Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries
Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The...
Saved in:
Published in | Nano-micro letters Vol. 15; no. 1; pp. 192 - 42 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries.
The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed.
The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed.
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. |
---|---|
AbstractList | Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. HighlightsMn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries.The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed.The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed.Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries. |
ArticleNumber | 192 |
Author | Cao, Chuanxiang Ding, Changsheng Gao, Yanfeng Liu, Yu Chen, Zhang |
Author_xml | – sequence: 1 givenname: Changsheng surname: Ding fullname: Ding, Changsheng email: dingcs@shu.edu.cn organization: School of Materials Science and Engineering, Shanghai University – sequence: 2 givenname: Zhang surname: Chen fullname: Chen, Zhang organization: School of Materials Science and Engineering, Shanghai University – sequence: 3 givenname: Chuanxiang surname: Cao fullname: Cao, Chuanxiang organization: School of Materials Science and Engineering, Shanghai University – sequence: 4 givenname: Yu surname: Liu fullname: Liu, Yu organization: Shanghai Institute of Ceramics, Chinese Academy of Sciences – sequence: 5 givenname: Yanfeng surname: Gao fullname: Gao, Yanfeng email: yfgao@shu.edu.cn organization: School of Materials Science and Engineering, Shanghai University, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37555908$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFvFSEUhSemja21f8CFmcSNGyzcAYZZmdem6kvauFDX5A4wT5p5UGFeU_-9TKdW20VX3MB3DpfDfVXthRhcVb1h9AOjtD3JnCqghEJDKGMSyO2L6hCYoEQIwfZK3TBGZEvlQXWcs--pAN5CK_jL6qBpC9RRdVitV_YGg3G59qG-DOQUs7P1-ejMlKJ19SVOLnkccz3EVK9-7Vzc5fpbtH63JesY6lOcZsLl19X-UDh3fL8eVT8-nX8_-0Iuvn5en60uiJEMJtJJyxVvh7ZhTvaqHSSCFIPoBmxtL6nqkDWSWVBOyR4o58goAqKjaE3XNEfVevG1Ea_0dfJbTL91RK_vNmLaaEyTN6PTtueGKe5s15XK2h6tUgqZAiUAFBSvj4vX9a7fOmtcmBKOj0wfnwT_U2_ijWaUMyiBFof39w4plnDypLc-GzeOGOakNCiuADrZzui7J-hV3KVQsiqU6oRqKIhCvf2_pYde_n5ZAWABTIo5Jzc8IIzqeTT0Mhq6jIa-Gw19W0Tqicj4CScf52f58Xlps0hzuSdsXPrX9jOqPxbdzGk |
CitedBy_id | crossref_primary_10_15541_jim20240360 crossref_primary_10_1021_acsami_5c01638 crossref_primary_10_1021_acsanm_4c02993 crossref_primary_10_1007_s40820_024_01355_y crossref_primary_10_1016_j_jcis_2023_12_114 crossref_primary_10_1002_batt_202400300 crossref_primary_10_1002_adma_202312471 crossref_primary_10_1002_smll_202312207 crossref_primary_10_1016_j_vacuum_2023_112671 crossref_primary_10_1002_aenm_202404254 crossref_primary_10_1039_D3QI02392C crossref_primary_10_1016_j_jcis_2025_01_067 crossref_primary_10_1016_j_est_2024_112571 crossref_primary_10_1016_j_ensm_2024_103221 crossref_primary_10_1016_j_jcis_2024_03_028 crossref_primary_10_1016_j_est_2025_116031 crossref_primary_10_1039_D4YA00037D crossref_primary_10_1002_smll_202409130 crossref_primary_10_1007_s11708_025_0983_7 crossref_primary_10_1016_j_est_2024_110887 crossref_primary_10_1021_acsami_4c16439 crossref_primary_10_1149_1945_7111_ad92e3 crossref_primary_10_1016_j_ijoes_2024_100775 crossref_primary_10_1039_D5TA00120J crossref_primary_10_1016_j_est_2024_114246 crossref_primary_10_1016_j_jpowsour_2023_233635 crossref_primary_10_1002_cssc_202400890 crossref_primary_10_1016_j_electacta_2024_144947 crossref_primary_10_1016_j_talanta_2024_125993 crossref_primary_10_1002_advs_202416120 |
Cites_doi | 10.1007/s12274-022-4113-0 10.1016/j.mtchem.2022.101294 10.1002/aenm.202002077 10.1038/srep45048 10.1002/adfm.201703266 10.1021/acs.chemmater.9b02568 10.1016/j.jechem.2021.12.025 10.1002/anie.202003198 10.1002/aenm.201800079 10.1002/aenm.202101287 10.1039/c5ta00396b 10.1016/j.ccr.2022.214478 10.1039/c5ta10571d 10.1002/er.6594 10.1016/j.elecom.2017.11.013 10.1007/s12274-020-2674-3 10.1149/2.054303jes 10.3389/fenrg.2020.615677 10.1039/c3ee24249h 10.1016/j.jcis.2021.10.085 10.1007/s40820-019-0273-1 10.1016/j.apsusc.2018.02.021 10.1016/j.jpowsour.2013.12.011 10.1016/j.jpowsour.2019.04.080 10.1016/j.rser.2018.03.047 10.1038/ncomms4007 10.1039/c5nr06505d 10.1149/1.3428667 10.1016/j.ceramint.2020.10.025 10.6023/A20100492 10.1021/cr500232y 10.1002/ente.201700245 10.1016/j.matchemphys.2020.122952 10.1039/c7nr00793k 10.1039/c6ra09075c 10.1038/Nclimate3045 10.1016/j.mseb.2012.09.003 10.1038/ncomms14424 10.1016/j.ensm.2021.11.027 10.1016/j.jpowsour.2013.02.090 10.1016/j.chempr.2020.05.004 10.1002/tcr.202200122 10.1007/s41918-020-00088-x 10.1016/j.rser.2019.109549 10.3390/nano7090253 10.1016/0167-2738(92)90072-W 10.1039/c5cp02866c 10.1149/2.0121506jes 10.1016/j.jallcom.2012.11.203 10.1021/acsaem.0c01060 10.1002/ente.201402045 10.1039/d1ta01951a 10.1016/j.ensm.2020.10.011 10.1021/acssuschemeng.0c02964 10.1016/j.elecom.2020.106897 10.1016/j.jelechem.2017.08.042 10.1039/c8cc07668e 10.1016/j.elecom.2010.01.020 10.14447/jnmes.v19i3.306 10.1016/j.nanoen.2013.12.014 10.1039/c3cc48382g 10.1002/aenm.201701189 10.1038/ncomms13370 10.1002/aenm.201703008 10.1021/acsami.0c03423 10.1016/j.jallcom.2022.165765 10.1002/anie.201606508 10.3866/PKU.WHXB201905027 10.1002/aenm.202002913 10.1021/acs.chemmater.9b00471 10.1016/j.solidstatesciences.2019.05.019 10.1039/d0ee00771d 10.1021/acs.energyfuels.1c01095 10.1021/acsaem.0c01781 10.1016/j.ensm.2023.02.005 10.1002/aenm.202100867 10.3866/PKU.WHXB201907049 10.1038/s41467-019-12939-3 10.1021/acsami.6b03089 10.1016/j.nanoen.2019.103941 10.1021/acs.chemmater.0c01582 10.1016/j.nanoen.2014.02.010 10.1039/c5ta02568k 10.1002/aenm.201200065 10.1039/c8ta08367c 10.1021/acsaem.7b00022 10.1039/c4ta06018k 10.1016/j.jpowsour.2012.04.018 10.1002/smm2.1192 10.1021/acsami.1c23806 10.1186/s11671-017-2340-1 10.1021/acs.energyfuels.0c02897 10.1039/c6ra01768a 10.1016/j.cej.2021.130459 10.3390/en12234534 10.1002/aenm.202104053 10.1039/d1ta11080b 10.1002/celc.202001323 10.1021/la970767d 10.1007/s00339-020-03799-6 10.1038/ncomms7401 10.1021/jp7108785 10.1016/j.cej.2019.03.251 10.1016/j.electacta.2014.10.052 10.1039/d1qm01011e 10.1016/j.ensm.2022.06.008 10.1016/j.electacta.2013.11.077 10.1016/j.jpcs.2020.109771 10.1016/j.electacta.2013.02.075 10.1002/idm2.12080 10.1039/c4ta04428b 10.1016/j.jallcom.2022.167872 10.1126/science.1212741 10.1021/accountsmr.2c00058 10.1002/aenm.201200598 10.1007/s11708-017-0485-3 10.1002/batt.202000277 10.1016/j.electacta.2017.11.015 10.1016/j.jpowsour.2017.10.088 10.1039/c6ta08736a 10.1016/j.electacta.2019.04.130 10.1002/adma.201700804 10.1021/acsaem.1c02734 10.1002/aenm.201501005 10.3390/polym10080853 10.1002/aenm.202204413 10.3724/SP.J.1077.2013.13388 10.1016/j.cej.2021.129003 10.1557/s43577-021-00098-0 10.1002/adma.202108384 10.1038/s41467-022-35617-3 10.1039/c6cs00776g 10.1002/aenm.201600943 10.1016/j.epsr.2008.09.017 10.1038/s41467-018-03257-1 10.1002/smtd.201800220 10.1016/j.mtener.2020.100432 10.1002/chem.202202997 10.1039/d2ta05309h 10.1002/aenm.201703055 10.1002/cssc.201801930 10.5796/electrochemistry.85.179 10.1039/c5ta08857g 10.1039/d1ee01392k 10.1002/adma.201904427 10.1021/acs.jpcc.8b05506 10.1016/j.chempr.2017.05.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. Shanghai Jiao Tong University. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Shanghai Jiao Tong University 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Shanghai Jiao Tong University. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Shanghai Jiao Tong University 2023 |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-023-01162-x |
DatabaseName | Springer Nature Link CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 42 |
ExternalDocumentID | oai_doaj_org_article_db4c184ed99b4cddbad888a182852282 PMC10412524 37555908 10_1007_s40820_023_01162_x |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c612t-96d4847f731e6b87f6a265f59fa7db6089a1361d28e86b2044a10a2aae0adc933 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:24:42 EDT 2025 Thu Aug 21 18:40:10 EDT 2025 Fri Jul 11 15:55:04 EDT 2025 Wed Aug 13 08:04:26 EDT 2025 Thu Apr 03 07:01:21 EDT 2025 Tue Jul 01 00:55:50 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aqueous electrolytes Electrochemical performance Mn-based electrode materials Improvement methods Sodium-ion batteries |
Language | English |
License | 2023. Shanghai Jiao Tong University. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-96d4847f731e6b87f6a265f59fa7db6089a1361d28e86b2044a10a2aae0adc933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-023-01162-x |
PMID | 37555908 |
PQID | 2889583025 |
PQPubID | 2044332 |
PageCount | 42 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db4c184ed99b4cddbad888a182852282 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10412524 proquest_miscellaneous_2848229674 proquest_journals_2889583025 pubmed_primary_37555908 crossref_primary_10_1007_s40820_023_01162_x crossref_citationtrail_10_1007_s40820_023_01162_x springer_journals_10_1007_s40820_023_01162_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Shan, Charles, Lei, Qiao, Wang (CR112) 2016; 7 Hou, Li, Liang, Zhu, Qian (CR88) 2015; 3 Wang, Zhou, Li, Shi, Xu (CR139) 2022; 918 Guerra, Zhang, Eichman, Denholm, Kurtz (CR2) 2020; 13 Liu, Qiao, Zhang, Xu, Li (CR53) 2014; 5 Liu, Lei, Song, Zhu, Zhu (CR87) 2022; 14 Chua, Cai, Kou, Satish, Ren (CR98) 2019; 370 Shang, Li, Song, Huang, Yang (CR147) 2020; 6 Wang, Liu, Sun, Liu (CR28) 2021; 5 Liu, Pang, Dong, Zhang, Mi (CR44) 2019; 311 Li, Young, Xiang, Carter, Chiang (CR73) 2013; 3 Zhou, Zhang, Zhao, Liu, Lam (CR131) 2021; 425 Liu, Ao, Jin, Hou, Zhang (CR18) 2020; 17 Zhang, Liu, Chang, Yang, Wen (CR65) 2014; 253 Nwanya, Ndipingwi, Anthony, Ezema, Maaza (CR103) 2021; 45 Barpanda, Lander, Nishimura, Yamada (CR13) 2018; 8 Maddukuri, Nimkar, Chae, Penki, Luski (CR90) 2021; 8 Shin, Zheng, Zhang, Wu, Tang (CR117) 2020; 3 Zuo, Yang (CR63) 2022; 3 Firouzi, Qiao, Motallebi, Valencia, Israel (CR141) 2018; 9 Devaraj, Munichandraiah (CR48) 2008; 112 Hou, Zhang, Li, Zhu, Liang (CR22) 2017; 5 Braff, Mueller, Trancik (CR1) 2016; 6 Suo, Borodin, Wang, Rong, Sun (CR92) 2017; 7 Hwang, Myung, Sun (CR10) 2017; 46 Yun, Schiegg, Liang, Scieszka, Garlyyev (CR142) 2018; 1 Zhou, Zhao, Chen, Cao (CR67) 2021; 122 Pang, Nie, Yuan, Shen, Zhang (CR77) 2014; 2 Zhang, Tan, Li, Passerini, Huang (CR128) 2021; 14 Jabeen, Hussain, Xia, Sun, Zhu (CR62) 2017; 29 Yuan, Xiang, Jin, Jin, Wu (CR109) 2018; 259 Divya, Ostergaard (CR3) 2009; 79 Whitacre, Wiley, Shanbhag, Wenzhuo, Mohamed (CR37) 2012; 213 Rakocevic, Strbac, Potocnik, Popovic, Jugovic (CR84) 2021; 47 Yang, Qian (CR19) 2013; 28 Hou, Mao, Zhang, Chen, Ao (CR120) 2022; 15 Liu, Wu, Huang, Liu, Duployer (CR34) 2021; 11 Usui, Suzuki, Domi, Sakaguchi (CR60) 2020; 8 Tang, Zhu, Hou, Liu, Wu (CR17) 2013; 6 Bin, Wang, Tamirat, Suo, Wang (CR20) 2018; 8 Gao, Yang, Bai, Wu (CR27) 2021; 9 Sharma, Manthiram (CR129) 2022; 10 Wu, Shabhag, Chang, Rutt, Whitacre (CR89) 2015; 162 Nzimande, Haruna, Mwonga, Rasche, Cummings (CR137) 2021; 4 Nakamoto, Sakamoto, Ito, Kitajou, Okada (CR122) 2017; 85 Nakamoto, Sakamoto, Sawada, Ito, Okada (CR143) 2019; 3 Liu, Zhang, Xiao, Liu, Wen (CR66) 2014; 116 Oliver-Tolentino, Vazquez-Samperio, Arellano-Ahumada, Guzman-Vargas, Ramirez-Rosales (CR125) 2018; 122 Guo, Wang, Deng, Wang, Chen (CR135) 2020; 32 Yee, Shanbhag, Wu, Carlisle, Chang (CR82) 2018; 86 Jiang, Liu, Yue, Zhang, Zhou (CR123) 2020; 32 Zhang, Hou, Li, Liang, Zhu (CR83) 2016; 4 Wang, Feng, Laul, Zhu, Provencher (CR81) 2018; 374 Yin, Liu, Yang, Shan, Zhao (CR110) 2017; 12 Chen, Xu, Wang, Ren, Zhan (CR33) 2022; 10 Wu, Mohamed, Whitacre (CR74) 2013; 160 Sun, Dong, Kong (CR42) 2016; 19 Shen, Liu, Liu, Liu, Ding (CR25) 2021; 34 Chua, Cai, Lim, Kumar, Satish (CR96) 2020; 12 Gu, Sun, Yao, Shui, Shu (CR104) 2021; 149 Tekin, Sevinc, Morcrette, Demir-Cakan (CR69) 2017; 5 Zhang, Chen, Ye, Zhang, Hou (CR39) 2023; 13 Shan, Guo, Charles, Lebens-Higgins, Razek (CR64) 2019; 10 Shiprath, Manjunatha, Naidu, Khan, Asiri (CR136) 2020; 248 Liu, Qiao, Lou, Zhang, Zhang (CR54) 2016; 8 Wang, Liu, Lee, Qiao, Yang (CR138) 2015; 6 Kim, Kim, Ding, Lee, Lim (CR5) 2016; 6 Xie, Sakamoto, Kitajou, Nakamoto, Zhao (CR134) 2019; 12 Liu, Sun, Li, Jin, Zhao (CR126) 2023; 57 Qiu, Xu, Wu, Ji (CR114) 2022; 5 Minakshi, Meyrick (CR50) 2013; 101 Chayambuka, Mulder, Danilov, Notten (CR11) 2018; 8 Guo, Zhao, Ding, Dong, Chen (CR72) 2017; 3 Wu, Ni, Hu, Ma (CR145) 2019; 11 Huang, Dong, Guo, Wang (CR26) 2020; 59 Lei, Liu, Wan, Luo, Xiang (CR146) 2019; 55 Gu, Yao, Sun, Fang, Shui (CR85) 2020; 126 Shan, He, Tan, Zhang, Wang (CR111) 2019; 94 Gao, Goodenough (CR43) 2016; 55 Shan, Guo, Page, Neuefeind, Ravel (CR55) 2019; 31 Yang, Bremner, Menictas, Kay (CR6) 2018; 91 Wang, Mu, Liu, Yang, Yu (CR99) 2015; 5 Peng, Zhang, Liu, Wang, Chou (CR14) 2022; 34 Zhao, Lin, Zhang, Deng (CR76) 2015; 7 Yu, Huang, He, Tang, Huang, Liu, Wu, Peng, Zhao, Lan, Wei (CR57) 2023 Chae, Chakraborty, Kunnikuruvan, Attias, Maddukuri (CR45) 2020; 10 Jayakumar, Hemalatha, Ramesha, Prakash (CR101) 2015; 17 Zhang, Bakenov, Tan, Huang (CR108) 2018; 10 Zhang, Yuan, Ye, Jiang, Yin (CR49) 2014; 148 Zhou, Chi, Shi, Zhao, Li (CR31) 2023; 27 Tomiyasu, Shikata, Takao, Asanuma, Taruta (CR23) 2017; 7 Ma, Zhang, Xue (CR21) 2021; 79 Reber, Grissa, Becker, Kuhnel, Battaglia (CR124) 2021; 11 Li, Liu, Yuan, Wang, Sheng (CR91) 2021; 37 Ponrouch, Monti, Boschin, Steen, Johansson (CR15) 2015; 3 Lim, Jung, Park, Lee, Kim (CR41) 2018; 446 Minakshi (CR38) 2012; 177 Kumar, Kheireddine, Nisar, Shakoor, Essehli (CR133) 2019; 429 Sun, Liu, Wang, Nian, Feng (CR71) 2020; 13 Zhang, Li, Xiang, Sun (CR100) 2017; 802 Wei, Chang, Butts, DeBlock, Lan (CR56) 2023; 14 Guo, Shao, Zhang, Cui, Mao (CR95) 2022; 608 Shan, Guo, Xu, Teng (CR113) 2017; 11 Perveen, Siddiq, Shahzad, Ihsan, Ahmad (CR12) 2020; 119 Ren, Fang, Wang, Li, Li (CR61) 2020; 34 Hijazi, Desai, Mariyappan (CR16) 2021; 4 Whitacre, Tevar, Sharma (CR107) 2010; 12 Ke, Dong, Lin, Yu, Wang (CR78) 2017; 9 Wei, Huang, Huang, Wang, Jiang (CR58) 2023; 2 Chae, Kim, Lyoo, Attias, Elias (CR94) 2020; 3 Tevar, Whitacre (CR106) 2010; 157 Han, Zhang, Varzi, Passerini (CR116) 2018; 11 Qiu, Wu, Wang, Lucero, Wang (CR118) 2019; 64 Li, Liu, Yuan, Wang, Sheng (CR70) 2020; 36 Kim, Ponraj, Kannan, Lee, Fathi (CR40) 2013; 244 Pasta, Wessells, Liu, Nelson, McDowell (CR140) 2014; 5 Shan, Charles, Xu, Feygenson, Su (CR59) 2018; 28 Gao, Tang, Xiao, Guo, Chen (CR24) 2022; 69 Chae, Elias, Aurbach (CR68) 2021; 8 Yadav, Gallaway, Turney, Nyce, Huang (CR35) 2017; 8 Pasta, Wang, Ruffo, Qiao, Lee (CR121) 2016; 4 Zhao, Wang, Zhang, Deng (CR75) 2015; 3 Bai, Song, Wen, Cheng, Cao (CR93) 2016; 6 Wu, Liu, Bu, Zhang, Zhang (CR132) 2023; 934 Zhang, Dong, Li, Wang, Wei (CR46) 2021; 35 Li, Zhang, Sun, Guo, Yuan (CR29) 2021; 11 Tarascon, Wilkens, Mc Kinnon, Barboux (CR36) 1992; 57 Yuan, Wei, Yang, Zhang, Jia (CR127) 2022; 50 Kim, Hong, Park, Kim, Kim (CR8) 2014; 114 Wang, Yan (CR51) 2022; 45 Hou, Zhang, Chen, Qian, Chen (CR97) 2022; 12 Chen, Liu, Yu, Qu, Wang (CR119) 2021; 415 Lamb, Jeevarajan (CR9) 2021; 46 Liu, Qiao, Zhang, Wang, Chen (CR52) 2015; 3 Chang, Yu, Xing, Guo, Xie (CR32) 2022; 22 Xie, Sun, Gao, Ma, Yin (CR115) 2022; 460 Wheeler, Capone, Day, Tang, Pasta (CR144) 2019; 31 Dunn, Kamath, Tarascon (CR4) 2011; 334 Zhang, Liu, Wu, Yang, Chang (CR86) 2014; 50 Yin, Liu, Zhao, Feng, Zhang (CR105) 2017; 7 Cao, Xiao, Sun, Dong, Huang (CR30) 2023; 29 Gu, Zhou, Liu, Wang, Cheng (CR80) 2016; 6 Boyd, Dhall, LeBeau, Augustyn (CR102) 2018; 6 Minakshi, Meyrick (CR130) 2013; 555 Deng, Zhang, Dong, Shang (CR79) 2014; 4 Wang, Yi, Xia (CR7) 2012; 2 Kanoh, Tang, Makita, Ooi (CR47) 1997; 13 DGGJM Tarascon (1162_CR36) 1992; 57 FP Gu (1162_CR104) 2021; 149 Y Zhang (1162_CR49) 2014; 148 KC Divya (1162_CR3) 2009; 79 Y Liu (1162_CR54) 2016; 8 L Sharma (1162_CR129) 2022; 10 BH Zhang (1162_CR86) 2014; 50 HC Gao (1162_CR43) 2016; 55 AD Tevar (1162_CR106) 2010; 157 S Liu (1162_CR87) 2022; 14 MA Oliver-Tolentino (1162_CR125) 2018; 122 MS Chae (1162_CR94) 2020; 3 M Jayakumar (1162_CR101) 2015; 17 S Boyd (1162_CR102) 2018; 6 PR Kumar (1162_CR133) 2019; 429 YS Wang (1162_CR99) 2015; 5 XQ Shan (1162_CR113) 2017; 11 H Lim (1162_CR41) 2018; 446 DJ Kim (1162_CR40) 2013; 244 TT Gu (1162_CR80) 2016; 6 LW Jiang (1162_CR123) 2020; 32 YG Cao (1162_CR30) 2023; 29 W Wu (1162_CR74) 2013; 160 HX Yang (1162_CR19) 2013; 28 Z Li (1162_CR73) 2013; 3 B Tekin (1162_CR69) 2017; 5 HX Li (1162_CR29) 2021; 11 G Pang (1162_CR77) 2014; 2 ZG Hou (1162_CR97) 2022; 12 QL Wei (1162_CR56) 2023; 14 J Han (1162_CR116) 2018; 11 LL Ke (1162_CR78) 2017; 9 H Tomiyasu (1162_CR23) 2017; 7 FP Gu (1162_CR85) 2020; 126 JH Huang (1162_CR26) 2020; 59 XY Guo (1162_CR135) 2020; 32 M Minakshi (1162_CR50) 2013; 101 P Lei (1162_CR146) 2019; 55 ZG Hou (1162_CR22) 2017; 5 Y Liu (1162_CR126) 2023; 57 H Gao (1162_CR24) 2022; 69 AC Nwanya (1162_CR103) 2021; 45 LM Suo (1162_CR92) 2017; 7 BX Xie (1162_CR115) 2022; 460 X Zhou (1162_CR67) 2021; 122 XQ Zhang (1162_CR83) 2016; 4 N Nzimande (1162_CR137) 2021; 4 A Ponrouch (1162_CR15) 2015; 3 ZX Liu (1162_CR44) 2019; 311 BH Zhang (1162_CR65) 2014; 253 M Pasta (1162_CR140) 2014; 5 J Peng (1162_CR14) 2022; 34 GG Yadav (1162_CR35) 2017; 8 Y Wang (1162_CR139) 2022; 918 BD Zhao (1162_CR75) 2015; 3 S Qiu (1162_CR118) 2019; 64 JF Whitacre (1162_CR37) 2012; 213 Y Liu (1162_CR52) 2015; 3 H Usui (1162_CR60) 2020; 8 WH Zuo (1162_CR63) 2022; 3 FX Yin (1162_CR105) 2017; 7 K Shiprath (1162_CR136) 2020; 248 JY Hwang (1162_CR10) 2017; 46 ZW Guo (1162_CR72) 2017; 3 FX Yin (1162_CR110) 2017; 12 JT Wu (1162_CR132) 2023; 934 JZ Sun (1162_CR42) 2016; 19 XQ Shan (1162_CR59) 2018; 28 OJ Guerra (1162_CR2) 2020; 13 YX Chang (1162_CR32) 2022; 22 C Deng (1162_CR79) 2014; 4 Y Yuan (1162_CR127) 2022; 50 YH Shen (1162_CR25) 2021; 34 HZ Guo (1162_CR95) 2022; 608 M Minakshi (1162_CR38) 2012; 177 XQ Shan (1162_CR55) 2019; 31 BD Zhao (1162_CR76) 2015; 7 K Nakamoto (1162_CR143) 2019; 3 R Chua (1162_CR96) 2020; 12 LY Liu (1162_CR34) 2021; 11 Y Zhou (1162_CR131) 2021; 425 J Chen (1162_CR33) 2022; 10 Y Shang (1162_CR147) 2020; 6 Q Wei (1162_CR58) 2023; 2 MS Chae (1162_CR45) 2020; 10 H Li (1162_CR91) 2021; 37 D Reber (1162_CR124) 2021; 11 MG Wu (1162_CR145) 2019; 11 A Zhou (1162_CR31) 2023; 27 JS Chen (1162_CR119) 2021; 415 YS Wang (1162_CR138) 2015; 6 YG Wang (1162_CR7) 2012; 2 L Rakocevic (1162_CR84) 2021; 47 M Ren (1162_CR61) 2020; 34 T Perveen (1162_CR12) 2020; 119 BW Xie (1162_CR134) 2019; 12 J Yun (1162_CR142) 2018; 1 Y Liu (1162_CR53) 2014; 5 Y Wang (1162_CR81) 2018; 374 ZG Hou (1162_CR120) 2022; 15 XQ Zhang (1162_CR39) 2023; 13 K Chayambuka (1162_CR11) 2018; 8 R Chua (1162_CR98) 2019; 370 A Firouzi (1162_CR141) 2018; 9 XQ Shan (1162_CR64) 2019; 10 B Dunn (1162_CR4) 2011; 334 S Qiu (1162_CR114) 2022; 5 J Lamb (1162_CR9) 2021; 46 F Zhang (1162_CR100) 2017; 802 K Nakamoto (1162_CR122) 2017; 85 M Pasta (1162_CR121) 2016; 4 TJ Sun (1162_CR71) 2020; 13 H Ma (1162_CR21) 2021; 79 GH Yuan (1162_CR109) 2018; 259 H Kanoh (1162_CR47) 1997; 13 D Bin (1162_CR20) 2018; 8 YY Wang (1162_CR28) 2021; 5 J Yu (1162_CR57) 2023 H Kim (1162_CR5) 2016; 6 H Kim (1162_CR8) 2014; 114 S Maddukuri (1162_CR90) 2021; 8 K Shin (1162_CR117) 2020; 3 N Jabeen (1162_CR62) 2017; 29 MS Chae (1162_CR68) 2021; 8 H Zhang (1162_CR128) 2021; 14 P Barpanda (1162_CR13) 2018; 8 H Li (1162_CR70) 2020; 36 W Wu (1162_CR89) 2015; 162 M Liu (1162_CR18) 2020; 17 SL Bai (1162_CR93) 2016; 6 JF Whitacre (1162_CR107) 2010; 12 ZZ Shan (1162_CR111) 2019; 94 WA Braff (1162_CR1) 2016; 6 ZG Hou (1162_CR88) 2015; 3 Y Liu (1162_CR66) 2014; 116 S Wheeler (1162_CR144) 2019; 31 YG Zhang (1162_CR108) 2018; 10 H Hijazi (1162_CR16) 2021; 4 W Tang (1162_CR17) 2013; 6 G Yee (1162_CR82) 2018; 86 MQ Zhang (1162_CR46) 2021; 35 YQ Yang (1162_CR6) 2018; 91 M Minakshi (1162_CR130) 2013; 555 XQ Shan (1162_CR112) 2016; 7 PY Wang (1162_CR51) 2022; 45 S Devaraj (1162_CR48) 2008; 112 YN Gao (1162_CR27) 2021; 9 |
References_xml | – volume: 15 start-page: 5072 issue: 6 year: 2022 end-page: 5080 ident: CR120 article-title: Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery publication-title: Nano Res. doi: 10.1007/s12274-022-4113-0 – volume: 27 start-page: 101294 year: 2023 ident: CR31 article-title: Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101294 – volume: 10 start-page: 2002077 issue: 37 year: 2020 ident: CR45 article-title: Vacancy-driven high rate capabilities in calcium-doped Na MnO cathodes for aqueous sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002077 – volume: 7 start-page: 45048 year: 2017 ident: CR23 article-title: An aqueous electrolyte of the widest potential window and its superior capability for capacitors publication-title: Sci. Rep. doi: 10.1038/srep45048 – volume: 28 start-page: 1703266 issue: 3 year: 2018 ident: CR59 article-title: Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703266 – volume: 31 start-page: 8774 issue: 21 year: 2019 end-page: 8786 ident: CR55 article-title: Framework doping of ni enhances pseudocapacitive Na-ion storage of (Ni)MnO layered birnessite publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02568 – volume: 69 start-page: 84 year: 2022 end-page: 99 ident: CR24 article-title: Recent advances in "water in salt" electrolytes for aqueous rechargeable monovalent-ion (Li , Na , K ) batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.025 – volume: 59 start-page: 18322 issue: 42 year: 2020 end-page: 18333 ident: CR26 article-title: Progress of organic electrodes in aqueous electrolyte for energy storage and conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003198 – volume: 8 start-page: 1800079 issue: 16 year: 2018 ident: CR11 article-title: Sodium-ion battery materials and electrochemical properties reviewed publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800079 – volume: 11 start-page: 2101287 issue: 31 year: 2021 ident: CR34 article-title: Alkali ions pre-intercalated layered MnO nanosheet for zinc-ions storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101287 – volume: 3 start-page: 7780 issue: 15 year: 2015 end-page: 7785 ident: CR52 article-title: Nanostructured alkali cation incorporated delta-MnO cathode materials for aqueous sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c5ta00396b – volume: 460 start-page: 214478 year: 2022 ident: CR115 article-title: Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214478 – volume: 4 start-page: 4211 issue: 11 year: 2016 end-page: 4223 ident: CR121 article-title: Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c5ta10571d – volume: 45 start-page: 11123 issue: 7 year: 2021 end-page: 11134 ident: CR103 article-title: Impedance studies of biosynthesized Na Ni Co Mn O applied in an aqueous sodium-ion battery publication-title: Int. J. Energy Res. doi: 10.1002/er.6594 – volume: 86 start-page: 104 year: 2018 end-page: 107 ident: CR82 article-title: TiP O exhibiting reversible interaction with sodium ions in aqueous electrolytes publication-title: Electrochem. commun. doi: 10.1016/j.elecom.2017.11.013 – volume: 13 start-page: 676 issue: 3 year: 2020 end-page: 683 ident: CR71 article-title: A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range publication-title: Nano Res. doi: 10.1007/s12274-020-2674-3 – volume: 160 start-page: A497 issue: 3 year: 2013 end-page: A504 ident: CR74 article-title: Microwave synthesized NaTi (PO ) as an aqueous sodium-ion negative electrode publication-title: J. Electrochem. Soc. doi: 10.1149/2.054303jes – volume: 8 start-page: 615677 year: 2021 ident: CR90 article-title: Na MnO /polyimide aqueous Na-ion batteries for large energy storage applications publication-title: Front. Energy Res. doi: 10.3389/fenrg.2020.615677 – volume: 6 start-page: 2093 issue: 7 year: 2013 end-page: 2104 ident: CR17 article-title: Aqueous rechargeable lithium batteries as an energy storage system of superfast charging publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24249h – volume: 608 start-page: 1481 year: 2022 end-page: 1488 ident: CR95 article-title: Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.085 – volume: 11 start-page: 44 issue: 1 year: 2019 ident: CR145 article-title: NASICON-structured NaTi (PO ) for sustainable energy storage publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0273-1 – volume: 446 start-page: 131 year: 2018 end-page: 138 ident: CR41 article-title: High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-mwcnt core-shell nanowires and Na MnO nanorods publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.021 – volume: 253 start-page: 98 year: 2014 end-page: 103 ident: CR65 article-title: Nanowire Na MnO from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.011 – volume: 429 start-page: 149 year: 2019 end-page: 155 ident: CR133 article-title: Na MnV(PO ) -rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.080 – volume: 91 start-page: 109 year: 2018 end-page: 125 ident: CR6 article-title: Battery energy storage system size determination in renewable energy systems: a review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2018.03.047 – volume: 5 start-page: 3007 year: 2014 ident: CR140 article-title: Full open-framework batteries for stationary energy storage publication-title: Nat. Commun. doi: 10.1038/ncomms4007 – volume: 7 start-page: 18552 issue: 44 year: 2015 end-page: 18560 ident: CR76 article-title: A frogspawn-inspired hierarchical porous NaTi (PO ) -C array for high-rate and long-life aqueous rechargeable sodium batteries publication-title: Nanoscale doi: 10.1039/c5nr06505d – volume: 157 start-page: A870 issue: 7 year: 2010 end-page: A875 ident: CR106 article-title: Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na Mn O in aqueous electrolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1.3428667 – volume: 47 start-page: 4595 issue: 4 year: 2021 end-page: 4603 ident: CR84 article-title: The Na MnO materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries publication-title: Ceram Int. doi: 10.1016/j.ceramint.2020.10.025 – volume: 79 start-page: 388 issue: 4 year: 2021 end-page: 405 ident: CR21 article-title: Research progress and practical challenges of aqueous sodium-ion batteries publication-title: Acta. Chim. Sin. doi: 10.6023/A20100492 – volume: 114 start-page: 11788 issue: 23 year: 2014 end-page: 11827 ident: CR8 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 5 start-page: 2182 issue: 12 year: 2017 end-page: 2188 ident: CR69 article-title: A new sodium-based aqueous rechargeable battery system: the special case of Na MnO /dissolved sodium polysulfide publication-title: Energy Technol. doi: 10.1002/ente.201700245 – volume: 248 start-page: 122952 year: 2020 ident: CR136 article-title: Na MnPO CO as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122952 – volume: 9 start-page: 4183 issue: 12 year: 2017 end-page: 4190 ident: CR78 article-title: A NaV (PO ) @C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries publication-title: Nanoscale doi: 10.1039/c7nr00793k – volume: 6 start-page: 53319 issue: 58 year: 2016 end-page: 53323 ident: CR80 article-title: A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries publication-title: RSC Adv. doi: 10.1039/c6ra09075c – volume: 6 start-page: 964 issue: 10 year: 2016 end-page: 969 ident: CR1 article-title: Value of storage technologies for wind and solar energy publication-title: Nat. Clim. Change doi: 10.1038/Nclimate3045 – volume: 177 start-page: 1788 issue: 20 year: 2012 end-page: 1792 ident: CR38 article-title: Looking beyond lithium-ion technology - aqueous NaOH battery publication-title: Mater. Sci. Eng. B-Adv. doi: 10.1016/j.mseb.2012.09.003 – volume: 8 start-page: 14424 year: 2017 ident: CR35 article-title: Regenerable Cu-intercalated MnO layered cathode for highly cyclable energy dense batteries publication-title: Nat. Commun. doi: 10.1038/ncomms14424 – volume: 45 start-page: 142 year: 2022 end-page: 181 ident: CR51 article-title: Recent advances in Mg-Li and Mg-Na hybrid batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.027 – volume: 244 start-page: 758 year: 2013 end-page: 763 ident: CR40 article-title: Diffusion behavior of sodium ions in Na MnO in aqueous and non-aqueous electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.090 – volume: 6 start-page: 1804 issue: 7 year: 2020 end-page: 1818 ident: CR147 article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage publication-title: Chem doi: 10.1016/j.chempr.2020.05.004 – volume: 22 start-page: e202200122 issue: 10 year: 2022 ident: CR32 article-title: Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low-cost sodium ion batteries publication-title: Chem. Rec. doi: 10.1002/tcr.202200122 – volume: 5 start-page: 242 issue: 2 year: 2022 end-page: 262 ident: CR114 article-title: Prussian blue analogues as electrodes for aqueous monovalent ion batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00088-x – volume: 119 start-page: 109549 year: 2020 ident: CR12 article-title: Prospects in anode materials for sodium ion batteries—a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109549 – volume: 7 start-page: 253 issue: 9 year: 2017 ident: CR105 article-title: Electrochemical properties of an na4mn9o18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery publication-title: Nanomaterials doi: 10.3390/nano7090253 – volume: 57 start-page: 113 year: 1992 end-page: 120 ident: CR36 article-title: Chemical and electrochemical insertion of na into the spinel -MnO phase publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90072-W – volume: 17 start-page: 20733 issue: 32 year: 2015 end-page: 20740 ident: CR101 article-title: Framework structured Na Mn Ti O as an electrode for Na-ion storage hybrid devices publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c5cp02866c – volume: 162 start-page: A803 issue: 6 year: 2015 end-page: A808 ident: CR89 article-title: Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na MnO aqueous sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121506jes – volume: 555 start-page: 10 year: 2013 end-page: 15 ident: CR130 article-title: Reversible sodiation in maricite NaMn Co Ni PO for renewable energy storage publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.11.203 – volume: 3 start-page: 7030 issue: 7 year: 2020 end-page: 7038 ident: CR117 article-title: Facile ion-exchange strategy for Na /K hybrid-ion batteries with superior rate capability and cycling performance publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01060 – volume: 2 start-page: 705 issue: 8 year: 2014 end-page: 712 ident: CR77 article-title: Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi (PO ) /MWNTs–Na MnO system publication-title: Energy Technol. doi: 10.1002/ente.201402045 – volume: 9 start-page: 11472 issue: 19 year: 2021 end-page: 11500 ident: CR27 article-title: Mn-based oxides for aqueous rechargeable metal ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/d1ta01951a – volume: 34 start-page: 461 year: 2021 end-page: 474 ident: CR25 article-title: Water-in-salt electrolyte for safe and high-energy aqueous battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.011 – volume: 8 start-page: 9165 issue: 24 year: 2020 end-page: 9173 ident: CR60 article-title: Impacts of MnO crystal structures and Fe doping in those on photoelectrochemical charge-discharge properties of TiO /MnO composite electrodes publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02964 – volume: 122 start-page: 106897 year: 2021 ident: CR67 article-title: Research progress of tunnel-structural Na MnO cathode for sodium-ion batteries: a mini review publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106897 – volume: 802 start-page: 22 year: 2017 end-page: 26 ident: CR100 article-title: Highly stable Na-storage performance of Na Mn Ti05O microrods as cathode for aqueous sodium-ion batteries publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.08.042 – volume: 55 start-page: 509 issue: 4 year: 2019 end-page: 512 ident: CR146 article-title: Ultrafast Na intercalation chemistry of Na Ti Mn (PO ) nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries publication-title: Chem. Commun. doi: 10.1039/c8cc07668e – volume: 12 start-page: 463 issue: 3 year: 2010 end-page: 466 ident: CR107 article-title: Na Mn O as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.01.020 – volume: 19 start-page: 117 issue: 3 year: 2016 end-page: 119 ident: CR42 article-title: Synthesis of Na MnFe(CN) and its application as cathode material for aqueous rechargeable sodium-ion battery publication-title: J. New Mater. Electrochem. Syst. doi: 10.14447/jnmes.v19i3.306 – volume: 4 start-page: 49 year: 2014 end-page: 55 ident: CR79 article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.014 – volume: 50 start-page: 1209 issue: 10 year: 2014 end-page: 1211 ident: CR86 article-title: An aqueous rechargeable battery based on zinc anode and Na MnO publication-title: Chem. Commun. doi: 10.1039/c3cc48382g – volume: 7 start-page: 1701189 issue: 21 year: 2017 ident: CR92 article-title: Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701189 – volume: 7 start-page: 13370 year: 2016 ident: CR112 article-title: Bivalence Mn O with hydroxylated interphase for high-voltage aqueous sodium-ion storage publication-title: Nat. Commun. doi: 10.1038/ncomms13370 – volume: 8 start-page: 1703008 issue: 17 year: 2018 ident: CR20 article-title: Progress in aqueous rechargeable sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703008 – volume: 12 start-page: 22862 issue: 20 year: 2020 end-page: 22872 ident: CR96 article-title: Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03423 – volume: 918 start-page: 165765 year: 2022 ident: CR139 article-title: Na [Mn Vac Ti ]O : A new layered negative electrode material for aqueous Na-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165765 – volume: 55 start-page: 12768 issue: 41 year: 2016 end-page: 12772 ident: CR43 article-title: An aqueous symmetric sodium-ion battery with NASICON-structured Na MnTi(PO ) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606508 – volume: 36 start-page: 1905027 issue: 5 year: 2020 ident: CR70 article-title: Electrochemical mechanism of Na MnO in alkaline aqueous solution publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201905027 – volume: 11 start-page: 2002913 issue: 5 year: 2021 ident: CR124 article-title: Anion selection criteria for water-in-salt electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002913 – volume: 31 start-page: 2619 issue: 7 year: 2019 end-page: 2626 ident: CR144 article-title: Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00471 – volume: 94 start-page: 77 year: 2019 end-page: 84 ident: CR111 article-title: Preparation of Na Mn O /carbon nanotube/reduced graphene oxide by spray drying as cathode materials for sodium ion batteries publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2019.05.019 – volume: 13 start-page: 1909 issue: 7 year: 2020 end-page: 1922 ident: CR2 article-title: The value of seasonal energy storage technologies for the integration of wind and solar power publication-title: Energy Environ. Sci. doi: 10.1039/d0ee00771d – volume: 35 start-page: 10860 issue: 13 year: 2021 end-page: 10868 ident: CR46 article-title: High-performance aqueous sodium-ion battery based on graphene-doped Na MnFe(CN) -zinc with a highly stable discharge platform and wide electrochemical stability publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01095 – volume: 3 start-page: 10744 issue: 11 year: 2020 end-page: 10751 ident: CR94 article-title: Boosting tunnel-type manganese oxide cathodes by lithium nitrate for practical aqueous Na-ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01781 – volume: 57 start-page: 69 year: 2023 end-page: 80 ident: CR126 article-title: Recent progress of Mn-based nasicon-type sodium ion cathodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.02.005 – volume: 11 start-page: 2100867 issue: 25 year: 2021 ident: CR29 article-title: Manganese-based materials for rechargeable batteries beyond lithium-ion publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100867 – volume: 37 start-page: 1907049 issue: 3 year: 2021 ident: CR91 article-title: Influence of NaOH concentration on sodium storage performance of Na MnO publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201907049 – volume: 10 start-page: 4975 year: 2019 ident: CR64 article-title: Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite publication-title: Nat. Commun. doi: 10.1038/s41467-019-12939-3 – volume: 8 start-page: 14564 issue: 23 year: 2016 end-page: 14571 ident: CR54 article-title: Hollow K MnO nanospheres as cathode for high-performance aqueous sodium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03089 – volume: 64 start-page: 103941 year: 2019 ident: CR118 article-title: NASICON-type Na Fe (PO ) as a low-cost and high-rate anode material for aqueous sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103941 – volume: 32 start-page: 6875 issue: 16 year: 2020 end-page: 6885 ident: CR135 article-title: Design principles for aqueous Na-ion battery cathodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01582 – volume: 5 start-page: 97 year: 2014 end-page: 104 ident: CR53 article-title: High-performance aqueous sodium-ion batteries with K MnO cathode and their sodium storage mechanism publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.010 – volume: 3 start-page: 12089 issue: 22 year: 2015 end-page: 12096 ident: CR75 article-title: Self-assembled wafer-like porous NaTi (PO ) decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries publication-title: J. Mater. Chem. A doi: 10.1039/c5ta02568k – volume: 2 start-page: 830 issue: 7 year: 2012 end-page: 840 ident: CR7 article-title: Recent progress in aqueous lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200065 – volume: 6 start-page: 22266 issue: 44 year: 2018 end-page: 22276 ident: CR102 article-title: Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/c8ta08367c – volume: 1 start-page: 123 issue: 1 year: 2018 end-page: 128 ident: CR142 article-title: Electrochemically formed Na Mn[Mn(CN) ] thin film anodes demonstrate sodium intercalation and deintercalation at extremely negative electrode potentials in aqueous media publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00022 – volume: 3 start-page: 1400 issue: 4 year: 2015 end-page: 1404 ident: CR88 article-title: An aqueous rechargeable sodium ion battery based on a NaMnO -NaTi (PO ) hybrid system for stationary energy storage publication-title: J. Mater. Chem. A doi: 10.1039/c4ta06018k – volume: 213 start-page: 255 year: 2012 end-page: 264 ident: CR37 article-title: An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.018 – year: 2023 ident: CR57 article-title: Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage publication-title: SmartMat doi: 10.1002/smm2.1192 – volume: 14 start-page: 11425 issue: 9 year: 2022 end-page: 11434 ident: CR87 article-title: High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23806 – volume: 12 start-page: 569 year: 2017 ident: CR110 article-title: Na Mn O /carbon nanotube composite as a high electrochemical performance material for aqueous sodium-ion batteries publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2340-1 – volume: 34 start-page: 13412 issue: 11 year: 2020 end-page: 13426 ident: CR61 article-title: Advances on manganese-oxide-based cathodes for Na-ion batteries publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02897 – volume: 6 start-page: 40793 issue: 47 year: 2016 end-page: 40798 ident: CR93 article-title: Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na MnO cathode material publication-title: RSC Adv. doi: 10.1039/c6ra01768a – volume: 425 start-page: 130459 year: 2021 ident: CR131 article-title: Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na MnTi(PO ) cathode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130459 – volume: 12 start-page: 4534 issue: 23 year: 2019 ident: CR134 article-title: Cathode properties of Na MnPO CO prepared by the mechanical ball milling method for Na-ion batteries publication-title: Energies doi: 10.3390/en12234534 – volume: 12 start-page: 2104053 issue: 14 year: 2022 ident: CR97 article-title: Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi (PO ) @C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202104053 – volume: 10 start-page: 6376 issue: 12 year: 2022 end-page: 6396 ident: CR129 article-title: Polyanionic insertion hosts for aqueous rechargeable batteries publication-title: J. Mater. Chem. A doi: 10.1039/d1ta11080b – volume: 8 start-page: 798 issue: 5 year: 2021 end-page: 811 ident: CR68 article-title: Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.202001323 – volume: 13 start-page: 6845 issue: 25 year: 1997 end-page: 6849 ident: CR47 article-title: Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution publication-title: Langmuir doi: 10.1021/la970767d – volume: 126 start-page: 658 issue: 8 year: 2020 ident: CR85 article-title: Studies on micron-sized Na MnO with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries publication-title: Appl. Phys. A Mater. doi: 10.1007/s00339-020-03799-6 – volume: 6 start-page: 6401 year: 2015 ident: CR138 article-title: Ti-substituted tunnel-type Na MnO oxide as a negative electrode for aqueous sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms7401 – volume: 112 start-page: 4406 issue: 11 year: 2008 end-page: 4417 ident: CR48 article-title: Effect of crystallographic structure of MnO on its electrochemical capacitance properties publication-title: J. Phys. Chem. C doi: 10.1021/jp7108785 – volume: 370 start-page: 742 year: 2019 end-page: 748 ident: CR98 article-title: 13 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.251 – volume: 148 start-page: 237 year: 2014 end-page: 243 ident: CR49 article-title: An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in lambda-MnO positive electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.052 – volume: 5 start-page: 7384 issue: 20 year: 2021 end-page: 7402 ident: CR28 article-title: Recent progress in electrode materials for aqueous sodium and potassium ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/d1qm01011e – volume: 50 start-page: 760 year: 2022 end-page: 782 ident: CR127 article-title: Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.06.008 – volume: 116 start-page: 512 year: 2014 end-page: 517 ident: CR66 article-title: A nanocomposite of MoO coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.077 – volume: 149 start-page: 109771 year: 2021 ident: CR104 article-title: Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na MnO -CNT electrodes for aqueous sodium batteries publication-title: J. Phys. Chem. Solid doi: 10.1016/j.jpcs.2020.109771 – volume: 101 start-page: 66 year: 2013 end-page: 70 ident: CR50 article-title: Electrochemical energy storage device for securing future renewable energy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.075 – volume: 2 start-page: 434 issue: 3 year: 2023 end-page: 442 ident: CR58 article-title: High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance publication-title: Interdiscip. Mater. doi: 10.1002/idm2.12080 – volume: 3 start-page: 22 issue: 1 year: 2015 end-page: 42 ident: CR15 article-title: Non-aqueous electrolytes for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c4ta04428b – volume: 934 start-page: 167872 year: 2023 ident: CR132 article-title: Manganese-based NASICON structured Na Mn Ti (PO ) as promising cathode in aqueous sodium ion battery publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.167872 – volume: 334 start-page: 928 issue: 6058 year: 2011 end-page: 935 ident: CR4 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 3 start-page: 709 issue: 7 year: 2022 end-page: 720 ident: CR63 article-title: Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00058 – volume: 3 start-page: 290 issue: 3 year: 2013 end-page: 294 ident: CR73 article-title: Towards high power high energy aqueous sodium-ion batteries: The NaTi (PO ) /Na MnO system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200598 – volume: 11 start-page: 383 issue: 3 year: 2017 end-page: 400 ident: CR113 article-title: High purity Mn O nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage publication-title: Front. Energy doi: 10.1007/s11708-017-0485-3 – volume: 4 start-page: 881 issue: 6 year: 2021 end-page: 896 ident: CR16 article-title: Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization publication-title: Batter. Supercaps. doi: 10.1002/batt.202000277 – volume: 259 start-page: 647 year: 2018 end-page: 654 ident: CR109 article-title: Flexible free-standing Na Mn O /reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.015 – volume: 374 start-page: 211 year: 2018 end-page: 216 ident: CR81 article-title: Ultra-low cost and highly stable hydrated FePO anodes for aqueous sodium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.088 – volume: 5 start-page: 730 issue: 2 year: 2017 end-page: 738 ident: CR22 article-title: Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery publication-title: J. Mater. Chem. A doi: 10.1039/c6ta08736a – volume: 311 start-page: 1 year: 2019 end-page: 7 ident: CR44 article-title: An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi (PO ) -MnO system publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.130 – volume: 29 start-page: 1700804 issue: 32 year: 2017 ident: CR62 article-title: High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na MnO nanosheet assembled nanowall arrays publication-title: Adv. Mater. doi: 10.1002/adma.201700804 – volume: 4 start-page: 13085 issue: 11 year: 2021 end-page: 13097 ident: CR137 article-title: Ceria-spiderweb nanosheets unlock the energy-storage properties in the "sleeping" triplite (Mn (PO )F) publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02734 – volume: 5 start-page: 1501005 issue: 22 year: 2015 ident: CR99 article-title: A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501005 – volume: 10 start-page: 853 issue: 8 year: 2018 ident: CR108 article-title: Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na Mn O cathode and Zn metal anode publication-title: Polymers doi: 10.3390/polym10080853 – volume: 13 start-page: 2204413 issue: 17 year: 2023 ident: CR39 article-title: Revealing the competitive intercalation between Na and H into Na MnO in aqueous sodium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204413 – volume: 28 start-page: 1165 issue: 11 year: 2013 end-page: 1171 ident: CR19 article-title: Recent development of aqueous sodium ion batteries and their key materials publication-title: J. Inorg. Mater. doi: 10.3724/SP.J.1077.2013.13388 – volume: 415 start-page: 129003 year: 2021 ident: CR119 article-title: High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129003 – volume: 46 start-page: 395 issue: 5 year: 2021 end-page: 401 ident: CR9 article-title: New developments in battery safety for large-scale systems publication-title: MRS Bull. doi: 10.1557/s43577-021-00098-0 – volume: 34 start-page: 2108384 issue: 15 year: 2022 ident: CR14 article-title: Prussian blue analogues for sodium-ion batteries: past, present, and future publication-title: Adv. Mater. doi: 10.1002/adma.202108384 – volume: 14 start-page: 7 issue: 1 year: 2023 ident: CR56 article-title: Surface-redox sodium-ion storage in anatase titanium oxide publication-title: Nat. Commun. doi: 10.1038/s41467-022-35617-3 – volume: 46 start-page: 3529 issue: 12 year: 2017 end-page: 3614 ident: CR10 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00776g – volume: 6 start-page: 1600943 issue: 19 year: 2016 ident: CR5 article-title: Recent progress in electrode materials for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600943 – volume: 79 start-page: 511 issue: 4 year: 2009 end-page: 520 ident: CR3 article-title: Battery energy storage technology for power systems-an overview publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.09.017 – volume: 9 start-page: 861 year: 2018 ident: CR141 article-title: Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-018-03257-1 – volume: 3 start-page: 1800220 issue: 4 year: 2019 ident: CR143 article-title: Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes publication-title: Small Methods doi: 10.1002/smtd.201800220 – volume: 17 start-page: 100432 year: 2020 ident: CR18 article-title: Aqueous rechargeable sodium ion batteries: developments and prospects publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100432 – volume: 29 start-page: e202202997 year: 2023 ident: CR30 article-title: Recent advances on high-capacity sodium manganese-based oxide cathodes for sodium-ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.202202997 – volume: 10 start-page: 21197 issue: 40 year: 2022 end-page: 21250 ident: CR33 article-title: Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects publication-title: J. Mater. Chem. A doi: 10.1039/d2ta05309h – volume: 8 start-page: 1703055 issue: 17 year: 2018 ident: CR13 article-title: Polyanionic insertion materials for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703055 – volume: 11 start-page: 3704 issue: 21 year: 2018 end-page: 3707 ident: CR116 article-title: Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries publication-title: Chemsuschem doi: 10.1002/cssc.201801930 – volume: 85 start-page: 179 issue: 4 year: 2017 end-page: 185 ident: CR122 article-title: Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.179 – volume: 4 start-page: 856 issue: 3 year: 2016 end-page: 860 ident: CR83 article-title: Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes publication-title: J. Mater. Chem. A doi: 10.1039/c5ta08857g – volume: 14 start-page: 5788 issue: 11 year: 2021 end-page: 5800 ident: CR128 article-title: Assessment and progress of polyanionic cathodes in aqueous sodium batteries publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01392k – volume: 32 start-page: 1904427 issue: 2 year: 2020 ident: CR123 article-title: High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte publication-title: Adv. Mater. doi: 10.1002/adma.201904427 – volume: 122 start-page: 20602 issue: 36 year: 2018 end-page: 20610 ident: CR125 article-title: Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05506 – volume: 3 start-page: 348 issue: 2 year: 2017 end-page: 362 ident: CR72 article-title: Multi-functional flexible aqueous sodium-ion batteries with high safety publication-title: Chem doi: 10.1016/j.chempr.2017.05.004 – year: 2023 ident: 1162_CR57 publication-title: SmartMat doi: 10.1002/smm2.1192 – volume: 12 start-page: 569 year: 2017 ident: 1162_CR110 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2340-1 – volume: 6 start-page: 6401 year: 2015 ident: 1162_CR138 publication-title: Nat. Commun. doi: 10.1038/ncomms7401 – volume: 244 start-page: 758 year: 2013 ident: 1162_CR40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.090 – volume: 10 start-page: 6376 issue: 12 year: 2022 ident: 1162_CR129 publication-title: J. Mater. Chem. A doi: 10.1039/d1ta11080b – volume: 6 start-page: 964 issue: 10 year: 2016 ident: 1162_CR1 publication-title: Nat. Clim. Change doi: 10.1038/Nclimate3045 – volume: 12 start-page: 2104053 issue: 14 year: 2022 ident: 1162_CR97 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202104053 – volume: 8 start-page: 14564 issue: 23 year: 2016 ident: 1162_CR54 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03089 – volume: 10 start-page: 2002077 issue: 37 year: 2020 ident: 1162_CR45 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002077 – volume: 50 start-page: 760 year: 2022 ident: 1162_CR127 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.06.008 – volume: 7 start-page: 13370 year: 2016 ident: 1162_CR112 publication-title: Nat. Commun. doi: 10.1038/ncomms13370 – volume: 55 start-page: 509 issue: 4 year: 2019 ident: 1162_CR146 publication-title: Chem. Commun. doi: 10.1039/c8cc07668e – volume: 11 start-page: 2002913 issue: 5 year: 2021 ident: 1162_CR124 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002913 – volume: 47 start-page: 4595 issue: 4 year: 2021 ident: 1162_CR84 publication-title: Ceram Int. doi: 10.1016/j.ceramint.2020.10.025 – volume: 6 start-page: 2093 issue: 7 year: 2013 ident: 1162_CR17 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24249h – volume: 3 start-page: 22 issue: 1 year: 2015 ident: 1162_CR15 publication-title: J. Mater. Chem. A doi: 10.1039/c4ta04428b – volume: 29 start-page: e202202997 year: 2023 ident: 1162_CR30 publication-title: Chem. Eur. J. doi: 10.1002/chem.202202997 – volume: 259 start-page: 647 year: 2018 ident: 1162_CR109 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.015 – volume: 3 start-page: 7780 issue: 15 year: 2015 ident: 1162_CR52 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta00396b – volume: 9 start-page: 4183 issue: 12 year: 2017 ident: 1162_CR78 publication-title: Nanoscale doi: 10.1039/c7nr00793k – volume: 12 start-page: 4534 issue: 23 year: 2019 ident: 1162_CR134 publication-title: Energies doi: 10.3390/en12234534 – volume: 934 start-page: 167872 year: 2023 ident: 1162_CR132 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.167872 – volume: 4 start-page: 13085 issue: 11 year: 2021 ident: 1162_CR137 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02734 – volume: 3 start-page: 1400 issue: 4 year: 2015 ident: 1162_CR88 publication-title: J. Mater. Chem. A doi: 10.1039/c4ta06018k – volume: 35 start-page: 10860 issue: 13 year: 2021 ident: 1162_CR46 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01095 – volume: 69 start-page: 84 year: 2022 ident: 1162_CR24 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.025 – volume: 31 start-page: 8774 issue: 21 year: 2019 ident: 1162_CR55 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02568 – volume: 45 start-page: 11123 issue: 7 year: 2021 ident: 1162_CR103 publication-title: Int. J. Energy Res. doi: 10.1002/er.6594 – volume: 57 start-page: 113 year: 1992 ident: 1162_CR36 publication-title: Solid State Ionics doi: 10.1016/0167-2738(92)90072-W – volume: 79 start-page: 388 issue: 4 year: 2021 ident: 1162_CR21 publication-title: Acta. Chim. Sin. doi: 10.6023/A20100492 – volume: 10 start-page: 853 issue: 8 year: 2018 ident: 1162_CR108 publication-title: Polymers doi: 10.3390/polym10080853 – volume: 253 start-page: 98 year: 2014 ident: 1162_CR65 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.011 – volume: 57 start-page: 69 year: 2023 ident: 1162_CR126 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.02.005 – volume: 2 start-page: 830 issue: 7 year: 2012 ident: 1162_CR7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200065 – volume: 425 start-page: 130459 year: 2021 ident: 1162_CR131 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130459 – volume: 6 start-page: 1804 issue: 7 year: 2020 ident: 1162_CR147 publication-title: Chem doi: 10.1016/j.chempr.2020.05.004 – volume: 6 start-page: 40793 issue: 47 year: 2016 ident: 1162_CR93 publication-title: RSC Adv. doi: 10.1039/c6ra01768a – volume: 5 start-page: 1501005 issue: 22 year: 2015 ident: 1162_CR99 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501005 – volume: 12 start-page: 463 issue: 3 year: 2010 ident: 1162_CR107 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.01.020 – volume: 10 start-page: 21197 issue: 40 year: 2022 ident: 1162_CR33 publication-title: J. Mater. Chem. A doi: 10.1039/d2ta05309h – volume: 6 start-page: 22266 issue: 44 year: 2018 ident: 1162_CR102 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta08367c – volume: 122 start-page: 20602 issue: 36 year: 2018 ident: 1162_CR125 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05506 – volume: 34 start-page: 13412 issue: 11 year: 2020 ident: 1162_CR61 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02897 – volume: 555 start-page: 10 year: 2013 ident: 1162_CR130 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.11.203 – volume: 311 start-page: 1 year: 2019 ident: 1162_CR44 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.130 – volume: 6 start-page: 53319 issue: 58 year: 2016 ident: 1162_CR80 publication-title: RSC Adv. doi: 10.1039/c6ra09075c – volume: 460 start-page: 214478 year: 2022 ident: 1162_CR115 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214478 – volume: 112 start-page: 4406 issue: 11 year: 2008 ident: 1162_CR48 publication-title: J. Phys. Chem. C doi: 10.1021/jp7108785 – volume: 1 start-page: 123 issue: 1 year: 2018 ident: 1162_CR142 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00022 – volume: 59 start-page: 18322 issue: 42 year: 2020 ident: 1162_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003198 – volume: 114 start-page: 11788 issue: 23 year: 2014 ident: 1162_CR8 publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 17 start-page: 100432 year: 2020 ident: 1162_CR18 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100432 – volume: 126 start-page: 658 issue: 8 year: 2020 ident: 1162_CR85 publication-title: Appl. Phys. A Mater. doi: 10.1007/s00339-020-03799-6 – volume: 8 start-page: 1703055 issue: 17 year: 2018 ident: 1162_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703055 – volume: 8 start-page: 798 issue: 5 year: 2021 ident: 1162_CR68 publication-title: ChemElectroChem doi: 10.1002/celc.202001323 – volume: 3 start-page: 709 issue: 7 year: 2022 ident: 1162_CR63 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00058 – volume: 13 start-page: 6845 issue: 25 year: 1997 ident: 1162_CR47 publication-title: Langmuir doi: 10.1021/la970767d – volume: 8 start-page: 1703008 issue: 17 year: 2018 ident: 1162_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703008 – volume: 370 start-page: 742 year: 2019 ident: 1162_CR98 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.251 – volume: 7 start-page: 1701189 issue: 21 year: 2017 ident: 1162_CR92 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701189 – volume: 4 start-page: 49 year: 2014 ident: 1162_CR79 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.014 – volume: 14 start-page: 5788 issue: 11 year: 2021 ident: 1162_CR128 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee01392k – volume: 3 start-page: 7030 issue: 7 year: 2020 ident: 1162_CR117 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01060 – volume: 918 start-page: 165765 year: 2022 ident: 1162_CR139 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165765 – volume: 10 start-page: 4975 year: 2019 ident: 1162_CR64 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12939-3 – volume: 13 start-page: 2204413 issue: 17 year: 2023 ident: 1162_CR39 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204413 – volume: 4 start-page: 881 issue: 6 year: 2021 ident: 1162_CR16 publication-title: Batter. Supercaps. doi: 10.1002/batt.202000277 – volume: 36 start-page: 1905027 issue: 5 year: 2020 ident: 1162_CR70 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201905027 – volume: 4 start-page: 856 issue: 3 year: 2016 ident: 1162_CR83 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta08857g – volume: 7 start-page: 45048 year: 2017 ident: 1162_CR23 publication-title: Sci. Rep. doi: 10.1038/srep45048 – volume: 11 start-page: 3704 issue: 21 year: 2018 ident: 1162_CR116 publication-title: Chemsuschem doi: 10.1002/cssc.201801930 – volume: 101 start-page: 66 year: 2013 ident: 1162_CR50 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.075 – volume: 160 start-page: A497 issue: 3 year: 2013 ident: 1162_CR74 publication-title: J. Electrochem. Soc. doi: 10.1149/2.054303jes – volume: 12 start-page: 22862 issue: 20 year: 2020 ident: 1162_CR96 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03423 – volume: 19 start-page: 117 issue: 3 year: 2016 ident: 1162_CR42 publication-title: J. New Mater. Electrochem. Syst. doi: 10.14447/jnmes.v19i3.306 – volume: 11 start-page: 383 issue: 3 year: 2017 ident: 1162_CR113 publication-title: Front. Energy doi: 10.1007/s11708-017-0485-3 – volume: 13 start-page: 676 issue: 3 year: 2020 ident: 1162_CR71 publication-title: Nano Res. doi: 10.1007/s12274-020-2674-3 – volume: 9 start-page: 11472 issue: 19 year: 2021 ident: 1162_CR27 publication-title: J. Mater. Chem. A doi: 10.1039/d1ta01951a – volume: 6 start-page: 1600943 issue: 19 year: 2016 ident: 1162_CR5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600943 – volume: 64 start-page: 103941 year: 2019 ident: 1162_CR118 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103941 – volume: 11 start-page: 2101287 issue: 31 year: 2021 ident: 1162_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101287 – volume: 7 start-page: 253 issue: 9 year: 2017 ident: 1162_CR105 publication-title: Nanomaterials doi: 10.3390/nano7090253 – volume: 177 start-page: 1788 issue: 20 year: 2012 ident: 1162_CR38 publication-title: Mater. Sci. Eng. B-Adv. doi: 10.1016/j.mseb.2012.09.003 – volume: 7 start-page: 18552 issue: 44 year: 2015 ident: 1162_CR76 publication-title: Nanoscale doi: 10.1039/c5nr06505d – volume: 248 start-page: 122952 year: 2020 ident: 1162_CR136 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122952 – volume: 802 start-page: 22 year: 2017 ident: 1162_CR100 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.08.042 – volume: 46 start-page: 3529 issue: 12 year: 2017 ident: 1162_CR10 publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00776g – volume: 4 start-page: 4211 issue: 11 year: 2016 ident: 1162_CR121 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta10571d – volume: 2 start-page: 705 issue: 8 year: 2014 ident: 1162_CR77 publication-title: Energy Technol. doi: 10.1002/ente.201402045 – volume: 13 start-page: 1909 issue: 7 year: 2020 ident: 1162_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/d0ee00771d – volume: 91 start-page: 109 year: 2018 ident: 1162_CR6 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2018.03.047 – volume: 14 start-page: 7 issue: 1 year: 2023 ident: 1162_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35617-3 – volume: 149 start-page: 109771 year: 2021 ident: 1162_CR104 publication-title: J. Phys. Chem. Solid doi: 10.1016/j.jpcs.2020.109771 – volume: 32 start-page: 1904427 issue: 2 year: 2020 ident: 1162_CR123 publication-title: Adv. Mater. doi: 10.1002/adma.201904427 – volume: 31 start-page: 2619 issue: 7 year: 2019 ident: 1162_CR144 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00471 – volume: 17 start-page: 20733 issue: 32 year: 2015 ident: 1162_CR101 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c5cp02866c – volume: 15 start-page: 5072 issue: 6 year: 2022 ident: 1162_CR120 publication-title: Nano Res. doi: 10.1007/s12274-022-4113-0 – volume: 3 start-page: 10744 issue: 11 year: 2020 ident: 1162_CR94 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01781 – volume: 5 start-page: 242 issue: 2 year: 2022 ident: 1162_CR114 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00088-x – volume: 3 start-page: 1800220 issue: 4 year: 2019 ident: 1162_CR143 publication-title: Small Methods doi: 10.1002/smtd.201800220 – volume: 28 start-page: 1703266 issue: 3 year: 2018 ident: 1162_CR59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703266 – volume: 5 start-page: 2182 issue: 12 year: 2017 ident: 1162_CR69 publication-title: Energy Technol. doi: 10.1002/ente.201700245 – volume: 415 start-page: 129003 year: 2021 ident: 1162_CR119 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129003 – volume: 119 start-page: 109549 year: 2020 ident: 1162_CR12 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109549 – volume: 213 start-page: 255 year: 2012 ident: 1162_CR37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.018 – volume: 122 start-page: 106897 year: 2021 ident: 1162_CR67 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106897 – volume: 5 start-page: 7384 issue: 20 year: 2021 ident: 1162_CR28 publication-title: Mater. Chem. Front. doi: 10.1039/d1qm01011e – volume: 8 start-page: 1800079 issue: 16 year: 2018 ident: 1162_CR11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800079 – volume: 334 start-page: 928 issue: 6058 year: 2011 ident: 1162_CR4 publication-title: Science doi: 10.1126/science.1212741 – volume: 94 start-page: 77 year: 2019 ident: 1162_CR111 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2019.05.019 – volume: 5 start-page: 3007 year: 2014 ident: 1162_CR140 publication-title: Nat. Commun. doi: 10.1038/ncomms4007 – volume: 28 start-page: 1165 issue: 11 year: 2013 ident: 1162_CR19 publication-title: J. Inorg. Mater. doi: 10.3724/SP.J.1077.2013.13388 – volume: 34 start-page: 2108384 issue: 15 year: 2022 ident: 1162_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202108384 – volume: 34 start-page: 461 year: 2021 ident: 1162_CR25 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.011 – volume: 3 start-page: 12089 issue: 22 year: 2015 ident: 1162_CR75 publication-title: J. Mater. Chem. A doi: 10.1039/c5ta02568k – volume: 3 start-page: 290 issue: 3 year: 2013 ident: 1162_CR73 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200598 – volume: 27 start-page: 101294 year: 2023 ident: 1162_CR31 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101294 – volume: 8 start-page: 9165 issue: 24 year: 2020 ident: 1162_CR60 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02964 – volume: 79 start-page: 511 issue: 4 year: 2009 ident: 1162_CR3 publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.09.017 – volume: 50 start-page: 1209 issue: 10 year: 2014 ident: 1162_CR86 publication-title: Chem. Commun. doi: 10.1039/c3cc48382g – volume: 3 start-page: 348 issue: 2 year: 2017 ident: 1162_CR72 publication-title: Chem doi: 10.1016/j.chempr.2017.05.004 – volume: 9 start-page: 861 year: 2018 ident: 1162_CR141 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03257-1 – volume: 148 start-page: 237 year: 2014 ident: 1162_CR49 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.052 – volume: 429 start-page: 149 year: 2019 ident: 1162_CR133 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.080 – volume: 55 start-page: 12768 issue: 41 year: 2016 ident: 1162_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606508 – volume: 85 start-page: 179 issue: 4 year: 2017 ident: 1162_CR122 publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.179 – volume: 116 start-page: 512 year: 2014 ident: 1162_CR66 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.077 – volume: 29 start-page: 1700804 issue: 32 year: 2017 ident: 1162_CR62 publication-title: Adv. Mater. doi: 10.1002/adma.201700804 – volume: 374 start-page: 211 year: 2018 ident: 1162_CR81 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.088 – volume: 14 start-page: 11425 issue: 9 year: 2022 ident: 1162_CR87 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23806 – volume: 5 start-page: 97 year: 2014 ident: 1162_CR53 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.010 – volume: 11 start-page: 44 issue: 1 year: 2019 ident: 1162_CR145 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0273-1 – volume: 32 start-page: 6875 issue: 16 year: 2020 ident: 1162_CR135 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01582 – volume: 86 start-page: 104 year: 2018 ident: 1162_CR82 publication-title: Electrochem. commun. doi: 10.1016/j.elecom.2017.11.013 – volume: 8 start-page: 14424 year: 2017 ident: 1162_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms14424 – volume: 608 start-page: 1481 year: 2022 ident: 1162_CR95 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.10.085 – volume: 157 start-page: A870 issue: 7 year: 2010 ident: 1162_CR106 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3428667 – volume: 11 start-page: 2100867 issue: 25 year: 2021 ident: 1162_CR29 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100867 – volume: 2 start-page: 434 issue: 3 year: 2023 ident: 1162_CR58 publication-title: Interdiscip. Mater. doi: 10.1002/idm2.12080 – volume: 37 start-page: 1907049 issue: 3 year: 2021 ident: 1162_CR91 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201907049 – volume: 5 start-page: 730 issue: 2 year: 2017 ident: 1162_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/c6ta08736a – volume: 46 start-page: 395 issue: 5 year: 2021 ident: 1162_CR9 publication-title: MRS Bull. doi: 10.1557/s43577-021-00098-0 – volume: 45 start-page: 142 year: 2022 ident: 1162_CR51 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.11.027 – volume: 162 start-page: A803 issue: 6 year: 2015 ident: 1162_CR89 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121506jes – volume: 22 start-page: e202200122 issue: 10 year: 2022 ident: 1162_CR32 publication-title: Chem. Rec. doi: 10.1002/tcr.202200122 – volume: 446 start-page: 131 year: 2018 ident: 1162_CR41 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.021 – volume: 8 start-page: 615677 year: 2021 ident: 1162_CR90 publication-title: Front. Energy Res. doi: 10.3389/fenrg.2020.615677 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.479503 |
SecondaryResourceType | review_article |
Snippet | Highlights
Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous... Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost,... HighlightsMn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion... Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion... Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | Anodes Aqueous electrolytes Carbon Composition Crystal structure Doping Electrochemical analysis Electrochemical performance Electrode materials Electrodes Electrolytes Energy storage Engineering Improvement methods Low cost Mn-based electrode materials Morphology Na-ion batteries Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optimization Pigments Polyelectrolytes Review Sodium Sodium-ion batteries Substitutes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQnuCA-CawICNxA4vYsR372EW72kUqF1hpb5YdO6ISpCvaSvvzmbHTtOXzwi1KHMl6mcnMaMbvEfJayc7XKkomeihRZCfBpazsGITilJTugsyHwuYf9fml_HClrvakvnAmrNADF-DexSA7qEJStBauYgw-QtHmOTKvCagX8O8LMW-vmAJLEi0qMu36gyirLPdYaiRyujQ7IjOFxGXtjh9TCQlxfQy0JZFusYWVleo4Z7qt9XgCJ5_DQ9XmmkH4Y9jXEOzmIMplMYDfZbC_DmL-1I3NQe7sHrk7Zqd0VlC5T26l4QG5s8dZ-JBczMrUwIouBjof2AmEwUhPi5pOTHTu18WoKaTDdAZbWW5W9NMyLjbf2MVyoIXREwr0R-Ty7PTz-3M26jGwDvKgNbM6SghmPUCbdDBtr73Qqle2920MujbWA448CpOMDgJQ97z2wvtU-9jZpnlMjoblkJ4SGnzPfWNx7spIG7lJPaQ6UCrCK03o24rwLX6uG8nKUTPjq5toljPmDjB3GXN3U5E30zvXharjr6tP8LNMK5FmO98A43Oj8bl_GV9Fjrcf1Y2-v3LCGKuQVk1V5NX0GLwWWzF-QNRhjUSmfd3KijwpNjDtpGmVQiX6ipgD6zjY6uGTYfElM4NzZE8D463I260h7fb1Zyye_Q8snpPbAj0gj_ock6P19016AQnbOrzMvvkDKDUvLQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQkJG4gUXi2I59QrtoqxZpKwRU6i1yYqesBEnp7kr9-cw4TtLl0VuUONJkMvbMeMbfR8gbKWqbSicYbyBFEbWAKWVEzcAVey9VXYlwKGx5oo5OxaczeRY33NaxrXJYE8NC7boa98jfc62NRLAq-eHiF0PWKKyuRgqN22QflmANydf-fHHy-ctgUbxAZqapToj0yuIaWo1AbJd8AjSTCGBWTDiZkgvw79Hh9gF1gaWswFiXZUwVqYonccJ5PGRvThm4QYb1Dc6udrxdIAX4VyT7d0PmH1XZ4OwO75N7MUqls96sHpBbvn1I7l7DLnxEjmd998Carlq6bNkc3KGji55Vx3m6tJveuCmExXQGonTbNf3audX2JzvuWtoje0Ki_picHi6-fTxikZeB1RAPbZhRToBTa0C1XlW6aJTlSjbSNLZwlUq1saDHzHHttao4aN1mqeXW-tS62uT5E7LXdq1_Rmhlm8zmBvuvtDAu076BkAdSRnglr5oiIdmgv7KOoOXInfGjHOGWg85L0HkZdF5eJeTt-M5FD9lx4-g5_pZxJMJthxvd5XkZZ2_pKlGDgN4ZA1fOVdZprW2G8H8cktaEHAw_tYxrwLqcLDYhr8fHMHuxJGNb1DqMEYi4rwqRkKe9DYyS5IWUyEifEL1jHTui7j5pV98DQniGKGpgvAl5NxjSJNf_dfH85s94Qe5wtO3QzHNA9jaXW_8SQrJN9SrOu984zieW priority: 102 providerName: ProQuest |
Title | Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries |
URI | https://link.springer.com/article/10.1007/s40820-023-01162-x https://www.ncbi.nlm.nih.gov/pubmed/37555908 https://www.proquest.com/docview/2889583025 https://www.proquest.com/docview/2848229674 https://pubmed.ncbi.nlm.nih.gov/PMC10412524 https://doaj.org/article/db4c184ed99b4cddbad888a182852282 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4GHiW8CozISb2ApcWzHfmxKy4bUCQGT9hY5sTMqQTKtrcSfz53z0RUGEi9tlTjS6ee73l3u_DtC3khR2Vg6wXgNKYqoBJiUERUDV-y9VFUpwqGw5Zk6ORcfL-RFfyhsPXS7DyXJ8E89HnbD0cgxAx_DsHjAGUSOhxJyd9Tr2Y5znGc4jWlXG8SRyuIGQ41APpd0R2ImkbQs23FjSi7Ap_dOtguiMyxfhSl1ScJUFqv-9M3tYu15uDAI4Lbo9c8mzN8qscHBLR6Qoz4ypdNOlR6SO755RO7f4Ct8TE6nXcfAmq4aumxYDi7Q0Xk3Scd5urSbTqEphMJ0CqK02zX90rrV9gc7bRvasXlCcv6EnC_mX2cnrJ_FwCqIgTbMKCfAkdUArVelzmpluZK1NLXNXKlibSzgmDiuvVYlB9RtElturY-tq0yaPiUHTdv454SWtk5sarDnSgvjEu1rCHMgTYRH0rLOIpIM-BVVT1SO8zK-FyPFcsC8AMyLgHnxMyJvx2euOpqOf67OcVvGlUixHS6015dFb7GFK0UFAnpnDPxyrrROa20TpPzjkKhG5HjY1KK3-3XBtTYSKdVkRF6Pt8FisQxjG0Qd1ghk2VeZiMizTgdGSdJMSpxCHxG9px17ou7faVbfAit4gsxpoLwReTco0k6uv2Px4v-WvyT3OOp6aOg5Jgeb661_BWHZppyQu3rxYUIOp_n7fAHf-fzs0-dJsE38VLNJeOHxC678KQA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBYwEJ7CIHdtxDghtocsu7fZCK_UWnNiBlSAp3V1R_hS_kRkn2e3y6K23KHGkyXiemfE3hDxTsrSxcpKJClIUWUpQqUyWDFyx90qXhQyHwiYHenQkPxyr4w3yqz8Lg22VvU0Mhto1Jf4jfyWMyRSCVak3J98ZTo3C6mo_QqMViz3_8wekbLPX43ewv8-FGO4evh2xbqoAK8Gbz1mmnQSTXKUJ97owaaWt0KpSWWVTV-jYZJYnmjthvNGFiKW0PLbCWh9bV2b4AxRM_hWZJBlqlBm-7-VXpDgHalWVxGHO8hw2jkQkmWQFn6YQLi1doXIqISGa6Nx7G76nWDgL8_E4ZzqNdXfuJ5z-w1nRMQOny7CaItjZmm8NIwj-FTf_3f75Rw04uNbhTXKji4npoBXiW2TD17fJ9XNIiXfIeND2KszotKaTmu2A83V0t53h4zyd2HmrShSCcDoAUprFjH5s3HTxjY2bmrY4olM_u0uOLmW_7pHNuqn9FqGFrbhNMuz2MjJz3PgKAixIUOGVpKjSiPCef3nZQaTjpI6v-RLcOfA8B57ngef5WUReLN85aQFCLly9g9uyXIng3uFGc_o572xF7gpZAoHeZRlcOVdYZ4yxHMEGBaTIEdnuNzXvLM4sX-lHRJ4uH4OtwAKQrZHrsEYivr9OZUTutzKwpCRJFSSXsYmIWZOONVLXn9TTLwGPnCNmGwhvRF72grSi6_-8eHDxZzwhV0eHk_18f3yw95BcEyjnoY1om2zOTxf-EQSD8-Jx0EBKPl22yv8GFT1ifg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA5yguiD-NvqqRF803BNmqTJ4955y626h6AH91bSJj0XtD1uu-Cf70za7e7qKfhW2gSGyaQzw8x8HyFvlKxcqrxkooYURVYSrpSVFQNXHILSVSnjUNj8VJ-cyQ_n6nxrij92u69Lkv1MA6I0Nd3Bpa8PxsE3pElOGfgbhoUEwSCKvAmZCsemvqMN_rjIkZlpUydEemW5hVYjEdsl2wCaKQQwyzc4mUpI8O-Dw-0D6hxLWZGxjnOm81QPkzjXi7Xj7SIpwHWR7J8Nmb9VZaOzm94jd4colU56s7pPboTmAbmzhV34kMwmfffAki4aOm_YIbhDT497Vh0f6Nx1vXFTCIvpBERpV0v6pfWL1Q82axvaI3tCov6InE2Pvx6dsIGXgVUQD3XMai_BqdWg2qBLk9faCa1qZWuX-1KnxjrQI_fCBKNLAVp3PHXCuZA6X9kse0z2mrYJTwktXc1dZrH_ykjruQk1hDyQMsKWrKzzhPC1_opqAC1H7ozvxQi3HHVegM6LqPPiZ0Lejnsue8iOf64-xGMZVyLcdnzRXl0Uw-0tfCkrEDB4a-HJ-9J5Y4zjCP8nIGlNyP76UIvhH7AshDFWIbyaSsjr8TPcXizJuAa1DmskIu7rXCbkSW8DoyRZrhQy0ifE7FjHjqi7X5rFt4gQzhFFDYw3Ie_WhrSR6--6ePZ_y1-RW5_fT4tPs9OPz8ltgWYf-3z2yV53tQovIFrrypfxQv4CppQqbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Mn-Based+Electrode+Materials+for+Aqueous+Sodium-Ion+Batteries&rft.jtitle=Nano-micro+letters&rft.au=Ding%2C+Changsheng&rft.au=Chen%2C+Zhang&rft.au=Cao%2C+Chuanxiang&rft.au=Liu%2C+Yu&rft.date=2023-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1007%2Fs40820-023-01162-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |