Room-temperature enantioselective C–H iodination via kinetic resolution

Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 346; no. 6208; pp. 451 - 455
Main Authors Chu, Ling, Xiao, Kai-Jiong, Yu, Jin-Quan
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 24.10.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
AbstractList Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
Ensuring handedness when breaking C-H bonds Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon–hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science , this issue p. 451
Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon-hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science, this issue p. 451 Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (kfast/kslow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
Ensuring handedness when breaking C-H bondsMany organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon-hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins.Science, this issue p. 451 Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (kfast/kslow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon–hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science , this issue p. 451 Palladium catalysis produces benzylamine derivatives of interest in medicinal chemistry. Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio ( k fast / k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.
The development of asymmetric C–H activation reactions through metal insertions remains in its infancy. The commonly used approach is the desymmetrization of prochiral C–H bonds on the same or different carbons of one achiral molecule using a chiral catalyst. Herein, we report a Pd-catalyzed enantioselective C–H activation reaction via kinetic resolution in which one of the enantiomers of the racemic substrates undergoes faster C–H insertion with the chiral catalysts thereby producing enantioenriched C–H functionalization products that are not accessible via desymmtrization of prochiral C–H bonds. The exceedingly high relative rate ( k fast / k slow up to 244) and the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration allows for the conversion of both enantiomers of amines into enantiomerically pure iodinated amines.
Author Xiao, Kai-Jiong
Chu, Ling
Yu, Jin-Quan
Author_xml – sequence: 1
  givenname: Ling
  surname: Chu
  fullname: Chu, Ling
– sequence: 2
  givenname: Kai-Jiong
  surname: Xiao
  fullname: Xiao, Kai-Jiong
– sequence: 3
  givenname: Jin-Quan
  surname: Yu
  fullname: Yu, Jin-Quan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25342799$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uUzEQhS1URNPCmhXoSmzY3Nb_PxskFAGtVAkJwdpynLngcGMH2zcSO96BN-yT1CGhQBd0ZcnznaM5M3OCjmKKgNBTgs8IofK8-ADRwxmhQgumH6AZwUb0hmJ2hGYYM9lrrMQxOillhXGrGfYIHVPBOFXGzNDlh5TWfYX1BrKrU4YOoos1pAIj-Bq20M2vf_y86EJahuhaIXbb4LqvIUINvstQ0jjtvh-jh4MbCzw5vKfo09s3H-cX_dX7d5fz11e9l4TW3nE-GDwsPQE3aGm4XmDgzhPDxMA4xl67ARvnlZAUBCGDXjDql7LJ1SAlO0Wv9r6babGGpYdYsxvtJoe1y99tcsH-W4nhi_2ctpYzTTEhzeDlwSCnbxOUateheBhHFyFNxdI2J6YIVvxelBjMaevR6PtRSSTXmDPa0Bd30FWacmxD21FCcaPILufzv3PeBvy9uwac7wGfUykZhluEYLu7Dnu4Dnu4jqYQdxQ-1F87bYMK4390z_a6Vakp_-mEG6K40uwGm1bKvw
CODEN SCIEAS
CitedBy_id crossref_primary_10_1246_cl_200475
crossref_primary_10_1002_anie_202305042
crossref_primary_10_1021_acs_orglett_2c01224
crossref_primary_10_1039_C6CC00822D
crossref_primary_10_1002_ange_201713106
crossref_primary_10_1016_j_tet_2015_02_065
crossref_primary_10_1002_cjoc_202300161
crossref_primary_10_1002_ange_202400509
crossref_primary_10_1016_j_tetasy_2017_03_008
crossref_primary_10_1002_anie_201502942
crossref_primary_10_1002_ange_201813887
crossref_primary_10_1021_jacs_8b10428
crossref_primary_10_1002_ange_202300905
crossref_primary_10_1021_acscatal_8b04725
crossref_primary_10_1021_acs_joc_5b02571
crossref_primary_10_1002_anie_201900545
crossref_primary_10_1002_adsc_201600177
crossref_primary_10_1002_anie_201911898
crossref_primary_10_1002_ejoc_202100964
crossref_primary_10_1039_C4RA15461D
crossref_primary_10_1002_ajoc_201800202
crossref_primary_10_1039_C7SC04768A
crossref_primary_10_1039_D0SC01260B
crossref_primary_10_1039_C9QO00429G
crossref_primary_10_1002_ange_202209099
crossref_primary_10_1021_acs_orglett_9b00511
crossref_primary_10_1039_C6CS00075D
crossref_primary_10_1021_acscatal_6b00964
crossref_primary_10_1021_acscatal_3c00751
crossref_primary_10_1016_j_tetlet_2024_155019
crossref_primary_10_3390_catal8020090
crossref_primary_10_1021_acscatal_9b03887
crossref_primary_10_1021_acs_orglett_1c02918
crossref_primary_10_1515_pac_2015_0902
crossref_primary_10_1021_jacs_9b03998
crossref_primary_10_1039_C7SC05411D
crossref_primary_10_1021_acs_chemrev_6b00692
crossref_primary_10_1002_ajoc_201500245
crossref_primary_10_1021_jacs_5b03091
crossref_primary_10_1021_ja511011m
crossref_primary_10_1002_ejoc_202200399
crossref_primary_10_1021_jacs_3c14091
crossref_primary_10_1039_C8CS00716K
crossref_primary_10_1002_anie_201901673
crossref_primary_10_1021_jacs_8b12636
crossref_primary_10_1002_anie_202300905
crossref_primary_10_1021_acscatal_2c03187
crossref_primary_10_1002_anie_201813887
crossref_primary_10_1021_acs_orglett_8b00797
crossref_primary_10_1002_ange_202212595
crossref_primary_10_1021_jacs_5b03410
crossref_primary_10_1038_s44160_022_00177_3
crossref_primary_10_1002_cjoc_202200125
crossref_primary_10_1039_D5SC00623F
crossref_primary_10_1021_acscatal_5c01027
crossref_primary_10_1002_ange_201903511
crossref_primary_10_1021_acs_orglett_1c04039
crossref_primary_10_1021_acs_orglett_8b00786
crossref_primary_10_1021_jacs_7b03716
crossref_primary_10_1038_s41467_024_46288_7
crossref_primary_10_1002_cjoc_202100466
crossref_primary_10_1039_C5OB00671F
crossref_primary_10_1002_anie_201713106
crossref_primary_10_1039_C7SC01556A
crossref_primary_10_1002_anie_202400509
crossref_primary_10_1039_D2SC06840K
crossref_primary_10_6023_cjoc202106011
crossref_primary_10_1002_ejoc_202001066
crossref_primary_10_1007_s00214_019_2523_1
crossref_primary_10_1039_D1OB00232E
crossref_primary_10_1038_s41467_019_12181_x
crossref_primary_10_1021_acs_orglett_4c01785
crossref_primary_10_1021_acs_orglett_9b00315
crossref_primary_10_1039_C7SC01674C
crossref_primary_10_1021_acscatal_0c03743
crossref_primary_10_1021_acscatal_7b01281
crossref_primary_10_1038_s41586_018_0220_1
crossref_primary_10_1016_j_trechm_2020_05_003
crossref_primary_10_1002_ange_201709075
crossref_primary_10_1038_s44160_022_00178_2
crossref_primary_10_6023_cjoc201904062
crossref_primary_10_1002_chem_201700280
crossref_primary_10_1002_ange_201901673
crossref_primary_10_1021_jacs_6b00127
crossref_primary_10_1039_C5CC00531K
crossref_primary_10_1002_ange_201502942
crossref_primary_10_1021_jacs_1c01929
crossref_primary_10_1002_anie_201709075
crossref_primary_10_1002_adsc_201800484
crossref_primary_10_1021_acscatal_7b02987
crossref_primary_10_1002_cssc_201801946
crossref_primary_10_1039_C5CC02533H
crossref_primary_10_1002_ange_202300854
crossref_primary_10_1021_acscatal_4c03731
crossref_primary_10_1002_tcr_201500242
crossref_primary_10_1002_ange_202011468
crossref_primary_10_1039_C7SC04107A
crossref_primary_10_1021_jacs_8b01094
crossref_primary_10_1002_anie_202209099
crossref_primary_10_1055_a_1625_9095
crossref_primary_10_1080_00397911_2018_1455872
crossref_primary_10_1039_C6SC03383K
crossref_primary_10_1021_jacs_9b06643
crossref_primary_10_1055_a_1588_0072
crossref_primary_10_2174_1570193X20666230725103217
crossref_primary_10_1002_ejoc_201801097
crossref_primary_10_1021_jacs_7b05155
crossref_primary_10_1002_ajoc_201700238
crossref_primary_10_1002_anie_201903511
crossref_primary_10_1002_adsc_202001033
crossref_primary_10_1039_C5OB01228G
crossref_primary_10_1002_chem_201501123
crossref_primary_10_1002_ange_201710136
crossref_primary_10_1002_ange_201900545
crossref_primary_10_1039_D4QO01409J
crossref_primary_10_1021_jacs_6b01941
crossref_primary_10_1002_ange_201510808
crossref_primary_10_1126_science_aao4798
crossref_primary_10_1002_ange_201801146
crossref_primary_10_1039_C8CC05555F
crossref_primary_10_1002_ange_201505204
crossref_primary_10_1021_jacs_7b11962
crossref_primary_10_1021_jacs_6b09653
crossref_primary_10_1039_D4QO00732H
crossref_primary_10_1002_chin_201516105
crossref_primary_10_1021_acs_orglett_2c02502
crossref_primary_10_1126_science_aba1120
crossref_primary_10_1007_s11426_021_1165_6
crossref_primary_10_1016_j_trechm_2021_12_005
crossref_primary_10_1021_acs_joc_6b00329
crossref_primary_10_1039_D0SC02246B
crossref_primary_10_1002_anie_202212595
crossref_primary_10_1021_acs_joc_3c02754
crossref_primary_10_1002_ange_201500201
crossref_primary_10_1002_anie_201710136
crossref_primary_10_1002_ange_201504127
crossref_primary_10_1002_anie_201801146
crossref_primary_10_1002_anie_201505204
crossref_primary_10_1021_acs_accounts_6b00573
crossref_primary_10_1038_s41467_023_44202_1
crossref_primary_10_1055_a_2493_8106
crossref_primary_10_1021_acscatal_1c01351
crossref_primary_10_1002_anie_202011468
crossref_primary_10_1021_acscatal_5b02483
crossref_primary_10_1002_anie_201904543
crossref_primary_10_1002_ange_201604268
crossref_primary_10_1021_acs_orglett_9b00136
crossref_primary_10_1039_D2QO00158F
crossref_primary_10_1039_D4SC06867J
crossref_primary_10_1002_ange_201911898
crossref_primary_10_1021_acs_joc_5b02302
crossref_primary_10_6023_cjoc202300050
crossref_primary_10_1021_acs_orglett_5b00968
crossref_primary_10_1002_ange_202305042
crossref_primary_10_1002_anie_201500201
crossref_primary_10_1002_anie_202004485
crossref_primary_10_1021_jacs_6b04660
crossref_primary_10_1002_anie_201504127
crossref_primary_10_1002_ange_201808595
crossref_primary_10_1002_adsc_201600258
crossref_primary_10_1002_anie_202300854
crossref_primary_10_1016_j_checat_2021_11_001
crossref_primary_10_1002_anie_201510808
crossref_primary_10_1002_adsc_201800220
crossref_primary_10_1002_ejoc_201800120
crossref_primary_10_1021_acs_orglett_5b01398
crossref_primary_10_1055_a_1790_3230
crossref_primary_10_3762_bjoc_11_230
crossref_primary_10_1021_acs_organomet_7b00751
crossref_primary_10_1016_j_chempr_2021_11_015
crossref_primary_10_1002_anie_201604268
crossref_primary_10_1039_D3CC00653K
crossref_primary_10_1007_s10562_018_2324_5
crossref_primary_10_1002_ange_201811998
crossref_primary_10_1021_acs_orglett_7b00608
crossref_primary_10_1021_acs_orglett_2c01283
crossref_primary_10_1002_ange_201609939
crossref_primary_10_1039_C6OB00169F
crossref_primary_10_1021_acs_accounts_9b00621
crossref_primary_10_1021_acs_orglett_6b01162
crossref_primary_10_1021_jacs_5b04324
crossref_primary_10_1039_C5OB00066A
crossref_primary_10_1021_jacs_2c09479
crossref_primary_10_1021_acs_chemrev_6b00089
crossref_primary_10_1021_jacs_8b06966
crossref_primary_10_1021_jacs_6b11097
crossref_primary_10_1002_anie_201811998
crossref_primary_10_1002_ange_201904543
crossref_primary_10_1021_jacs_7b01718
crossref_primary_10_1021_acs_orglett_1c03491
crossref_primary_10_1016_j_cclet_2019_09_057
crossref_primary_10_1002_anie_201808595
crossref_primary_10_1002_ange_202004485
crossref_primary_10_1039_D1SC04299H
crossref_primary_10_1002_anie_201609939
crossref_primary_10_1021_acs_orglett_2c02707
crossref_primary_10_1039_C7OB01163F
Cites_doi 10.1021/ja9079435
10.1002/anie.201102639
10.1021/cs500813z
10.1039/c1cc14292e
10.1021/ol025548k
10.1002/anie.200600493
10.1126/science.1226938
10.1021/ja015827n
10.1016/S0957-4166(00)00244-5
10.1021/ol1010483
10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K
10.1021/ja9107897
10.1021/ja408864c
10.1002/anie.200801445
10.1021/ja060716f
10.1002/anie.200502003
10.1002/anie.200601248
10.1002/anie.200801030
10.1002/anie.201108511
10.1021/ja2058633
10.1038/nchem.1836
10.1126/science.1226132
10.1002/anie.200300599
10.1021/ol061742l
10.1002/anie.201403556
10.1021/ol802431v
10.1021/cr900382t
10.1021/cr900239n
10.1126/science.277.5328.936
10.1021/ja015791z
10.1039/b816707a
10.1021/ja056306t
10.1021/ja8031955
10.1039/c2sc20111a
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science.
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science.
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1126/science.1258538
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Materials Research Database
PubMed
Solid State and Superconductivity Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 455
ExternalDocumentID PMC4382011
3469962701
25342799
10_1126_science_1258538
24917478
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 2R01GM084019
– fundername: NIGMS NIH HHS
  grantid: R01 GM084019
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c612t-a44f90fdc1eaf86948b0e4ac1935f3400c8af09ac7562e511f8b32cd6c617f663
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 14:06:54 EDT 2025
Thu Jul 10 23:24:30 EDT 2025
Fri Jul 11 02:17:24 EDT 2025
Fri Jul 11 03:09:37 EDT 2025
Fri Jul 25 10:59:24 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Tue Jul 01 04:10:22 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Thu Jul 03 22:43:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6208
Language English
License Copyright © 2014, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c612t-a44f90fdc1eaf86948b0e4ac1935f3400c8af09ac7562e511f8b32cd6c617f663
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1126/science.1258538
PMID 25342799
PQID 1615749716
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011
proquest_miscellaneous_2000371074
proquest_miscellaneous_1904251198
proquest_miscellaneous_1616480432
proquest_journals_1615749716
pubmed_primary_25342799
crossref_primary_10_1126_science_1258538
crossref_citationtrail_10_1126_science_1258538
jstor_primary_24917478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-24
PublicationDateYYYYMMDD 2014-10-24
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
Schmidt F. (e_1_3_2_17_2) 2006; 35
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_22_2
  doi: 10.1021/ja9079435
– ident: e_1_3_2_13_2
  doi: 10.1002/anie.201102639
– ident: e_1_3_2_24_2
  doi: 10.1021/cs500813z
– ident: e_1_3_2_14_2
  doi: 10.1039/c1cc14292e
– volume: 35
  start-page: 454
  year: 2006
  ident: e_1_3_2_17_2
  article-title: Catalytic asymmetric approaches towards enantiomerically enriched diarylmethanols and diarylmethylamines
  publication-title: Chem. Soc. Rev.
– ident: e_1_3_2_36_2
  doi: 10.1021/ol025548k
– ident: e_1_3_2_34_2
  doi: 10.1002/anie.200600493
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1226938
– ident: e_1_3_2_26_2
  doi: 10.1021/ja015827n
– ident: e_1_3_2_10_2
  doi: 10.1016/S0957-4166(00)00244-5
– ident: e_1_3_2_35_2
  doi: 10.1021/ol1010483
– ident: e_1_3_2_21_2
  doi: 10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K
– ident: e_1_3_2_23_2
  doi: 10.1021/ja9107897
– ident: e_1_3_2_12_2
  doi: 10.1021/ja408864c
– ident: e_1_3_2_7_2
  doi: 10.1002/anie.200801445
– ident: e_1_3_2_28_2
  doi: 10.1021/ja060716f
– ident: e_1_3_2_29_2
  doi: 10.1002/anie.200502003
– ident: e_1_3_2_5_2
  doi: 10.1002/anie.200601248
– ident: e_1_3_2_11_2
  doi: 10.1002/anie.200801030
– ident: e_1_3_2_15_2
  doi: 10.1002/anie.201108511
– ident: e_1_3_2_30_2
  doi: 10.1021/ja2058633
– ident: e_1_3_2_33_2
  doi: 10.1038/nchem.1836
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1226132
– ident: e_1_3_2_20_2
  doi: 10.1002/anie.200300599
– ident: e_1_3_2_4_2
  doi: 10.1021/ol061742l
– ident: e_1_3_2_31_2
  doi: 10.1002/anie.201403556
– ident: e_1_3_2_32_2
  doi: 10.1021/ol802431v
– ident: e_1_3_2_18_2
  doi: 10.1021/cr900382t
– ident: e_1_3_2_3_2
  doi: 10.1021/cr900239n
– ident: e_1_3_2_25_2
  doi: 10.1126/science.277.5328.936
– ident: e_1_3_2_27_2
  doi: 10.1021/ja015791z
– ident: e_1_3_2_2_2
  doi: 10.1039/b816707a
– ident: e_1_3_2_19_2
  doi: 10.1021/ja056306t
– ident: e_1_3_2_6_2
  doi: 10.1021/ja8031955
– ident: e_1_3_2_16_2
  doi: 10.1039/c2sc20111a
SSID ssj0009593
Score 2.5404243
Snippet Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral...
Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a...
Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral...
Ensuring handedness when breaking C-H bondsMany organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic...
Ensuring handedness when breaking C-H bonds Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic...
The development of asymmetric C–H activation reactions through metal insertions remains in its infancy. The commonly used approach is the desymmetrization of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms ambient temperature
Aromatic compounds
Asymmetry
Carbon
Catalysis
Catalysts
chemical bonding
Chemical bonds
Enantiomers
Enzyme kinetics
Hydrogen bonds
Iodination
Iodine
Kinetics
Organic Chemistry
Organic compounds
Palladium
Proteins
Reaction kinetics
screening
Substrates
Title Room-temperature enantioselective C–H iodination via kinetic resolution
URI https://www.jstor.org/stable/24917478
https://www.ncbi.nlm.nih.gov/pubmed/25342799
https://www.proquest.com/docview/1615749716
https://www.proquest.com/docview/1616480432
https://www.proquest.com/docview/1904251198
https://www.proquest.com/docview/2000371074
https://pubmed.ncbi.nlm.nih.gov/PMC4382011
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZKV0hcELuwEFhQkDgsqlIltpM4x25hVSqBBNqVyimyXYeNQAmiDRKceAcegTfjSRjHzk-rFsFeqjaeRKlnPPONM_kGoWcCBhiWocdZEnpULqXHKSGeFBRLnNEM170IXr-JZpd0vggXg8GvXtVStRZj-X3neyXX0SocA73qt2T_Q7PtReEAfAf9widoGD7_ScfvAPV6mlzKMiOPlC5ryctV3dxG1wRNm2IGMhvlJcQpo--vOR99BHxpCJybm-wD1WbNAwBtH-r0VNlWJ05MDUFTUmBP6-0vTK8qm_t_aA4tcl6aSo7cm8PF2oH3teg8L7y3lbVauyERUO3JcbcheY2b6jtoy49swpPxyb5uJ4l90nfaxG5cGuuMsM96XphaDltlf4W7Y0Wvu6UaA9AD5MK6sNgWK0KCGuguAzfQAYZcBA_RweTsxdn5Xm5nyyDVezerufoG-DH1r7sym-0C3R7iubiDbttUxZ0YuztEA1UcoZumeem3I3Rop3Xlnlru8ud30attk3S3TdKd_v7xc-Z2xuiCMbrWGN3OGO-hy_OXF9OZZ7t1eBJQ8hqWOM0SP1vKQPGMRQllwleUS8gQwoxAqJCMZ37CZQyQWwHOz5ggWC4jOD3OAPgeo2FRFuoBclnIlVQJE1gISrifME5FphgXOOQRWTpo3ExjKi2Vve6o8imtU1ocpXbeUzvvDjptT_hsWFz2ix7XemnlGvU76KRRVGp9wCrV-VJMNQ2bg562w-Ch9WM3XqiyqmUiyjT15V9kEh08gyBh-2VwTRalC6gddN_YR3eTIaE4ThIHxRuW0wpoFvnNkSK_qtnkdSUABPmH-_73I3SrW-UnaLj-UqnHAMTX4oldCH8Ak3bjrw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+enantioselective+C%E2%80%93H+iodination+via+kinetic+resolution&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chu%2C+Ling&rft.au=Xiao%2C+Kai-Jiong&rft.au=Yu%2C+Jin-Quan&rft.date=2014-10-24&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=346&rft.issue=6208&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1126%2Fscience.1258538&rft.externalDocID=24917478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon