Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier

•Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB func...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in immunology Vol. 38; pp. 18 - 23
Main Authors Miner, Jonathan J, Diamond, Michael S
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB function. The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.
AbstractList The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.
The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.
•Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB function. The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.
Highlights • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB breakdown during viral infection. • IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity. • Gastrointestinal microbiota modulate BBB function.
• Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB breakdown during viral infection. • IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity. • Gastrointestinal microbiota modulate BBB function. The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.
Author Diamond, Michael S
Miner, Jonathan J
AuthorAffiliation 2 Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
1 Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
3 Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
4 Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO 63110, USA
AuthorAffiliation_xml – name: 2 Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
– name: 1 Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
– name: 4 Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO 63110, USA
– name: 3 Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
Author_xml – sequence: 1
  givenname: Jonathan J
  surname: Miner
  fullname: Miner, Jonathan J
  organization: Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
– sequence: 2
  givenname: Michael S
  surname: Diamond
  fullname: Diamond, Michael S
  email: diamond@borcim.wustl.edu
  organization: Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26590675$$D View this record in MEDLINE/PubMed
BookMark eNqNUtFuFCEUJabGbqsf4IuZR192vTADzMSkiWm0mrTxwb4TBu64rLNQYWaTvvUf_EO_pJBtjTax-gQXzjlczrlH5MAHj4S8pLCiQMWbzcoEt2JAea5XAO0TsqCt7JZQS3ZAFtBxtpQd5YfkKKUNAHBewzNyyATvQEi-IBcXaNbau7RNVRiqiGmKzkwu-FLuXNRj5XGOwfmdTuVYT9W0xqofQ7A_b370UTtf9TpGh_E5eTroMeGLu_WYXH54f3n6cXn--ezT6bvzpRGUTcuWiZoaqJnFRlvJhR56a2mbfzCYRtZyYAYkpW3f0461rUVqBoF5Y2WnoT4mJ3vZq7nfojXop9ynuopuq-O1CtqpP2-8W6uvYacaSXnXNFng9Z1ADN_n_Ge1dcngOGqPYU6KSsFqke2C_4FCKxrZFOir39v61c-92xkg9wATQ0oRB2XcpIvZuUs3Kgqq5Ko2KueqSq7lKLuSmfQB8178Mc7bPQdzErucjkrGoTdoXUQzKZvxj7FPHrDN6LwzevyG15g2YY4-R6yoSkyB-lJmrYwa5QC04cXj7u8C_3j8FvKT5HE
CitedBy_id crossref_primary_10_22141_2224_0721_17_6_2021_243215
crossref_primary_10_1016_j_imbio_2019_08_007
crossref_primary_10_1016_j_pharmthera_2018_10_001
crossref_primary_10_1039_C9BM01395D
crossref_primary_10_18632_oncotarget_23106
crossref_primary_10_1007_s42399_020_00589_2
crossref_primary_10_1186_s12974_020_01904_3
crossref_primary_10_3390_microorganisms11102511
crossref_primary_10_1007_s13365_023_01190_8
crossref_primary_10_1016_j_mcn_2018_04_002
crossref_primary_10_1007_s13365_024_01212_z
crossref_primary_10_1038_s41392_021_00818_7
crossref_primary_10_1016_j_molmed_2021_10_007
crossref_primary_10_1007_s13365_021_00977_x
crossref_primary_10_30629_0023_2149_2024_102_9_10_707_713
crossref_primary_10_3389_fcimb_2019_00052
crossref_primary_10_3389_fncel_2021_670298
crossref_primary_10_1051_medsci_2020122
crossref_primary_10_1111_ene_14442
crossref_primary_10_3389_fcimb_2017_00276
crossref_primary_10_1002_jmv_26521
crossref_primary_10_3390_pharmaceutics14112370
crossref_primary_10_4049_jimmunol_1701507
crossref_primary_10_1007_s11011_021_00866_6
crossref_primary_10_3389_fimmu_2020_621735
crossref_primary_10_1093_braincomms_fcaa069
crossref_primary_10_15407_fz68_05_003
crossref_primary_10_3389_fmicb_2017_02557
crossref_primary_10_1128_mSphere_00206_17
crossref_primary_10_3389_fncel_2022_856512
crossref_primary_10_1186_s12974_021_02173_4
crossref_primary_10_1371_journal_ppat_1009788
crossref_primary_10_1002_jnr_25232
crossref_primary_10_1016_j_clinthera_2019_04_009
crossref_primary_10_1099_jgv_0_000853
crossref_primary_10_2139_ssrn_3800387
crossref_primary_10_1016_j_celrep_2021_109888
crossref_primary_10_52711_2231_5713_2024_00012
crossref_primary_10_3390_v16060863
crossref_primary_10_1073_pnas_2201862119
crossref_primary_10_1128_JVI_02191_20
crossref_primary_10_1016_j_ttbdis_2019_03_005
crossref_primary_10_1016_j_micpath_2025_107397
crossref_primary_10_1080_00325481_2020_1837503
crossref_primary_10_3390_jcm11175155
crossref_primary_10_1002_rmv_2539
crossref_primary_10_3390_v10120690
crossref_primary_10_1021_acschemneuro_6b00043
crossref_primary_10_4103_cjp_cjp_38_21
crossref_primary_10_1007_s13365_020_00913_5
crossref_primary_10_1080_22221751_2025_2477668
crossref_primary_10_4049_jimmunol_1901337
crossref_primary_10_3389_fmicb_2019_01435
crossref_primary_10_1038_s41583_018_0070_8
crossref_primary_10_3389_fonc_2018_00043
crossref_primary_10_1016_j_nantod_2023_101800
crossref_primary_10_1016_j_neulet_2018_11_022
crossref_primary_10_3390_ijms17060916
crossref_primary_10_1007_s40263_020_00737_1
crossref_primary_10_1039_C7MT00288B
crossref_primary_10_1186_s12879_019_4471_8
crossref_primary_10_1016_j_jneumeth_2016_05_016
crossref_primary_10_1016_j_molmed_2017_01_004
crossref_primary_10_1016_j_bbi_2020_09_021
crossref_primary_10_3389_fmicb_2020_625661
crossref_primary_10_1097_QAD_0000000000002442
crossref_primary_10_1186_s12974_019_1608_z
crossref_primary_10_3390_v12060603
crossref_primary_10_3389_fimmu_2021_697329
crossref_primary_10_3390_microorganisms8121958
crossref_primary_10_47224_revistamaster_v7i14_352
crossref_primary_10_1080_21505594_2021_1899674
crossref_primary_10_1016_j_phrs_2024_107313
crossref_primary_10_1128_mBio_01183_20
crossref_primary_10_1016_j_jcv_2016_10_006
crossref_primary_10_1128_JVI_02106_16
crossref_primary_10_3390_cells12131720
crossref_primary_10_1016_j_jconrel_2023_05_029
crossref_primary_10_1371_journal_ppat_1010234
crossref_primary_10_1016_j_brainres_2021_147524
crossref_primary_10_23736_S2784_8477_20_01895_7
crossref_primary_10_1186_s11671_021_03592_1
crossref_primary_10_1016_j_jconrel_2021_08_011
crossref_primary_10_1186_s40035_018_0139_3
crossref_primary_10_5005_jp_journals_11002_0066
crossref_primary_10_1016_j_neulet_2019_134594
crossref_primary_10_1111_acer_13796
crossref_primary_10_3389_fcimb_2021_701820
crossref_primary_10_1016_j_micinf_2018_02_008
crossref_primary_10_3389_fncel_2018_00386
crossref_primary_10_3390_ncrna7040060
crossref_primary_10_1016_j_expneurol_2024_114921
Cites_doi 10.1371/journal.pone.0102598
10.1523/JNEUROSCI.1460-11.2011
10.1083/jcb.40.3.648
10.1038/nm.3974
10.1128/JVI.00236-07
10.1016/j.trstmh.2009.07.031
10.1097/CCM.0b013e318183f2d2
10.1016/j.chom.2013.07.005
10.1038/labinvest.2012.80
10.1128/JVI.05032-11
10.1016/j.virol.2009.10.036
10.1097/WCO.0000000000000097
10.1212/01.wnl.0000277267.07220.88
10.1016/j.virol.2008.11.047
10.1017/S0950268807009739
10.1128/JVI.01501-15
10.3389/fphar.2012.00046
10.1128/JVI.02738-13
10.1128/CMR.17.4.942-964.2004
10.1124/pr.57.2.4
10.1016/j.chom.2012.08.009
10.1542/peds.2014-0498
10.1083/jcb.1.2.161
10.1099/vir.0.040899-0
10.1016/j.chom.2013.03.010
10.1002/glia.22857
10.1016/j.coviro.2014.12.009
10.1128/JVI.00775-08
10.1128/JVI.00314-08
10.1007/s10571-006-9028-x
10.1084/jem.66.1.15
10.1002/glia.20801
10.3389/fnins.2014.00404
10.1126/scitranslmed.aaa4304
10.1182/blood-2010-01-262386
10.1371/journal.pntd.0002980
10.1016/j.vetimm.2005.10.003
10.1016/j.brainres.2011.05.015
10.1126/scitranslmed.3009759
10.1083/jcb.200311112
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright © 2015 Elsevier Ltd. All rights reserved. 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved. 2015 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.1016/j.coi.2015.10.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1879-0372
EndPage 23
ExternalDocumentID PMC4715944
26590675
10_1016_j_coi_2015_10_008
S0952791515001454
1_s2_0_S0952791515001454
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: T32 AR007279
– fundername: NIAID NIH HHS
  grantid: R01 AI101400
– fundername: NINDS NIH HHS
  grantid: R01 NS052632
– fundername: NIAID NIH HHS
  grantid: U19 AI083019
– fundername: NIAMS NIH HHS
  grantid: T32-AR007279
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABEFU
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
CNWQP
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMG
HMK
HMO
HVGLF
HZ~
IH2
IHE
J1W
J5H
K-O
KOM
L7B
LUGTX
M29
M41
MO0
N9A
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
TN5
UAP
WUQ
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c612t-82631c032de4ad756afbdd18008fc4737f2c07118bb19288de1cf6e88dd79a03
IEDL.DBID .~1
ISSN 0952-7915
1879-0372
IngestDate Thu Aug 21 17:38:37 EDT 2025
Fri Jul 11 03:47:28 EDT 2025
Fri Jul 11 10:17:27 EDT 2025
Mon Jul 21 05:46:54 EDT 2025
Tue Jul 01 01:36:46 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 23 02:17:03 EST 2024
Sun Feb 23 10:18:56 EST 2025
Tue Aug 26 20:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-82631c032de4ad756afbdd18008fc4737f2c07118bb19288de1cf6e88dd79a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4715944
PMID 26590675
PQID 1760864740
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4715944
proquest_miscellaneous_1762360050
proquest_miscellaneous_1760864740
pubmed_primary_26590675
crossref_citationtrail_10_1016_j_coi_2015_10_008
crossref_primary_10_1016_j_coi_2015_10_008
elsevier_sciencedirect_doi_10_1016_j_coi_2015_10_008
elsevier_clinicalkeyesjournals_1_s2_0_S0952791515001454
elsevier_clinicalkey_doi_10_1016_j_coi_2015_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in immunology
PublicationTitleAlternate Curr Opin Immunol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schäfer, Brooke, Whitmore, Johnston (bib0320) 2011; 85
Zhu, Wang, Singh, Bell, Deane, Zhong, Sagare, Winkler, Zlokovic (bib0375) 2010; 115
Rock, Gekker, Hu, Sheng, Cheeran, Lokensgard, Peterson (bib0270) 2004; 17
Saunders, Liddelow, Dziegielewska (bib0355) 2012; 3
Verma, Kumar, Gurjav, Lum, Nerurkar (bib0415) 2010; 397
Lemant, Boisson, Winer, Thibault, André, Tixier, Lemercier, Antok, Cresta, Grivard (bib0335) 2008; 36
Strazza, Pirrone, Wigdahl, Nonnemacher (bib0390) 2011; 1399
Stahl, Mailles (bib0230) 2014; 27
Rajapakse, Rodrigo, Rajapakse (bib0330) 2010; 104
Bhattacharyya, Zagórska, Lew Erin, Shrestha, Rothlin Carla, Naughton, Diamond Michael, Lemke, Young John (bib0365) 2013; 14
Sabin, Olitsky (bib0325) 1937; 66
Dittmar, Harms, Runkler, Maisner, Kim, Schneider-Schaulies (bib0300) 2008; 82
Wielanek, Monredon, Amrani, Roger, Serveaux (bib0340) 2007; 69
Koyuncu, Hogue, Enquist (bib0295) 2013; 13
Honda, Nakagawa, Hayashi, Kitagawa, Tsutsumi, Nagata, Niwa (bib0275) 2006; 26
Xia, Ju, Westmuckett, An, Ivanciu, McDaniel, Lupu, Cummings, McEver (bib0260) 2004; 164
Meertens, Carnec, Lecoin Manuel, Ramdasi, Guivel-Benhassine, Lew, Lemke, Schwartz, Amara (bib0360) 2012; 12
Myint, Kipar, Jarman, Gibbons, Perng, Flanagan, Mongkolsirichaikul, Van Gessel, Solomon (bib0435) 2014; 8
Lazear, Daniels, Pinto, Huang, Vick, Doyle, Gale, Klein, Diamond (bib0285) 2015; 7
Wang, Dai, Bai, Kong, Wong, Montgomery, Madri, Fikrig (bib0425) 2008; 82
Chen, Ou, Li, Chang, Pan, Lai, Liao, Raung, Chang (bib0410) 2014; 88
Garcia-Tapia, Loiacono, Kleiboeker (bib0305) 2006; 110
Hawkins, Davis (bib0265) 2005; 57
Daniels, Holman, Cruz-Orengo, Jujjavarapu, Durrant, Klein (bib0280) 2014
Roe, Kumar, Lum, Orillo, Nerurkar, Verma (bib0420) 2012; 93
Verma, Lo, Chapagain, Lum, Kumar, Gurjav, Luo, Nakatsuka, Nerurkar (bib0310) 2009; 385
Bleau, Filliol, Samson, Lamontagne (bib0380) 2015; 89
Miner, Daniels, Shrestha, Proenca-Modena, Lew, Lazear, Gorman, Lemke, Klein, Diamond (bib0370) 2015
Roberts, Eugenin, Lopez, Romero, Weksler, Couraud, Berman (bib0400) 2012; 92
Braniste, Al-Asmakh, Kowal, Anuar, Abbaspour, Tóth, Korecka, Bakocevic, Ng, Kundu (bib0440) 2014; 6
Swanson, McGavern (bib0290) 2015; 11
Singh, Manimunda, Sugunan, Sahina, Vijayachari (bib0345) 2008; 136
Brightman, Reese (bib0255) 1969; 40
Chang, Li, Chen, Ou, Lai, Hu, Wu, Chang, Chen (bib0430) 2015; 63
Williams, Dhillon, Hegde, Yao, Peng, Callen, Chebloune, Davis, Buch (bib0405) 2009; 57
Barzon, Pacenti, Sinigaglia, Berto, Trevisan, Palù (bib0235) 2015
Roe, Orillo, Verma (bib0385) 2014; 9
Eugenin, Clements, Zink, Berman (bib0395) 2011; 31
van Breemen, Clemente (bib0250) 1955; 1
Gaensbauer, Lindsey, Messacar, Staples, Fischer (bib0225) 2014; 134
Ehrlich (bib0240) 1885
Saunders, Dreifuss, Dziegielewska, Johansson, Habgood, Møllgård, Bauer (bib0350) 2014; 8
Goldmann (bib0245) 1913; 1
Chen, Yao, Lin, Lee, Wang, Wang, Liu, Lei, Yu (bib0315) 2007; 81
Barzon (10.1016/j.coi.2015.10.008_bib0235) 2015
Strazza (10.1016/j.coi.2015.10.008_bib0390) 2011; 1399
Stahl (10.1016/j.coi.2015.10.008_bib0230) 2014; 27
Williams (10.1016/j.coi.2015.10.008_bib0405) 2009; 57
Myint (10.1016/j.coi.2015.10.008_bib0435) 2014; 8
Roe (10.1016/j.coi.2015.10.008_bib0420) 2012; 93
Koyuncu (10.1016/j.coi.2015.10.008_bib0295) 2013; 13
Wielanek (10.1016/j.coi.2015.10.008_bib0340) 2007; 69
Gaensbauer (10.1016/j.coi.2015.10.008_bib0225) 2014; 134
Sabin (10.1016/j.coi.2015.10.008_bib0325) 1937; 66
Swanson (10.1016/j.coi.2015.10.008_bib0290) 2015; 11
Braniste (10.1016/j.coi.2015.10.008_sbref0440) 2014; 6
Singh (10.1016/j.coi.2015.10.008_bib0345) 2008; 136
Saunders (10.1016/j.coi.2015.10.008_bib0355) 2012; 3
Eugenin (10.1016/j.coi.2015.10.008_bib0395) 2011; 31
Lemant (10.1016/j.coi.2015.10.008_bib0335) 2008; 36
Daniels (10.1016/j.coi.2015.10.008_sbref0280) 2014
Verma (10.1016/j.coi.2015.10.008_bib0310) 2009; 385
Xia (10.1016/j.coi.2015.10.008_bib0260) 2004; 164
Rajapakse (10.1016/j.coi.2015.10.008_bib0330) 2010; 104
Miner (10.1016/j.coi.2015.10.008_sbref0370) 2015
Wang (10.1016/j.coi.2015.10.008_bib0425) 2008; 82
Ehrlich (10.1016/j.coi.2015.10.008_bib0240) 1885
Garcia-Tapia (10.1016/j.coi.2015.10.008_bib0305) 2006; 110
Schäfer (10.1016/j.coi.2015.10.008_bib0320) 2011; 85
Roe (10.1016/j.coi.2015.10.008_bib0385) 2014; 9
Chen (10.1016/j.coi.2015.10.008_bib0315) 2007; 81
Lazear (10.1016/j.coi.2015.10.008_sbref0285) 2015; 7
Bhattacharyya (10.1016/j.coi.2015.10.008_bib0365) 2013; 14
Goldmann (10.1016/j.coi.2015.10.008_bib0245) 1913; 1
Bleau (10.1016/j.coi.2015.10.008_sbref0380) 2015; 89
Brightman (10.1016/j.coi.2015.10.008_bib0255) 1969; 40
Honda (10.1016/j.coi.2015.10.008_bib0275) 2006; 26
Chang (10.1016/j.coi.2015.10.008_sbref0430) 2015; 63
Rock (10.1016/j.coi.2015.10.008_bib0270) 2004; 17
Hawkins (10.1016/j.coi.2015.10.008_bib0265) 2005; 57
van Breemen (10.1016/j.coi.2015.10.008_bib0250) 1955; 1
Dittmar (10.1016/j.coi.2015.10.008_bib0300) 2008; 82
Verma (10.1016/j.coi.2015.10.008_bib0415) 2010; 397
Zhu (10.1016/j.coi.2015.10.008_bib0375) 2010; 115
Roberts (10.1016/j.coi.2015.10.008_bib0400) 2012; 92
Meertens (10.1016/j.coi.2015.10.008_bib0360) 2012; 12
Saunders (10.1016/j.coi.2015.10.008_bib0350) 2014; 8
Chen (10.1016/j.coi.2015.10.008_sbref0410) 2014; 88
References_xml – volume: 12
  start-page: 544
  year: 2012
  end-page: 557
  ident: bib0360
  article-title: The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry
  publication-title: Cell Host Microbe
– year: 2015
  ident: bib0370
  article-title: The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity
  publication-title: Nat Med
– volume: 110
  start-page: 229
  year: 2006
  end-page: 244
  ident: bib0305
  article-title: Replication of West Nile virus in equine peripheral blood mononuclear cells
  publication-title: Vet Immunol Immunopathol
– volume: 6
  year: 2014
  ident: bib0440
  article-title: The gut microbiota influences blood–brain barrier permeability in mice
  publication-title: Sci Transl Med
– volume: 26
  start-page: 109
  year: 2006
  end-page: 118
  ident: bib0275
  article-title: Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5
  publication-title: Cell Mol Neurobiol
– volume: 88
  start-page: 1150
  year: 2014
  end-page: 1161
  ident: bib0410
  article-title: Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier
  publication-title: J Virol
– volume: 1
  start-page: 161
  year: 1955
  end-page: 166
  ident: bib0250
  article-title: Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope
  publication-title: J Biophys Biochem Cytol
– volume: 69
  start-page: 2105
  year: 2007
  end-page: 2107
  ident: bib0340
  article-title: Guillain–Barre syndrome complicating a chikungunya virus infection
  publication-title: Neurology
– volume: 3
  start-page: 46
  year: 2012
  ident: bib0355
  article-title: Barrier mechanisms in the developing brain
  publication-title: Front Pharmacol
– start-page: 1
  year: 2015
  end-page: 14
  ident: bib0235
  article-title: West Nile virus infection in children
  publication-title: Expert Rev Anti Infect Ther
– volume: 81
  start-page: 8996
  year: 2007
  end-page: 9003
  ident: bib0315
  article-title: Retrograde axonal transport: a major transmission route of enterovirus 71 in mice
  publication-title: J Virol
– volume: 31
  start-page: 9456
  year: 2011
  end-page: 9465
  ident: bib0395
  article-title: Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism
  publication-title: J Neurosci
– volume: 93
  start-page: 1193
  year: 2012
  end-page: 1203
  ident: bib0420
  article-title: West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases
  publication-title: J Gen Virol
– volume: 134
  start-page: e642
  year: 2014
  end-page: e650
  ident: bib0225
  article-title: Neuroinvasive arboviral disease in the United States: 2003 to 2012
  publication-title: Pediatrics
– volume: 66
  start-page: 15
  year: 1937
  end-page: 34
  ident: bib0325
  article-title: Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose
  publication-title: J Exp Med
– volume: 57
  start-page: 734
  year: 2009
  end-page: 743
  ident: bib0405
  article-title: Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes
  publication-title: Glia
– start-page: 5
  year: 2014
  ident: bib0280
  article-title: Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals
  publication-title: mBio
– volume: 7
  year: 2015
  ident: bib0285
  article-title: Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood–brain barrier
  publication-title: Sci Transl Med
– volume: 13
  start-page: 379
  year: 2013
  end-page: 393
  ident: bib0295
  article-title: Virus infections in the nervous system
  publication-title: Cell Host Microbe
– year: 1885
  ident: bib0240
  article-title: Das sauerstufbudurfnis des organismus, in Eine Farbenanalytische Studie
– volume: 57
  start-page: 173
  year: 2005
  end-page: 185
  ident: bib0265
  article-title: The blood–brain barrier/neurovascular unit in health and disease
  publication-title: Pharmacol Rev
– volume: 9
  start-page: e102598
  year: 2014
  ident: bib0385
  article-title: West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood–brain barrier model
  publication-title: PLOS ONE
– volume: 17
  start-page: 942
  year: 2004
  end-page: 964
  ident: bib0270
  article-title: Role of microglia in central nervous system infections
  publication-title: Clin Microbiol Rev
– volume: 8
  start-page: e2980
  year: 2014
  ident: bib0435
  article-title: Neuropathogenesis of Japanese encephalitis in a primate model
  publication-title: PLoS Neglect Trop Dis
– volume: 36
  start-page: 2536
  year: 2008
  end-page: 2541
  ident: bib0335
  article-title: Serious acute chikungunya virus infection requiring intensive care during the reunion island outbreak in 2005–2006
  publication-title: Crit Care Med
– volume: 63
  start-page: 1915
  year: 2015
  end-page: 1932
  ident: bib0430
  article-title: Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes
  publication-title: Glia
– volume: 1
  start-page: 1
  year: 1913
  end-page: 60
  ident: bib0245
  article-title: Vitalfarbung am zentralnervensystem
  publication-title: Abhandl Konigl preuss Akad Wiss
– volume: 27
  start-page: 337
  year: 2014
  end-page: 341
  ident: bib0230
  article-title: What is new about epidemiology of acute infectious encephalitis?
  publication-title: Curr Opin Neurol
– volume: 40
  start-page: 648
  year: 1969
  end-page: 677
  ident: bib0255
  article-title: Junctions between intimately apposed cell membranes in the vertebrate brain
  publication-title: J Cell Biol
– volume: 85
  start-page: 10682
  year: 2011
  end-page: 10690
  ident: bib0320
  article-title: The role of the blood–brain barrier during venezuelan equine encephalitis virus infection
  publication-title: J Virol
– volume: 14
  start-page: 136
  year: 2013
  end-page: 147
  ident: bib0365
  article-title: Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors
  publication-title: Cell Host Microbe
– volume: 115
  start-page: 4963
  year: 2010
  end-page: 4972
  ident: bib0375
  article-title: Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor
  publication-title: Blood
– volume: 1399
  start-page: 96
  year: 2011
  end-page: 115
  ident: bib0390
  article-title: Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier
  publication-title: Brain Res
– volume: 11
  start-page: 44
  year: 2015
  end-page: 54
  ident: bib0290
  article-title: Viral diseases of the central nervous system
  publication-title: Curr Opin Virol
– volume: 104
  start-page: 89
  year: 2010
  end-page: 96
  ident: bib0330
  article-title: Atypical manifestations of chikungunya infection
  publication-title: Trans R Soc Trop Med Hyg
– volume: 136
  start-page: 1277
  year: 2008
  end-page: 1280
  ident: bib0345
  article-title: Four cases of acute flaccid paralysis associated with chikungunya virus infection
  publication-title: Epidemiol Infect
– volume: 89
  start-page: 9896
  year: 2015
  end-page: 9908
  ident: bib0380
  article-title: Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells
  publication-title: J Virol
– volume: 92
  start-page: 1213
  year: 2012
  end-page: 1233
  ident: bib0400
  article-title: CCL2 disrupts the adherens junction: implications for neuroinflammation
  publication-title: Lab Invest
– volume: 82
  start-page: 11273
  year: 2008
  end-page: 11282
  ident: bib0300
  article-title: Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers
  publication-title: J Virol
– volume: 8
  start-page: 404
  year: 2014
  ident: bib0350
  article-title: The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history
  publication-title: Front Neurosci
– volume: 397
  start-page: 130
  year: 2010
  end-page: 138
  ident: bib0415
  article-title: Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor
  publication-title: Virology
– volume: 82
  start-page: 8978
  year: 2008
  end-page: 8985
  ident: bib0425
  article-title: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain
  publication-title: J Virol
– volume: 385
  start-page: 425
  year: 2009
  end-page: 433
  ident: bib0310
  article-title: West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier
  publication-title: Virology
– volume: 164
  start-page: 451
  year: 2004
  end-page: 459
  ident: bib0260
  article-title: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans
  publication-title: J Cell Biol
– year: 1885
  ident: 10.1016/j.coi.2015.10.008_bib0240
– volume: 9
  start-page: e102598
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_bib0385
  article-title: West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood–brain barrier model
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0102598
– volume: 31
  start-page: 9456
  year: 2011
  ident: 10.1016/j.coi.2015.10.008_bib0395
  article-title: Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1460-11.2011
– volume: 40
  start-page: 648
  year: 1969
  ident: 10.1016/j.coi.2015.10.008_bib0255
  article-title: Junctions between intimately apposed cell membranes in the vertebrate brain
  publication-title: J Cell Biol
  doi: 10.1083/jcb.40.3.648
– year: 2015
  ident: 10.1016/j.coi.2015.10.008_sbref0370
  article-title: The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity
  publication-title: Nat Med
  doi: 10.1038/nm.3974
– volume: 81
  start-page: 8996
  year: 2007
  ident: 10.1016/j.coi.2015.10.008_bib0315
  article-title: Retrograde axonal transport: a major transmission route of enterovirus 71 in mice
  publication-title: J Virol
  doi: 10.1128/JVI.00236-07
– volume: 104
  start-page: 89
  year: 2010
  ident: 10.1016/j.coi.2015.10.008_bib0330
  article-title: Atypical manifestations of chikungunya infection
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2009.07.031
– volume: 36
  start-page: 2536
  year: 2008
  ident: 10.1016/j.coi.2015.10.008_bib0335
  article-title: Serious acute chikungunya virus infection requiring intensive care during the reunion island outbreak in 2005–2006
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e318183f2d2
– volume: 14
  start-page: 136
  year: 2013
  ident: 10.1016/j.coi.2015.10.008_bib0365
  article-title: Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.07.005
– volume: 92
  start-page: 1213
  year: 2012
  ident: 10.1016/j.coi.2015.10.008_bib0400
  article-title: CCL2 disrupts the adherens junction: implications for neuroinflammation
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2012.80
– volume: 85
  start-page: 10682
  year: 2011
  ident: 10.1016/j.coi.2015.10.008_bib0320
  article-title: The role of the blood–brain barrier during venezuelan equine encephalitis virus infection
  publication-title: J Virol
  doi: 10.1128/JVI.05032-11
– volume: 397
  start-page: 130
  year: 2010
  ident: 10.1016/j.coi.2015.10.008_bib0415
  article-title: Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor
  publication-title: Virology
  doi: 10.1016/j.virol.2009.10.036
– volume: 27
  start-page: 337
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_bib0230
  article-title: What is new about epidemiology of acute infectious encephalitis?
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000097
– volume: 69
  start-page: 2105
  year: 2007
  ident: 10.1016/j.coi.2015.10.008_bib0340
  article-title: Guillain–Barre syndrome complicating a chikungunya virus infection
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000277267.07220.88
– volume: 1
  start-page: 1
  year: 1913
  ident: 10.1016/j.coi.2015.10.008_bib0245
  article-title: Vitalfarbung am zentralnervensystem
  publication-title: Abhandl Konigl preuss Akad Wiss
– volume: 385
  start-page: 425
  year: 2009
  ident: 10.1016/j.coi.2015.10.008_bib0310
  article-title: West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier
  publication-title: Virology
  doi: 10.1016/j.virol.2008.11.047
– volume: 136
  start-page: 1277
  year: 2008
  ident: 10.1016/j.coi.2015.10.008_bib0345
  article-title: Four cases of acute flaccid paralysis associated with chikungunya virus infection
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268807009739
– volume: 89
  start-page: 9896
  year: 2015
  ident: 10.1016/j.coi.2015.10.008_sbref0380
  article-title: Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells
  publication-title: J Virol
  doi: 10.1128/JVI.01501-15
– volume: 3
  start-page: 46
  year: 2012
  ident: 10.1016/j.coi.2015.10.008_bib0355
  article-title: Barrier mechanisms in the developing brain
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2012.00046
– volume: 88
  start-page: 1150
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_sbref0410
  article-title: Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier
  publication-title: J Virol
  doi: 10.1128/JVI.02738-13
– volume: 17
  start-page: 942
  year: 2004
  ident: 10.1016/j.coi.2015.10.008_bib0270
  article-title: Role of microglia in central nervous system infections
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.17.4.942-964.2004
– volume: 57
  start-page: 173
  year: 2005
  ident: 10.1016/j.coi.2015.10.008_bib0265
  article-title: The blood–brain barrier/neurovascular unit in health and disease
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.57.2.4
– volume: 12
  start-page: 544
  year: 2012
  ident: 10.1016/j.coi.2015.10.008_bib0360
  article-title: The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.08.009
– volume: 134
  start-page: e642
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_bib0225
  article-title: Neuroinvasive arboviral disease in the United States: 2003 to 2012
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-0498
– volume: 1
  start-page: 161
  year: 1955
  ident: 10.1016/j.coi.2015.10.008_bib0250
  article-title: Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope
  publication-title: J Biophys Biochem Cytol
  doi: 10.1083/jcb.1.2.161
– start-page: 1
  year: 2015
  ident: 10.1016/j.coi.2015.10.008_bib0235
  article-title: West Nile virus infection in children
  publication-title: Expert Rev Anti Infect Ther
– volume: 93
  start-page: 1193
  year: 2012
  ident: 10.1016/j.coi.2015.10.008_bib0420
  article-title: West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.040899-0
– volume: 13
  start-page: 379
  year: 2013
  ident: 10.1016/j.coi.2015.10.008_bib0295
  article-title: Virus infections in the nervous system
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.03.010
– start-page: 5
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_sbref0280
  article-title: Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals
  publication-title: mBio
– volume: 63
  start-page: 1915
  year: 2015
  ident: 10.1016/j.coi.2015.10.008_sbref0430
  article-title: Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes
  publication-title: Glia
  doi: 10.1002/glia.22857
– volume: 11
  start-page: 44
  year: 2015
  ident: 10.1016/j.coi.2015.10.008_bib0290
  article-title: Viral diseases of the central nervous system
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2014.12.009
– volume: 82
  start-page: 11273
  year: 2008
  ident: 10.1016/j.coi.2015.10.008_bib0300
  article-title: Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers
  publication-title: J Virol
  doi: 10.1128/JVI.00775-08
– volume: 82
  start-page: 8978
  year: 2008
  ident: 10.1016/j.coi.2015.10.008_bib0425
  article-title: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain
  publication-title: J Virol
  doi: 10.1128/JVI.00314-08
– volume: 26
  start-page: 109
  year: 2006
  ident: 10.1016/j.coi.2015.10.008_bib0275
  article-title: Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5
  publication-title: Cell Mol Neurobiol
  doi: 10.1007/s10571-006-9028-x
– volume: 66
  start-page: 15
  year: 1937
  ident: 10.1016/j.coi.2015.10.008_bib0325
  article-title: Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose
  publication-title: J Exp Med
  doi: 10.1084/jem.66.1.15
– volume: 57
  start-page: 734
  year: 2009
  ident: 10.1016/j.coi.2015.10.008_bib0405
  article-title: Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes
  publication-title: Glia
  doi: 10.1002/glia.20801
– volume: 8
  start-page: 404
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_bib0350
  article-title: The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00404
– volume: 7
  year: 2015
  ident: 10.1016/j.coi.2015.10.008_sbref0285
  article-title: Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood–brain barrier
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa4304
– volume: 115
  start-page: 4963
  year: 2010
  ident: 10.1016/j.coi.2015.10.008_bib0375
  article-title: Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor
  publication-title: Blood
  doi: 10.1182/blood-2010-01-262386
– volume: 8
  start-page: e2980
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_bib0435
  article-title: Neuropathogenesis of Japanese encephalitis in a primate model
  publication-title: PLoS Neglect Trop Dis
  doi: 10.1371/journal.pntd.0002980
– volume: 110
  start-page: 229
  year: 2006
  ident: 10.1016/j.coi.2015.10.008_bib0305
  article-title: Replication of West Nile virus in equine peripheral blood mononuclear cells
  publication-title: Vet Immunol Immunopathol
  doi: 10.1016/j.vetimm.2005.10.003
– volume: 1399
  start-page: 96
  year: 2011
  ident: 10.1016/j.coi.2015.10.008_bib0390
  article-title: Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2011.05.015
– volume: 6
  year: 2014
  ident: 10.1016/j.coi.2015.10.008_sbref0440
  article-title: The gut microbiota influences blood–brain barrier permeability in mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3009759
– volume: 164
  start-page: 451
  year: 2004
  ident: 10.1016/j.coi.2015.10.008_bib0260
  article-title: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200311112
SSID ssj0005530
Score 2.4811409
SecondaryResourceType review_article
Snippet •Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB...
Highlights • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines...
The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and...
• Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Allergy and Immunology
Animals
Astrocytes - immunology
Astrocytes - pathology
Astrocytes - virology
Blood-Brain Barrier - immunology
Blood-Brain Barrier - pathology
Blood-Brain Barrier - virology
Brain - blood supply
Brain - immunology
Brain - pathology
Brain - virology
Cell Movement
Cytokines - genetics
Cytokines - immunology
Endothelial Cells - immunology
Endothelial Cells - pathology
Endothelial Cells - virology
Gene Expression Regulation
Host-Pathogen Interactions
Humans
Leukocytes - immunology
Leukocytes - pathology
Leukocytes - virology
Microglia - immunology
Microglia - pathology
Microglia - virology
Neurons - immunology
Neurons - pathology
Neurons - virology
Pericytes - immunology
Pericytes - pathology
Pericytes - virology
Signal Transduction
Virus Diseases - immunology
Virus Diseases - pathology
Virus Diseases - virology
Viruses - immunology
Viruses - pathogenicity
Title Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0952791515001454
https://www.clinicalkey.es/playcontent/1-s2.0-S0952791515001454
https://dx.doi.org/10.1016/j.coi.2015.10.008
https://www.ncbi.nlm.nih.gov/pubmed/26590675
https://www.proquest.com/docview/1760864740
https://www.proquest.com/docview/1762360050
https://pubmed.ncbi.nlm.nih.gov/PMC4715944
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqIhAbBOU1PCojsUJKJ3H8SJZVRTWAphuK1J3lpwgqmWoyRWKD-Af-kC_h3sQZdSgMErs8bMW5ubaP43PPJeSlMcZaY8uMWVllHGUIrQoyqyL3snA81hzjnecncvaBvz0TZzvkaIyFQVplGvuHMb0frdOVabLm9KJppu8BHDBV44SMOF-gJijnCr384NsVmofo841gYZRmFOPOZs_xcosG2V3ioCd4VX-bm65jz98plFfmpOO75E4Ck_RwaO89shPaPXJzSC_5dY_cmqeN8_tkPg8Y4tt0nzu6iBQTciybPqQBT5Hoe057acum_WLwBxo1KwrYkPbE9p_ff1hMJUGtWWKGuwfk9Pj16dEsS5kUMgcIZpXBGqIsXF4yH7jxSkgTrfcFgMUqOq5KFZkDrFFU1gLiqyofChdlgAOvapOXD8luu2jDY0KdLUVkALKkZ9wxb3ywMcRQy1jnIvgJyUcTapdUxjHZxbke6WSfNFhdo9XxErRgQl6tq1wMEhvbCrPxu-gxdhRGOw0TwLZK6k-VQpf6a6cL3TGd62s-NSF8XXPDLf_1wBejy2jorrgHY9qwuIQHKQmLSK54vrUMKyUq80zIo8HN1oZhUtS4yINX2nDAdQGUC9-80zYfe9lwgCGi5vzJ_73SU3IbzhJh_RnZXS0vw3PAYyu733e4fXLj8M272ckvTRM2rw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLgvJankaCC1K6iWM7yYEDAqot7fbCIvVm-SmC2my12YJ6QfwH_gk_iV_CTB6rLoVFQuotcew8xvbM5_ibGUKeaa2N0SaNmJF5xDEMocm8jPLAnUwsDwVHf-fxvhx94O8OxMEa-dH7wiCtstP9rU5vtHVXMuykOTwuy-F7AAcsK9AgI84XvGNW7vrTL7Buq1_uvIFOfs7Y9tvJ61HUpRaILJj0eQSgOk1snDLnuXaZkDoY5xJAT3mwPEuzwCwY3yQ3BiBQnjuf2CA9HLis0HEKt71ELnPQFpg1YevrGVqJaPKb4MthKEjR76Q2nDI7LZFNJrYaQln-N1t4Huv-Ttk8YwO3b5DrHXilr1r53CRrvtokV9p0lqeb5Oq426i_RcZjjy7FZX1U02mgmABkVjYuFHiKxOJD2oTSLKvPGn_YUT2ngEVpQ6T_-e27wdQV1OgZZtS7TSYXId47ZL2aVv4eodakIjAAddIxbpnTzpvggy9kKGLh3YDEvQiV7aKaY3KNQ9XT1z4pkLpCqWMRvMGAvFg0OW5DeqyqzPp-Ub2vKmhXBQZnVaPsT4183emHWiWqZipW58bwgPBFy6Vp8K8HPu2HjAL1gHs-uvLTE3hQJmHRyjMer6zDUomRgAbkbjvMFoJhUhS4qIRPWhqAiwoYnnz5SlV-bMKUA-wRBef3_--TnpCN0WS8p_Z29ncfkGtwpSPLPyTr89mJfwRYcG4eN5OPEnXBk_0XWipxqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+restriction+of+viral+neuroinvasion+at+the+blood-brain+barrier&rft.jtitle=Current+opinion+in+immunology&rft.au=Miner%2C+Jonathan+J&rft.au=Diamond%2C+Michael+S&rft.date=2016-02-01&rft.issn=1879-0372&rft.eissn=1879-0372&rft.volume=38&rft.spage=18&rft_id=info:doi/10.1016%2Fj.coi.2015.10.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09527915%2FS0952791515X00057%2Fcov150h.gif