Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4

Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 188; no. 2; pp. 240 - 248
Main Authors DRAGER, Luciano F, QIAOLING YAO, SCHWARTZ, Alan R, HALBERG, Nils, SCHERER, Philipp E, SEMENZA, Gregg L, POWELL, David R, POLOTSKY, Vsevolod Y, HERNANDEZ, Karen L, SHIN, Mi-Kyung, BEVANS-FONTI, Shannon, GAY, Jason, SUSSAN, Thomas E, JUN, Jonathan C, MYERS, Allen C, OLIVECRONA, Gunilla
Format Journal Article
LanguageEnglish
Published New York, NY American Thoracic Society 15.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
AbstractList Rationale: Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. Objectives: To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). Methods: ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. Measurements and Main Results: In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1 alpha knockout allele. Transgenic overexpression of HIF-1 alpha in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1 alpha increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. Conclusions: HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase in activation may contribute to atherosclerosis in patients with sleep apnea.
Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
Rationale : Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. Objectives : To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). Methods : ApoE −/− mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. Measurements and Main Results : In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. Conclusions : HIF-1–mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
RATIONALEObstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. OBJECTIVESTo examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). METHODSApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. MEASUREMENTS AND MAIN RESULTSIn vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. CONCLUSIONSHIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.
Author MYERS, Allen C
QIAOLING YAO
POWELL, David R
BEVANS-FONTI, Shannon
DRAGER, Luciano F
OLIVECRONA, Gunilla
SEMENZA, Gregg L
JUN, Jonathan C
POLOTSKY, Vsevolod Y
SUSSAN, Thomas E
SHIN, Mi-Kyung
SCHERER, Philipp E
HALBERG, Nils
HERNANDEZ, Karen L
SCHWARTZ, Alan R
GAY, Jason
Author_xml – sequence: 1
  givenname: Luciano F
  surname: DRAGER
  fullname: DRAGER, Luciano F
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 2
  surname: QIAOLING YAO
  fullname: QIAOLING YAO
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 3
  givenname: Alan R
  surname: SCHWARTZ
  fullname: SCHWARTZ, Alan R
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 4
  givenname: Nils
  surname: HALBERG
  fullname: HALBERG, Nils
  organization: Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
– sequence: 5
  givenname: Philipp E
  surname: SCHERER
  fullname: SCHERER, Philipp E
  organization: Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
– sequence: 6
  givenname: Gregg L
  surname: SEMENZA
  fullname: SEMENZA, Gregg L
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 7
  givenname: David R
  surname: POWELL
  fullname: POWELL, David R
  organization: Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States
– sequence: 8
  givenname: Vsevolod Y
  surname: POLOTSKY
  fullname: POLOTSKY, Vsevolod Y
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 9
  givenname: Karen L
  surname: HERNANDEZ
  fullname: HERNANDEZ, Karen L
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 10
  givenname: Mi-Kyung
  surname: SHIN
  fullname: SHIN, Mi-Kyung
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 11
  givenname: Shannon
  surname: BEVANS-FONTI
  fullname: BEVANS-FONTI, Shannon
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 12
  givenname: Jason
  surname: GAY
  fullname: GAY, Jason
  organization: Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States
– sequence: 13
  givenname: Thomas E
  surname: SUSSAN
  fullname: SUSSAN, Thomas E
  organization: Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
– sequence: 14
  givenname: Jonathan C
  surname: JUN
  fullname: JUN, Jonathan C
  organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 15
  givenname: Allen C
  surname: MYERS
  fullname: MYERS, Allen C
  organization: Allergy and Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
– sequence: 16
  givenname: Gunilla
  surname: OLIVECRONA
  fullname: OLIVECRONA, Gunilla
  organization: Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27569372$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23328524$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79423$$DView record from Swedish Publication Index
BookMark eNpdkUtv1DAUhS1URNuBP8ACRUKVWJDiZxxvkKLh0UqVugHEznIcZ8YlsYPtTOm_x9EMpe3Gtny_e3TvOafgyHlnAHiN4DlCFf0QtB7PMUQYihJVde31M3CCGGElFRwe5TfkpKRU_DwGpzHewIzWCL4Ax5gQXDNMT0C73gbvrC4uXTJhtCkZl4qLu8n_sSp_drM2sWjS1gQf9bCcNha7XGt0sjuVrHeF74ums5OPpmjcxvrJW5OsKwf7yxT0JXjeqyGaV4d7Bb5_-fxtfVFeXX-9XDdXpa4QTqXiNaHcINwiripiKgNJhTmGuqeEs7buUC0q2na6FbBljHGRMYxFqxDuW05W4P1eN96aaW7lFOyowp30yspP9kcjfdjIeZwlFzQbsAIf93hmR9PpvHdQw6OuxxVnt3Ljd5JwXnO2CLw7CAT_ezYxydFGbYZBOePnKBGFsMIoD5rRt0_QGz8Hl93IFBGMYM5YpvCe0tnlGEx_PwyCcklcLonLfeJySfx6nZvePFzjvuVfxBk4OwAqajX0QTlt43-Os0oQjslf7dG3-g
CitedBy_id crossref_primary_10_3390_metabo10090358
crossref_primary_10_1016_j_resp_2017_06_004
crossref_primary_10_1016_j_amjoto_2018_03_026
crossref_primary_10_1194_jlr_M034272
crossref_primary_10_3390_ijms21145117
crossref_primary_10_3389_fneur_2018_00272
crossref_primary_10_3390_ijms24076807
crossref_primary_10_2337_db17_0186
crossref_primary_10_1152_ajpregu_00056_2019
crossref_primary_10_1016_j_pharmthera_2017_12_006
crossref_primary_10_1113_JP285430
crossref_primary_10_3389_fcvm_2021_647071
crossref_primary_10_1007_s00109_016_1480_6
crossref_primary_10_1161_JAHA_117_005973
crossref_primary_10_1016_j_smrv_2014_07_003
crossref_primary_10_1155_2022_4463108
crossref_primary_10_1007_s11655_020_3255_8
crossref_primary_10_1016_j_ecl_2013_09_002
crossref_primary_10_1146_annurev_pathol_012513_104720
crossref_primary_10_1111_resp_12984
crossref_primary_10_1016_j_bbrc_2014_04_062
crossref_primary_10_1016_j_metabol_2017_11_008
crossref_primary_10_1152_ajpcell_00240_2015
crossref_primary_10_1007_s12170_016_0488_3
crossref_primary_10_1016_S1875_5364_15_30074_1
crossref_primary_10_1007_s11325_019_01892_6
crossref_primary_10_1016_j_cca_2021_06_024
crossref_primary_10_1016_j_nut_2018_06_008
crossref_primary_10_1016_j_sleep_2019_09_007
crossref_primary_10_1113_JP271321
crossref_primary_10_1152_japplphysiol_00307_2016
crossref_primary_10_3389_fphys_2022_873522
crossref_primary_10_3389_fgene_2020_00290
crossref_primary_10_1128_MCB_01441_13
crossref_primary_10_3390_jcm11030596
crossref_primary_10_1007_s11325_021_02290_7
crossref_primary_10_1016_j_sleep_2022_04_006
crossref_primary_10_5665_sleep_4166
crossref_primary_10_1016_j_expneurol_2015_05_020
crossref_primary_10_1007_s10557_020_06991_1
crossref_primary_10_1038_s41598_017_11782_0
crossref_primary_10_1007_s11325_019_01980_7
crossref_primary_10_1161_JAHA_114_000788
crossref_primary_10_1016_j_carpath_2017_06_008
crossref_primary_10_1111_resp_13610
crossref_primary_10_1007_s12026_015_8703_8
crossref_primary_10_1016_j_pharmthera_2016_07_010
crossref_primary_10_1007_s11818_013_0645_6
crossref_primary_10_1161_ATVBAHA_120_315644
crossref_primary_10_1093_sleep_zsx103
crossref_primary_10_1093_sleep_zsx106
crossref_primary_10_3389_fendo_2017_00080
crossref_primary_10_1111_sbr_12078
crossref_primary_10_1080_07853890_2024_2337740
crossref_primary_10_1016_j_jcct_2017_11_007
crossref_primary_10_1007_s40675_018_0130_7
crossref_primary_10_1194_jlr_M083436
crossref_primary_10_1007_s11325_020_02051_y
crossref_primary_10_1016_j_cca_2019_12_029
crossref_primary_10_1002_oby_23679
crossref_primary_10_3390_cells11233735
crossref_primary_10_1007_s11325_018_1753_0
crossref_primary_10_1016_j_cca_2024_117775
crossref_primary_10_1016_j_jacc_2013_05_045
crossref_primary_10_1016_j_resp_2014_08_018
crossref_primary_10_5665_sleep_4976
crossref_primary_10_1038_s41598_019_53728_8
crossref_primary_10_1007_s12079_023_00754_x
crossref_primary_10_1136_thoraxjnl_2017_211152
crossref_primary_10_3390_ijms20194756
crossref_primary_10_1152_ajpheart_00094_2015
crossref_primary_10_1016_j_bbadis_2013_06_003
crossref_primary_10_1016_j_sleep_2016_01_005
crossref_primary_10_1016_j_atherosclerosis_2018_03_034
crossref_primary_10_1097_SHK_0000000000001734
crossref_primary_10_1007_s11154_014_9304_x
crossref_primary_10_1016_j_atherosclerosis_2018_01_027
crossref_primary_10_1165_rcmb_2015_0218TR
crossref_primary_10_1186_s12890_024_02921_1
crossref_primary_10_1136_thoraxjnl_2015_206871
crossref_primary_10_1186_s13098_015_0018_3
crossref_primary_10_3389_fphys_2019_00068
crossref_primary_10_1155_2016_8215082
crossref_primary_10_1183_09031936_00043614
crossref_primary_10_12659_MSM_892230
crossref_primary_10_1038_nrendo_2016_22
crossref_primary_10_1038_srep14507
crossref_primary_10_1161_CIRCULATIONAHA_113_006840
crossref_primary_10_12677_ACM_2022_1281052
crossref_primary_10_3390_ijms232112957
crossref_primary_10_1016_j_sleep_2020_01_014
crossref_primary_10_1016_j_metabol_2020_154192
crossref_primary_10_1007_s40675_018_0118_3
crossref_primary_10_3389_fphar_2021_723922
crossref_primary_10_3390_biomedicines10112754
crossref_primary_10_1093_sleep_zsw074
crossref_primary_10_1007_s11325_023_02866_5
crossref_primary_10_1164_rccm_201701_0199ED
crossref_primary_10_1161_JAHA_122_025955
crossref_primary_10_1007_s00408_019_00229_0
crossref_primary_10_3390_ijms23010364
crossref_primary_10_3892_mmr_2017_7365
crossref_primary_10_1016_j_redox_2023_103005
crossref_primary_10_3389_fphys_2021_730935
crossref_primary_10_1515_labmed_2022_0042
crossref_primary_10_5665_sleep_5052
crossref_primary_10_1007_s00421_019_04256_w
crossref_primary_10_1017_jns_2016_38
crossref_primary_10_3390_ijms25137484
crossref_primary_10_1183_13993003_00866_2021
crossref_primary_10_1164_rccm_201403_0497UP
crossref_primary_10_1113_JP273312
crossref_primary_10_1007_s40675_017_0062_7
crossref_primary_10_1016_j_bcp_2021_114502
crossref_primary_10_1016_j_rmclc_2021_07_005
crossref_primary_10_1007_s11325_021_02556_0
crossref_primary_10_1007_s10554_022_02743_4
crossref_primary_10_1093_sleep_zsy236
crossref_primary_10_1111_resp_13372
crossref_primary_10_14814_phy2_14590
crossref_primary_10_1007_s11325_020_02166_2
crossref_primary_10_1183_16000617_0006_2019
Cites_doi 10.1164/rccm.201102-0316OC
10.1073/pnas.0705041104
10.1016/j.atherosclerosis.2011.08.012
10.1016/S0140-6736(05)71141-7
10.1371/journal.pone.0046562
10.1016/j.bbrc.2008.12.018
10.1073/pnas.0504520102
10.1002/jcp.21537
10.1038/ijo.2008.229
10.1152/ajpgi.00554.2006
10.1016/j.resp.2008.07.006
10.1056/NEJM199304293281704
10.1186/1471-2350-12-89
10.1016/j.bbalip.2011.10.010
10.1253/circj.71.1293
10.1164/rccm.201012-2039OC
10.1128/MCB.00192-09
10.1378/chest.10-2223
10.1161/CIRCRESAHA.110.217380
10.1016/j.atherosclerosis.2009.10.017
10.1001/jama.2008.621
10.1378/chest.128.5.3407
10.1016/j.bbrc.2008.01.036
10.2337/db08-1098
10.1113/expphysiol.2006.033498
10.1038/ng1984
10.1161/CIRCRESAHA.111.246363
10.2337/db11-0219
10.1152/japplphysiol.00492.2011
10.1126/science.1059796
10.1101/gad.12.2.149
10.1093/sleep/31.6.824
10.1001/jama.298.3.299
10.1093/eurheartj/ehr097
10.1182/blood-2004-07-2958
10.1164/rccm.200503-340OC
10.1371/journal.pmed.1000132
10.1152/ajpendo.90920.2008
10.1164/rccm.201012-2033OC
10.1161/CIRCRESAHA.108.178533
10.1038/onc.2011.365
10.1093/sleep/31.5.593
10.1016/j.ajpath.2012.07.024
10.1164/rccm.200703-500OC
10.1164/rccm.200612-1771OC
10.1006/jmcc.2002.2021
10.1113/jphysiol.2006.114033
10.1073/pnas.0604026103
10.1016/j.atherosclerosis.2011.07.122
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright American Thoracic Society Jul 15, 2013
Copyright © 2013 by the American Thoracic Society 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright American Thoracic Society Jul 15, 2013
– notice: Copyright © 2013 by the American Thoracic Society 2013
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
D93
DOI 10.1164/rccm.201209-1688oc
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
British Nursing Database
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
British Nursing Index with Full Text
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Public Health
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 248
ExternalDocumentID oai_DiVA_org_umu_79423
3090419591
10_1164_rccm_201209_1688OC
23328524
27569372
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL084945
– fundername: NHLBI NIH HHS
  grantid: HL080105
– fundername: NHLBI NIH HHS
  grantid: K08 HL109475
– fundername: NHLBI NIH HHS
  grantid: HL109475
– fundername: NCRR NIH HHS
  grantid: M01-RR02719
– fundername: NHLBI NIH HHS
  grantid: R01 HL080105
– fundername: NIDDK NIH HHS
  grantid: P30 DK079637
– fundername: NHLBI NIH HHS
  grantid: P50 HL084945
– fundername: NCRR NIH HHS
  grantid: M01 RR002719
– fundername: NIDDK NIH HHS
  grantid: P30 DK072488
GroupedDBID ---
-~X
.55
.GJ
08R
0R~
1CY
1KJ
23M
2WC
34G
39C
3O-
3V.
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAEJM
AAQQT
AAWTL
ABFLS
ABOCM
ABPMR
ABUWG
ACBNA
ACGFO
ACGFS
ACRZS
ADBBV
ADGIM
AENEX
AFCHL
AFFNX
AFKRA
AFUWQ
AHMBA
AI.
AJJEV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BBAFP
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HZ~
IH2
IQODW
J5H
KQ8
L7B
M1P
M5~
N4W
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OHT
OK1
OVD
OVIDX
P2P
PCD
PQEST
PQQKQ
PQUKI
PROAC
PSQYO
Q2X
RPM
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
VH1
W8F
WH7
WOQ
WOW
X7M
YCJ
YJK
ZA5
ZE2
ZGI
ZXP
~02
ABJNI
ALIPV
CCPQU
CGR
CUY
CVF
ECM
EIF
HMCUK
NPM
AAYXX
CITATION
7XB
8FK
K9.
PRINS
7X8
5PM
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c612t-a78347e12b17a63e6e0362720cf4375b8d18964bdcb90b55579a63229ba12fb73
IEDL.DBID BENPR
ISSN 1073-449X
1535-4970
IngestDate Sat Aug 24 00:49:26 EDT 2024
Tue Sep 17 20:57:09 EDT 2024
Sat Aug 17 03:33:45 EDT 2024
Thu Oct 10 19:40:28 EDT 2024
Fri Aug 23 00:17:14 EDT 2024
Sat Sep 28 08:26:45 EDT 2024
Thu Nov 24 18:25:55 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Intensive care
Adipose tissue
Cardiovascular disease
Esterases
Activation
Lipoprotein lipase
Clearance
Lipoprotein
Vascular disease
Intermittent
Atherosclerosis
sleep apnea
Resuscitation
lipoprotein clearance
Nervous system diseases
Oxygen
Sleep apnea syndrome
Enzyme
Respiratory disease
Carboxylic ester hydrolases
Chronic
hypoxia-inducible factor-1
Hydrolases
Hypoxia
Transcription factor HIF1
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-a78347e12b17a63e6e0362720cf4375b8d18964bdcb90b55579a63229ba12fb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://europepmc.org/articles/pmc3778753?pdf=render
PMID 23328524
PQID 1439532755
PQPubID 40575
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_umu_79423
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3778753
proquest_miscellaneous_1400621557
proquest_journals_1439532755
crossref_primary_10_1164_rccm_201209_1688OC
pubmed_primary_23328524
pascalfrancis_primary_27569372
PublicationCentury 2000
PublicationDate 2013-07-15
PublicationDateYYYYMMDD 2013-07-15
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2013
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib36
bib37
bib34
bib35
bib32
bib33
bib30
bib31
Drager LF (bib24) 2012; 185
bib29
bib27
bib28
bib40
bib47
bib48
bib45
bib46
bib43
bib44
bib41
bib42
bib9
bib7
bib8
bib6
bib38
bib4
bib39
bib1
bib2
bib50
Young T (bib5) 2008; 31
bib14
bib15
bib12
bib13
bib10
bib11
bib49
bib25
bib26
bib23
bib21
bib22
bib20
bib18
bib19
bib16
bib17
Marshall NS (bib3) 2008; 31
References_xml – ident: bib16
  doi: 10.1164/rccm.201102-0316OC
– ident: bib25
  doi: 10.1073/pnas.0705041104
– ident: bib17
  doi: 10.1016/j.atherosclerosis.2011.08.012
– ident: bib2
  doi: 10.1016/S0140-6736(05)71141-7
– ident: bib48
  doi: 10.1371/journal.pone.0046562
– ident: bib42
  doi: 10.1016/j.bbrc.2008.12.018
– ident: bib30
  doi: 10.1073/pnas.0504520102
– volume: 185
  start-page: A1050
  year: 2012
  ident: bib24
  publication-title: Am J Respir Crit Care Med
  contributor:
    fullname: Drager LF
– ident: bib34
  doi: 10.1002/jcp.21537
– ident: bib47
  doi: 10.1038/ijo.2008.229
– ident: bib37
  doi: 10.1152/ajpgi.00554.2006
– ident: bib33
  doi: 10.1016/j.resp.2008.07.006
– ident: bib1
  doi: 10.1056/NEJM199304293281704
– ident: bib44
  doi: 10.1186/1471-2350-12-89
– ident: bib39
  doi: 10.1016/j.bbalip.2011.10.010
– ident: bib45
  doi: 10.1253/circj.71.1293
– ident: bib14
  doi: 10.1164/rccm.201012-2039OC
– ident: bib27
  doi: 10.1128/MCB.00192-09
– ident: bib6
  doi: 10.1378/chest.10-2223
– ident: bib38
  doi: 10.1161/CIRCRESAHA.110.217380
– ident: bib12
  doi: 10.1016/j.atherosclerosis.2009.10.017
– ident: bib18
  doi: 10.1001/jama.2008.621
– ident: bib8
  doi: 10.1378/chest.128.5.3407
– ident: bib31
  doi: 10.1016/j.bbrc.2008.01.036
– ident: bib46
  doi: 10.2337/db08-1098
– ident: bib32
  doi: 10.1113/expphysiol.2006.033498
– ident: bib43
  doi: 10.1038/ng1984
– ident: bib41
  doi: 10.1161/CIRCRESAHA.111.246363
– ident: bib49
  doi: 10.2337/db11-0219
– ident: bib35
  doi: 10.1152/japplphysiol.00492.2011
– ident: bib29
  doi: 10.1126/science.1059796
– ident: bib26
  doi: 10.1101/gad.12.2.149
– volume: 31
  start-page: 1079
  year: 2008
  ident: bib3
  publication-title: Sleep
  doi: 10.1093/sleep/31.6.824
  contributor:
    fullname: Marshall NS
– ident: bib19
  doi: 10.1001/jama.298.3.299
– ident: bib20
  doi: 10.1093/eurheartj/ehr097
– ident: bib21
  doi: 10.1182/blood-2004-07-2958
– ident: bib7
  doi: 10.1164/rccm.200503-340OC
– ident: bib4
  doi: 10.1371/journal.pmed.1000132
– ident: bib28
  doi: 10.1152/ajpendo.90920.2008
– ident: bib13
  doi: 10.1164/rccm.201012-2033OC
– ident: bib10
  doi: 10.1161/CIRCRESAHA.108.178533
– ident: bib23
  doi: 10.1038/onc.2011.365
– volume: 31
  start-page: 1071
  year: 2008
  ident: bib5
  publication-title: Sleep
  doi: 10.1093/sleep/31.5.593
  contributor:
    fullname: Young T
– ident: bib15
  doi: 10.1016/j.ajpath.2012.07.024
– ident: bib50
  doi: 10.1164/rccm.200703-500OC
– ident: bib9
  doi: 10.1164/rccm.200612-1771OC
– ident: bib22
  doi: 10.1006/jmcc.2002.2021
– ident: bib36
  doi: 10.1113/jphysiol.2006.114033
– ident: bib40
  doi: 10.1073/pnas.0604026103
– ident: bib11
  doi: 10.1016/j.atherosclerosis.2011.07.122
SSID ssj0012810
Score 2.5165005
Snippet Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent...
RATIONALEObstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH)....
Rationale : Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH)....
Rationale: Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH)....
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
pascalfrancis
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 240
SubjectTerms Adipocytes - metabolism
adipose tissue
Adult
Aged
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Angiopoietin-like 4 Protein
Angiopoietins - metabolism
Animals
Antibodies
Apolipoproteins E - deficiency
Atherosclerosis
Atherosclerosis (general aspects, experimental research)
Atherosclerosis - metabolism
Atherosclerosis - physiopathology
Biological and medical sciences
Blood and lymphatic vessels
Body fat
Cardiology. Vascular system
Cholesterol
Enzymes
Female
Gastrointestinal surgery
Humans
Hypotheses
Hypoxia
Hypoxia - metabolism
Hypoxia - physiopathology
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
hypoxia-inducible factor-1
Intensive care medicine
lipoprotein clearance
lipoprotein lipase
Lipoprotein Lipase - antagonists & inhibitors
Lipoproteins
Medical sciences
Metabolic disorders
Mice
Mice, Inbred SENCAR
Middle Aged
Obesity - metabolism
Obesity - physiopathology
Plasma
Pneumology
Respiratory system : syndromes and miscellaneous diseases
Sleep apnea
Sleep Apnea, Obstructive - metabolism
Sleep Apnea, Obstructive - physiopathology
Statistical significance
Subcutaneous Fat - metabolism
Subcutaneous Fat - physiopathology
Triglycerides
Up-Regulation - physiology
Title Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4
URI https://www.ncbi.nlm.nih.gov/pubmed/23328524
https://www.proquest.com/docview/1439532755
https://search.proquest.com/docview/1400621557
https://pubmed.ncbi.nlm.nih.gov/PMC3778753
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79423
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_sFUQQ8Vmj9VhBP0no7SubfJJ4bTmVVhEr9y0km00N2my85ET_e2fzuBIUvyyEfRB2Zmd-s7MzA_DC5DnXCy18xqVzM6YCj5TSfhRprjlNEZM4j-7ZebC6EO_Wcj1cuDXDs8pRJnaCOrfa3ZEfoV6PJGdKytf1D99VjXLe1aGExh7sM7QUFjPYf3Ny_vHTzo_AwiEfgeK-ENF6DJsJxNFGaxeJ7mJHfRqEodUT1XS7ThvcpaIvb_Ev_Pn3M8pJstFOQZ3ehTsDsiRxzwr34Iap7sPNs8F3_gCyIQ8u6S4Br8oW0XJLVr9r-6tMiSvhgSKDxA4Q2gZXwLZsyE_si_VYA43YgsR5WdvGkLi6LG1tSxcz7X8vvxkiHsLF6cnn5cofKiz4GpFN66euzIYylGVUpQE3gXEKTbGFLgRXMgtzGkaByHKdRYtMSqkiHMZYlKWUFZnij2BW2co8BrJIczQ2qNS4ishoEQU6L1KZB5oVeWSkB6_GzU3qPpFG0hkggUgcKZKeFIkjxYelB_PJ_u-muGz1iKiYB4cjQZLh1DXJNY948HzXjefFOUHSytitG-PCRhFFKQ8OevpdL845CyUTHqgJZXcDXC7uaU9Vfu1ycnOlnOXnwcueByZTjssvcWI3l8n2apugAGT8yf9__yncYl3ZDeVTeQizdrM1zxD8tNkc9tRaYRsu6Xzgdvw6fvv-DxNiCF4
link.rule.ids 230,315,783,787,888,12068,12235,21400,27936,27937,31731,31732,33278,33279,33756,33757,43322,43591,43817,74079,74348,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSICEEK_SQClGghOKuvEjjk8oKlQLdMulRXuz4kdKRBuHTRbBv8eTZLeKQFxy8UORZzzz2eOZD6HXzlpqZobFhHIIMxYsbClhYikNNTQpAiaBiO7iNJ2fs09Lvhwv3NrxWeXGJvaG2noDd-SHwa9LTong_F3zIwbWKIiujhQaN9EtqMMFDAZiuT1wQZBoqEYgaMyYXG6SZlJ2uDIG8tAhczRO0izzZuKY7jVFG9aoHMgt_oU-_35EOSk12run4wfo_ogrcT4owkN0w9WP0O3FGDl_jPRYBRf3V4BXVRewcofnvxv_qyowEHgEg4FzgIO-DTOEb9Xin6EtNxsGNOxLnNuq8a3DeX1R-cZXkDEdX1bfHWZP0Pnxh7OjeTzyK8Qm4JouLoBkQ7iE6EQUKXWpA3cmyMyUjAquM5tkMmXaGi1nmnMuZOhGiNRFQkot6C7aqX3t9hCeFTYcNRJuwixMJ6VMjS0LblNDSisdj9DbzeKqZiijofrjR8oUiEINolAgii9HETqYrP92CNSqD3iKRGh_IxA17rlWXWtIhF5tm8NugRBIUTu_hj6QNBowlIjQ00F-15MHDco4YRESE8luO0Al7mlLXX3rK3JTIeDcF6E3gw5MhryvvubKry7U-mqtgvkj9Nn_f_8lujM_W5yok4-nn5-ju6Qn4BBxwvfRTrdauxcBBnX6oNf1P64MBzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagSBUSQpwlUIqR4AlFu_ERx08oalktRwsPFO2bFR8pETQOmyyCf48nyW4VgXjJiw9FnvHMN54LoRfOWmrmhsWEcnAzFixcKWFiKQ01NCkCJgGP7ulZujxn71Z8NcY_tWNY5VYm9oLaegNv5LOg1yWnRHA-K8ewiE8ni9fNjxg6SIGndWyncR3dEMFKAQ4Xq53xBQ6joTKBoDFjcrVNoEnZbG0M5KRDFmmcpFnmzURJ3WqKNpxXOTS6-BcS_TugclJ2tFdVizvo9ogxcT4wxV10zdX30P7p6EW_j_RYERf3z4GXVRdwc4eXvxv_qyowNPMIwgPnAA19G3YI36rFP8NYbrbd0LAvcW6rxrcO5_VF5RtfQfZ0_L365jB7gM4Xbz4fL-Ox10JsAsbp4gIabgiXEJ2IIqUudaDaBJmbklHBdWaTTKZMW6PlXHPOhQzTCJG6SEipBX2I9mpfu0cIzwsbzI6Em7AL00kpU2PLgtvUkNJKxyP0anu4qhlKaqjeFEmZAlKogRQKSPHxOEJHk_PfLYG69QFbkQgdbgmixvvXqituidDz3XC4OeAOKWrnNzAHEkgDnhIROhjod7U5pSTjhEVITCi7mwBVuacjdfW1r85NhQAbMEIvBx6YLDmpvuTKry_U5nKjgigk9PH_f_8Z2g9srj68PXv_BN0kfS8OESf8EO116417GhBRp496Vv8DCxoLeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+intermittent+hypoxia+induces+atherosclerosis+via+activation+of+adipose+angiopoietin-like+4&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Drager%2C+Luciano+F&rft.au=Yao%2C+Qiaoling&rft.au=Hernandez%2C+Karen+L&rft.au=Shin%2C+Mi-Kyung&rft.date=2013-07-15&rft.eissn=1535-4970&rft.volume=188&rft.issue=2&rft.spage=240&rft_id=info:doi/10.1164%2Frccm.201209-1688oc&rft_id=info%3Apmid%2F23328524&rft.externalDocID=23328524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon