2023_10_006 crossref_primary_10_1016_j_bspc_2024_106215 crossref_primary_10_1103_PhysRevA_108_052822 crossref_primary_10_3390_app13148225 crossref_primary_10_1002_brb3_1706 crossref_primary_10_1063_5_0168990 crossref_primary_10_1007_s13320_023_0684_y crossref_primary_10_1016_j_sna_2023_114509 crossref_primary_10_3390_bioengineering11050428 crossref_primary_10_1038_s41562_019_0767_3 crossref_primary_10_1016_j_neuroimage_2021_118034 crossref_primary_10_1016_j_jneumeth_2022_109726 crossref_primary_10_1109_JSEN_2021_3122990 crossref_primary_10_1063_5_0054842 crossref_primary_10_1109_TIM_2024_3502819 crossref_primary_10_1002_hipo_23060 crossref_primary_10_1016_j_measurement_2023_113423 crossref_primary_10_1103_PhysRevA_108_062610 crossref_primary_10_1364_OL_518697 crossref_primary_10_1155_2022_9935192 crossref_primary_10_1016_j_seizure_2018_05_019 crossref_primary_10_1038_s41583_023_00692_y crossref_primary_10_1109_TIM_2025_3527604 crossref_primary_10_1016_j_rinp_2023_106546 crossref_primary_10_1002_qute_202300377 crossref_primary_10_1103_PhysRevApplied_14_064067 crossref_primary_10_1016_j_neuroimage_2022_119420 crossref_primary_10_1109_JSEN_2023_3299596 crossref_primary_10_3389_fnins_2023_1284262 crossref_primary_10_3788_COL202422_101201 crossref_primary_10_1088_1361_6463_ac6f99 crossref_primary_10_3389_fneur_2022_831546 crossref_primary_10_1109_JSEN_2018_2877771 crossref_primary_10_1016_j_jneumeth_2024_110131 crossref_primary_10_1109_TIM_2024_3381287 crossref_primary_10_1016_j_sna_2023_114753 crossref_primary_10_1016_j_sna_2024_115901 crossref_primary_10_1016_j_nbd_2025_106858 crossref_primary_10_1016_j_measurement_2023_113449 crossref_primary_10_1016_j_neuroimage_2023_119953 crossref_primary_10_1155_2021_6645270 crossref_primary_10_1021_acs_nanolett_4c02784 crossref_primary_10_3390_photonics10060637 crossref_primary_10_1088_1674_1056_ab7801 crossref_primary_10_1134_S1063785019100304 crossref_primary_10_1109_TIM_2022_3162607 crossref_primary_10_1088_1361_6463_acc412 crossref_primary_10_1016_j_neuroimage_2021_118025 crossref_primary_10_1097_WNP_0000000000000743 crossref_primary_10_1109_TIM_2019_2905308 crossref_primary_10_3138_jmvfh_2019_0029 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1097_WNP_0000000000000744 crossref_primary_10_1109_TIM_2024_3413176 crossref_primary_10_1016_j_clinph_2021_07_007 crossref_primary_10_1016_j_neuroimage_2021_118479 crossref_primary_10_3390_ma15238704 crossref_primary_10_3389_fmedt_2024_1470970 crossref_primary_10_1007_s00521_021_06105_4 crossref_primary_10_1109_JSEN_2023_3329043 crossref_primary_10_1063_5_0218065 crossref_primary_10_1080_00107514_2023_2182950 crossref_primary_10_1364_OE_458367 crossref_primary_10_1088_1361_6463_ac9cea crossref_primary_10_3390_ma17235877 crossref_primary_10_1103_PhysRevA_108_013521 crossref_primary_10_1088_1361_6463_ac3c73 crossref_primary_10_1162_netn_a_00077 crossref_primary_10_1148_radiol_212453 crossref_primary_10_1016_j_clinph_2018_03_042 crossref_primary_10_3233_JAD_215240 crossref_primary_10_1515_bmt_2021_0019 crossref_primary_10_1016_j_neuroimage_2021_118484 crossref_primary_10_1162_imag_a_00179 crossref_primary_10_1016_j_neubiorev_2023_105503 crossref_primary_10_3389_fneur_2021_752271 crossref_primary_10_1109_TIM_2022_3203456 crossref_primary_10_1088_1361_6463_ac677b crossref_primary_10_1016_j_bspc_2024_106236 crossref_primary_10_3390_bios12121098 crossref_primary_10_1016_j_sna_2025_116260 crossref_primary_10_1109_JSEN_2021_3075445 crossref_primary_10_1063_1_5095241 crossref_primary_10_1016_j_bios_2025_117321 crossref_primary_10_1016_j_invent_2024_100785 crossref_primary_10_1016_j_neuroimage_2021_118210 crossref_primary_10_1109_TIM_2022_3192287 crossref_primary_10_1109_JSEN_2024_3395694 crossref_primary_10_1109_TIM_2024_3375422 crossref_primary_10_1038_s41598_020_76201_3 crossref_primary_10_1002_hbm_26295 crossref_primary_10_1109_JSEN_2024_3509679 crossref_primary_10_1016_j_rinp_2023_106728 crossref_primary_10_1016_j_ceramint_2023_05_048 crossref_primary_10_1038_nbt_4139 crossref_primary_10_1038_s41380_021_01299_4 crossref_primary_10_1002_qute_202300185 crossref_primary_10_1103_PhysRevA_100_023416 crossref_primary_10_1016_j_measurement_2024_116381 crossref_primary_10_1016_j_tics_2020_12_006 crossref_primary_10_7554_eLife_94561 crossref_primary_10_1109_TIM_2023_3341139 crossref_primary_10_1103_PhysRevLett_133_153601 crossref_primary_10_3389_fmedt_2025_1515548 crossref_primary_10_1021_acs_analchem_3c02087 crossref_primary_10_1126_sciadv_abn7192 crossref_primary_10_1109_TIM_2025_3545202 crossref_primary_10_1364_OE_447041 crossref_primary_10_1088_1367_2630_ac3b71 crossref_primary_10_1016_j_rinp_2023_107231 crossref_primary_10_1109_JIOT_2023_3292232 crossref_primary_10_1016_j_vacuum_2025_114103 crossref_primary_10_1016_j_measurement_2023_112733 crossref_primary_10_1109_TIM_2023_3267356 crossref_primary_10_1364_OE_27_016169 crossref_primary_10_1103_PhysRevResearch_2_013213 crossref_primary_10_1109_TIM_2021_3106677 crossref_primary_10_1364_OE_416797 crossref_primary_10_1016_j_neuroimage_2022_119027 crossref_primary_10_1109_ACCESS_2019_2954103 crossref_primary_10_1016_j_optlastec_2024_111217 crossref_primary_10_1088_1361_6463_ad4b2c crossref_primary_10_1088_1674_1056_ac7e38 crossref_primary_10_1021_acsami_4c05252 crossref_primary_10_1016_j_jneumeth_2023_110010 crossref_primary_10_1088_1361_6501_ac72f9 crossref_primary_10_3389_fphy_2020_522536 crossref_primary_10_1109_JSEN_2024_3488002 crossref_primary_10_1140_epjqt_s40507_020_00086_4 crossref_primary_10_1016_j_sna_2022_114055 crossref_primary_10_1126_sciadv_aba8792 crossref_primary_10_1016_j_sna_2023_114591 crossref_primary_10_1103_PhysRevA_110_013125 crossref_primary_10_1364_OE_483108 crossref_primary_10_1016_j_neuron_2021_05_021 crossref_primary_10_1016_j_jneumeth_2019_108540 crossref_primary_10_3233_JAD_215464 crossref_primary_10_1109_JSEN_2024_3504580 crossref_primary_10_3389_fnins_2021_619591 crossref_primary_10_1016_j_neuroimage_2020_116862 crossref_primary_10_1016_j_sna_2023_114781 crossref_primary_10_1044_2024_JSLHR_24_00046 crossref_primary_10_1103_PhysRevResearch_2_023239 crossref_primary_10_1109_TBME_2022_3161830 crossref_primary_10_1088_1674_1056_ac6163 crossref_primary_10_1063_5_0114760 crossref_primary_10_3389_fnhum_2022_874199 crossref_primary_10_1089_neu_2022_0220 crossref_primary_10_1103_PhysRevApplied_14_054004 crossref_primary_10_1007_s11571_024_10085_1 crossref_primary_10_1364_OE_390375 crossref_primary_10_1115_1_4067350 crossref_primary_10_1109_JSEN_2020_2973201 crossref_primary_10_3389_fnrgo_2021_678981 crossref_primary_10_1080_13854046_2018_1521993 crossref_primary_10_1002_hbm_25582 crossref_primary_10_1142_S0219843619500191 crossref_primary_10_1002_hbm_25586 crossref_primary_10_1016_j_neunet_2023_11_016 crossref_primary_10_1371_journal_pbio_3000511 crossref_primary_10_12693_APhysPolA_146_521 crossref_primary_10_1109_TIM_2023_3246473 crossref_primary_10_3390_batteries10060200 crossref_primary_10_1016_j_measurement_2024_115909 crossref_primary_10_1038_s41598_021_01894_z crossref_primary_10_1038_s41467_019_12486_x crossref_primary_10_3390_s21062193 crossref_primary_10_1364_OE_418776 crossref_primary_10_1016_j_neuroimage_2022_119461 crossref_primary_10_3390_electronics11162559 crossref_primary_10_1016_j_ijleo_2020_165510 crossref_primary_10_1109_JSEN_2021_3076133 crossref_primary_10_1016_j_optlaseng_2025_108866 crossref_primary_10_1093_bjr_tqae123 crossref_primary_10_1016_j_sna_2022_114005 crossref_primary_10_1016_j_tins_2021_04_006 crossref_primary_10_3389_fnins_2020_00290 crossref_primary_10_1016_j_neuroimage_2019_06_010 crossref_primary_10_1016_j_sna_2024_115947 crossref_primary_10_1016_j_measurement_2023_113405 crossref_primary_10_1134_S0030400X23040215 crossref_primary_10_7498_aps_70_20210920 crossref_primary_10_1109_TBME_2021_3100770 crossref_primary_10_1038_s41467_024_47566_0 crossref_primary_10_1088_1361_6463_ac19e3 crossref_primary_10_1109_ACCESS_2020_3028831 crossref_primary_10_1126_sciadv_abd1505 crossref_primary_10_3390_ma17225469 crossref_primary_10_1103_PhysRevApplied_17_024034 crossref_primary_10_1109_TBME_2024_3465654 crossref_primary_10_1016_j_jneumeth_2020_108948 crossref_primary_10_1364_OL_471557 |
Cites_doi | 10.1109/10.623056 10.1016/j.neuroimage.2010.01.077 10.1038/nphoton.2007.201 10.1002/hbm.23531 10.1016/j.neuroimage.2014.10.010 10.1073/pnas.0609632104 10.1002/cmr.b.20091 10.1038/nn.3101 10.1523/JNEUROSCI.3495-14.2014 10.1016/j.neuroimage.2012.10.001 10.1364/OE.25.007849 10.1126/science.175.4022.664 10.1088/0031-9155/58/17/6065 10.1088/1361-6560/aa93d1 10.1111/j.1365-246X.1968.tb00216.x 10.1103/PhysRevLett.89.130801 10.1016/j.neuroimage.2013.10.040 10.1006/meth.2001.1238 10.1038/nature01484 10.1088/0031-9155/58/22/8153 10.7567/JJAP.54.026601 10.1002/mrm.1910260202 10.1103/RevModPhys.65.413 10.1063/1.3522648 10.1063/1.344953 10.1088/0031-9155/32/1/004 10.1016/S1388-2457(99)00141-8 10.1016/j.nicl.2015.08.005 10.1016/j.neuroimage.2007.09.050 10.1038/nn.4504 10.1073/pnas.1112685108 10.1038/nrn2774 10.1016/j.neuroimage.2017.01.034 10.1016/0375-9601(69)90480-0 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Mar 29, 2018 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 29, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature26147 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 661 |
ExternalDocumentID | PMC6063354 A532684512 29562238 10_1038_nature26147 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R44 MH110288 – fundername: Wellcome Trust grantid: 203257BARNES – fundername: Medical Research Council grantid: MR/M006301/1 – fundername: Wellcome Trust grantid: 203257/Z/16/Z – fundername: NICHD NIH HHS grantid: R44 HD074495 – fundername: Medical Research Council grantid: MR/K005464/1 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM TUS |
ID | FETCH-LOGICAL-c612t-afe08870946f32e277594e4e597acd30454924924fe856ab59331db2b4eefe7d3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:14:54 EDT 2025 Fri Jul 11 12:41:52 EDT 2025 Fri Jul 25 09:04:45 EDT 2025 Tue Jun 17 21:32:32 EDT 2025 Thu Jun 12 23:55:11 EDT 2025 Tue Jun 10 15:33:54 EDT 2025 Tue Jun 10 20:14:05 EDT 2025 Fri Jun 27 04:51:47 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Tue Jul 01 00:57:13 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Fri Feb 21 02:37:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7698 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-afe08870946f32e277594e4e597acd30454924924fe856ab59331db2b4eefe7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6063354 |
PMID | 29562238 |
PQID | 2020739846 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6063354 proquest_miscellaneous_2017056307 proquest_journals_2020739846 gale_infotracmisc_A532684512 gale_infotracgeneralonefile_A532684512 gale_infotraccpiq_532684512 gale_infotracacademiconefile_A532684512 gale_incontextgauss_ISR_A532684512 pubmed_primary_29562238 crossref_primary_10_1038_nature26147 crossref_citationtrail_10_1038_nature26147 springer_journals_10_1038_nature26147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-29 |
PublicationDateYYYYMMDD | 2018-03-29 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Boto (CR12) 2017; 149 Johnson, Schwindt, Weisend (CR13) 2010; 97 Gross (CR5) 2013; 65 Yoda (CR31) 1990; 67 Carlson, Derby, Hawryszko, Weideman (CR26) 1992; 26 Kominis, Kornack, Allred, Romalis (CR2) 2003; 422 Robson (CR20) 2016; 12 Brookes (CR23) 2008; 39 Kamada (CR15) 2015; 54 CR33 Hipp, Hawellek, Corbetta, Siegel, Engel (CR29) 2012; 15 Dupont-Roc, Haroche, Cohen-Tannoudji (CR8) 1969; 28 Cohen (CR1) 1972; 175 Pfurtscheller, Lopes da Silva (CR17) 1999; 110 Alem, Benison, Barth, Kitching, Knappe (CR10) 2014; 34 Barratt (CR22) 2017; 38 Mary (CR19) 2015; 104 Baillet (CR27) 2017; 20 Allred, Lyman, Kornack, Romalis (CR6) 2002; 89 Uhlhaas, Singer (CR21) 2010; 11 Jerbi (CR30) 2007; 104 Gaetz, Macdonald, Cheyne, Snead (CR18) 2010; 51 Shah, Knappe, Schwindt, Kitching (CR7) 2007; 1 Alem (CR11) 2017; 25 Kim (CR16) 2014; 89 Vrba, Robinson (CR32) 2001; 25 Poole, Bowtell (CR25) 2007; 31 Johnson, Schwindt, Weisend (CR14) 2013; 58 Shah, Wakai (CR3) 2013; 58 Van Veen, van Drongelen, Yuchtman, Suzuki (CR24) 1997; 44 Backus, Gilbert (CR34) 1968; 16 Sarvas (CR35) 1987; 32 Borna (CR9) 2017; 62 Brookes (CR28) 2011; 108 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasma (CR4) 1993; 65 J Dupont-Roc (BFnature26147_CR8) 1969; 28 K Yoda (BFnature26147_CR31) 1990; 67 W Gaetz (BFnature26147_CR18) 2010; 51 VK Shah (BFnature26147_CR3) 2013; 58 V Shah (BFnature26147_CR7) 2007; 1 A Borna (BFnature26147_CR9) 2017; 62 EL Barratt (BFnature26147_CR22) 2017; 38 JC Allred (BFnature26147_CR6) 2002; 89 J Sarvas (BFnature26147_CR35) 1987; 32 K Jerbi (BFnature26147_CR30) 2007; 104 SE Robson (BFnature26147_CR20) 2016; 12 MJ Brookes (BFnature26147_CR23) 2008; 39 IK Kominis (BFnature26147_CR2) 2003; 422 MJ Brookes (BFnature26147_CR28) 2011; 108 BFnature26147_CR33 JF Hipp (BFnature26147_CR29) 2012; 15 CN Johnson (BFnature26147_CR14) 2013; 58 D Cohen (BFnature26147_CR1) 1972; 175 A Mary (BFnature26147_CR19) 2015; 104 K Kamada (BFnature26147_CR15) 2015; 54 J Vrba (BFnature26147_CR32) 2001; 25 J Gross (BFnature26147_CR5) 2013; 65 BD Van Veen (BFnature26147_CR24) 1997; 44 O Alem (BFnature26147_CR10) 2014; 34 E Boto (BFnature26147_CR12) 2017; 149 G Pfurtscheller (BFnature26147_CR17) 1999; 110 M Poole (BFnature26147_CR25) 2007; 31 S Baillet (BFnature26147_CR27) 2017; 20 GE Backus (BFnature26147_CR34) 1968; 16 MS Hämäläinen (BFnature26147_CR4) 1993; 65 PJ Uhlhaas (BFnature26147_CR21) 2010; 11 JW Carlson (BFnature26147_CR26) 1992; 26 K Kim (BFnature26147_CR16) 2014; 89 C Johnson (BFnature26147_CR13) 2010; 97 O Alem (BFnature26147_CR11) 2017; 25 |
References_xml | – volume: 44 start-page: 867 year: 1997 end-page: 880 ident: CR24 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 51 start-page: 792 year: 2010 end-page: 807 ident: CR18 article-title: Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.077 – volume: 1 start-page: 649 year: 2007 end-page: 652 ident: CR7 article-title: Subpicotesla atomic magnetometry with a microfabricated vapour cell publication-title: Nat. Photon. doi: 10.1038/nphoton.2007.201 – volume: 38 start-page: 2441 year: 2017 end-page: 2453 ident: CR22 article-title: Abnormal task driven neural oscillations in multiple sclerosis: A visuomotor MEG study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23531 – volume: 104 start-page: 59 year: 2015 end-page: 68 ident: CR19 article-title: Aging reduces experience-induced sensorimotor plasticity. a magnetoencephalographic study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.010 – volume: 104 start-page: 7676 year: 2007 end-page: 7681 ident: CR30 article-title: Coherent neural representation of hand speed in humans revealed by MEG imaging publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609632104 – volume: 31 start-page: 162 year: 2007 end-page: 175 ident: CR25 article-title: Novel gradient coils designed using a boundary element method publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng. doi: 10.1002/cmr.b.20091 – volume: 15 start-page: 884 year: 2012 end-page: 890 ident: CR29 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – ident: CR33 – volume: 34 start-page: 14324 year: 2014 end-page: 14327 ident: CR10 article-title: Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3495-14.2014 – volume: 65 start-page: 349 year: 2013 end-page: 363 ident: CR5 article-title: Good practice for conducting and reporting MEG research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.001 – volume: 25 start-page: 7849 year: 2017 end-page: 7858 ident: CR11 article-title: Magnetic field imaging with microfabricated optically-pumped magnetometers publication-title: Opt. Express doi: 10.1364/OE.25.007849 – volume: 175 start-page: 664 year: 1972 end-page: 666 ident: CR1 article-title: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer publication-title: Science doi: 10.1126/science.175.4022.664 – volume: 58 start-page: 6065 year: 2013 end-page: 6077 ident: CR14 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/6065 – volume: 62 start-page: 8909 year: 2017 end-page: 8923 ident: CR9 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d1 – volume: 16 start-page: 169 year: 1968 end-page: 205 ident: CR34 article-title: The resolving power of gross Earth data publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 89 start-page: 130801 year: 2002 ident: CR6 article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.130801 – volume: 89 start-page: 143 year: 2014 end-page: 151 ident: CR16 article-title: Multi-channel atomic magnetometer for magnetoencephalography: a configuration study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.040 – volume: 25 start-page: 249 year: 2001 end-page: 271 ident: CR32 article-title: Signal processing in magnetoencephalography publication-title: Methods doi: 10.1006/meth.2001.1238 – volume: 422 start-page: 596 year: 2003 end-page: 599 ident: CR2 article-title: A subfemtotesla multichannel atomic magnetometer publication-title: Nature doi: 10.1038/nature01484 – volume: 58 start-page: 8153 year: 2013 end-page: 8161 ident: CR3 article-title: A compact, high performance atomic magnetometer for biomedical applications publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/22/8153 – volume: 54 start-page: 026601 year: 2015 ident: CR15 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – volume: 26 start-page: 191 year: 1992 end-page: 206 ident: CR26 article-title: Design and evaluation of shielded gradient coils publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910260202 – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: CR4 article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 97 start-page: 243703 year: 2010 ident: CR13 article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.3522648 – volume: 67 start-page: 4349 year: 1990 ident: CR31 article-title: Analytical design method of shelf shielded planar coils publication-title: J. Appl. Phys. doi: 10.1063/1.344953 – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: CR35 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: CR17 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 12 start-page: 869 year: 2016 end-page: 878 ident: CR20 article-title: Abnormal visuomotor processing in schizophrenia publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.08.005 – volume: 39 start-page: 1788 year: 2008 end-page: 1802 ident: CR23 article-title: Optimising experimental design for MEG beamformer imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.050 – volume: 20 start-page: 327 year: 2017 end-page: 339 ident: CR27 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 – volume: 108 start-page: 16783 year: 2011 end-page: 16788 ident: CR28 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1112685108 – volume: 11 start-page: 100 year: 2010 end-page: 113 ident: CR21 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2774 – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: CR12 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 28 start-page: 638 year: 1969 end-page: 639 ident: CR8 article-title: Detection of very weak magnetic fields (10–9 gauss) by Rb zero-field level crossing resonances publication-title: Phys. Lett. A doi: 10.1016/0375-9601(69)90480-0 – volume: 149 start-page: 404 year: 2017 ident: BFnature26147_CR12 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 89 start-page: 143 year: 2014 ident: BFnature26147_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.040 – volume: 25 start-page: 249 year: 2001 ident: BFnature26147_CR32 publication-title: Methods doi: 10.1006/meth.2001.1238 – volume: 110 start-page: 1842 year: 1999 ident: BFnature26147_CR17 publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 51 start-page: 792 year: 2010 ident: BFnature26147_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.077 – volume: 62 start-page: 8909 year: 2017 ident: BFnature26147_CR9 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d1 – volume: 12 start-page: 869 year: 2016 ident: BFnature26147_CR20 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.08.005 – volume: 104 start-page: 7676 year: 2007 ident: BFnature26147_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0609632104 – volume: 44 start-page: 867 year: 1997 ident: BFnature26147_CR24 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 39 start-page: 1788 year: 2008 ident: BFnature26147_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.050 – volume: 16 start-page: 169 year: 1968 ident: BFnature26147_CR34 publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 104 start-page: 59 year: 2015 ident: BFnature26147_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.010 – volume: 15 start-page: 884 year: 2012 ident: BFnature26147_CR29 publication-title: Nat. Neurosci. doi: 10.1038/nn.3101 – volume: 108 start-page: 16783 year: 2011 ident: BFnature26147_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1112685108 – volume: 65 start-page: 413 year: 1993 ident: BFnature26147_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 67 start-page: 4349 year: 1990 ident: BFnature26147_CR31 publication-title: J. Appl. Phys. doi: 10.1063/1.344953 – volume: 25 start-page: 7849 year: 2017 ident: BFnature26147_CR11 publication-title: Opt. Express doi: 10.1364/OE.25.007849 – volume: 58 start-page: 8153 year: 2013 ident: BFnature26147_CR3 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/22/8153 – volume: 11 start-page: 100 year: 2010 ident: BFnature26147_CR21 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2774 – volume: 89 start-page: 130801 year: 2002 ident: BFnature26147_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.130801 – volume: 54 start-page: 026601 year: 2015 ident: BFnature26147_CR15 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – volume: 65 start-page: 349 year: 2013 ident: BFnature26147_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.001 – volume: 175 start-page: 664 year: 1972 ident: BFnature26147_CR1 publication-title: Science doi: 10.1126/science.175.4022.664 – volume: 34 start-page: 14324 year: 2014 ident: BFnature26147_CR10 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3495-14.2014 – volume: 28 start-page: 638 year: 1969 ident: BFnature26147_CR8 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(69)90480-0 – volume: 31 start-page: 162 year: 2007 ident: BFnature26147_CR25 publication-title: Concepts Magn. Reson. Part B Magn. Reson. Eng. doi: 10.1002/cmr.b.20091 – volume: 26 start-page: 191 year: 1992 ident: BFnature26147_CR26 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910260202 – volume: 58 start-page: 6065 year: 2013 ident: BFnature26147_CR14 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/6065 – volume: 32 start-page: 11 year: 1987 ident: BFnature26147_CR35 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 422 start-page: 596 year: 2003 ident: BFnature26147_CR2 publication-title: Nature doi: 10.1038/nature01484 – volume: 97 start-page: 243703 year: 2010 ident: BFnature26147_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3522648 – volume: 38 start-page: 2441 year: 2017 ident: BFnature26147_CR22 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23531 – volume: 1 start-page: 649 year: 2007 ident: BFnature26147_CR7 publication-title: Nat. Photon. doi: 10.1038/nphoton.2007.201 – volume: 20 start-page: 327 year: 2017 ident: BFnature26147_CR27 publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 – ident: BFnature26147_CR33 |
SSID | ssj0005174 |
Score | 2.700799 |
Snippet | A new magnetoencephalography system allows high-spatiotemporal-resolution imaging of human brain function in moving subjects.
Setting wearable brain scanners... Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within... Imaging human brain function with techniques such as magnetoencephalography 1 (MEG) typically requires a subject to perform tasks whilst their head remains... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 657 |
SubjectTerms | 639/766/930/2735 692/308/575 Adult Adults Babies Brain Children Cognitive ability Design Drinking - physiology Equipment and supplies Female Head Head - physiology Head movement Humanities and Social Sciences Humans Investigations Lasers letter Magnetic Fields Magnetoencephalography Magnetoencephalography - instrumentation Magnetoencephalography - methods Medical imaging Methods Movement Movement disorders multidisciplinary Navigation behavior Neuroimaging Neurology NMR Nuclear magnetic resonance Protective equipment Quantum sensors Scanners Scanning Schizophrenia Science Sensors Sports - physiology Substrates Superconductivity Virtual environments Wearable computers Wearable Electronic Devices |
Title | Moving magnetoencephalography towards real-world applications with a wearable system |
URI | https://link.springer.com/article/10.1038/nature26147 https://www.ncbi.nlm.nih.gov/pubmed/29562238 https://www.proquest.com/docview/2020739846 https://www.proquest.com/docview/2017056307 https://pubmed.ncbi.nlm.nih.gov/PMC6063354 |
Volume | 555 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYaNJepsG-OhgKE_uUql2b9OtpAsSNTQJNDKR7i9I2PZBYe6w97d-fnaZ37enES1_stlFiO3bs_AxwWBBgSpF7qEg6d4X2lJsGgXITPw2LlI9GuQFxPb8Iz67Fz0kwsQdutS2r7GyiMdR5ldEZOQXplFTC7fLb7N6lrlGUXbUtNB7BFkGXUUlXNImWJR4rKMz2ft6Ix19b2EwMH6ivSm9HWrXLvY1ptWhyJXNqNqTxM3hqPUl21C79Nmzocgcem4rOrN6Bbau1NftkoaU_P4erc3OAwP6oaambiuizG9XBVrPG1NDWDB3JO9dgqbJ-gpvRoS1T7B9qB924Yi0M9Au4Hp9enZy5tq-Cm6E_07iq0GRbMLALC-5rP4qCRGihMbZQWU6pU0FRmS8KHQehSoOEcy9P_VRoXego5y9hs6xK_RqY5mGMIV0ueJqIIojjjKMPkGiPo18V6ciBL93cysyCjlPviztpkt88lr2FcOBwwTxrsTbWs72jRZKEXlFSecxUzeta_vh9KY8CTug16MQ48NEyFRX-MFP2tgEOmwCvBpy7A85sdnsve9QPA-q0XbF1n9kbMKKWZkNyJ1LSWolaLmXagYMFmd6kyrdSV3PiIcCjEE2xA69aCVxMjo_BLbp3sQPRQDYXDIQdPqSUtzcGQxzjVs4D4cD7ToqXw1oz528eHv4uPMFxmruafrIHm83fuX6LzlqT7huNxGd84tFz_H0fto5PL35d_gfMWEGl |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtMCCWihIFol3_TogVAFVQpseIJVyW9b2Oq1U7BQ7qvhT_EZm1nZiRxG3nmfirHZn57Ez8w3AXkqAKWnSx4ukE1vovrIj11V26EReGvFeLzEgrqNTb3Amvk3cyQb8bXphqKyy0YlGUSd5TG_kFKRTUgnN5afZlU1Toyi72ozQqMTiWP-5xpCt-Dj8gue77zhHX8efB3Y9VcCO0ZqXtko13SwMa7yUO9rxfTcUWmj0rFWcUOJQUEziiFQHrqciF0P-fhI5kdA61X7C8bu34DYa3h7dKH_iL0tKVlCf637AHg8-VDCdGK7QHJeWBVy1Ay1DuFqkuZKpNQbw6AHcrz1XdliJ2hZs6Gwb7pgK0rjYhq1aSxTsoIayfvcQxiPzYMF-qWmmy5zos3PVwGSz0tTsFgwd10vbYLeydkKd0SMxU-wat506vFgFO_0Izm5kxx_DZpZn-ikwzb0AQ8hE8CgUqRsEMUefI9R9jn6cr30L3jd7K-Ma5JxmbVxKk2zngWwdhAV7C-ZZhe2xnu01HZIktIyMynGmal4Ucvjjuzx0OaHloNNkwduaKc3xD2NVdzfgsglgq8O50-GMZxdXskV906FOqxNb95ndDiNqhbhLbkRK1lqpkMs7ZMGrBZl-SZV2mc7nxEMASx6qfgueVBK42BwHg2l0JwML_I5sLhgIq7xLyS7ODWY5xsmcu8KC_UaKl8tas-fP_r_8l3B3MB6dyJPh6fEO3MM1mz5RJ9yFzfL3XD9HR7GMXpjbyeDnTauDfzZxenE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIdBeEBsfCxtg0AYDKVoT5_MBoYlRrYxNCDapb8ZJnG7SSDrSauJf46_jznHapKp42_NdU-t8n77zzwA7OQGm5JmDhqQy21OOtBPfl3bsJkGe8F4v0yCuJ6fB0bn3ZegPV-BvcxeGxiobn6gddVamdEZORTo1lTBc7udmLOLbYf_j-NqmF6So09o8p1GryLH6c4PlW_VhcIh7veu6_c9nn45s88KAnWJkn9gyV2RlWOIEOXeVG4Z-7ClPYZYt04yaiB7VJ66Xq8gPZOJj-e9kiZt4SuUqzDh-9w7cDbnvkI2Fw3A-XrKAAG3uBvZ4tF9DdmLpQm-6tKLhYkxoBcXFgc2Frq0Ohv2H8MBkseygVrt1WFHFBtzT06RptQHrxmNUbM_AWr97BGcn-vCC_ZKjQk1Koo8vZAOZzSZ6frdimMRe2RrHlbWb64wOjJlkNyh2uu3Fagjqx3B-KxJ_AqtFWahNYIoHEZaTmceT2Mv9KEo55h-xcjjmdKEKLXjfyFakBvCc3t24ErrxziPR2ggLdmbM4xrnYznba9okQcgZBengSE6rSgx-fBcHPifkHEygLHhrmPIS_zCV5qYDLpvAtjqcWx3OdHx5LVrUNx3qqN6xZZ_Z7jCih0i75EalhPFQlZjbkwWvZmT6JU3dFaqcEg-BLQUYBix4WmvgTDguFtaYWkYWhB3dnDEQbnmXUlxeaPxyrJk59z0Ldhstni9ricyf_X_5L-E-OgLxdXB6vAVruGR9ZdSNt2F18nuqnmPOOEleaONk8PO2vcE_-Xx-pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+magnetoencephalography+towards+real-world+applications+with+a+wearable+system&rft.jtitle=Nature+%28London%29&rft.au=Boto%2C+Elena&rft.au=Holmes%2C+Niall&rft.au=Leggett%2C+James&rft.au=Roberts%2C+Gillian&rft.date=2018-03-29&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=555&rft.issue=7698&rft.spage=657&rft_id=info:doi/10.1038%2Fnature26147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |