Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4
Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 188; no. 2; pp. 240 - 248 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
American Thoracic Society
15.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown.
To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1).
ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle.
In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue.
HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea. |
---|---|
AbstractList | Rationale: Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. Objectives: To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). Methods: ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. Measurements and Main Results: In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1 alpha knockout allele. Transgenic overexpression of HIF-1 alpha in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1 alpha increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. Conclusions: HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase in activation may contribute to atherosclerosis in patients with sleep apnea. Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea. Rationale : Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. Objectives : To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). Methods : ApoE −/− mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. Measurements and Main Results : In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. Conclusions : HIF-1–mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea. Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea. RATIONALEObstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. OBJECTIVESTo examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). METHODSApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. MEASUREMENTS AND MAIN RESULTSIn vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. CONCLUSIONSHIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea. |
Author | MYERS, Allen C QIAOLING YAO POWELL, David R BEVANS-FONTI, Shannon DRAGER, Luciano F OLIVECRONA, Gunilla SEMENZA, Gregg L JUN, Jonathan C POLOTSKY, Vsevolod Y SUSSAN, Thomas E SHIN, Mi-Kyung SCHERER, Philipp E HALBERG, Nils HERNANDEZ, Karen L SCHWARTZ, Alan R GAY, Jason |
Author_xml | – sequence: 1 givenname: Luciano F surname: DRAGER fullname: DRAGER, Luciano F organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 2 surname: QIAOLING YAO fullname: QIAOLING YAO organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 3 givenname: Alan R surname: SCHWARTZ fullname: SCHWARTZ, Alan R organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 4 givenname: Nils surname: HALBERG fullname: HALBERG, Nils organization: Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States – sequence: 5 givenname: Philipp E surname: SCHERER fullname: SCHERER, Philipp E organization: Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States – sequence: 6 givenname: Gregg L surname: SEMENZA fullname: SEMENZA, Gregg L organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 7 givenname: David R surname: POWELL fullname: POWELL, David R organization: Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States – sequence: 8 givenname: Vsevolod Y surname: POLOTSKY fullname: POLOTSKY, Vsevolod Y organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 9 givenname: Karen L surname: HERNANDEZ fullname: HERNANDEZ, Karen L organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 10 givenname: Mi-Kyung surname: SHIN fullname: SHIN, Mi-Kyung organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 11 givenname: Shannon surname: BEVANS-FONTI fullname: BEVANS-FONTI, Shannon organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 12 givenname: Jason surname: GAY fullname: GAY, Jason organization: Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States – sequence: 13 givenname: Thomas E surname: SUSSAN fullname: SUSSAN, Thomas E organization: Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States – sequence: 14 givenname: Jonathan C surname: JUN fullname: JUN, Jonathan C organization: Division of Pulmonary and Critical Care Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 15 givenname: Allen C surname: MYERS fullname: MYERS, Allen C organization: Allergy and Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States – sequence: 16 givenname: Gunilla surname: OLIVECRONA fullname: OLIVECRONA, Gunilla organization: Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27569372$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23328524$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79423$$DView record from Swedish Publication Index |
BookMark | eNpdkUtv1DAUhS1URNuBP8ACRUKVWJDiZxxvkKLh0UqVugHEznIcZ8YlsYPtTOm_x9EMpe3Gtny_e3TvOafgyHlnAHiN4DlCFf0QtB7PMUQYihJVde31M3CCGGElFRwe5TfkpKRU_DwGpzHewIzWCL4Ax5gQXDNMT0C73gbvrC4uXTJhtCkZl4qLu8n_sSp_drM2sWjS1gQf9bCcNha7XGt0sjuVrHeF74ums5OPpmjcxvrJW5OsKwf7yxT0JXjeqyGaV4d7Bb5_-fxtfVFeXX-9XDdXpa4QTqXiNaHcINwiripiKgNJhTmGuqeEs7buUC0q2na6FbBljHGRMYxFqxDuW05W4P1eN96aaW7lFOyowp30yspP9kcjfdjIeZwlFzQbsAIf93hmR9PpvHdQw6OuxxVnt3Ljd5JwXnO2CLw7CAT_ezYxydFGbYZBOePnKBGFsMIoD5rRt0_QGz8Hl93IFBGMYM5YpvCe0tnlGEx_PwyCcklcLonLfeJySfx6nZvePFzjvuVfxBk4OwAqajX0QTlt43-Os0oQjslf7dG3-g |
CitedBy_id | crossref_primary_10_3390_metabo10090358 crossref_primary_10_1016_j_resp_2017_06_004 crossref_primary_10_1016_j_amjoto_2018_03_026 crossref_primary_10_1194_jlr_M034272 crossref_primary_10_3390_ijms21145117 crossref_primary_10_3389_fneur_2018_00272 crossref_primary_10_3390_ijms24076807 crossref_primary_10_2337_db17_0186 crossref_primary_10_1152_ajpregu_00056_2019 crossref_primary_10_1016_j_pharmthera_2017_12_006 crossref_primary_10_1113_JP285430 crossref_primary_10_3389_fcvm_2021_647071 crossref_primary_10_1007_s00109_016_1480_6 crossref_primary_10_1161_JAHA_117_005973 crossref_primary_10_1016_j_smrv_2014_07_003 crossref_primary_10_1155_2022_4463108 crossref_primary_10_1007_s11655_020_3255_8 crossref_primary_10_1016_j_ecl_2013_09_002 crossref_primary_10_1146_annurev_pathol_012513_104720 crossref_primary_10_1111_resp_12984 crossref_primary_10_1016_j_bbrc_2014_04_062 crossref_primary_10_1016_j_metabol_2017_11_008 crossref_primary_10_1152_ajpcell_00240_2015 crossref_primary_10_1007_s12170_016_0488_3 crossref_primary_10_1016_S1875_5364_15_30074_1 crossref_primary_10_1007_s11325_019_01892_6 crossref_primary_10_1016_j_cca_2021_06_024 crossref_primary_10_1016_j_nut_2018_06_008 crossref_primary_10_1016_j_sleep_2019_09_007 crossref_primary_10_1113_JP271321 crossref_primary_10_1152_japplphysiol_00307_2016 crossref_primary_10_3389_fphys_2022_873522 crossref_primary_10_3389_fgene_2020_00290 crossref_primary_10_1128_MCB_01441_13 crossref_primary_10_3390_jcm11030596 crossref_primary_10_1007_s11325_021_02290_7 crossref_primary_10_1016_j_sleep_2022_04_006 crossref_primary_10_5665_sleep_4166 crossref_primary_10_1016_j_expneurol_2015_05_020 crossref_primary_10_1007_s10557_020_06991_1 crossref_primary_10_1038_s41598_017_11782_0 crossref_primary_10_1007_s11325_019_01980_7 crossref_primary_10_1161_JAHA_114_000788 crossref_primary_10_1016_j_carpath_2017_06_008 crossref_primary_10_1111_resp_13610 crossref_primary_10_1007_s12026_015_8703_8 crossref_primary_10_1016_j_pharmthera_2016_07_010 crossref_primary_10_1007_s11818_013_0645_6 crossref_primary_10_1161_ATVBAHA_120_315644 crossref_primary_10_1093_sleep_zsx103 crossref_primary_10_1093_sleep_zsx106 crossref_primary_10_3389_fendo_2017_00080 crossref_primary_10_1111_sbr_12078 crossref_primary_10_1080_07853890_2024_2337740 crossref_primary_10_1016_j_jcct_2017_11_007 crossref_primary_10_1007_s40675_018_0130_7 crossref_primary_10_1194_jlr_M083436 crossref_primary_10_1007_s11325_020_02051_y crossref_primary_10_1016_j_cca_2019_12_029 crossref_primary_10_1002_oby_23679 crossref_primary_10_3390_cells11233735 crossref_primary_10_1007_s11325_018_1753_0 crossref_primary_10_1016_j_cca_2024_117775 crossref_primary_10_1016_j_jacc_2013_05_045 crossref_primary_10_1016_j_resp_2014_08_018 crossref_primary_10_5665_sleep_4976 crossref_primary_10_1038_s41598_019_53728_8 crossref_primary_10_1007_s12079_023_00754_x crossref_primary_10_1136_thoraxjnl_2017_211152 crossref_primary_10_3390_ijms20194756 crossref_primary_10_1152_ajpheart_00094_2015 crossref_primary_10_1016_j_bbadis_2013_06_003 crossref_primary_10_1016_j_sleep_2016_01_005 crossref_primary_10_1016_j_atherosclerosis_2018_03_034 crossref_primary_10_1097_SHK_0000000000001734 crossref_primary_10_1007_s11154_014_9304_x crossref_primary_10_1016_j_atherosclerosis_2018_01_027 crossref_primary_10_1165_rcmb_2015_0218TR crossref_primary_10_1186_s12890_024_02921_1 crossref_primary_10_1136_thoraxjnl_2015_206871 crossref_primary_10_1186_s13098_015_0018_3 crossref_primary_10_3389_fphys_2019_00068 crossref_primary_10_1155_2016_8215082 crossref_primary_10_1183_09031936_00043614 crossref_primary_10_12659_MSM_892230 crossref_primary_10_1038_nrendo_2016_22 crossref_primary_10_1038_srep14507 crossref_primary_10_1161_CIRCULATIONAHA_113_006840 crossref_primary_10_12677_ACM_2022_1281052 crossref_primary_10_3390_ijms232112957 crossref_primary_10_1016_j_sleep_2020_01_014 crossref_primary_10_1016_j_metabol_2020_154192 crossref_primary_10_1007_s40675_018_0118_3 crossref_primary_10_3389_fphar_2021_723922 crossref_primary_10_3390_biomedicines10112754 crossref_primary_10_1093_sleep_zsw074 crossref_primary_10_1007_s11325_023_02866_5 crossref_primary_10_1164_rccm_201701_0199ED crossref_primary_10_1161_JAHA_122_025955 crossref_primary_10_1007_s00408_019_00229_0 crossref_primary_10_3390_ijms23010364 crossref_primary_10_3892_mmr_2017_7365 crossref_primary_10_1016_j_redox_2023_103005 crossref_primary_10_3389_fphys_2021_730935 crossref_primary_10_1515_labmed_2022_0042 crossref_primary_10_5665_sleep_5052 crossref_primary_10_1007_s00421_019_04256_w crossref_primary_10_1017_jns_2016_38 crossref_primary_10_3390_ijms25137484 crossref_primary_10_1183_13993003_00866_2021 crossref_primary_10_1164_rccm_201403_0497UP crossref_primary_10_1113_JP273312 crossref_primary_10_1007_s40675_017_0062_7 crossref_primary_10_1016_j_bcp_2021_114502 crossref_primary_10_1016_j_rmclc_2021_07_005 crossref_primary_10_1007_s11325_021_02556_0 crossref_primary_10_1007_s10554_022_02743_4 crossref_primary_10_1093_sleep_zsy236 crossref_primary_10_1111_resp_13372 crossref_primary_10_14814_phy2_14590 crossref_primary_10_1007_s11325_020_02166_2 crossref_primary_10_1183_16000617_0006_2019 |
Cites_doi | 10.1164/rccm.201102-0316OC 10.1073/pnas.0705041104 10.1016/j.atherosclerosis.2011.08.012 10.1016/S0140-6736(05)71141-7 10.1371/journal.pone.0046562 10.1016/j.bbrc.2008.12.018 10.1073/pnas.0504520102 10.1002/jcp.21537 10.1038/ijo.2008.229 10.1152/ajpgi.00554.2006 10.1016/j.resp.2008.07.006 10.1056/NEJM199304293281704 10.1186/1471-2350-12-89 10.1016/j.bbalip.2011.10.010 10.1253/circj.71.1293 10.1164/rccm.201012-2039OC 10.1128/MCB.00192-09 10.1378/chest.10-2223 10.1161/CIRCRESAHA.110.217380 10.1016/j.atherosclerosis.2009.10.017 10.1001/jama.2008.621 10.1378/chest.128.5.3407 10.1016/j.bbrc.2008.01.036 10.2337/db08-1098 10.1113/expphysiol.2006.033498 10.1038/ng1984 10.1161/CIRCRESAHA.111.246363 10.2337/db11-0219 10.1152/japplphysiol.00492.2011 10.1126/science.1059796 10.1101/gad.12.2.149 10.1093/sleep/31.6.824 10.1001/jama.298.3.299 10.1093/eurheartj/ehr097 10.1182/blood-2004-07-2958 10.1164/rccm.200503-340OC 10.1371/journal.pmed.1000132 10.1152/ajpendo.90920.2008 10.1164/rccm.201012-2033OC 10.1161/CIRCRESAHA.108.178533 10.1038/onc.2011.365 10.1093/sleep/31.5.593 10.1016/j.ajpath.2012.07.024 10.1164/rccm.200703-500OC 10.1164/rccm.200612-1771OC 10.1006/jmcc.2002.2021 10.1113/jphysiol.2006.114033 10.1073/pnas.0604026103 10.1016/j.atherosclerosis.2011.07.122 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright American Thoracic Society Jul 15, 2013 Copyright © 2013 by the American Thoracic Society 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright American Thoracic Society Jul 15, 2013 – notice: Copyright © 2013 by the American Thoracic Society 2013 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS D93 |
DOI | 10.1164/rccm.201209-1688oc |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central British Nursing Database ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Umeå universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) British Nursing Index with Full Text ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Pharma Collection ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Public Health MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 248 |
ExternalDocumentID | oai_DiVA_org_umu_79423 3090419591 10_1164_rccm_201209_1688OC 23328524 27569372 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL084945 – fundername: NHLBI NIH HHS grantid: HL080105 – fundername: NHLBI NIH HHS grantid: K08 HL109475 – fundername: NHLBI NIH HHS grantid: HL109475 – fundername: NCRR NIH HHS grantid: M01-RR02719 – fundername: NHLBI NIH HHS grantid: R01 HL080105 – fundername: NIDDK NIH HHS grantid: P30 DK079637 – fundername: NHLBI NIH HHS grantid: P50 HL084945 – fundername: NCRR NIH HHS grantid: M01 RR002719 – fundername: NIDDK NIH HHS grantid: P30 DK072488 |
GroupedDBID | --- -~X .55 .GJ 08R 0R~ 1CY 1KJ 23M 2WC 34G 39C 3O- 3V. 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAEJM AAQQT AAWTL ABFLS ABOCM ABPMR ABUWG ACBNA ACGFO ACGFS ACRZS ADBBV ADGIM AENEX AFCHL AFFNX AFKRA AFUWQ AHMBA AI. AJJEV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BBAFP BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HZ~ IH2 IQODW J5H KQ8 L7B M1P M5~ N4W NAPCQ O9- OBH OFXIZ OGEVE OHT OK1 OVD OVIDX P2P PCD PQEST PQQKQ PQUKI PROAC PSQYO Q2X RPM RWL SJN TAE TEORI THO TR2 UKHRP VH1 W8F WH7 WOQ WOW X7M YCJ YJK ZA5 ZE2 ZGI ZXP ~02 ABJNI ALIPV CCPQU CGR CUY CVF ECM EIF HMCUK NPM AAYXX CITATION 7XB 8FK K9. PRINS 7X8 5PM ADTPV AOWAS D93 |
ID | FETCH-LOGICAL-c612t-a78347e12b17a63e6e0362720cf4375b8d18964bdcb90b55579a63229ba12fb73 |
IEDL.DBID | BENPR |
ISSN | 1073-449X 1535-4970 |
IngestDate | Sat Aug 24 00:49:26 EDT 2024 Tue Sep 17 20:57:09 EDT 2024 Sat Aug 17 03:33:45 EDT 2024 Thu Oct 10 19:40:28 EDT 2024 Fri Aug 23 00:17:14 EDT 2024 Sat Sep 28 08:26:45 EDT 2024 Thu Nov 24 18:25:55 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Intensive care Adipose tissue Cardiovascular disease Esterases Activation Lipoprotein lipase Clearance Lipoprotein Vascular disease Intermittent Atherosclerosis sleep apnea Resuscitation lipoprotein clearance Nervous system diseases Oxygen Sleep apnea syndrome Enzyme Respiratory disease Carboxylic ester hydrolases Chronic hypoxia-inducible factor-1 Hydrolases Hypoxia Transcription factor HIF1 |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-a78347e12b17a63e6e0362720cf4375b8d18964bdcb90b55579a63229ba12fb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://europepmc.org/articles/pmc3778753?pdf=render |
PMID | 23328524 |
PQID | 1439532755 |
PQPubID | 40575 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_umu_79423 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3778753 proquest_miscellaneous_1400621557 proquest_journals_1439532755 crossref_primary_10_1164_rccm_201209_1688OC pubmed_primary_23328524 pascalfrancis_primary_27569372 |
PublicationCentury | 2000 |
PublicationDate | 2013-07-15 |
PublicationDateYYYYMMDD | 2013-07-15 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2013 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib36 bib37 bib34 bib35 bib32 bib33 bib30 bib31 Drager LF (bib24) 2012; 185 bib29 bib27 bib28 bib40 bib47 bib48 bib45 bib46 bib43 bib44 bib41 bib42 bib9 bib7 bib8 bib6 bib38 bib4 bib39 bib1 bib2 bib50 Young T (bib5) 2008; 31 bib14 bib15 bib12 bib13 bib10 bib11 bib49 bib25 bib26 bib23 bib21 bib22 bib20 bib18 bib19 bib16 bib17 Marshall NS (bib3) 2008; 31 |
References_xml | – ident: bib16 doi: 10.1164/rccm.201102-0316OC – ident: bib25 doi: 10.1073/pnas.0705041104 – ident: bib17 doi: 10.1016/j.atherosclerosis.2011.08.012 – ident: bib2 doi: 10.1016/S0140-6736(05)71141-7 – ident: bib48 doi: 10.1371/journal.pone.0046562 – ident: bib42 doi: 10.1016/j.bbrc.2008.12.018 – ident: bib30 doi: 10.1073/pnas.0504520102 – volume: 185 start-page: A1050 year: 2012 ident: bib24 publication-title: Am J Respir Crit Care Med contributor: fullname: Drager LF – ident: bib34 doi: 10.1002/jcp.21537 – ident: bib47 doi: 10.1038/ijo.2008.229 – ident: bib37 doi: 10.1152/ajpgi.00554.2006 – ident: bib33 doi: 10.1016/j.resp.2008.07.006 – ident: bib1 doi: 10.1056/NEJM199304293281704 – ident: bib44 doi: 10.1186/1471-2350-12-89 – ident: bib39 doi: 10.1016/j.bbalip.2011.10.010 – ident: bib45 doi: 10.1253/circj.71.1293 – ident: bib14 doi: 10.1164/rccm.201012-2039OC – ident: bib27 doi: 10.1128/MCB.00192-09 – ident: bib6 doi: 10.1378/chest.10-2223 – ident: bib38 doi: 10.1161/CIRCRESAHA.110.217380 – ident: bib12 doi: 10.1016/j.atherosclerosis.2009.10.017 – ident: bib18 doi: 10.1001/jama.2008.621 – ident: bib8 doi: 10.1378/chest.128.5.3407 – ident: bib31 doi: 10.1016/j.bbrc.2008.01.036 – ident: bib46 doi: 10.2337/db08-1098 – ident: bib32 doi: 10.1113/expphysiol.2006.033498 – ident: bib43 doi: 10.1038/ng1984 – ident: bib41 doi: 10.1161/CIRCRESAHA.111.246363 – ident: bib49 doi: 10.2337/db11-0219 – ident: bib35 doi: 10.1152/japplphysiol.00492.2011 – ident: bib29 doi: 10.1126/science.1059796 – ident: bib26 doi: 10.1101/gad.12.2.149 – volume: 31 start-page: 1079 year: 2008 ident: bib3 publication-title: Sleep doi: 10.1093/sleep/31.6.824 contributor: fullname: Marshall NS – ident: bib19 doi: 10.1001/jama.298.3.299 – ident: bib20 doi: 10.1093/eurheartj/ehr097 – ident: bib21 doi: 10.1182/blood-2004-07-2958 – ident: bib7 doi: 10.1164/rccm.200503-340OC – ident: bib4 doi: 10.1371/journal.pmed.1000132 – ident: bib28 doi: 10.1152/ajpendo.90920.2008 – ident: bib13 doi: 10.1164/rccm.201012-2033OC – ident: bib10 doi: 10.1161/CIRCRESAHA.108.178533 – ident: bib23 doi: 10.1038/onc.2011.365 – volume: 31 start-page: 1071 year: 2008 ident: bib5 publication-title: Sleep doi: 10.1093/sleep/31.5.593 contributor: fullname: Young T – ident: bib15 doi: 10.1016/j.ajpath.2012.07.024 – ident: bib50 doi: 10.1164/rccm.200703-500OC – ident: bib9 doi: 10.1164/rccm.200612-1771OC – ident: bib22 doi: 10.1006/jmcc.2002.2021 – ident: bib36 doi: 10.1113/jphysiol.2006.114033 – ident: bib40 doi: 10.1073/pnas.0604026103 – ident: bib11 doi: 10.1016/j.atherosclerosis.2011.07.122 |
SSID | ssj0012810 |
Score | 2.5165005 |
Snippet | Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent... RATIONALEObstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH).... Rationale : Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH).... Rationale: Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH).... |
SourceID | swepub pubmedcentral proquest crossref pubmed pascalfrancis |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 240 |
SubjectTerms | Adipocytes - metabolism adipose tissue Adult Aged Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Angiopoietin-like 4 Protein Angiopoietins - metabolism Animals Antibodies Apolipoproteins E - deficiency Atherosclerosis Atherosclerosis (general aspects, experimental research) Atherosclerosis - metabolism Atherosclerosis - physiopathology Biological and medical sciences Blood and lymphatic vessels Body fat Cardiology. Vascular system Cholesterol Enzymes Female Gastrointestinal surgery Humans Hypotheses Hypoxia Hypoxia - metabolism Hypoxia - physiopathology Hypoxia-Inducible Factor 1, alpha Subunit - metabolism hypoxia-inducible factor-1 Intensive care medicine lipoprotein clearance lipoprotein lipase Lipoprotein Lipase - antagonists & inhibitors Lipoproteins Medical sciences Metabolic disorders Mice Mice, Inbred SENCAR Middle Aged Obesity - metabolism Obesity - physiopathology Plasma Pneumology Respiratory system : syndromes and miscellaneous diseases Sleep apnea Sleep Apnea, Obstructive - metabolism Sleep Apnea, Obstructive - physiopathology Statistical significance Subcutaneous Fat - metabolism Subcutaneous Fat - physiopathology Triglycerides Up-Regulation - physiology |
Title | Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23328524 https://www.proquest.com/docview/1439532755 https://search.proquest.com/docview/1400621557 https://pubmed.ncbi.nlm.nih.gov/PMC3778753 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79423 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_sFUQQ8Vmj9VhBP0no7SubfJJ4bTmVVhEr9y0km00N2my85ET_e2fzuBIUvyyEfRB2Zmd-s7MzA_DC5DnXCy18xqVzM6YCj5TSfhRprjlNEZM4j-7ZebC6EO_Wcj1cuDXDs8pRJnaCOrfa3ZEfoV6PJGdKytf1D99VjXLe1aGExh7sM7QUFjPYf3Ny_vHTzo_AwiEfgeK-ENF6DJsJxNFGaxeJ7mJHfRqEodUT1XS7ThvcpaIvb_Ev_Pn3M8pJstFOQZ3ehTsDsiRxzwr34Iap7sPNs8F3_gCyIQ8u6S4Br8oW0XJLVr9r-6tMiSvhgSKDxA4Q2gZXwLZsyE_si_VYA43YgsR5WdvGkLi6LG1tSxcz7X8vvxkiHsLF6cnn5cofKiz4GpFN66euzIYylGVUpQE3gXEKTbGFLgRXMgtzGkaByHKdRYtMSqkiHMZYlKWUFZnij2BW2co8BrJIczQ2qNS4ishoEQU6L1KZB5oVeWSkB6_GzU3qPpFG0hkggUgcKZKeFIkjxYelB_PJ_u-muGz1iKiYB4cjQZLh1DXJNY948HzXjefFOUHSytitG-PCRhFFKQ8OevpdL845CyUTHqgJZXcDXC7uaU9Vfu1ycnOlnOXnwcueByZTjssvcWI3l8n2apugAGT8yf9__yncYl3ZDeVTeQizdrM1zxD8tNkc9tRaYRsu6Xzgdvw6fvv-DxNiCF4 |
link.rule.ids | 230,315,783,787,888,12068,12235,21400,27936,27937,31731,31732,33278,33279,33756,33757,43322,43591,43817,74079,74348,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSICEEK_SQClGghOKuvEjjk8oKlQLdMulRXuz4kdKRBuHTRbBv8eTZLeKQFxy8UORZzzz2eOZD6HXzlpqZobFhHIIMxYsbClhYikNNTQpAiaBiO7iNJ2fs09Lvhwv3NrxWeXGJvaG2noDd-SHwa9LTong_F3zIwbWKIiujhQaN9EtqMMFDAZiuT1wQZBoqEYgaMyYXG6SZlJ2uDIG8tAhczRO0izzZuKY7jVFG9aoHMgt_oU-_35EOSk12run4wfo_ogrcT4owkN0w9WP0O3FGDl_jPRYBRf3V4BXVRewcofnvxv_qyowEHgEg4FzgIO-DTOEb9Xin6EtNxsGNOxLnNuq8a3DeX1R-cZXkDEdX1bfHWZP0Pnxh7OjeTzyK8Qm4JouLoBkQ7iE6EQUKXWpA3cmyMyUjAquM5tkMmXaGi1nmnMuZOhGiNRFQkot6C7aqX3t9hCeFTYcNRJuwixMJ6VMjS0LblNDSisdj9DbzeKqZiijofrjR8oUiEINolAgii9HETqYrP92CNSqD3iKRGh_IxA17rlWXWtIhF5tm8NugRBIUTu_hj6QNBowlIjQ00F-15MHDco4YRESE8luO0Al7mlLXX3rK3JTIeDcF6E3gw5MhryvvubKry7U-mqtgvkj9Nn_f_8lujM_W5yok4-nn5-ju6Qn4BBxwvfRTrdauxcBBnX6oNf1P64MBzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagSBUSQpwlUIqR4AlFu_ERx08oalktRwsPFO2bFR8pETQOmyyCf48nyW4VgXjJiw9FnvHMN54LoRfOWmrmhsWEcnAzFixcKWFiKQ01NCkCJgGP7ulZujxn71Z8NcY_tWNY5VYm9oLaegNv5LOg1yWnRHA-K8ewiE8ni9fNjxg6SIGndWyncR3dEMFKAQ4Xq53xBQ6joTKBoDFjcrVNoEnZbG0M5KRDFmmcpFnmzURJ3WqKNpxXOTS6-BcS_TugclJ2tFdVizvo9ogxcT4wxV10zdX30P7p6EW_j_RYERf3z4GXVRdwc4eXvxv_qyowNPMIwgPnAA19G3YI36rFP8NYbrbd0LAvcW6rxrcO5_VF5RtfQfZ0_L365jB7gM4Xbz4fL-Ox10JsAsbp4gIabgiXEJ2IIqUudaDaBJmbklHBdWaTTKZMW6PlXHPOhQzTCJG6SEipBX2I9mpfu0cIzwsbzI6Em7AL00kpU2PLgtvUkNJKxyP0anu4qhlKaqjeFEmZAlKogRQKSPHxOEJHk_PfLYG69QFbkQgdbgmixvvXqituidDz3XC4OeAOKWrnNzAHEkgDnhIROhjod7U5pSTjhEVITCi7mwBVuacjdfW1r85NhQAbMEIvBx6YLDmpvuTKry_U5nKjgigk9PH_f_8Z2g9srj68PXv_BN0kfS8OESf8EO116417GhBRp496Vv8DCxoLeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+intermittent+hypoxia+induces+atherosclerosis+via+activation+of+adipose+angiopoietin-like+4&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Drager%2C+Luciano+F&rft.au=Yao%2C+Qiaoling&rft.au=Hernandez%2C+Karen+L&rft.au=Shin%2C+Mi-Kyung&rft.date=2013-07-15&rft.eissn=1535-4970&rft.volume=188&rft.issue=2&rft.spage=240&rft_id=info:doi/10.1164%2Frccm.201209-1688oc&rft_id=info%3Apmid%2F23328524&rft.externalDocID=23328524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |