Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries

Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 192 - 42
Main Authors Ding, Changsheng, Chen, Zhang, Cao, Chuanxiang, Liu, Yu, Gao, Yanfeng
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
AbstractList Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
HighlightsMn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries.The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed.The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed.Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed.
Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries. The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed. The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed. Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
ArticleNumber 192
Author Cao, Chuanxiang
Ding, Changsheng
Gao, Yanfeng
Liu, Yu
Chen, Zhang
Author_xml – sequence: 1
  givenname: Changsheng
  surname: Ding
  fullname: Ding, Changsheng
  email: dingcs@shu.edu.cn
  organization: School of Materials Science and Engineering, Shanghai University
– sequence: 2
  givenname: Zhang
  surname: Chen
  fullname: Chen, Zhang
  organization: School of Materials Science and Engineering, Shanghai University
– sequence: 3
  givenname: Chuanxiang
  surname: Cao
  fullname: Cao, Chuanxiang
  organization: School of Materials Science and Engineering, Shanghai University
– sequence: 4
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Shanghai Institute of Ceramics, Chinese Academy of Sciences
– sequence: 5
  givenname: Yanfeng
  surname: Gao
  fullname: Gao, Yanfeng
  email: yfgao@shu.edu.cn
  organization: School of Materials Science and Engineering, Shanghai University, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37555908$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvFSEUhSemja21f8CFmcSNGyzcAYZZmdem6kvauFDX5A4wT5p5UGFeU_-9TKdW20VX3MB3DpfDfVXthRhcVb1h9AOjtD3JnCqghEJDKGMSyO2L6hCYoEQIwfZK3TBGZEvlQXWcs--pAN5CK_jL6qBpC9RRdVitV_YGg3G59qG-DOQUs7P1-ejMlKJ19SVOLnkccz3EVK9-7Vzc5fpbtH63JesY6lOcZsLl19X-UDh3fL8eVT8-nX8_-0Iuvn5en60uiJEMJtJJyxVvh7ZhTvaqHSSCFIPoBmxtL6nqkDWSWVBOyR4o58goAqKjaE3XNEfVevG1Ea_0dfJbTL91RK_vNmLaaEyTN6PTtueGKe5s15XK2h6tUgqZAiUAFBSvj4vX9a7fOmtcmBKOj0wfnwT_U2_ijWaUMyiBFof39w4plnDypLc-GzeOGOakNCiuADrZzui7J-hV3KVQsiqU6oRqKIhCvf2_pYde_n5ZAWABTIo5Jzc8IIzqeTT0Mhq6jIa-Gw19W0Tqicj4CScf52f58Xlps0hzuSdsXPrX9jOqPxbdzGk
CitedBy_id crossref_primary_10_15541_jim20240360
crossref_primary_10_1021_acsami_5c01638
crossref_primary_10_1021_acsanm_4c02993
crossref_primary_10_1007_s40820_024_01355_y
crossref_primary_10_1016_j_jcis_2023_12_114
crossref_primary_10_1002_batt_202400300
crossref_primary_10_1002_adma_202312471
crossref_primary_10_1002_smll_202312207
crossref_primary_10_1016_j_vacuum_2023_112671
crossref_primary_10_1002_aenm_202404254
crossref_primary_10_1039_D3QI02392C
crossref_primary_10_1016_j_jcis_2025_01_067
crossref_primary_10_1016_j_est_2024_112571
crossref_primary_10_1016_j_ensm_2024_103221
crossref_primary_10_1016_j_jcis_2024_03_028
crossref_primary_10_1016_j_est_2025_116031
crossref_primary_10_1039_D4YA00037D
crossref_primary_10_1002_smll_202409130
crossref_primary_10_1007_s11708_025_0983_7
crossref_primary_10_1016_j_est_2024_110887
crossref_primary_10_1021_acsami_4c16439
crossref_primary_10_1149_1945_7111_ad92e3
crossref_primary_10_1016_j_ijoes_2024_100775
crossref_primary_10_1039_D5TA00120J
crossref_primary_10_1016_j_est_2024_114246
crossref_primary_10_1016_j_jpowsour_2023_233635
crossref_primary_10_1002_cssc_202400890
crossref_primary_10_1016_j_electacta_2024_144947
crossref_primary_10_1016_j_talanta_2024_125993
crossref_primary_10_1002_advs_202416120
Cites_doi 10.1007/s12274-022-4113-0
10.1016/j.mtchem.2022.101294
10.1002/aenm.202002077
10.1038/srep45048
10.1002/adfm.201703266
10.1021/acs.chemmater.9b02568
10.1016/j.jechem.2021.12.025
10.1002/anie.202003198
10.1002/aenm.201800079
10.1002/aenm.202101287
10.1039/c5ta00396b
10.1016/j.ccr.2022.214478
10.1039/c5ta10571d
10.1002/er.6594
10.1016/j.elecom.2017.11.013
10.1007/s12274-020-2674-3
10.1149/2.054303jes
10.3389/fenrg.2020.615677
10.1039/c3ee24249h
10.1016/j.jcis.2021.10.085
10.1007/s40820-019-0273-1
10.1016/j.apsusc.2018.02.021
10.1016/j.jpowsour.2013.12.011
10.1016/j.jpowsour.2019.04.080
10.1016/j.rser.2018.03.047
10.1038/ncomms4007
10.1039/c5nr06505d
10.1149/1.3428667
10.1016/j.ceramint.2020.10.025
10.6023/A20100492
10.1021/cr500232y
10.1002/ente.201700245
10.1016/j.matchemphys.2020.122952
10.1039/c7nr00793k
10.1039/c6ra09075c
10.1038/Nclimate3045
10.1016/j.mseb.2012.09.003
10.1038/ncomms14424
10.1016/j.ensm.2021.11.027
10.1016/j.jpowsour.2013.02.090
10.1016/j.chempr.2020.05.004
10.1002/tcr.202200122
10.1007/s41918-020-00088-x
10.1016/j.rser.2019.109549
10.3390/nano7090253
10.1016/0167-2738(92)90072-W
10.1039/c5cp02866c
10.1149/2.0121506jes
10.1016/j.jallcom.2012.11.203
10.1021/acsaem.0c01060
10.1002/ente.201402045
10.1039/d1ta01951a
10.1016/j.ensm.2020.10.011
10.1021/acssuschemeng.0c02964
10.1016/j.elecom.2020.106897
10.1016/j.jelechem.2017.08.042
10.1039/c8cc07668e
10.1016/j.elecom.2010.01.020
10.14447/jnmes.v19i3.306
10.1016/j.nanoen.2013.12.014
10.1039/c3cc48382g
10.1002/aenm.201701189
10.1038/ncomms13370
10.1002/aenm.201703008
10.1021/acsami.0c03423
10.1016/j.jallcom.2022.165765
10.1002/anie.201606508
10.3866/PKU.WHXB201905027
10.1002/aenm.202002913
10.1021/acs.chemmater.9b00471
10.1016/j.solidstatesciences.2019.05.019
10.1039/d0ee00771d
10.1021/acs.energyfuels.1c01095
10.1021/acsaem.0c01781
10.1016/j.ensm.2023.02.005
10.1002/aenm.202100867
10.3866/PKU.WHXB201907049
10.1038/s41467-019-12939-3
10.1021/acsami.6b03089
10.1016/j.nanoen.2019.103941
10.1021/acs.chemmater.0c01582
10.1016/j.nanoen.2014.02.010
10.1039/c5ta02568k
10.1002/aenm.201200065
10.1039/c8ta08367c
10.1021/acsaem.7b00022
10.1039/c4ta06018k
10.1016/j.jpowsour.2012.04.018
10.1002/smm2.1192
10.1021/acsami.1c23806
10.1186/s11671-017-2340-1
10.1021/acs.energyfuels.0c02897
10.1039/c6ra01768a
10.1016/j.cej.2021.130459
10.3390/en12234534
10.1002/aenm.202104053
10.1039/d1ta11080b
10.1002/celc.202001323
10.1021/la970767d
10.1007/s00339-020-03799-6
10.1038/ncomms7401
10.1021/jp7108785
10.1016/j.cej.2019.03.251
10.1016/j.electacta.2014.10.052
10.1039/d1qm01011e
10.1016/j.ensm.2022.06.008
10.1016/j.electacta.2013.11.077
10.1016/j.jpcs.2020.109771
10.1016/j.electacta.2013.02.075
10.1002/idm2.12080
10.1039/c4ta04428b
10.1016/j.jallcom.2022.167872
10.1126/science.1212741
10.1021/accountsmr.2c00058
10.1002/aenm.201200598
10.1007/s11708-017-0485-3
10.1002/batt.202000277
10.1016/j.electacta.2017.11.015
10.1016/j.jpowsour.2017.10.088
10.1039/c6ta08736a
10.1016/j.electacta.2019.04.130
10.1002/adma.201700804
10.1021/acsaem.1c02734
10.1002/aenm.201501005
10.3390/polym10080853
10.1002/aenm.202204413
10.3724/SP.J.1077.2013.13388
10.1016/j.cej.2021.129003
10.1557/s43577-021-00098-0
10.1002/adma.202108384
10.1038/s41467-022-35617-3
10.1039/c6cs00776g
10.1002/aenm.201600943
10.1016/j.epsr.2008.09.017
10.1038/s41467-018-03257-1
10.1002/smtd.201800220
10.1016/j.mtener.2020.100432
10.1002/chem.202202997
10.1039/d2ta05309h
10.1002/aenm.201703055
10.1002/cssc.201801930
10.5796/electrochemistry.85.179
10.1039/c5ta08857g
10.1039/d1ee01392k
10.1002/adma.201904427
10.1021/acs.jpcc.8b05506
10.1016/j.chempr.2017.05.004
ContentType Journal Article
Copyright The Author(s) 2023
2023. Shanghai Jiao Tong University.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Shanghai Jiao Tong University 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. Shanghai Jiao Tong University.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Shanghai Jiao Tong University 2023
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-023-01162-x
DatabaseName Springer Nature Link
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 42
ExternalDocumentID oai_doaj_org_article_db4c184ed99b4cddbad888a182852282
PMC10412524
37555908
10_1007_s40820_023_01162_x
Genre Journal Article
Review
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c612t-96d4847f731e6b87f6a265f59fa7db6089a1361d28e86b2044a10a2aae0adc933
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:24:42 EDT 2025
Thu Aug 21 18:40:10 EDT 2025
Fri Jul 11 15:55:04 EDT 2025
Wed Aug 13 08:04:26 EDT 2025
Thu Apr 03 07:01:21 EDT 2025
Tue Jul 01 00:55:50 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Aqueous electrolytes
Electrochemical performance
Mn-based electrode materials
Improvement methods
Sodium-ion batteries
Language English
License 2023. Shanghai Jiao Tong University.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-96d4847f731e6b87f6a265f59fa7db6089a1361d28e86b2044a10a2aae0adc933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-023-01162-x
PMID 37555908
PQID 2889583025
PQPubID 2044332
PageCount 42
ParticipantIDs doaj_primary_oai_doaj_org_article_db4c184ed99b4cddbad888a182852282
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10412524
proquest_miscellaneous_2848229674
proquest_journals_2889583025
pubmed_primary_37555908
crossref_primary_10_1007_s40820_023_01162_x
crossref_citationtrail_10_1007_s40820_023_01162_x
springer_journals_10_1007_s40820_023_01162_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Shan, Charles, Lei, Qiao, Wang (CR112) 2016; 7
Hou, Li, Liang, Zhu, Qian (CR88) 2015; 3
Wang, Zhou, Li, Shi, Xu (CR139) 2022; 918
Guerra, Zhang, Eichman, Denholm, Kurtz (CR2) 2020; 13
Liu, Qiao, Zhang, Xu, Li (CR53) 2014; 5
Liu, Lei, Song, Zhu, Zhu (CR87) 2022; 14
Chua, Cai, Kou, Satish, Ren (CR98) 2019; 370
Shang, Li, Song, Huang, Yang (CR147) 2020; 6
Wang, Liu, Sun, Liu (CR28) 2021; 5
Liu, Pang, Dong, Zhang, Mi (CR44) 2019; 311
Li, Young, Xiang, Carter, Chiang (CR73) 2013; 3
Zhou, Zhang, Zhao, Liu, Lam (CR131) 2021; 425
Liu, Ao, Jin, Hou, Zhang (CR18) 2020; 17
Zhang, Liu, Chang, Yang, Wen (CR65) 2014; 253
Nwanya, Ndipingwi, Anthony, Ezema, Maaza (CR103) 2021; 45
Barpanda, Lander, Nishimura, Yamada (CR13) 2018; 8
Maddukuri, Nimkar, Chae, Penki, Luski (CR90) 2021; 8
Shin, Zheng, Zhang, Wu, Tang (CR117) 2020; 3
Zuo, Yang (CR63) 2022; 3
Firouzi, Qiao, Motallebi, Valencia, Israel (CR141) 2018; 9
Devaraj, Munichandraiah (CR48) 2008; 112
Hou, Zhang, Li, Zhu, Liang (CR22) 2017; 5
Braff, Mueller, Trancik (CR1) 2016; 6
Suo, Borodin, Wang, Rong, Sun (CR92) 2017; 7
Hwang, Myung, Sun (CR10) 2017; 46
Yun, Schiegg, Liang, Scieszka, Garlyyev (CR142) 2018; 1
Zhou, Zhao, Chen, Cao (CR67) 2021; 122
Pang, Nie, Yuan, Shen, Zhang (CR77) 2014; 2
Zhang, Tan, Li, Passerini, Huang (CR128) 2021; 14
Jabeen, Hussain, Xia, Sun, Zhu (CR62) 2017; 29
Yuan, Xiang, Jin, Jin, Wu (CR109) 2018; 259
Divya, Ostergaard (CR3) 2009; 79
Whitacre, Wiley, Shanbhag, Wenzhuo, Mohamed (CR37) 2012; 213
Rakocevic, Strbac, Potocnik, Popovic, Jugovic (CR84) 2021; 47
Yang, Qian (CR19) 2013; 28
Hou, Mao, Zhang, Chen, Ao (CR120) 2022; 15
Liu, Wu, Huang, Liu, Duployer (CR34) 2021; 11
Usui, Suzuki, Domi, Sakaguchi (CR60) 2020; 8
Tang, Zhu, Hou, Liu, Wu (CR17) 2013; 6
Bin, Wang, Tamirat, Suo, Wang (CR20) 2018; 8
Gao, Yang, Bai, Wu (CR27) 2021; 9
Sharma, Manthiram (CR129) 2022; 10
Wu, Shabhag, Chang, Rutt, Whitacre (CR89) 2015; 162
Nzimande, Haruna, Mwonga, Rasche, Cummings (CR137) 2021; 4
Nakamoto, Sakamoto, Ito, Kitajou, Okada (CR122) 2017; 85
Nakamoto, Sakamoto, Sawada, Ito, Okada (CR143) 2019; 3
Liu, Zhang, Xiao, Liu, Wen (CR66) 2014; 116
Oliver-Tolentino, Vazquez-Samperio, Arellano-Ahumada, Guzman-Vargas, Ramirez-Rosales (CR125) 2018; 122
Guo, Wang, Deng, Wang, Chen (CR135) 2020; 32
Yee, Shanbhag, Wu, Carlisle, Chang (CR82) 2018; 86
Jiang, Liu, Yue, Zhang, Zhou (CR123) 2020; 32
Zhang, Hou, Li, Liang, Zhu (CR83) 2016; 4
Wang, Feng, Laul, Zhu, Provencher (CR81) 2018; 374
Yin, Liu, Yang, Shan, Zhao (CR110) 2017; 12
Chen, Xu, Wang, Ren, Zhan (CR33) 2022; 10
Wu, Mohamed, Whitacre (CR74) 2013; 160
Sun, Dong, Kong (CR42) 2016; 19
Shen, Liu, Liu, Liu, Ding (CR25) 2021; 34
Chua, Cai, Lim, Kumar, Satish (CR96) 2020; 12
Gu, Sun, Yao, Shui, Shu (CR104) 2021; 149
Tekin, Sevinc, Morcrette, Demir-Cakan (CR69) 2017; 5
Zhang, Chen, Ye, Zhang, Hou (CR39) 2023; 13
Shan, Guo, Charles, Lebens-Higgins, Razek (CR64) 2019; 10
Shiprath, Manjunatha, Naidu, Khan, Asiri (CR136) 2020; 248
Liu, Qiao, Lou, Zhang, Zhang (CR54) 2016; 8
Wang, Liu, Lee, Qiao, Yang (CR138) 2015; 6
Kim, Kim, Ding, Lee, Lim (CR5) 2016; 6
Xie, Sakamoto, Kitajou, Nakamoto, Zhao (CR134) 2019; 12
Liu, Sun, Li, Jin, Zhao (CR126) 2023; 57
Qiu, Xu, Wu, Ji (CR114) 2022; 5
Minakshi, Meyrick (CR50) 2013; 101
Chayambuka, Mulder, Danilov, Notten (CR11) 2018; 8
Guo, Zhao, Ding, Dong, Chen (CR72) 2017; 3
Wu, Ni, Hu, Ma (CR145) 2019; 11
Huang, Dong, Guo, Wang (CR26) 2020; 59
Lei, Liu, Wan, Luo, Xiang (CR146) 2019; 55
Gu, Yao, Sun, Fang, Shui (CR85) 2020; 126
Shan, He, Tan, Zhang, Wang (CR111) 2019; 94
Gao, Goodenough (CR43) 2016; 55
Shan, Guo, Page, Neuefeind, Ravel (CR55) 2019; 31
Yang, Bremner, Menictas, Kay (CR6) 2018; 91
Wang, Mu, Liu, Yang, Yu (CR99) 2015; 5
Peng, Zhang, Liu, Wang, Chou (CR14) 2022; 34
Zhao, Lin, Zhang, Deng (CR76) 2015; 7
Yu, Huang, He, Tang, Huang, Liu, Wu, Peng, Zhao, Lan, Wei (CR57) 2023
Chae, Chakraborty, Kunnikuruvan, Attias, Maddukuri (CR45) 2020; 10
Jayakumar, Hemalatha, Ramesha, Prakash (CR101) 2015; 17
Zhang, Bakenov, Tan, Huang (CR108) 2018; 10
Zhang, Yuan, Ye, Jiang, Yin (CR49) 2014; 148
Zhou, Chi, Shi, Zhao, Li (CR31) 2023; 27
Tomiyasu, Shikata, Takao, Asanuma, Taruta (CR23) 2017; 7
Ma, Zhang, Xue (CR21) 2021; 79
Reber, Grissa, Becker, Kuhnel, Battaglia (CR124) 2021; 11
Li, Liu, Yuan, Wang, Sheng (CR91) 2021; 37
Ponrouch, Monti, Boschin, Steen, Johansson (CR15) 2015; 3
Lim, Jung, Park, Lee, Kim (CR41) 2018; 446
Minakshi (CR38) 2012; 177
Kumar, Kheireddine, Nisar, Shakoor, Essehli (CR133) 2019; 429
Sun, Liu, Wang, Nian, Feng (CR71) 2020; 13
Zhang, Li, Xiang, Sun (CR100) 2017; 802
Wei, Chang, Butts, DeBlock, Lan (CR56) 2023; 14
Guo, Shao, Zhang, Cui, Mao (CR95) 2022; 608
Shan, Guo, Xu, Teng (CR113) 2017; 11
Perveen, Siddiq, Shahzad, Ihsan, Ahmad (CR12) 2020; 119
Ren, Fang, Wang, Li, Li (CR61) 2020; 34
Hijazi, Desai, Mariyappan (CR16) 2021; 4
Whitacre, Tevar, Sharma (CR107) 2010; 12
Ke, Dong, Lin, Yu, Wang (CR78) 2017; 9
Wei, Huang, Huang, Wang, Jiang (CR58) 2023; 2
Chae, Kim, Lyoo, Attias, Elias (CR94) 2020; 3
Tevar, Whitacre (CR106) 2010; 157
Han, Zhang, Varzi, Passerini (CR116) 2018; 11
Qiu, Wu, Wang, Lucero, Wang (CR118) 2019; 64
Li, Liu, Yuan, Wang, Sheng (CR70) 2020; 36
Kim, Ponraj, Kannan, Lee, Fathi (CR40) 2013; 244
Pasta, Wessells, Liu, Nelson, McDowell (CR140) 2014; 5
Shan, Charles, Xu, Feygenson, Su (CR59) 2018; 28
Gao, Tang, Xiao, Guo, Chen (CR24) 2022; 69
Chae, Elias, Aurbach (CR68) 2021; 8
Yadav, Gallaway, Turney, Nyce, Huang (CR35) 2017; 8
Pasta, Wang, Ruffo, Qiao, Lee (CR121) 2016; 4
Zhao, Wang, Zhang, Deng (CR75) 2015; 3
Bai, Song, Wen, Cheng, Cao (CR93) 2016; 6
Wu, Liu, Bu, Zhang, Zhang (CR132) 2023; 934
Zhang, Dong, Li, Wang, Wei (CR46) 2021; 35
Li, Zhang, Sun, Guo, Yuan (CR29) 2021; 11
Tarascon, Wilkens, Mc Kinnon, Barboux (CR36) 1992; 57
Yuan, Wei, Yang, Zhang, Jia (CR127) 2022; 50
Kim, Hong, Park, Kim, Kim (CR8) 2014; 114
Wang, Yan (CR51) 2022; 45
Hou, Zhang, Chen, Qian, Chen (CR97) 2022; 12
Chen, Liu, Yu, Qu, Wang (CR119) 2021; 415
Lamb, Jeevarajan (CR9) 2021; 46
Liu, Qiao, Zhang, Wang, Chen (CR52) 2015; 3
Chang, Yu, Xing, Guo, Xie (CR32) 2022; 22
Xie, Sun, Gao, Ma, Yin (CR115) 2022; 460
Wheeler, Capone, Day, Tang, Pasta (CR144) 2019; 31
Dunn, Kamath, Tarascon (CR4) 2011; 334
Zhang, Liu, Wu, Yang, Chang (CR86) 2014; 50
Yin, Liu, Zhao, Feng, Zhang (CR105) 2017; 7
Cao, Xiao, Sun, Dong, Huang (CR30) 2023; 29
Gu, Zhou, Liu, Wang, Cheng (CR80) 2016; 6
Boyd, Dhall, LeBeau, Augustyn (CR102) 2018; 6
Minakshi, Meyrick (CR130) 2013; 555
Deng, Zhang, Dong, Shang (CR79) 2014; 4
Wang, Yi, Xia (CR7) 2012; 2
Kanoh, Tang, Makita, Ooi (CR47) 1997; 13
DGGJM Tarascon (1162_CR36) 1992; 57
FP Gu (1162_CR104) 2021; 149
Y Zhang (1162_CR49) 2014; 148
KC Divya (1162_CR3) 2009; 79
Y Liu (1162_CR54) 2016; 8
L Sharma (1162_CR129) 2022; 10
BH Zhang (1162_CR86) 2014; 50
HC Gao (1162_CR43) 2016; 55
AD Tevar (1162_CR106) 2010; 157
S Liu (1162_CR87) 2022; 14
MA Oliver-Tolentino (1162_CR125) 2018; 122
MS Chae (1162_CR94) 2020; 3
M Jayakumar (1162_CR101) 2015; 17
S Boyd (1162_CR102) 2018; 6
PR Kumar (1162_CR133) 2019; 429
YS Wang (1162_CR99) 2015; 5
XQ Shan (1162_CR113) 2017; 11
H Lim (1162_CR41) 2018; 446
DJ Kim (1162_CR40) 2013; 244
TT Gu (1162_CR80) 2016; 6
LW Jiang (1162_CR123) 2020; 32
YG Cao (1162_CR30) 2023; 29
W Wu (1162_CR74) 2013; 160
HX Yang (1162_CR19) 2013; 28
Z Li (1162_CR73) 2013; 3
B Tekin (1162_CR69) 2017; 5
HX Li (1162_CR29) 2021; 11
G Pang (1162_CR77) 2014; 2
ZG Hou (1162_CR97) 2022; 12
QL Wei (1162_CR56) 2023; 14
J Han (1162_CR116) 2018; 11
LL Ke (1162_CR78) 2017; 9
H Tomiyasu (1162_CR23) 2017; 7
FP Gu (1162_CR85) 2020; 126
JH Huang (1162_CR26) 2020; 59
XY Guo (1162_CR135) 2020; 32
M Minakshi (1162_CR50) 2013; 101
P Lei (1162_CR146) 2019; 55
ZG Hou (1162_CR22) 2017; 5
Y Liu (1162_CR126) 2023; 57
H Gao (1162_CR24) 2022; 69
AC Nwanya (1162_CR103) 2021; 45
LM Suo (1162_CR92) 2017; 7
BX Xie (1162_CR115) 2022; 460
X Zhou (1162_CR67) 2021; 122
XQ Zhang (1162_CR83) 2016; 4
N Nzimande (1162_CR137) 2021; 4
A Ponrouch (1162_CR15) 2015; 3
ZX Liu (1162_CR44) 2019; 311
BH Zhang (1162_CR65) 2014; 253
M Pasta (1162_CR140) 2014; 5
J Peng (1162_CR14) 2022; 34
GG Yadav (1162_CR35) 2017; 8
Y Wang (1162_CR139) 2022; 918
BD Zhao (1162_CR75) 2015; 3
S Qiu (1162_CR118) 2019; 64
JF Whitacre (1162_CR37) 2012; 213
Y Liu (1162_CR52) 2015; 3
H Usui (1162_CR60) 2020; 8
WH Zuo (1162_CR63) 2022; 3
FX Yin (1162_CR105) 2017; 7
K Shiprath (1162_CR136) 2020; 248
JY Hwang (1162_CR10) 2017; 46
ZW Guo (1162_CR72) 2017; 3
FX Yin (1162_CR110) 2017; 12
JT Wu (1162_CR132) 2023; 934
JZ Sun (1162_CR42) 2016; 19
XQ Shan (1162_CR59) 2018; 28
OJ Guerra (1162_CR2) 2020; 13
YX Chang (1162_CR32) 2022; 22
C Deng (1162_CR79) 2014; 4
Y Yuan (1162_CR127) 2022; 50
YH Shen (1162_CR25) 2021; 34
HZ Guo (1162_CR95) 2022; 608
M Minakshi (1162_CR38) 2012; 177
XQ Shan (1162_CR55) 2019; 31
BD Zhao (1162_CR76) 2015; 7
K Nakamoto (1162_CR143) 2019; 3
R Chua (1162_CR96) 2020; 12
LY Liu (1162_CR34) 2021; 11
Y Zhou (1162_CR131) 2021; 425
J Chen (1162_CR33) 2022; 10
Y Shang (1162_CR147) 2020; 6
Q Wei (1162_CR58) 2023; 2
MS Chae (1162_CR45) 2020; 10
H Li (1162_CR91) 2021; 37
D Reber (1162_CR124) 2021; 11
MG Wu (1162_CR145) 2019; 11
A Zhou (1162_CR31) 2023; 27
JS Chen (1162_CR119) 2021; 415
YS Wang (1162_CR138) 2015; 6
YG Wang (1162_CR7) 2012; 2
L Rakocevic (1162_CR84) 2021; 47
M Ren (1162_CR61) 2020; 34
T Perveen (1162_CR12) 2020; 119
BW Xie (1162_CR134) 2019; 12
J Yun (1162_CR142) 2018; 1
Y Liu (1162_CR53) 2014; 5
Y Wang (1162_CR81) 2018; 374
ZG Hou (1162_CR120) 2022; 15
XQ Zhang (1162_CR39) 2023; 13
K Chayambuka (1162_CR11) 2018; 8
R Chua (1162_CR98) 2019; 370
A Firouzi (1162_CR141) 2018; 9
XQ Shan (1162_CR64) 2019; 10
B Dunn (1162_CR4) 2011; 334
S Qiu (1162_CR114) 2022; 5
J Lamb (1162_CR9) 2021; 46
F Zhang (1162_CR100) 2017; 802
K Nakamoto (1162_CR122) 2017; 85
M Pasta (1162_CR121) 2016; 4
TJ Sun (1162_CR71) 2020; 13
H Ma (1162_CR21) 2021; 79
GH Yuan (1162_CR109) 2018; 259
H Kanoh (1162_CR47) 1997; 13
D Bin (1162_CR20) 2018; 8
YY Wang (1162_CR28) 2021; 5
J Yu (1162_CR57) 2023
H Kim (1162_CR5) 2016; 6
H Kim (1162_CR8) 2014; 114
S Maddukuri (1162_CR90) 2021; 8
K Shin (1162_CR117) 2020; 3
N Jabeen (1162_CR62) 2017; 29
MS Chae (1162_CR68) 2021; 8
H Zhang (1162_CR128) 2021; 14
P Barpanda (1162_CR13) 2018; 8
H Li (1162_CR70) 2020; 36
W Wu (1162_CR89) 2015; 162
M Liu (1162_CR18) 2020; 17
SL Bai (1162_CR93) 2016; 6
JF Whitacre (1162_CR107) 2010; 12
ZZ Shan (1162_CR111) 2019; 94
WA Braff (1162_CR1) 2016; 6
ZG Hou (1162_CR88) 2015; 3
Y Liu (1162_CR66) 2014; 116
S Wheeler (1162_CR144) 2019; 31
YG Zhang (1162_CR108) 2018; 10
H Hijazi (1162_CR16) 2021; 4
W Tang (1162_CR17) 2013; 6
G Yee (1162_CR82) 2018; 86
MQ Zhang (1162_CR46) 2021; 35
YQ Yang (1162_CR6) 2018; 91
M Minakshi (1162_CR130) 2013; 555
XQ Shan (1162_CR112) 2016; 7
PY Wang (1162_CR51) 2022; 45
S Devaraj (1162_CR48) 2008; 112
YN Gao (1162_CR27) 2021; 9
References_xml – volume: 15
  start-page: 5072
  issue: 6
  year: 2022
  end-page: 5080
  ident: CR120
  article-title: Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4113-0
– volume: 27
  start-page: 101294
  year: 2023
  ident: CR31
  article-title: Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101294
– volume: 10
  start-page: 2002077
  issue: 37
  year: 2020
  ident: CR45
  article-title: Vacancy-driven high rate capabilities in calcium-doped Na MnO cathodes for aqueous sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002077
– volume: 7
  start-page: 45048
  year: 2017
  ident: CR23
  article-title: An aqueous electrolyte of the widest potential window and its superior capability for capacitors
  publication-title: Sci. Rep.
  doi: 10.1038/srep45048
– volume: 28
  start-page: 1703266
  issue: 3
  year: 2018
  ident: CR59
  article-title: Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703266
– volume: 31
  start-page: 8774
  issue: 21
  year: 2019
  end-page: 8786
  ident: CR55
  article-title: Framework doping of ni enhances pseudocapacitive Na-ion storage of (Ni)MnO layered birnessite
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02568
– volume: 69
  start-page: 84
  year: 2022
  end-page: 99
  ident: CR24
  article-title: Recent advances in "water in salt" electrolytes for aqueous rechargeable monovalent-ion (Li , Na , K ) batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.12.025
– volume: 59
  start-page: 18322
  issue: 42
  year: 2020
  end-page: 18333
  ident: CR26
  article-title: Progress of organic electrodes in aqueous electrolyte for energy storage and conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003198
– volume: 8
  start-page: 1800079
  issue: 16
  year: 2018
  ident: CR11
  article-title: Sodium-ion battery materials and electrochemical properties reviewed
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800079
– volume: 11
  start-page: 2101287
  issue: 31
  year: 2021
  ident: CR34
  article-title: Alkali ions pre-intercalated layered MnO nanosheet for zinc-ions storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101287
– volume: 3
  start-page: 7780
  issue: 15
  year: 2015
  end-page: 7785
  ident: CR52
  article-title: Nanostructured alkali cation incorporated delta-MnO cathode materials for aqueous sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta00396b
– volume: 460
  start-page: 214478
  year: 2022
  ident: CR115
  article-title: Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214478
– volume: 4
  start-page: 4211
  issue: 11
  year: 2016
  end-page: 4223
  ident: CR121
  article-title: Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta10571d
– volume: 45
  start-page: 11123
  issue: 7
  year: 2021
  end-page: 11134
  ident: CR103
  article-title: Impedance studies of biosynthesized Na Ni Co Mn O applied in an aqueous sodium-ion battery
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6594
– volume: 86
  start-page: 104
  year: 2018
  end-page: 107
  ident: CR82
  article-title: TiP O exhibiting reversible interaction with sodium ions in aqueous electrolytes
  publication-title: Electrochem. commun.
  doi: 10.1016/j.elecom.2017.11.013
– volume: 13
  start-page: 676
  issue: 3
  year: 2020
  end-page: 683
  ident: CR71
  article-title: A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2674-3
– volume: 160
  start-page: A497
  issue: 3
  year: 2013
  end-page: A504
  ident: CR74
  article-title: Microwave synthesized NaTi (PO ) as an aqueous sodium-ion negative electrode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.054303jes
– volume: 8
  start-page: 615677
  year: 2021
  ident: CR90
  article-title: Na MnO /polyimide aqueous Na-ion batteries for large energy storage applications
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2020.615677
– volume: 6
  start-page: 2093
  issue: 7
  year: 2013
  end-page: 2104
  ident: CR17
  article-title: Aqueous rechargeable lithium batteries as an energy storage system of superfast charging
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24249h
– volume: 608
  start-page: 1481
  year: 2022
  end-page: 1488
  ident: CR95
  article-title: Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.085
– volume: 11
  start-page: 44
  issue: 1
  year: 2019
  ident: CR145
  article-title: NASICON-structured NaTi (PO ) for sustainable energy storage
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0273-1
– volume: 446
  start-page: 131
  year: 2018
  end-page: 138
  ident: CR41
  article-title: High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-mwcnt core-shell nanowires and Na MnO nanorods
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.021
– volume: 253
  start-page: 98
  year: 2014
  end-page: 103
  ident: CR65
  article-title: Nanowire Na MnO from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.011
– volume: 429
  start-page: 149
  year: 2019
  end-page: 155
  ident: CR133
  article-title: Na MnV(PO ) -rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.080
– volume: 91
  start-page: 109
  year: 2018
  end-page: 125
  ident: CR6
  article-title: Battery energy storage system size determination in renewable energy systems: a review
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2018.03.047
– volume: 5
  start-page: 3007
  year: 2014
  ident: CR140
  article-title: Full open-framework batteries for stationary energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4007
– volume: 7
  start-page: 18552
  issue: 44
  year: 2015
  end-page: 18560
  ident: CR76
  article-title: A frogspawn-inspired hierarchical porous NaTi (PO ) -C array for high-rate and long-life aqueous rechargeable sodium batteries
  publication-title: Nanoscale
  doi: 10.1039/c5nr06505d
– volume: 157
  start-page: A870
  issue: 7
  year: 2010
  end-page: A875
  ident: CR106
  article-title: Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na Mn O in aqueous electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3428667
– volume: 47
  start-page: 4595
  issue: 4
  year: 2021
  end-page: 4603
  ident: CR84
  article-title: The Na MnO materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
  publication-title: Ceram Int.
  doi: 10.1016/j.ceramint.2020.10.025
– volume: 79
  start-page: 388
  issue: 4
  year: 2021
  end-page: 405
  ident: CR21
  article-title: Research progress and practical challenges of aqueous sodium-ion batteries
  publication-title: Acta. Chim. Sin.
  doi: 10.6023/A20100492
– volume: 114
  start-page: 11788
  issue: 23
  year: 2014
  end-page: 11827
  ident: CR8
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 5
  start-page: 2182
  issue: 12
  year: 2017
  end-page: 2188
  ident: CR69
  article-title: A new sodium-based aqueous rechargeable battery system: the special case of Na MnO /dissolved sodium polysulfide
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700245
– volume: 248
  start-page: 122952
  year: 2020
  ident: CR136
  article-title: Na MnPO CO as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.122952
– volume: 9
  start-page: 4183
  issue: 12
  year: 2017
  end-page: 4190
  ident: CR78
  article-title: A NaV (PO ) @C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries
  publication-title: Nanoscale
  doi: 10.1039/c7nr00793k
– volume: 6
  start-page: 53319
  issue: 58
  year: 2016
  end-page: 53323
  ident: CR80
  article-title: A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/c6ra09075c
– volume: 6
  start-page: 964
  issue: 10
  year: 2016
  end-page: 969
  ident: CR1
  article-title: Value of storage technologies for wind and solar energy
  publication-title: Nat. Clim. Change
  doi: 10.1038/Nclimate3045
– volume: 177
  start-page: 1788
  issue: 20
  year: 2012
  end-page: 1792
  ident: CR38
  article-title: Looking beyond lithium-ion technology - aqueous NaOH battery
  publication-title: Mater. Sci. Eng. B-Adv.
  doi: 10.1016/j.mseb.2012.09.003
– volume: 8
  start-page: 14424
  year: 2017
  ident: CR35
  article-title: Regenerable Cu-intercalated MnO layered cathode for highly cyclable energy dense batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14424
– volume: 45
  start-page: 142
  year: 2022
  end-page: 181
  ident: CR51
  article-title: Recent advances in Mg-Li and Mg-Na hybrid batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.027
– volume: 244
  start-page: 758
  year: 2013
  end-page: 763
  ident: CR40
  article-title: Diffusion behavior of sodium ions in Na MnO in aqueous and non-aqueous electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.090
– volume: 6
  start-page: 1804
  issue: 7
  year: 2020
  end-page: 1818
  ident: CR147
  article-title: Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.004
– volume: 22
  start-page: e202200122
  issue: 10
  year: 2022
  ident: CR32
  article-title: Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low-cost sodium ion batteries
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202200122
– volume: 5
  start-page: 242
  issue: 2
  year: 2022
  end-page: 262
  ident: CR114
  article-title: Prussian blue analogues as electrodes for aqueous monovalent ion batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00088-x
– volume: 119
  start-page: 109549
  year: 2020
  ident: CR12
  article-title: Prospects in anode materials for sodium ion batteries—a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109549
– volume: 7
  start-page: 253
  issue: 9
  year: 2017
  ident: CR105
  article-title: Electrochemical properties of an na4mn9o18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery
  publication-title: Nanomaterials
  doi: 10.3390/nano7090253
– volume: 57
  start-page: 113
  year: 1992
  end-page: 120
  ident: CR36
  article-title: Chemical and electrochemical insertion of na into the spinel -MnO phase
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90072-W
– volume: 17
  start-page: 20733
  issue: 32
  year: 2015
  end-page: 20740
  ident: CR101
  article-title: Framework structured Na Mn Ti O as an electrode for Na-ion storage hybrid devices
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c5cp02866c
– volume: 162
  start-page: A803
  issue: 6
  year: 2015
  end-page: A808
  ident: CR89
  article-title: Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na MnO aqueous sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121506jes
– volume: 555
  start-page: 10
  year: 2013
  end-page: 15
  ident: CR130
  article-title: Reversible sodiation in maricite NaMn Co Ni PO for renewable energy storage
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.11.203
– volume: 3
  start-page: 7030
  issue: 7
  year: 2020
  end-page: 7038
  ident: CR117
  article-title: Facile ion-exchange strategy for Na /K hybrid-ion batteries with superior rate capability and cycling performance
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01060
– volume: 2
  start-page: 705
  issue: 8
  year: 2014
  end-page: 712
  ident: CR77
  article-title: Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi (PO ) /MWNTs–Na MnO system
  publication-title: Energy Technol.
  doi: 10.1002/ente.201402045
– volume: 9
  start-page: 11472
  issue: 19
  year: 2021
  end-page: 11500
  ident: CR27
  article-title: Mn-based oxides for aqueous rechargeable metal ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d1ta01951a
– volume: 34
  start-page: 461
  year: 2021
  end-page: 474
  ident: CR25
  article-title: Water-in-salt electrolyte for safe and high-energy aqueous battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.011
– volume: 8
  start-page: 9165
  issue: 24
  year: 2020
  end-page: 9173
  ident: CR60
  article-title: Impacts of MnO crystal structures and Fe doping in those on photoelectrochemical charge-discharge properties of TiO /MnO composite electrodes
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02964
– volume: 122
  start-page: 106897
  year: 2021
  ident: CR67
  article-title: Research progress of tunnel-structural Na MnO cathode for sodium-ion batteries: a mini review
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2020.106897
– volume: 802
  start-page: 22
  year: 2017
  end-page: 26
  ident: CR100
  article-title: Highly stable Na-storage performance of Na Mn Ti05O microrods as cathode for aqueous sodium-ion batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.08.042
– volume: 55
  start-page: 509
  issue: 4
  year: 2019
  end-page: 512
  ident: CR146
  article-title: Ultrafast Na intercalation chemistry of Na Ti Mn (PO ) nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c8cc07668e
– volume: 12
  start-page: 463
  issue: 3
  year: 2010
  end-page: 466
  ident: CR107
  article-title: Na Mn O as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.01.020
– volume: 19
  start-page: 117
  issue: 3
  year: 2016
  end-page: 119
  ident: CR42
  article-title: Synthesis of Na MnFe(CN) and its application as cathode material for aqueous rechargeable sodium-ion battery
  publication-title: J. New Mater. Electrochem. Syst.
  doi: 10.14447/jnmes.v19i3.306
– volume: 4
  start-page: 49
  year: 2014
  end-page: 55
  ident: CR79
  article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.014
– volume: 50
  start-page: 1209
  issue: 10
  year: 2014
  end-page: 1211
  ident: CR86
  article-title: An aqueous rechargeable battery based on zinc anode and Na MnO
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48382g
– volume: 7
  start-page: 1701189
  issue: 21
  year: 2017
  ident: CR92
  article-title: Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701189
– volume: 7
  start-page: 13370
  year: 2016
  ident: CR112
  article-title: Bivalence Mn O with hydroxylated interphase for high-voltage aqueous sodium-ion storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13370
– volume: 8
  start-page: 1703008
  issue: 17
  year: 2018
  ident: CR20
  article-title: Progress in aqueous rechargeable sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703008
– volume: 12
  start-page: 22862
  issue: 20
  year: 2020
  end-page: 22872
  ident: CR96
  article-title: Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03423
– volume: 918
  start-page: 165765
  year: 2022
  ident: CR139
  article-title: Na [Mn Vac Ti ]O : A new layered negative electrode material for aqueous Na-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165765
– volume: 55
  start-page: 12768
  issue: 41
  year: 2016
  end-page: 12772
  ident: CR43
  article-title: An aqueous symmetric sodium-ion battery with NASICON-structured Na MnTi(PO )
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606508
– volume: 36
  start-page: 1905027
  issue: 5
  year: 2020
  ident: CR70
  article-title: Electrochemical mechanism of Na MnO in alkaline aqueous solution
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201905027
– volume: 11
  start-page: 2002913
  issue: 5
  year: 2021
  ident: CR124
  article-title: Anion selection criteria for water-in-salt electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002913
– volume: 31
  start-page: 2619
  issue: 7
  year: 2019
  end-page: 2626
  ident: CR144
  article-title: Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00471
– volume: 94
  start-page: 77
  year: 2019
  end-page: 84
  ident: CR111
  article-title: Preparation of Na Mn O /carbon nanotube/reduced graphene oxide by spray drying as cathode materials for sodium ion batteries
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2019.05.019
– volume: 13
  start-page: 1909
  issue: 7
  year: 2020
  end-page: 1922
  ident: CR2
  article-title: The value of seasonal energy storage technologies for the integration of wind and solar power
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee00771d
– volume: 35
  start-page: 10860
  issue: 13
  year: 2021
  end-page: 10868
  ident: CR46
  article-title: High-performance aqueous sodium-ion battery based on graphene-doped Na MnFe(CN) -zinc with a highly stable discharge platform and wide electrochemical stability
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01095
– volume: 3
  start-page: 10744
  issue: 11
  year: 2020
  end-page: 10751
  ident: CR94
  article-title: Boosting tunnel-type manganese oxide cathodes by lithium nitrate for practical aqueous Na-ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01781
– volume: 57
  start-page: 69
  year: 2023
  end-page: 80
  ident: CR126
  article-title: Recent progress of Mn-based nasicon-type sodium ion cathodes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.02.005
– volume: 11
  start-page: 2100867
  issue: 25
  year: 2021
  ident: CR29
  article-title: Manganese-based materials for rechargeable batteries beyond lithium-ion
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100867
– volume: 37
  start-page: 1907049
  issue: 3
  year: 2021
  ident: CR91
  article-title: Influence of NaOH concentration on sodium storage performance of Na MnO
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201907049
– volume: 10
  start-page: 4975
  year: 2019
  ident: CR64
  article-title: Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12939-3
– volume: 8
  start-page: 14564
  issue: 23
  year: 2016
  end-page: 14571
  ident: CR54
  article-title: Hollow K MnO nanospheres as cathode for high-performance aqueous sodium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03089
– volume: 64
  start-page: 103941
  year: 2019
  ident: CR118
  article-title: NASICON-type Na Fe (PO ) as a low-cost and high-rate anode material for aqueous sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103941
– volume: 32
  start-page: 6875
  issue: 16
  year: 2020
  end-page: 6885
  ident: CR135
  article-title: Design principles for aqueous Na-ion battery cathodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01582
– volume: 5
  start-page: 97
  year: 2014
  end-page: 104
  ident: CR53
  article-title: High-performance aqueous sodium-ion batteries with K MnO cathode and their sodium storage mechanism
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.02.010
– volume: 3
  start-page: 12089
  issue: 22
  year: 2015
  end-page: 12096
  ident: CR75
  article-title: Self-assembled wafer-like porous NaTi (PO ) decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta02568k
– volume: 2
  start-page: 830
  issue: 7
  year: 2012
  end-page: 840
  ident: CR7
  article-title: Recent progress in aqueous lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200065
– volume: 6
  start-page: 22266
  issue: 44
  year: 2018
  end-page: 22276
  ident: CR102
  article-title: Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta08367c
– volume: 1
  start-page: 123
  issue: 1
  year: 2018
  end-page: 128
  ident: CR142
  article-title: Electrochemically formed Na Mn[Mn(CN) ] thin film anodes demonstrate sodium intercalation and deintercalation at extremely negative electrode potentials in aqueous media
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00022
– volume: 3
  start-page: 1400
  issue: 4
  year: 2015
  end-page: 1404
  ident: CR88
  article-title: An aqueous rechargeable sodium ion battery based on a NaMnO -NaTi (PO ) hybrid system for stationary energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta06018k
– volume: 213
  start-page: 255
  year: 2012
  end-page: 264
  ident: CR37
  article-title: An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.018
– year: 2023
  ident: CR57
  article-title: Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage
  publication-title: SmartMat
  doi: 10.1002/smm2.1192
– volume: 14
  start-page: 11425
  issue: 9
  year: 2022
  end-page: 11434
  ident: CR87
  article-title: High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23806
– volume: 12
  start-page: 569
  year: 2017
  ident: CR110
  article-title: Na Mn O /carbon nanotube composite as a high electrochemical performance material for aqueous sodium-ion batteries
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2340-1
– volume: 34
  start-page: 13412
  issue: 11
  year: 2020
  end-page: 13426
  ident: CR61
  article-title: Advances on manganese-oxide-based cathodes for Na-ion batteries
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02897
– volume: 6
  start-page: 40793
  issue: 47
  year: 2016
  end-page: 40798
  ident: CR93
  article-title: Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na MnO cathode material
  publication-title: RSC Adv.
  doi: 10.1039/c6ra01768a
– volume: 425
  start-page: 130459
  year: 2021
  ident: CR131
  article-title: Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na MnTi(PO ) cathode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130459
– volume: 12
  start-page: 4534
  issue: 23
  year: 2019
  ident: CR134
  article-title: Cathode properties of Na MnPO CO prepared by the mechanical ball milling method for Na-ion batteries
  publication-title: Energies
  doi: 10.3390/en12234534
– volume: 12
  start-page: 2104053
  issue: 14
  year: 2022
  ident: CR97
  article-title: Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi (PO ) @C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202104053
– volume: 10
  start-page: 6376
  issue: 12
  year: 2022
  end-page: 6396
  ident: CR129
  article-title: Polyanionic insertion hosts for aqueous rechargeable batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d1ta11080b
– volume: 8
  start-page: 798
  issue: 5
  year: 2021
  end-page: 811
  ident: CR68
  article-title: Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202001323
– volume: 13
  start-page: 6845
  issue: 25
  year: 1997
  end-page: 6849
  ident: CR47
  article-title: Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution
  publication-title: Langmuir
  doi: 10.1021/la970767d
– volume: 126
  start-page: 658
  issue: 8
  year: 2020
  ident: CR85
  article-title: Studies on micron-sized Na MnO with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries
  publication-title: Appl. Phys. A Mater.
  doi: 10.1007/s00339-020-03799-6
– volume: 6
  start-page: 6401
  year: 2015
  ident: CR138
  article-title: Ti-substituted tunnel-type Na MnO oxide as a negative electrode for aqueous sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7401
– volume: 112
  start-page: 4406
  issue: 11
  year: 2008
  end-page: 4417
  ident: CR48
  article-title: Effect of crystallographic structure of MnO on its electrochemical capacitance properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7108785
– volume: 370
  start-page: 742
  year: 2019
  end-page: 748
  ident: CR98
  article-title: 13 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.251
– volume: 148
  start-page: 237
  year: 2014
  end-page: 243
  ident: CR49
  article-title: An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in lambda-MnO positive electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.10.052
– volume: 5
  start-page: 7384
  issue: 20
  year: 2021
  end-page: 7402
  ident: CR28
  article-title: Recent progress in electrode materials for aqueous sodium and potassium ion batteries
  publication-title: Mater. Chem. Front.
  doi: 10.1039/d1qm01011e
– volume: 50
  start-page: 760
  year: 2022
  end-page: 782
  ident: CR127
  article-title: Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.06.008
– volume: 116
  start-page: 512
  year: 2014
  end-page: 517
  ident: CR66
  article-title: A nanocomposite of MoO coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.11.077
– volume: 149
  start-page: 109771
  year: 2021
  ident: CR104
  article-title: Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na MnO -CNT electrodes for aqueous sodium batteries
  publication-title: J. Phys. Chem. Solid
  doi: 10.1016/j.jpcs.2020.109771
– volume: 101
  start-page: 66
  year: 2013
  end-page: 70
  ident: CR50
  article-title: Electrochemical energy storage device for securing future renewable energy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.075
– volume: 2
  start-page: 434
  issue: 3
  year: 2023
  end-page: 442
  ident: CR58
  article-title: High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance
  publication-title: Interdiscip. Mater.
  doi: 10.1002/idm2.12080
– volume: 3
  start-page: 22
  issue: 1
  year: 2015
  end-page: 42
  ident: CR15
  article-title: Non-aqueous electrolytes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta04428b
– volume: 934
  start-page: 167872
  year: 2023
  ident: CR132
  article-title: Manganese-based NASICON structured Na Mn Ti (PO ) as promising cathode in aqueous sodium ion battery
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.167872
– volume: 334
  start-page: 928
  issue: 6058
  year: 2011
  end-page: 935
  ident: CR4
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 3
  start-page: 709
  issue: 7
  year: 2022
  end-page: 720
  ident: CR63
  article-title: Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.2c00058
– volume: 3
  start-page: 290
  issue: 3
  year: 2013
  end-page: 294
  ident: CR73
  article-title: Towards high power high energy aqueous sodium-ion batteries: The NaTi (PO ) /Na MnO system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200598
– volume: 11
  start-page: 383
  issue: 3
  year: 2017
  end-page: 400
  ident: CR113
  article-title: High purity Mn O nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage
  publication-title: Front. Energy
  doi: 10.1007/s11708-017-0485-3
– volume: 4
  start-page: 881
  issue: 6
  year: 2021
  end-page: 896
  ident: CR16
  article-title: Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization
  publication-title: Batter. Supercaps.
  doi: 10.1002/batt.202000277
– volume: 259
  start-page: 647
  year: 2018
  end-page: 654
  ident: CR109
  article-title: Flexible free-standing Na Mn O /reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.015
– volume: 374
  start-page: 211
  year: 2018
  end-page: 216
  ident: CR81
  article-title: Ultra-low cost and highly stable hydrated FePO anodes for aqueous sodium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.088
– volume: 5
  start-page: 730
  issue: 2
  year: 2017
  end-page: 738
  ident: CR22
  article-title: Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta08736a
– volume: 311
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR44
  article-title: An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi (PO ) -MnO system
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.130
– volume: 29
  start-page: 1700804
  issue: 32
  year: 2017
  ident: CR62
  article-title: High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na MnO nanosheet assembled nanowall arrays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700804
– volume: 4
  start-page: 13085
  issue: 11
  year: 2021
  end-page: 13097
  ident: CR137
  article-title: Ceria-spiderweb nanosheets unlock the energy-storage properties in the "sleeping" triplite (Mn (PO )F)
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c02734
– volume: 5
  start-page: 1501005
  issue: 22
  year: 2015
  ident: CR99
  article-title: A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501005
– volume: 10
  start-page: 853
  issue: 8
  year: 2018
  ident: CR108
  article-title: Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na Mn O cathode and Zn metal anode
  publication-title: Polymers
  doi: 10.3390/polym10080853
– volume: 13
  start-page: 2204413
  issue: 17
  year: 2023
  ident: CR39
  article-title: Revealing the competitive intercalation between Na and H into Na MnO in aqueous sodium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204413
– volume: 28
  start-page: 1165
  issue: 11
  year: 2013
  end-page: 1171
  ident: CR19
  article-title: Recent development of aqueous sodium ion batteries and their key materials
  publication-title: J. Inorg. Mater.
  doi: 10.3724/SP.J.1077.2013.13388
– volume: 415
  start-page: 129003
  year: 2021
  ident: CR119
  article-title: High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129003
– volume: 46
  start-page: 395
  issue: 5
  year: 2021
  end-page: 401
  ident: CR9
  article-title: New developments in battery safety for large-scale systems
  publication-title: MRS Bull.
  doi: 10.1557/s43577-021-00098-0
– volume: 34
  start-page: 2108384
  issue: 15
  year: 2022
  ident: CR14
  article-title: Prussian blue analogues for sodium-ion batteries: past, present, and future
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108384
– volume: 14
  start-page: 7
  issue: 1
  year: 2023
  ident: CR56
  article-title: Surface-redox sodium-ion storage in anatase titanium oxide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35617-3
– volume: 46
  start-page: 3529
  issue: 12
  year: 2017
  end-page: 3614
  ident: CR10
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00776g
– volume: 6
  start-page: 1600943
  issue: 19
  year: 2016
  ident: CR5
  article-title: Recent progress in electrode materials for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600943
– volume: 79
  start-page: 511
  issue: 4
  year: 2009
  end-page: 520
  ident: CR3
  article-title: Battery energy storage technology for power systems-an overview
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.09.017
– volume: 9
  start-page: 861
  year: 2018
  ident: CR141
  article-title: Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03257-1
– volume: 3
  start-page: 1800220
  issue: 4
  year: 2019
  ident: CR143
  article-title: Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes
  publication-title: Small Methods
  doi: 10.1002/smtd.201800220
– volume: 17
  start-page: 100432
  year: 2020
  ident: CR18
  article-title: Aqueous rechargeable sodium ion batteries: developments and prospects
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100432
– volume: 29
  start-page: e202202997
  year: 2023
  ident: CR30
  article-title: Recent advances on high-capacity sodium manganese-based oxide cathodes for sodium-ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202202997
– volume: 10
  start-page: 21197
  issue: 40
  year: 2022
  end-page: 21250
  ident: CR33
  article-title: Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d2ta05309h
– volume: 8
  start-page: 1703055
  issue: 17
  year: 2018
  ident: CR13
  article-title: Polyanionic insertion materials for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703055
– volume: 11
  start-page: 3704
  issue: 21
  year: 2018
  end-page: 3707
  ident: CR116
  article-title: Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201801930
– volume: 85
  start-page: 179
  issue: 4
  year: 2017
  end-page: 185
  ident: CR122
  article-title: Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.179
– volume: 4
  start-page: 856
  issue: 3
  year: 2016
  end-page: 860
  ident: CR83
  article-title: Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta08857g
– volume: 14
  start-page: 5788
  issue: 11
  year: 2021
  end-page: 5800
  ident: CR128
  article-title: Assessment and progress of polyanionic cathodes in aqueous sodium batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01392k
– volume: 32
  start-page: 1904427
  issue: 2
  year: 2020
  ident: CR123
  article-title: High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904427
– volume: 122
  start-page: 20602
  issue: 36
  year: 2018
  end-page: 20610
  ident: CR125
  article-title: Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05506
– volume: 3
  start-page: 348
  issue: 2
  year: 2017
  end-page: 362
  ident: CR72
  article-title: Multi-functional flexible aqueous sodium-ion batteries with high safety
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.004
– year: 2023
  ident: 1162_CR57
  publication-title: SmartMat
  doi: 10.1002/smm2.1192
– volume: 12
  start-page: 569
  year: 2017
  ident: 1162_CR110
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2340-1
– volume: 6
  start-page: 6401
  year: 2015
  ident: 1162_CR138
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7401
– volume: 244
  start-page: 758
  year: 2013
  ident: 1162_CR40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.090
– volume: 10
  start-page: 6376
  issue: 12
  year: 2022
  ident: 1162_CR129
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d1ta11080b
– volume: 6
  start-page: 964
  issue: 10
  year: 2016
  ident: 1162_CR1
  publication-title: Nat. Clim. Change
  doi: 10.1038/Nclimate3045
– volume: 12
  start-page: 2104053
  issue: 14
  year: 2022
  ident: 1162_CR97
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202104053
– volume: 8
  start-page: 14564
  issue: 23
  year: 2016
  ident: 1162_CR54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03089
– volume: 10
  start-page: 2002077
  issue: 37
  year: 2020
  ident: 1162_CR45
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002077
– volume: 50
  start-page: 760
  year: 2022
  ident: 1162_CR127
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.06.008
– volume: 7
  start-page: 13370
  year: 2016
  ident: 1162_CR112
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13370
– volume: 55
  start-page: 509
  issue: 4
  year: 2019
  ident: 1162_CR146
  publication-title: Chem. Commun.
  doi: 10.1039/c8cc07668e
– volume: 11
  start-page: 2002913
  issue: 5
  year: 2021
  ident: 1162_CR124
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002913
– volume: 47
  start-page: 4595
  issue: 4
  year: 2021
  ident: 1162_CR84
  publication-title: Ceram Int.
  doi: 10.1016/j.ceramint.2020.10.025
– volume: 6
  start-page: 2093
  issue: 7
  year: 2013
  ident: 1162_CR17
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24249h
– volume: 3
  start-page: 22
  issue: 1
  year: 2015
  ident: 1162_CR15
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta04428b
– volume: 29
  start-page: e202202997
  year: 2023
  ident: 1162_CR30
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202202997
– volume: 259
  start-page: 647
  year: 2018
  ident: 1162_CR109
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.015
– volume: 3
  start-page: 7780
  issue: 15
  year: 2015
  ident: 1162_CR52
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta00396b
– volume: 9
  start-page: 4183
  issue: 12
  year: 2017
  ident: 1162_CR78
  publication-title: Nanoscale
  doi: 10.1039/c7nr00793k
– volume: 12
  start-page: 4534
  issue: 23
  year: 2019
  ident: 1162_CR134
  publication-title: Energies
  doi: 10.3390/en12234534
– volume: 934
  start-page: 167872
  year: 2023
  ident: 1162_CR132
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.167872
– volume: 4
  start-page: 13085
  issue: 11
  year: 2021
  ident: 1162_CR137
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c02734
– volume: 3
  start-page: 1400
  issue: 4
  year: 2015
  ident: 1162_CR88
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta06018k
– volume: 35
  start-page: 10860
  issue: 13
  year: 2021
  ident: 1162_CR46
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01095
– volume: 69
  start-page: 84
  year: 2022
  ident: 1162_CR24
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.12.025
– volume: 31
  start-page: 8774
  issue: 21
  year: 2019
  ident: 1162_CR55
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02568
– volume: 45
  start-page: 11123
  issue: 7
  year: 2021
  ident: 1162_CR103
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6594
– volume: 57
  start-page: 113
  year: 1992
  ident: 1162_CR36
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90072-W
– volume: 79
  start-page: 388
  issue: 4
  year: 2021
  ident: 1162_CR21
  publication-title: Acta. Chim. Sin.
  doi: 10.6023/A20100492
– volume: 10
  start-page: 853
  issue: 8
  year: 2018
  ident: 1162_CR108
  publication-title: Polymers
  doi: 10.3390/polym10080853
– volume: 253
  start-page: 98
  year: 2014
  ident: 1162_CR65
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.011
– volume: 57
  start-page: 69
  year: 2023
  ident: 1162_CR126
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.02.005
– volume: 2
  start-page: 830
  issue: 7
  year: 2012
  ident: 1162_CR7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200065
– volume: 425
  start-page: 130459
  year: 2021
  ident: 1162_CR131
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130459
– volume: 6
  start-page: 1804
  issue: 7
  year: 2020
  ident: 1162_CR147
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.004
– volume: 6
  start-page: 40793
  issue: 47
  year: 2016
  ident: 1162_CR93
  publication-title: RSC Adv.
  doi: 10.1039/c6ra01768a
– volume: 5
  start-page: 1501005
  issue: 22
  year: 2015
  ident: 1162_CR99
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501005
– volume: 12
  start-page: 463
  issue: 3
  year: 2010
  ident: 1162_CR107
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.01.020
– volume: 10
  start-page: 21197
  issue: 40
  year: 2022
  ident: 1162_CR33
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d2ta05309h
– volume: 6
  start-page: 22266
  issue: 44
  year: 2018
  ident: 1162_CR102
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta08367c
– volume: 122
  start-page: 20602
  issue: 36
  year: 2018
  ident: 1162_CR125
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05506
– volume: 34
  start-page: 13412
  issue: 11
  year: 2020
  ident: 1162_CR61
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02897
– volume: 555
  start-page: 10
  year: 2013
  ident: 1162_CR130
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.11.203
– volume: 311
  start-page: 1
  year: 2019
  ident: 1162_CR44
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.130
– volume: 6
  start-page: 53319
  issue: 58
  year: 2016
  ident: 1162_CR80
  publication-title: RSC Adv.
  doi: 10.1039/c6ra09075c
– volume: 460
  start-page: 214478
  year: 2022
  ident: 1162_CR115
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214478
– volume: 112
  start-page: 4406
  issue: 11
  year: 2008
  ident: 1162_CR48
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7108785
– volume: 1
  start-page: 123
  issue: 1
  year: 2018
  ident: 1162_CR142
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00022
– volume: 59
  start-page: 18322
  issue: 42
  year: 2020
  ident: 1162_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003198
– volume: 114
  start-page: 11788
  issue: 23
  year: 2014
  ident: 1162_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 17
  start-page: 100432
  year: 2020
  ident: 1162_CR18
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100432
– volume: 126
  start-page: 658
  issue: 8
  year: 2020
  ident: 1162_CR85
  publication-title: Appl. Phys. A Mater.
  doi: 10.1007/s00339-020-03799-6
– volume: 8
  start-page: 1703055
  issue: 17
  year: 2018
  ident: 1162_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703055
– volume: 8
  start-page: 798
  issue: 5
  year: 2021
  ident: 1162_CR68
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202001323
– volume: 3
  start-page: 709
  issue: 7
  year: 2022
  ident: 1162_CR63
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.2c00058
– volume: 13
  start-page: 6845
  issue: 25
  year: 1997
  ident: 1162_CR47
  publication-title: Langmuir
  doi: 10.1021/la970767d
– volume: 8
  start-page: 1703008
  issue: 17
  year: 2018
  ident: 1162_CR20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703008
– volume: 370
  start-page: 742
  year: 2019
  ident: 1162_CR98
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.251
– volume: 7
  start-page: 1701189
  issue: 21
  year: 2017
  ident: 1162_CR92
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701189
– volume: 4
  start-page: 49
  year: 2014
  ident: 1162_CR79
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.014
– volume: 14
  start-page: 5788
  issue: 11
  year: 2021
  ident: 1162_CR128
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee01392k
– volume: 3
  start-page: 7030
  issue: 7
  year: 2020
  ident: 1162_CR117
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01060
– volume: 918
  start-page: 165765
  year: 2022
  ident: 1162_CR139
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165765
– volume: 10
  start-page: 4975
  year: 2019
  ident: 1162_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12939-3
– volume: 13
  start-page: 2204413
  issue: 17
  year: 2023
  ident: 1162_CR39
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204413
– volume: 4
  start-page: 881
  issue: 6
  year: 2021
  ident: 1162_CR16
  publication-title: Batter. Supercaps.
  doi: 10.1002/batt.202000277
– volume: 36
  start-page: 1905027
  issue: 5
  year: 2020
  ident: 1162_CR70
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201905027
– volume: 4
  start-page: 856
  issue: 3
  year: 2016
  ident: 1162_CR83
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta08857g
– volume: 7
  start-page: 45048
  year: 2017
  ident: 1162_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/srep45048
– volume: 11
  start-page: 3704
  issue: 21
  year: 2018
  ident: 1162_CR116
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201801930
– volume: 101
  start-page: 66
  year: 2013
  ident: 1162_CR50
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.075
– volume: 160
  start-page: A497
  issue: 3
  year: 2013
  ident: 1162_CR74
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.054303jes
– volume: 12
  start-page: 22862
  issue: 20
  year: 2020
  ident: 1162_CR96
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03423
– volume: 19
  start-page: 117
  issue: 3
  year: 2016
  ident: 1162_CR42
  publication-title: J. New Mater. Electrochem. Syst.
  doi: 10.14447/jnmes.v19i3.306
– volume: 11
  start-page: 383
  issue: 3
  year: 2017
  ident: 1162_CR113
  publication-title: Front. Energy
  doi: 10.1007/s11708-017-0485-3
– volume: 13
  start-page: 676
  issue: 3
  year: 2020
  ident: 1162_CR71
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2674-3
– volume: 9
  start-page: 11472
  issue: 19
  year: 2021
  ident: 1162_CR27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d1ta01951a
– volume: 6
  start-page: 1600943
  issue: 19
  year: 2016
  ident: 1162_CR5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600943
– volume: 64
  start-page: 103941
  year: 2019
  ident: 1162_CR118
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103941
– volume: 11
  start-page: 2101287
  issue: 31
  year: 2021
  ident: 1162_CR34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101287
– volume: 7
  start-page: 253
  issue: 9
  year: 2017
  ident: 1162_CR105
  publication-title: Nanomaterials
  doi: 10.3390/nano7090253
– volume: 177
  start-page: 1788
  issue: 20
  year: 2012
  ident: 1162_CR38
  publication-title: Mater. Sci. Eng. B-Adv.
  doi: 10.1016/j.mseb.2012.09.003
– volume: 7
  start-page: 18552
  issue: 44
  year: 2015
  ident: 1162_CR76
  publication-title: Nanoscale
  doi: 10.1039/c5nr06505d
– volume: 248
  start-page: 122952
  year: 2020
  ident: 1162_CR136
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.122952
– volume: 802
  start-page: 22
  year: 2017
  ident: 1162_CR100
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.08.042
– volume: 46
  start-page: 3529
  issue: 12
  year: 2017
  ident: 1162_CR10
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00776g
– volume: 4
  start-page: 4211
  issue: 11
  year: 2016
  ident: 1162_CR121
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta10571d
– volume: 2
  start-page: 705
  issue: 8
  year: 2014
  ident: 1162_CR77
  publication-title: Energy Technol.
  doi: 10.1002/ente.201402045
– volume: 13
  start-page: 1909
  issue: 7
  year: 2020
  ident: 1162_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee00771d
– volume: 91
  start-page: 109
  year: 2018
  ident: 1162_CR6
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2018.03.047
– volume: 14
  start-page: 7
  issue: 1
  year: 2023
  ident: 1162_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35617-3
– volume: 149
  start-page: 109771
  year: 2021
  ident: 1162_CR104
  publication-title: J. Phys. Chem. Solid
  doi: 10.1016/j.jpcs.2020.109771
– volume: 32
  start-page: 1904427
  issue: 2
  year: 2020
  ident: 1162_CR123
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904427
– volume: 31
  start-page: 2619
  issue: 7
  year: 2019
  ident: 1162_CR144
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00471
– volume: 17
  start-page: 20733
  issue: 32
  year: 2015
  ident: 1162_CR101
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c5cp02866c
– volume: 15
  start-page: 5072
  issue: 6
  year: 2022
  ident: 1162_CR120
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4113-0
– volume: 3
  start-page: 10744
  issue: 11
  year: 2020
  ident: 1162_CR94
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01781
– volume: 5
  start-page: 242
  issue: 2
  year: 2022
  ident: 1162_CR114
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00088-x
– volume: 3
  start-page: 1800220
  issue: 4
  year: 2019
  ident: 1162_CR143
  publication-title: Small Methods
  doi: 10.1002/smtd.201800220
– volume: 28
  start-page: 1703266
  issue: 3
  year: 2018
  ident: 1162_CR59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703266
– volume: 5
  start-page: 2182
  issue: 12
  year: 2017
  ident: 1162_CR69
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700245
– volume: 415
  start-page: 129003
  year: 2021
  ident: 1162_CR119
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129003
– volume: 119
  start-page: 109549
  year: 2020
  ident: 1162_CR12
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109549
– volume: 213
  start-page: 255
  year: 2012
  ident: 1162_CR37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.018
– volume: 122
  start-page: 106897
  year: 2021
  ident: 1162_CR67
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2020.106897
– volume: 5
  start-page: 7384
  issue: 20
  year: 2021
  ident: 1162_CR28
  publication-title: Mater. Chem. Front.
  doi: 10.1039/d1qm01011e
– volume: 8
  start-page: 1800079
  issue: 16
  year: 2018
  ident: 1162_CR11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800079
– volume: 334
  start-page: 928
  issue: 6058
  year: 2011
  ident: 1162_CR4
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 94
  start-page: 77
  year: 2019
  ident: 1162_CR111
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2019.05.019
– volume: 5
  start-page: 3007
  year: 2014
  ident: 1162_CR140
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4007
– volume: 28
  start-page: 1165
  issue: 11
  year: 2013
  ident: 1162_CR19
  publication-title: J. Inorg. Mater.
  doi: 10.3724/SP.J.1077.2013.13388
– volume: 34
  start-page: 2108384
  issue: 15
  year: 2022
  ident: 1162_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108384
– volume: 34
  start-page: 461
  year: 2021
  ident: 1162_CR25
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.011
– volume: 3
  start-page: 12089
  issue: 22
  year: 2015
  ident: 1162_CR75
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c5ta02568k
– volume: 3
  start-page: 290
  issue: 3
  year: 2013
  ident: 1162_CR73
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200598
– volume: 27
  start-page: 101294
  year: 2023
  ident: 1162_CR31
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101294
– volume: 8
  start-page: 9165
  issue: 24
  year: 2020
  ident: 1162_CR60
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02964
– volume: 79
  start-page: 511
  issue: 4
  year: 2009
  ident: 1162_CR3
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.09.017
– volume: 50
  start-page: 1209
  issue: 10
  year: 2014
  ident: 1162_CR86
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48382g
– volume: 3
  start-page: 348
  issue: 2
  year: 2017
  ident: 1162_CR72
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.004
– volume: 9
  start-page: 861
  year: 2018
  ident: 1162_CR141
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03257-1
– volume: 148
  start-page: 237
  year: 2014
  ident: 1162_CR49
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.10.052
– volume: 429
  start-page: 149
  year: 2019
  ident: 1162_CR133
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.080
– volume: 55
  start-page: 12768
  issue: 41
  year: 2016
  ident: 1162_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606508
– volume: 85
  start-page: 179
  issue: 4
  year: 2017
  ident: 1162_CR122
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.179
– volume: 116
  start-page: 512
  year: 2014
  ident: 1162_CR66
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.11.077
– volume: 29
  start-page: 1700804
  issue: 32
  year: 2017
  ident: 1162_CR62
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700804
– volume: 374
  start-page: 211
  year: 2018
  ident: 1162_CR81
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.088
– volume: 14
  start-page: 11425
  issue: 9
  year: 2022
  ident: 1162_CR87
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23806
– volume: 5
  start-page: 97
  year: 2014
  ident: 1162_CR53
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.02.010
– volume: 11
  start-page: 44
  issue: 1
  year: 2019
  ident: 1162_CR145
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0273-1
– volume: 32
  start-page: 6875
  issue: 16
  year: 2020
  ident: 1162_CR135
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01582
– volume: 86
  start-page: 104
  year: 2018
  ident: 1162_CR82
  publication-title: Electrochem. commun.
  doi: 10.1016/j.elecom.2017.11.013
– volume: 8
  start-page: 14424
  year: 2017
  ident: 1162_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14424
– volume: 608
  start-page: 1481
  year: 2022
  ident: 1162_CR95
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.10.085
– volume: 157
  start-page: A870
  issue: 7
  year: 2010
  ident: 1162_CR106
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3428667
– volume: 11
  start-page: 2100867
  issue: 25
  year: 2021
  ident: 1162_CR29
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100867
– volume: 2
  start-page: 434
  issue: 3
  year: 2023
  ident: 1162_CR58
  publication-title: Interdiscip. Mater.
  doi: 10.1002/idm2.12080
– volume: 37
  start-page: 1907049
  issue: 3
  year: 2021
  ident: 1162_CR91
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201907049
– volume: 5
  start-page: 730
  issue: 2
  year: 2017
  ident: 1162_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta08736a
– volume: 46
  start-page: 395
  issue: 5
  year: 2021
  ident: 1162_CR9
  publication-title: MRS Bull.
  doi: 10.1557/s43577-021-00098-0
– volume: 45
  start-page: 142
  year: 2022
  ident: 1162_CR51
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.11.027
– volume: 162
  start-page: A803
  issue: 6
  year: 2015
  ident: 1162_CR89
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121506jes
– volume: 22
  start-page: e202200122
  issue: 10
  year: 2022
  ident: 1162_CR32
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202200122
– volume: 446
  start-page: 131
  year: 2018
  ident: 1162_CR41
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.021
– volume: 8
  start-page: 615677
  year: 2021
  ident: 1162_CR90
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2020.615677
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.479503
SecondaryResourceType review_article
Snippet Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous...
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost,...
HighlightsMn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion...
Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion...
Highlights Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Anodes
Aqueous electrolytes
Carbon
Composition
Crystal structure
Doping
Electrochemical analysis
Electrochemical performance
Electrode materials
Electrodes
Electrolytes
Energy storage
Engineering
Improvement methods
Low cost
Mn-based electrode materials
Morphology
Na-ion batteries
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optimization
Pigments
Polyelectrolytes
Review
Sodium
Sodium-ion batteries
Substitutes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQnuCA-CawICNxA4vYsR372EW72kUqF1hpb5YdO6ISpCvaSvvzmbHTtOXzwi1KHMl6mcnMaMbvEfJayc7XKkomeihRZCfBpazsGITilJTugsyHwuYf9fml_HClrvakvnAmrNADF-DexSA7qEJStBauYgw-QtHmOTKvCagX8O8LMW-vmAJLEi0qMu36gyirLPdYaiRyujQ7IjOFxGXtjh9TCQlxfQy0JZFusYWVleo4Z7qt9XgCJ5_DQ9XmmkH4Y9jXEOzmIMplMYDfZbC_DmL-1I3NQe7sHrk7Zqd0VlC5T26l4QG5s8dZ-JBczMrUwIouBjof2AmEwUhPi5pOTHTu18WoKaTDdAZbWW5W9NMyLjbf2MVyoIXREwr0R-Ty7PTz-3M26jGwDvKgNbM6SghmPUCbdDBtr73Qqle2920MujbWA448CpOMDgJQ97z2wvtU-9jZpnlMjoblkJ4SGnzPfWNx7spIG7lJPaQ6UCrCK03o24rwLX6uG8nKUTPjq5toljPmDjB3GXN3U5E30zvXharjr6tP8LNMK5FmO98A43Oj8bl_GV9Fjrcf1Y2-v3LCGKuQVk1V5NX0GLwWWzF-QNRhjUSmfd3KijwpNjDtpGmVQiX6ipgD6zjY6uGTYfElM4NzZE8D463I260h7fb1Zyye_Q8snpPbAj0gj_ock6P19016AQnbOrzMvvkDKDUvLQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQkJG4gUXi2I59QrtoqxZpKwRU6i1yYqesBEnp7kr9-cw4TtLl0VuUONJkMvbMeMbfR8gbKWqbSicYbyBFEbWAKWVEzcAVey9VXYlwKGx5oo5OxaczeRY33NaxrXJYE8NC7boa98jfc62NRLAq-eHiF0PWKKyuRgqN22QflmANydf-fHHy-ctgUbxAZqapToj0yuIaWo1AbJd8AjSTCGBWTDiZkgvw79Hh9gF1gaWswFiXZUwVqYonccJ5PGRvThm4QYb1Dc6udrxdIAX4VyT7d0PmH1XZ4OwO75N7MUqls96sHpBbvn1I7l7DLnxEjmd998Carlq6bNkc3KGji55Vx3m6tJveuCmExXQGonTbNf3audX2JzvuWtoje0Ki_picHi6-fTxikZeB1RAPbZhRToBTa0C1XlW6aJTlSjbSNLZwlUq1saDHzHHttao4aN1mqeXW-tS62uT5E7LXdq1_Rmhlm8zmBvuvtDAu076BkAdSRnglr5oiIdmgv7KOoOXInfGjHOGWg85L0HkZdF5eJeTt-M5FD9lx4-g5_pZxJMJthxvd5XkZZ2_pKlGDgN4ZA1fOVdZprW2G8H8cktaEHAw_tYxrwLqcLDYhr8fHMHuxJGNb1DqMEYi4rwqRkKe9DYyS5IWUyEifEL1jHTui7j5pV98DQniGKGpgvAl5NxjSJNf_dfH85s94Qe5wtO3QzHNA9jaXW_8SQrJN9SrOu984zieW
  priority: 102
  providerName: ProQuest
Title Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries
URI https://link.springer.com/article/10.1007/s40820-023-01162-x
https://www.ncbi.nlm.nih.gov/pubmed/37555908
https://www.proquest.com/docview/2889583025
https://www.proquest.com/docview/2848229674
https://pubmed.ncbi.nlm.nih.gov/PMC10412524
https://doaj.org/article/db4c184ed99b4cddbad888a182852282
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4GHiW8CozISb2ApcWzHfmxKy4bUCQGT9hY5sTMqQTKtrcSfz53z0RUGEi9tlTjS6ee73l3u_DtC3khR2Vg6wXgNKYqoBJiUERUDV-y9VFUpwqGw5Zk6ORcfL-RFfyhsPXS7DyXJ8E89HnbD0cgxAx_DsHjAGUSOhxJyd9Tr2Y5znGc4jWlXG8SRyuIGQ41APpd0R2ImkbQs23FjSi7Ap_dOtguiMyxfhSl1ScJUFqv-9M3tYu15uDAI4Lbo9c8mzN8qscHBLR6Qoz4ypdNOlR6SO755RO7f4Ct8TE6nXcfAmq4aumxYDi7Q0Xk3Scd5urSbTqEphMJ0CqK02zX90rrV9gc7bRvasXlCcv6EnC_mX2cnrJ_FwCqIgTbMKCfAkdUArVelzmpluZK1NLXNXKlibSzgmDiuvVYlB9RtElturY-tq0yaPiUHTdv454SWtk5sarDnSgvjEu1rCHMgTYRH0rLOIpIM-BVVT1SO8zK-FyPFcsC8AMyLgHnxMyJvx2euOpqOf67OcVvGlUixHS6015dFb7GFK0UFAnpnDPxyrrROa20TpPzjkKhG5HjY1KK3-3XBtTYSKdVkRF6Pt8FisQxjG0Qd1ghk2VeZiMizTgdGSdJMSpxCHxG9px17ou7faVbfAit4gsxpoLwReTco0k6uv2Px4v-WvyT3OOp6aOg5Jgeb661_BWHZppyQu3rxYUIOp_n7fAHf-fzs0-dJsE38VLNJeOHxC678KQA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBYwEJ7CIHdtxDghtocsu7fZCK_UWnNiBlSAp3V1R_hS_kRkn2e3y6K23KHGkyXiemfE3hDxTsrSxcpKJClIUWUpQqUyWDFyx90qXhQyHwiYHenQkPxyr4w3yqz8Lg22VvU0Mhto1Jf4jfyWMyRSCVak3J98ZTo3C6mo_QqMViz3_8wekbLPX43ewv8-FGO4evh2xbqoAK8Gbz1mmnQSTXKUJ97owaaWt0KpSWWVTV-jYZJYnmjthvNGFiKW0PLbCWh9bV2b4AxRM_hWZJBlqlBm-7-VXpDgHalWVxGHO8hw2jkQkmWQFn6YQLi1doXIqISGa6Nx7G76nWDgL8_E4ZzqNdXfuJ5z-w1nRMQOny7CaItjZmm8NIwj-FTf_3f75Rw04uNbhTXKji4npoBXiW2TD17fJ9XNIiXfIeND2KszotKaTmu2A83V0t53h4zyd2HmrShSCcDoAUprFjH5s3HTxjY2bmrY4olM_u0uOLmW_7pHNuqn9FqGFrbhNMuz2MjJz3PgKAixIUOGVpKjSiPCef3nZQaTjpI6v-RLcOfA8B57ngef5WUReLN85aQFCLly9g9uyXIng3uFGc_o572xF7gpZAoHeZRlcOVdYZ4yxHMEGBaTIEdnuNzXvLM4sX-lHRJ4uH4OtwAKQrZHrsEYivr9OZUTutzKwpCRJFSSXsYmIWZOONVLXn9TTLwGPnCNmGwhvRF72grSi6_-8eHDxZzwhV0eHk_18f3yw95BcEyjnoY1om2zOTxf-EQSD8-Jx0EBKPl22yv8GFT1ifg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA5yguiD-NvqqRF803BNmqTJ4955y626h6AH91bSJj0XtD1uu-Cf70za7e7qKfhW2gSGyaQzw8x8HyFvlKxcqrxkooYURVYSrpSVFQNXHILSVSnjUNj8VJ-cyQ_n6nxrij92u69Lkv1MA6I0Nd3Bpa8PxsE3pElOGfgbhoUEwSCKvAmZCsemvqMN_rjIkZlpUydEemW5hVYjEdsl2wCaKQQwyzc4mUpI8O-Dw-0D6hxLWZGxjnOm81QPkzjXi7Xj7SIpwHWR7J8Nmb9VZaOzm94jd4colU56s7pPboTmAbmzhV34kMwmfffAki4aOm_YIbhDT497Vh0f6Nx1vXFTCIvpBERpV0v6pfWL1Q82axvaI3tCov6InE2Pvx6dsIGXgVUQD3XMai_BqdWg2qBLk9faCa1qZWuX-1KnxjrQI_fCBKNLAVp3PHXCuZA6X9kse0z2mrYJTwktXc1dZrH_ykjruQk1hDyQMsKWrKzzhPC1_opqAC1H7ozvxQi3HHVegM6LqPPiZ0Lejnsue8iOf64-xGMZVyLcdnzRXl0Uw-0tfCkrEDB4a-HJ-9J5Y4zjCP8nIGlNyP76UIvhH7AshDFWIbyaSsjr8TPcXizJuAa1DmskIu7rXCbkSW8DoyRZrhQy0ifE7FjHjqi7X5rFt4gQzhFFDYw3Ie_WhrSR6--6ePZ_y1-RW5_fT4tPs9OPz8ltgWYf-3z2yV53tQovIFrrypfxQv4CppQqbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Mn-Based+Electrode+Materials+for+Aqueous+Sodium-Ion+Batteries&rft.jtitle=Nano-micro+letters&rft.au=Ding%2C+Changsheng&rft.au=Chen%2C+Zhang&rft.au=Cao%2C+Chuanxiang&rft.au=Liu%2C+Yu&rft.date=2023-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=192&rft_id=info:doi/10.1007%2Fs40820-023-01162-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon