Room-temperature enantioselective C–H iodination via kinetic resolution
Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 346; no. 6208; pp. 451 - 455 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
24.10.2014
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k
fast/k
slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. |
---|---|
AbstractList | Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products.Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Ensuring handedness when breaking C-H bonds Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon–hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science , this issue p. 451 Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon-hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science, this issue p. 451 Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (kfast/kslow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (k(fast)/k(slow) up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Ensuring handedness when breaking C-H bondsMany organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon-hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins.Science, this issue p. 451 Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C-H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C-H insertion with the chiral catalysts than the other. The resulting enantioenriched C-H functionalization products would not be accessible through desymmetrization of prochiral C-H bonds. The exceedingly high relative rate ratio (kfast/kslow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a desired product while leaving its mirror image unmodified. Chu et al. applied this strategy to a reaction that replaces aryl carbon–hydrogen bonds with carbon-iodine bonds. They used a chiral palladium catalyst that reacts selectively with just one of two enantiomers of various benzylamine derivatives. In medicinal chemistry, such selective synthesis of individual enantiomers is essential for screening interactions with chiral biomolecules such as proteins. Science , this issue p. 451 Palladium catalysis produces benzylamine derivatives of interest in medicinal chemistry. Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio ( k fast / k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral catalyst. Here, we report a kinetic resolution via palladium-catalyzed enantioselective C–H iodination in which one of the enantiomers of a racemic benzylic amine substrates undergoes faster aryl C–H insertion with the chiral catalysts than the other. The resulting enantioenriched C–H functionalization products would not be accessible through desymmetrization of prochiral C–H bonds. The exceedingly high relative rate ratio (k fast/k slow up to 244), coupled with the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration, enables conversion of both substrate enantiomers into enantiomerically pure iodinated products. The development of asymmetric C–H activation reactions through metal insertions remains in its infancy. The commonly used approach is the desymmetrization of prochiral C–H bonds on the same or different carbons of one achiral molecule using a chiral catalyst. Herein, we report a Pd-catalyzed enantioselective C–H activation reaction via kinetic resolution in which one of the enantiomers of the racemic substrates undergoes faster C–H insertion with the chiral catalysts thereby producing enantioenriched C–H functionalization products that are not accessible via desymmtrization of prochiral C–H bonds. The exceedingly high relative rate ( k fast / k slow up to 244) and the subsequent iodination of the remaining enantiomerically enriched starting material using a chiral ligand with the opposite configuration allows for the conversion of both enantiomers of amines into enantiomerically pure iodinated amines. |
Author | Xiao, Kai-Jiong Chu, Ling Yu, Jin-Quan |
Author_xml | – sequence: 1 givenname: Ling surname: Chu fullname: Chu, Ling – sequence: 2 givenname: Kai-Jiong surname: Xiao fullname: Xiao, Kai-Jiong – sequence: 3 givenname: Jin-Quan surname: Yu fullname: Yu, Jin-Quan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25342799$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uUzEQhS1URNPCmhXoSmzY3Nb_PxskFAGtVAkJwdpynLngcGMH2zcSO96BN-yT1CGhQBd0ZcnznaM5M3OCjmKKgNBTgs8IofK8-ADRwxmhQgumH6AZwUb0hmJ2hGYYM9lrrMQxOillhXGrGfYIHVPBOFXGzNDlh5TWfYX1BrKrU4YOoos1pAIj-Bq20M2vf_y86EJahuhaIXbb4LqvIUINvstQ0jjtvh-jh4MbCzw5vKfo09s3H-cX_dX7d5fz11e9l4TW3nE-GDwsPQE3aGm4XmDgzhPDxMA4xl67ARvnlZAUBCGDXjDql7LJ1SAlO0Wv9r6babGGpYdYsxvtJoe1y99tcsH-W4nhi_2ctpYzTTEhzeDlwSCnbxOUateheBhHFyFNxdI2J6YIVvxelBjMaevR6PtRSSTXmDPa0Bd30FWacmxD21FCcaPILufzv3PeBvy9uwac7wGfUykZhluEYLu7Dnu4Dnu4jqYQdxQ-1F87bYMK4390z_a6Vakp_-mEG6K40uwGm1bKvw |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1246_cl_200475 crossref_primary_10_1002_anie_202305042 crossref_primary_10_1021_acs_orglett_2c01224 crossref_primary_10_1039_C6CC00822D crossref_primary_10_1002_ange_201713106 crossref_primary_10_1016_j_tet_2015_02_065 crossref_primary_10_1002_cjoc_202300161 crossref_primary_10_1002_ange_202400509 crossref_primary_10_1016_j_tetasy_2017_03_008 crossref_primary_10_1002_anie_201502942 crossref_primary_10_1002_ange_201813887 crossref_primary_10_1021_jacs_8b10428 crossref_primary_10_1002_ange_202300905 crossref_primary_10_1021_acscatal_8b04725 crossref_primary_10_1021_acs_joc_5b02571 crossref_primary_10_1002_anie_201900545 crossref_primary_10_1002_adsc_201600177 crossref_primary_10_1002_anie_201911898 crossref_primary_10_1002_ejoc_202100964 crossref_primary_10_1039_C4RA15461D crossref_primary_10_1002_ajoc_201800202 crossref_primary_10_1039_C7SC04768A crossref_primary_10_1039_D0SC01260B crossref_primary_10_1039_C9QO00429G crossref_primary_10_1002_ange_202209099 crossref_primary_10_1021_acs_orglett_9b00511 crossref_primary_10_1039_C6CS00075D crossref_primary_10_1021_acscatal_6b00964 crossref_primary_10_1021_acscatal_3c00751 crossref_primary_10_1016_j_tetlet_2024_155019 crossref_primary_10_3390_catal8020090 crossref_primary_10_1021_acscatal_9b03887 crossref_primary_10_1021_acs_orglett_1c02918 crossref_primary_10_1515_pac_2015_0902 crossref_primary_10_1021_jacs_9b03998 crossref_primary_10_1039_C7SC05411D crossref_primary_10_1021_acs_chemrev_6b00692 crossref_primary_10_1002_ajoc_201500245 crossref_primary_10_1021_jacs_5b03091 crossref_primary_10_1021_ja511011m crossref_primary_10_1002_ejoc_202200399 crossref_primary_10_1021_jacs_3c14091 crossref_primary_10_1039_C8CS00716K crossref_primary_10_1002_anie_201901673 crossref_primary_10_1021_jacs_8b12636 crossref_primary_10_1002_anie_202300905 crossref_primary_10_1021_acscatal_2c03187 crossref_primary_10_1002_anie_201813887 crossref_primary_10_1021_acs_orglett_8b00797 crossref_primary_10_1002_ange_202212595 crossref_primary_10_1021_jacs_5b03410 crossref_primary_10_1038_s44160_022_00177_3 crossref_primary_10_1002_cjoc_202200125 crossref_primary_10_1039_D5SC00623F crossref_primary_10_1021_acscatal_5c01027 crossref_primary_10_1002_ange_201903511 crossref_primary_10_1021_acs_orglett_1c04039 crossref_primary_10_1021_acs_orglett_8b00786 crossref_primary_10_1021_jacs_7b03716 crossref_primary_10_1038_s41467_024_46288_7 crossref_primary_10_1002_cjoc_202100466 crossref_primary_10_1039_C5OB00671F crossref_primary_10_1002_anie_201713106 crossref_primary_10_1039_C7SC01556A crossref_primary_10_1002_anie_202400509 crossref_primary_10_1039_D2SC06840K crossref_primary_10_6023_cjoc202106011 crossref_primary_10_1002_ejoc_202001066 crossref_primary_10_1007_s00214_019_2523_1 crossref_primary_10_1039_D1OB00232E crossref_primary_10_1038_s41467_019_12181_x crossref_primary_10_1021_acs_orglett_4c01785 crossref_primary_10_1021_acs_orglett_9b00315 crossref_primary_10_1039_C7SC01674C crossref_primary_10_1021_acscatal_0c03743 crossref_primary_10_1021_acscatal_7b01281 crossref_primary_10_1038_s41586_018_0220_1 crossref_primary_10_1016_j_trechm_2020_05_003 crossref_primary_10_1002_ange_201709075 crossref_primary_10_1038_s44160_022_00178_2 crossref_primary_10_6023_cjoc201904062 crossref_primary_10_1002_chem_201700280 crossref_primary_10_1002_ange_201901673 crossref_primary_10_1021_jacs_6b00127 crossref_primary_10_1039_C5CC00531K crossref_primary_10_1002_ange_201502942 crossref_primary_10_1021_jacs_1c01929 crossref_primary_10_1002_anie_201709075 crossref_primary_10_1002_adsc_201800484 crossref_primary_10_1021_acscatal_7b02987 crossref_primary_10_1002_cssc_201801946 crossref_primary_10_1039_C5CC02533H crossref_primary_10_1002_ange_202300854 crossref_primary_10_1021_acscatal_4c03731 crossref_primary_10_1002_tcr_201500242 crossref_primary_10_1002_ange_202011468 crossref_primary_10_1039_C7SC04107A crossref_primary_10_1021_jacs_8b01094 crossref_primary_10_1002_anie_202209099 crossref_primary_10_1055_a_1625_9095 crossref_primary_10_1080_00397911_2018_1455872 crossref_primary_10_1039_C6SC03383K crossref_primary_10_1021_jacs_9b06643 crossref_primary_10_1055_a_1588_0072 crossref_primary_10_2174_1570193X20666230725103217 crossref_primary_10_1002_ejoc_201801097 crossref_primary_10_1021_jacs_7b05155 crossref_primary_10_1002_ajoc_201700238 crossref_primary_10_1002_anie_201903511 crossref_primary_10_1002_adsc_202001033 crossref_primary_10_1039_C5OB01228G crossref_primary_10_1002_chem_201501123 crossref_primary_10_1002_ange_201710136 crossref_primary_10_1002_ange_201900545 crossref_primary_10_1039_D4QO01409J crossref_primary_10_1021_jacs_6b01941 crossref_primary_10_1002_ange_201510808 crossref_primary_10_1126_science_aao4798 crossref_primary_10_1002_ange_201801146 crossref_primary_10_1039_C8CC05555F crossref_primary_10_1002_ange_201505204 crossref_primary_10_1021_jacs_7b11962 crossref_primary_10_1021_jacs_6b09653 crossref_primary_10_1039_D4QO00732H crossref_primary_10_1002_chin_201516105 crossref_primary_10_1021_acs_orglett_2c02502 crossref_primary_10_1126_science_aba1120 crossref_primary_10_1007_s11426_021_1165_6 crossref_primary_10_1016_j_trechm_2021_12_005 crossref_primary_10_1021_acs_joc_6b00329 crossref_primary_10_1039_D0SC02246B crossref_primary_10_1002_anie_202212595 crossref_primary_10_1021_acs_joc_3c02754 crossref_primary_10_1002_ange_201500201 crossref_primary_10_1002_anie_201710136 crossref_primary_10_1002_ange_201504127 crossref_primary_10_1002_anie_201801146 crossref_primary_10_1002_anie_201505204 crossref_primary_10_1021_acs_accounts_6b00573 crossref_primary_10_1038_s41467_023_44202_1 crossref_primary_10_1055_a_2493_8106 crossref_primary_10_1021_acscatal_1c01351 crossref_primary_10_1002_anie_202011468 crossref_primary_10_1021_acscatal_5b02483 crossref_primary_10_1002_anie_201904543 crossref_primary_10_1002_ange_201604268 crossref_primary_10_1021_acs_orglett_9b00136 crossref_primary_10_1039_D2QO00158F crossref_primary_10_1039_D4SC06867J crossref_primary_10_1002_ange_201911898 crossref_primary_10_1021_acs_joc_5b02302 crossref_primary_10_6023_cjoc202300050 crossref_primary_10_1021_acs_orglett_5b00968 crossref_primary_10_1002_ange_202305042 crossref_primary_10_1002_anie_201500201 crossref_primary_10_1002_anie_202004485 crossref_primary_10_1021_jacs_6b04660 crossref_primary_10_1002_anie_201504127 crossref_primary_10_1002_ange_201808595 crossref_primary_10_1002_adsc_201600258 crossref_primary_10_1002_anie_202300854 crossref_primary_10_1016_j_checat_2021_11_001 crossref_primary_10_1002_anie_201510808 crossref_primary_10_1002_adsc_201800220 crossref_primary_10_1002_ejoc_201800120 crossref_primary_10_1021_acs_orglett_5b01398 crossref_primary_10_1055_a_1790_3230 crossref_primary_10_3762_bjoc_11_230 crossref_primary_10_1021_acs_organomet_7b00751 crossref_primary_10_1016_j_chempr_2021_11_015 crossref_primary_10_1002_anie_201604268 crossref_primary_10_1039_D3CC00653K crossref_primary_10_1007_s10562_018_2324_5 crossref_primary_10_1002_ange_201811998 crossref_primary_10_1021_acs_orglett_7b00608 crossref_primary_10_1021_acs_orglett_2c01283 crossref_primary_10_1002_ange_201609939 crossref_primary_10_1039_C6OB00169F crossref_primary_10_1021_acs_accounts_9b00621 crossref_primary_10_1021_acs_orglett_6b01162 crossref_primary_10_1021_jacs_5b04324 crossref_primary_10_1039_C5OB00066A crossref_primary_10_1021_jacs_2c09479 crossref_primary_10_1021_acs_chemrev_6b00089 crossref_primary_10_1021_jacs_8b06966 crossref_primary_10_1021_jacs_6b11097 crossref_primary_10_1002_anie_201811998 crossref_primary_10_1002_ange_201904543 crossref_primary_10_1021_jacs_7b01718 crossref_primary_10_1021_acs_orglett_1c03491 crossref_primary_10_1016_j_cclet_2019_09_057 crossref_primary_10_1002_anie_201808595 crossref_primary_10_1002_ange_202004485 crossref_primary_10_1039_D1SC04299H crossref_primary_10_1002_anie_201609939 crossref_primary_10_1021_acs_orglett_2c02707 crossref_primary_10_1039_C7OB01163F |
Cites_doi | 10.1021/ja9079435 10.1002/anie.201102639 10.1021/cs500813z 10.1039/c1cc14292e 10.1021/ol025548k 10.1002/anie.200600493 10.1126/science.1226938 10.1021/ja015827n 10.1016/S0957-4166(00)00244-5 10.1021/ol1010483 10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K 10.1021/ja9107897 10.1021/ja408864c 10.1002/anie.200801445 10.1021/ja060716f 10.1002/anie.200502003 10.1002/anie.200601248 10.1002/anie.200801030 10.1002/anie.201108511 10.1021/ja2058633 10.1038/nchem.1836 10.1126/science.1226132 10.1002/anie.200300599 10.1021/ol061742l 10.1002/anie.201403556 10.1021/ol802431v 10.1021/cr900382t 10.1021/cr900239n 10.1126/science.277.5328.936 10.1021/ja015791z 10.1039/b816707a 10.1021/ja056306t 10.1021/ja8031955 10.1039/c2sc20111a |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Association for the Advancement of Science Copyright © 2014, American Association for the Advancement of Science. Copyright © 2014, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2014 American Association for the Advancement of Science – notice: Copyright © 2014, American Association for the Advancement of Science. – notice: Copyright © 2014, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1126/science.1258538 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database PubMed Solid State and Superconductivity Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 455 |
ExternalDocumentID | PMC4382011 3469962701 25342799 10_1126_science_1258538 24917478 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 2R01GM084019 – fundername: NIGMS NIH HHS grantid: R01 GM084019 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX ABCQX CITATION K-O NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c612t-a44f90fdc1eaf86948b0e4ac1935f3400c8af09ac7562e511f8b32cd6c617f663 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 14:06:54 EDT 2025 Thu Jul 10 23:24:30 EDT 2025 Fri Jul 11 02:17:24 EDT 2025 Fri Jul 11 03:09:37 EDT 2025 Fri Jul 25 10:59:24 EDT 2025 Mon Jul 21 06:06:24 EDT 2025 Tue Jul 01 04:10:22 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Thu Jul 03 22:43:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6208 |
Language | English |
License | Copyright © 2014, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c612t-a44f90fdc1eaf86948b0e4ac1935f3400c8af09ac7562e511f8b32cd6c617f663 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1126/science.1258538 |
PMID | 25342799 |
PQID | 1615749716 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4382011 proquest_miscellaneous_2000371074 proquest_miscellaneous_1904251198 proquest_miscellaneous_1616480432 proquest_journals_1615749716 pubmed_primary_25342799 crossref_primary_10_1126_science_1258538 crossref_citationtrail_10_1126_science_1258538 jstor_primary_24917478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-24 |
PublicationDateYYYYMMDD | 2014-10-24 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2014 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 Schmidt F. (e_1_3_2_17_2) 2006; 35 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_22_2 doi: 10.1021/ja9079435 – ident: e_1_3_2_13_2 doi: 10.1002/anie.201102639 – ident: e_1_3_2_24_2 doi: 10.1021/cs500813z – ident: e_1_3_2_14_2 doi: 10.1039/c1cc14292e – volume: 35 start-page: 454 year: 2006 ident: e_1_3_2_17_2 article-title: Catalytic asymmetric approaches towards enantiomerically enriched diarylmethanols and diarylmethylamines publication-title: Chem. Soc. Rev. – ident: e_1_3_2_36_2 doi: 10.1021/ol025548k – ident: e_1_3_2_34_2 doi: 10.1002/anie.200600493 – ident: e_1_3_2_9_2 doi: 10.1126/science.1226938 – ident: e_1_3_2_26_2 doi: 10.1021/ja015827n – ident: e_1_3_2_10_2 doi: 10.1016/S0957-4166(00)00244-5 – ident: e_1_3_2_35_2 doi: 10.1021/ol1010483 – ident: e_1_3_2_21_2 doi: 10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K – ident: e_1_3_2_23_2 doi: 10.1021/ja9107897 – ident: e_1_3_2_12_2 doi: 10.1021/ja408864c – ident: e_1_3_2_7_2 doi: 10.1002/anie.200801445 – ident: e_1_3_2_28_2 doi: 10.1021/ja060716f – ident: e_1_3_2_29_2 doi: 10.1002/anie.200502003 – ident: e_1_3_2_5_2 doi: 10.1002/anie.200601248 – ident: e_1_3_2_11_2 doi: 10.1002/anie.200801030 – ident: e_1_3_2_15_2 doi: 10.1002/anie.201108511 – ident: e_1_3_2_30_2 doi: 10.1021/ja2058633 – ident: e_1_3_2_33_2 doi: 10.1038/nchem.1836 – ident: e_1_3_2_8_2 doi: 10.1126/science.1226132 – ident: e_1_3_2_20_2 doi: 10.1002/anie.200300599 – ident: e_1_3_2_4_2 doi: 10.1021/ol061742l – ident: e_1_3_2_31_2 doi: 10.1002/anie.201403556 – ident: e_1_3_2_32_2 doi: 10.1021/ol802431v – ident: e_1_3_2_18_2 doi: 10.1021/cr900382t – ident: e_1_3_2_3_2 doi: 10.1021/cr900239n – ident: e_1_3_2_25_2 doi: 10.1126/science.277.5328.936 – ident: e_1_3_2_27_2 doi: 10.1021/ja015791z – ident: e_1_3_2_2_2 doi: 10.1039/b816707a – ident: e_1_3_2_19_2 doi: 10.1021/ja056306t – ident: e_1_3_2_6_2 doi: 10.1021/ja8031955 – ident: e_1_3_2_16_2 doi: 10.1039/c2sc20111a |
SSID | ssj0009593 |
Score | 2.5404243 |
Snippet | Asymmetric carbon-hydrogen (C–H) activation reactions often rely on desymmetrization of prochiral C–H bonds on the same achiral molecule, using a chiral... Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic resolution can transform one enantiomer to a... Asymmetric carbon-hydrogen (C-H) activation reactions often rely on desymmetrization of prochiral C-H bonds on the same achiral molecule, using a chiral... Ensuring handedness when breaking C-H bondsMany organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic... Ensuring handedness when breaking C-H bonds Many organic compounds are chiral: They manifest two distinct mirror-image variants, or enantiomers. Kinetic... The development of asymmetric C–H activation reactions through metal insertions remains in its infancy. The commonly used approach is the desymmetrization of... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | ambient temperature Aromatic compounds Asymmetry Carbon Catalysis Catalysts chemical bonding Chemical bonds Enantiomers Enzyme kinetics Hydrogen bonds Iodination Iodine Kinetics Organic Chemistry Organic compounds Palladium Proteins Reaction kinetics screening Substrates |
Title | Room-temperature enantioselective C–H iodination via kinetic resolution |
URI | https://www.jstor.org/stable/24917478 https://www.ncbi.nlm.nih.gov/pubmed/25342799 https://www.proquest.com/docview/1615749716 https://www.proquest.com/docview/1616480432 https://www.proquest.com/docview/1904251198 https://www.proquest.com/docview/2000371074 https://pubmed.ncbi.nlm.nih.gov/PMC4382011 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZKV0hcELuwEFhQkDgsqlIltpM4x25hVSqBBNqVyimyXYeNQAmiDRKceAcegTfjSRjHzk-rFsFeqjaeRKlnPPONM_kGoWcCBhiWocdZEnpULqXHKSGeFBRLnNEM170IXr-JZpd0vggXg8GvXtVStRZj-X3neyXX0SocA73qt2T_Q7PtReEAfAf9widoGD7_ScfvAPV6mlzKMiOPlC5ryctV3dxG1wRNm2IGMhvlJcQpo--vOR99BHxpCJybm-wD1WbNAwBtH-r0VNlWJ05MDUFTUmBP6-0vTK8qm_t_aA4tcl6aSo7cm8PF2oH3teg8L7y3lbVauyERUO3JcbcheY2b6jtoy49swpPxyb5uJ4l90nfaxG5cGuuMsM96XphaDltlf4W7Y0Wvu6UaA9AD5MK6sNgWK0KCGuguAzfQAYZcBA_RweTsxdn5Xm5nyyDVezerufoG-DH1r7sym-0C3R7iubiDbttUxZ0YuztEA1UcoZumeem3I3Rop3Xlnlru8ud30attk3S3TdKd_v7xc-Z2xuiCMbrWGN3OGO-hy_OXF9OZZ7t1eBJQ8hqWOM0SP1vKQPGMRQllwleUS8gQwoxAqJCMZ37CZQyQWwHOz5ggWC4jOD3OAPgeo2FRFuoBclnIlVQJE1gISrifME5FphgXOOQRWTpo3ExjKi2Vve6o8imtU1ocpXbeUzvvDjptT_hsWFz2ix7XemnlGvU76KRRVGp9wCrV-VJMNQ2bg562w-Ch9WM3XqiyqmUiyjT15V9kEh08gyBh-2VwTRalC6gddN_YR3eTIaE4ThIHxRuW0wpoFvnNkSK_qtnkdSUABPmH-_73I3SrW-UnaLj-UqnHAMTX4oldCH8Ak3bjrw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+enantioselective+C%E2%80%93H+iodination+via+kinetic+resolution&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chu%2C+Ling&rft.au=Xiao%2C+Kai-Jiong&rft.au=Yu%2C+Jin-Quan&rft.date=2014-10-24&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=346&rft.issue=6208&rft.spage=451&rft.epage=455&rft_id=info:doi/10.1126%2Fscience.1258538&rft.externalDocID=24917478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |