Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier
•Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB func...
Saved in:
Published in | Current opinion in immunology Vol. 38; pp. 18 - 23 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB function.
The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS. |
---|---|
AbstractList | The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS. The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS.The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS. •Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB breakdown during viral infection.•IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity.•Gastrointestinal microbiota modulate BBB function. The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS. Highlights • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB breakdown during viral infection. • IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity. • Gastrointestinal microbiota modulate BBB function. • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB breakdown during viral infection. • IFN-β, IFN-λ, and TAM receptor signaling enhance BBB integrity. • Gastrointestinal microbiota modulate BBB function. The blood–brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and neurons, which act in concert to restrict the entry of pathogens, immune cells, and soluble molecules into the central nervous system (CNS). If pathogens manage to cross the BBB and establish infection within the CNS, the BBB can open in a regulated manner to allow leukocyte transmigration into the CNS so that microbes, infected cells, and debris can be cleared. This review highlights how different inflammatory cytokines or signaling pathways disrupt or enhance BBB integrity in a way that regulates entry of neurotropic viruses into the CNS. |
Author | Diamond, Michael S Miner, Jonathan J |
AuthorAffiliation | 2 Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA 1 Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA 3 Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA 4 Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO 63110, USA |
AuthorAffiliation_xml | – name: 2 Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA – name: 1 Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA – name: 4 Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO 63110, USA – name: 3 Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA |
Author_xml | – sequence: 1 givenname: Jonathan J surname: Miner fullname: Miner, Jonathan J organization: Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA – sequence: 2 givenname: Michael S surname: Diamond fullname: Diamond, Michael S email: diamond@borcim.wustl.edu organization: Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26590675$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUtFuFCEUJabGbqsf4IuZR192vTADzMSkiWm0mrTxwb4TBu64rLNQYWaTvvUf_EO_pJBtjTax-gQXzjlczrlH5MAHj4S8pLCiQMWbzcoEt2JAea5XAO0TsqCt7JZQS3ZAFtBxtpQd5YfkKKUNAHBewzNyyATvQEi-IBcXaNbau7RNVRiqiGmKzkwu-FLuXNRj5XGOwfmdTuVYT9W0xqofQ7A_b370UTtf9TpGh_E5eTroMeGLu_WYXH54f3n6cXn--ezT6bvzpRGUTcuWiZoaqJnFRlvJhR56a2mbfzCYRtZyYAYkpW3f0461rUVqBoF5Y2WnoT4mJ3vZq7nfojXop9ynuopuq-O1CtqpP2-8W6uvYacaSXnXNFng9Z1ADN_n_Ge1dcngOGqPYU6KSsFqke2C_4FCKxrZFOir39v61c-92xkg9wATQ0oRB2XcpIvZuUs3Kgqq5Ko2KueqSq7lKLuSmfQB8178Mc7bPQdzErucjkrGoTdoXUQzKZvxj7FPHrDN6LwzevyG15g2YY4-R6yoSkyB-lJmrYwa5QC04cXj7u8C_3j8FvKT5HE |
CitedBy_id | crossref_primary_10_22141_2224_0721_17_6_2021_243215 crossref_primary_10_1016_j_imbio_2019_08_007 crossref_primary_10_1016_j_pharmthera_2018_10_001 crossref_primary_10_1039_C9BM01395D crossref_primary_10_18632_oncotarget_23106 crossref_primary_10_1007_s42399_020_00589_2 crossref_primary_10_1186_s12974_020_01904_3 crossref_primary_10_3390_microorganisms11102511 crossref_primary_10_1007_s13365_023_01190_8 crossref_primary_10_1016_j_mcn_2018_04_002 crossref_primary_10_1007_s13365_024_01212_z crossref_primary_10_1038_s41392_021_00818_7 crossref_primary_10_1016_j_molmed_2021_10_007 crossref_primary_10_1007_s13365_021_00977_x crossref_primary_10_30629_0023_2149_2024_102_9_10_707_713 crossref_primary_10_3389_fcimb_2019_00052 crossref_primary_10_3389_fncel_2021_670298 crossref_primary_10_1051_medsci_2020122 crossref_primary_10_1111_ene_14442 crossref_primary_10_3389_fcimb_2017_00276 crossref_primary_10_1002_jmv_26521 crossref_primary_10_3390_pharmaceutics14112370 crossref_primary_10_4049_jimmunol_1701507 crossref_primary_10_1007_s11011_021_00866_6 crossref_primary_10_3389_fimmu_2020_621735 crossref_primary_10_1093_braincomms_fcaa069 crossref_primary_10_15407_fz68_05_003 crossref_primary_10_3389_fmicb_2017_02557 crossref_primary_10_1128_mSphere_00206_17 crossref_primary_10_3389_fncel_2022_856512 crossref_primary_10_1186_s12974_021_02173_4 crossref_primary_10_1371_journal_ppat_1009788 crossref_primary_10_1002_jnr_25232 crossref_primary_10_1016_j_clinthera_2019_04_009 crossref_primary_10_1099_jgv_0_000853 crossref_primary_10_2139_ssrn_3800387 crossref_primary_10_1016_j_celrep_2021_109888 crossref_primary_10_52711_2231_5713_2024_00012 crossref_primary_10_3390_v16060863 crossref_primary_10_1073_pnas_2201862119 crossref_primary_10_1128_JVI_02191_20 crossref_primary_10_1016_j_ttbdis_2019_03_005 crossref_primary_10_1016_j_micpath_2025_107397 crossref_primary_10_1080_00325481_2020_1837503 crossref_primary_10_3390_jcm11175155 crossref_primary_10_1002_rmv_2539 crossref_primary_10_3390_v10120690 crossref_primary_10_1021_acschemneuro_6b00043 crossref_primary_10_4103_cjp_cjp_38_21 crossref_primary_10_1007_s13365_020_00913_5 crossref_primary_10_1080_22221751_2025_2477668 crossref_primary_10_4049_jimmunol_1901337 crossref_primary_10_3389_fmicb_2019_01435 crossref_primary_10_1038_s41583_018_0070_8 crossref_primary_10_3389_fonc_2018_00043 crossref_primary_10_1016_j_nantod_2023_101800 crossref_primary_10_1016_j_neulet_2018_11_022 crossref_primary_10_3390_ijms17060916 crossref_primary_10_1007_s40263_020_00737_1 crossref_primary_10_1039_C7MT00288B crossref_primary_10_1186_s12879_019_4471_8 crossref_primary_10_1016_j_jneumeth_2016_05_016 crossref_primary_10_1016_j_molmed_2017_01_004 crossref_primary_10_1016_j_bbi_2020_09_021 crossref_primary_10_3389_fmicb_2020_625661 crossref_primary_10_1097_QAD_0000000000002442 crossref_primary_10_1186_s12974_019_1608_z crossref_primary_10_3390_v12060603 crossref_primary_10_3389_fimmu_2021_697329 crossref_primary_10_3390_microorganisms8121958 crossref_primary_10_47224_revistamaster_v7i14_352 crossref_primary_10_1080_21505594_2021_1899674 crossref_primary_10_1016_j_phrs_2024_107313 crossref_primary_10_1128_mBio_01183_20 crossref_primary_10_1016_j_jcv_2016_10_006 crossref_primary_10_1128_JVI_02106_16 crossref_primary_10_3390_cells12131720 crossref_primary_10_1016_j_jconrel_2023_05_029 crossref_primary_10_1371_journal_ppat_1010234 crossref_primary_10_1016_j_brainres_2021_147524 crossref_primary_10_23736_S2784_8477_20_01895_7 crossref_primary_10_1186_s11671_021_03592_1 crossref_primary_10_1016_j_jconrel_2021_08_011 crossref_primary_10_1186_s40035_018_0139_3 crossref_primary_10_5005_jp_journals_11002_0066 crossref_primary_10_1016_j_neulet_2019_134594 crossref_primary_10_1111_acer_13796 crossref_primary_10_3389_fcimb_2021_701820 crossref_primary_10_1016_j_micinf_2018_02_008 crossref_primary_10_3389_fncel_2018_00386 crossref_primary_10_3390_ncrna7040060 crossref_primary_10_1016_j_expneurol_2024_114921 |
Cites_doi | 10.1371/journal.pone.0102598 10.1523/JNEUROSCI.1460-11.2011 10.1083/jcb.40.3.648 10.1038/nm.3974 10.1128/JVI.00236-07 10.1016/j.trstmh.2009.07.031 10.1097/CCM.0b013e318183f2d2 10.1016/j.chom.2013.07.005 10.1038/labinvest.2012.80 10.1128/JVI.05032-11 10.1016/j.virol.2009.10.036 10.1097/WCO.0000000000000097 10.1212/01.wnl.0000277267.07220.88 10.1016/j.virol.2008.11.047 10.1017/S0950268807009739 10.1128/JVI.01501-15 10.3389/fphar.2012.00046 10.1128/JVI.02738-13 10.1128/CMR.17.4.942-964.2004 10.1124/pr.57.2.4 10.1016/j.chom.2012.08.009 10.1542/peds.2014-0498 10.1083/jcb.1.2.161 10.1099/vir.0.040899-0 10.1016/j.chom.2013.03.010 10.1002/glia.22857 10.1016/j.coviro.2014.12.009 10.1128/JVI.00775-08 10.1128/JVI.00314-08 10.1007/s10571-006-9028-x 10.1084/jem.66.1.15 10.1002/glia.20801 10.3389/fnins.2014.00404 10.1126/scitranslmed.aaa4304 10.1182/blood-2010-01-262386 10.1371/journal.pntd.0002980 10.1016/j.vetimm.2005.10.003 10.1016/j.brainres.2011.05.015 10.1126/scitranslmed.3009759 10.1083/jcb.200311112 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright © 2015 Elsevier Ltd. All rights reserved. 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. 2015 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1016/j.coi.2015.10.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1879-0372 |
EndPage | 23 |
ExternalDocumentID | PMC4715944 26590675 10_1016_j_coi_2015_10_008 S0952791515001454 1_s2_0_S0952791515001454 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: T32 AR007279 – fundername: NIAID NIH HHS grantid: R01 AI101400 – fundername: NINDS NIH HHS grantid: R01 NS052632 – fundername: NIAID NIH HHS grantid: U19 AI083019 – fundername: NIAMS NIH HHS grantid: T32-AR007279 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABEFU ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS CNWQP COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMG HMK HMO HVGLF HZ~ IH2 IHE J1W J5H K-O KOM L7B LUGTX M29 M41 MO0 N9A O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K TN5 UAP WUQ XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c612t-82631c032de4ad756afbdd18008fc4737f2c07118bb19288de1cf6e88dd79a03 |
IEDL.DBID | .~1 |
ISSN | 0952-7915 1879-0372 |
IngestDate | Thu Aug 21 17:38:37 EDT 2025 Fri Jul 11 03:47:28 EDT 2025 Fri Jul 11 10:17:27 EDT 2025 Mon Jul 21 05:46:54 EDT 2025 Tue Jul 01 01:36:46 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 23 02:17:03 EST 2024 Sun Feb 23 10:18:56 EST 2025 Tue Aug 26 20:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-82631c032de4ad756afbdd18008fc4737f2c07118bb19288de1cf6e88dd79a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4715944 |
PMID | 26590675 |
PQID | 1760864740 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4715944 proquest_miscellaneous_1762360050 proquest_miscellaneous_1760864740 pubmed_primary_26590675 crossref_citationtrail_10_1016_j_coi_2015_10_008 crossref_primary_10_1016_j_coi_2015_10_008 elsevier_sciencedirect_doi_10_1016_j_coi_2015_10_008 elsevier_clinicalkeyesjournals_1_s2_0_S0952791515001454 elsevier_clinicalkey_doi_10_1016_j_coi_2015_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in immunology |
PublicationTitleAlternate | Curr Opin Immunol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schäfer, Brooke, Whitmore, Johnston (bib0320) 2011; 85 Zhu, Wang, Singh, Bell, Deane, Zhong, Sagare, Winkler, Zlokovic (bib0375) 2010; 115 Rock, Gekker, Hu, Sheng, Cheeran, Lokensgard, Peterson (bib0270) 2004; 17 Saunders, Liddelow, Dziegielewska (bib0355) 2012; 3 Verma, Kumar, Gurjav, Lum, Nerurkar (bib0415) 2010; 397 Lemant, Boisson, Winer, Thibault, André, Tixier, Lemercier, Antok, Cresta, Grivard (bib0335) 2008; 36 Strazza, Pirrone, Wigdahl, Nonnemacher (bib0390) 2011; 1399 Stahl, Mailles (bib0230) 2014; 27 Rajapakse, Rodrigo, Rajapakse (bib0330) 2010; 104 Bhattacharyya, Zagórska, Lew Erin, Shrestha, Rothlin Carla, Naughton, Diamond Michael, Lemke, Young John (bib0365) 2013; 14 Sabin, Olitsky (bib0325) 1937; 66 Dittmar, Harms, Runkler, Maisner, Kim, Schneider-Schaulies (bib0300) 2008; 82 Wielanek, Monredon, Amrani, Roger, Serveaux (bib0340) 2007; 69 Koyuncu, Hogue, Enquist (bib0295) 2013; 13 Honda, Nakagawa, Hayashi, Kitagawa, Tsutsumi, Nagata, Niwa (bib0275) 2006; 26 Xia, Ju, Westmuckett, An, Ivanciu, McDaniel, Lupu, Cummings, McEver (bib0260) 2004; 164 Meertens, Carnec, Lecoin Manuel, Ramdasi, Guivel-Benhassine, Lew, Lemke, Schwartz, Amara (bib0360) 2012; 12 Myint, Kipar, Jarman, Gibbons, Perng, Flanagan, Mongkolsirichaikul, Van Gessel, Solomon (bib0435) 2014; 8 Lazear, Daniels, Pinto, Huang, Vick, Doyle, Gale, Klein, Diamond (bib0285) 2015; 7 Wang, Dai, Bai, Kong, Wong, Montgomery, Madri, Fikrig (bib0425) 2008; 82 Chen, Ou, Li, Chang, Pan, Lai, Liao, Raung, Chang (bib0410) 2014; 88 Garcia-Tapia, Loiacono, Kleiboeker (bib0305) 2006; 110 Hawkins, Davis (bib0265) 2005; 57 Daniels, Holman, Cruz-Orengo, Jujjavarapu, Durrant, Klein (bib0280) 2014 Roe, Kumar, Lum, Orillo, Nerurkar, Verma (bib0420) 2012; 93 Verma, Lo, Chapagain, Lum, Kumar, Gurjav, Luo, Nakatsuka, Nerurkar (bib0310) 2009; 385 Bleau, Filliol, Samson, Lamontagne (bib0380) 2015; 89 Miner, Daniels, Shrestha, Proenca-Modena, Lew, Lazear, Gorman, Lemke, Klein, Diamond (bib0370) 2015 Roberts, Eugenin, Lopez, Romero, Weksler, Couraud, Berman (bib0400) 2012; 92 Braniste, Al-Asmakh, Kowal, Anuar, Abbaspour, Tóth, Korecka, Bakocevic, Ng, Kundu (bib0440) 2014; 6 Swanson, McGavern (bib0290) 2015; 11 Singh, Manimunda, Sugunan, Sahina, Vijayachari (bib0345) 2008; 136 Brightman, Reese (bib0255) 1969; 40 Chang, Li, Chen, Ou, Lai, Hu, Wu, Chang, Chen (bib0430) 2015; 63 Williams, Dhillon, Hegde, Yao, Peng, Callen, Chebloune, Davis, Buch (bib0405) 2009; 57 Barzon, Pacenti, Sinigaglia, Berto, Trevisan, Palù (bib0235) 2015 Roe, Orillo, Verma (bib0385) 2014; 9 Eugenin, Clements, Zink, Berman (bib0395) 2011; 31 van Breemen, Clemente (bib0250) 1955; 1 Gaensbauer, Lindsey, Messacar, Staples, Fischer (bib0225) 2014; 134 Ehrlich (bib0240) 1885 Saunders, Dreifuss, Dziegielewska, Johansson, Habgood, Møllgård, Bauer (bib0350) 2014; 8 Goldmann (bib0245) 1913; 1 Chen, Yao, Lin, Lee, Wang, Wang, Liu, Lei, Yu (bib0315) 2007; 81 Barzon (10.1016/j.coi.2015.10.008_bib0235) 2015 Strazza (10.1016/j.coi.2015.10.008_bib0390) 2011; 1399 Stahl (10.1016/j.coi.2015.10.008_bib0230) 2014; 27 Williams (10.1016/j.coi.2015.10.008_bib0405) 2009; 57 Myint (10.1016/j.coi.2015.10.008_bib0435) 2014; 8 Roe (10.1016/j.coi.2015.10.008_bib0420) 2012; 93 Koyuncu (10.1016/j.coi.2015.10.008_bib0295) 2013; 13 Wielanek (10.1016/j.coi.2015.10.008_bib0340) 2007; 69 Gaensbauer (10.1016/j.coi.2015.10.008_bib0225) 2014; 134 Sabin (10.1016/j.coi.2015.10.008_bib0325) 1937; 66 Swanson (10.1016/j.coi.2015.10.008_bib0290) 2015; 11 Braniste (10.1016/j.coi.2015.10.008_sbref0440) 2014; 6 Singh (10.1016/j.coi.2015.10.008_bib0345) 2008; 136 Saunders (10.1016/j.coi.2015.10.008_bib0355) 2012; 3 Eugenin (10.1016/j.coi.2015.10.008_bib0395) 2011; 31 Lemant (10.1016/j.coi.2015.10.008_bib0335) 2008; 36 Daniels (10.1016/j.coi.2015.10.008_sbref0280) 2014 Verma (10.1016/j.coi.2015.10.008_bib0310) 2009; 385 Xia (10.1016/j.coi.2015.10.008_bib0260) 2004; 164 Rajapakse (10.1016/j.coi.2015.10.008_bib0330) 2010; 104 Miner (10.1016/j.coi.2015.10.008_sbref0370) 2015 Wang (10.1016/j.coi.2015.10.008_bib0425) 2008; 82 Ehrlich (10.1016/j.coi.2015.10.008_bib0240) 1885 Garcia-Tapia (10.1016/j.coi.2015.10.008_bib0305) 2006; 110 Schäfer (10.1016/j.coi.2015.10.008_bib0320) 2011; 85 Roe (10.1016/j.coi.2015.10.008_bib0385) 2014; 9 Chen (10.1016/j.coi.2015.10.008_bib0315) 2007; 81 Lazear (10.1016/j.coi.2015.10.008_sbref0285) 2015; 7 Bhattacharyya (10.1016/j.coi.2015.10.008_bib0365) 2013; 14 Goldmann (10.1016/j.coi.2015.10.008_bib0245) 1913; 1 Bleau (10.1016/j.coi.2015.10.008_sbref0380) 2015; 89 Brightman (10.1016/j.coi.2015.10.008_bib0255) 1969; 40 Honda (10.1016/j.coi.2015.10.008_bib0275) 2006; 26 Chang (10.1016/j.coi.2015.10.008_sbref0430) 2015; 63 Rock (10.1016/j.coi.2015.10.008_bib0270) 2004; 17 Hawkins (10.1016/j.coi.2015.10.008_bib0265) 2005; 57 van Breemen (10.1016/j.coi.2015.10.008_bib0250) 1955; 1 Dittmar (10.1016/j.coi.2015.10.008_bib0300) 2008; 82 Verma (10.1016/j.coi.2015.10.008_bib0415) 2010; 397 Zhu (10.1016/j.coi.2015.10.008_bib0375) 2010; 115 Roberts (10.1016/j.coi.2015.10.008_bib0400) 2012; 92 Meertens (10.1016/j.coi.2015.10.008_bib0360) 2012; 12 Saunders (10.1016/j.coi.2015.10.008_bib0350) 2014; 8 Chen (10.1016/j.coi.2015.10.008_sbref0410) 2014; 88 |
References_xml | – volume: 12 start-page: 544 year: 2012 end-page: 557 ident: bib0360 article-title: The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry publication-title: Cell Host Microbe – year: 2015 ident: bib0370 article-title: The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity publication-title: Nat Med – volume: 110 start-page: 229 year: 2006 end-page: 244 ident: bib0305 article-title: Replication of West Nile virus in equine peripheral blood mononuclear cells publication-title: Vet Immunol Immunopathol – volume: 6 year: 2014 ident: bib0440 article-title: The gut microbiota influences blood–brain barrier permeability in mice publication-title: Sci Transl Med – volume: 26 start-page: 109 year: 2006 end-page: 118 ident: bib0275 article-title: Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5 publication-title: Cell Mol Neurobiol – volume: 88 start-page: 1150 year: 2014 end-page: 1161 ident: bib0410 article-title: Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier publication-title: J Virol – volume: 1 start-page: 161 year: 1955 end-page: 166 ident: bib0250 article-title: Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope publication-title: J Biophys Biochem Cytol – volume: 69 start-page: 2105 year: 2007 end-page: 2107 ident: bib0340 article-title: Guillain–Barre syndrome complicating a chikungunya virus infection publication-title: Neurology – volume: 3 start-page: 46 year: 2012 ident: bib0355 article-title: Barrier mechanisms in the developing brain publication-title: Front Pharmacol – start-page: 1 year: 2015 end-page: 14 ident: bib0235 article-title: West Nile virus infection in children publication-title: Expert Rev Anti Infect Ther – volume: 81 start-page: 8996 year: 2007 end-page: 9003 ident: bib0315 article-title: Retrograde axonal transport: a major transmission route of enterovirus 71 in mice publication-title: J Virol – volume: 31 start-page: 9456 year: 2011 end-page: 9465 ident: bib0395 article-title: Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism publication-title: J Neurosci – volume: 93 start-page: 1193 year: 2012 end-page: 1203 ident: bib0420 article-title: West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases publication-title: J Gen Virol – volume: 134 start-page: e642 year: 2014 end-page: e650 ident: bib0225 article-title: Neuroinvasive arboviral disease in the United States: 2003 to 2012 publication-title: Pediatrics – volume: 66 start-page: 15 year: 1937 end-page: 34 ident: bib0325 article-title: Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose publication-title: J Exp Med – volume: 57 start-page: 734 year: 2009 end-page: 743 ident: bib0405 article-title: Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes publication-title: Glia – start-page: 5 year: 2014 ident: bib0280 article-title: Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals publication-title: mBio – volume: 7 year: 2015 ident: bib0285 article-title: Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood–brain barrier publication-title: Sci Transl Med – volume: 13 start-page: 379 year: 2013 end-page: 393 ident: bib0295 article-title: Virus infections in the nervous system publication-title: Cell Host Microbe – year: 1885 ident: bib0240 article-title: Das sauerstufbudurfnis des organismus, in Eine Farbenanalytische Studie – volume: 57 start-page: 173 year: 2005 end-page: 185 ident: bib0265 article-title: The blood–brain barrier/neurovascular unit in health and disease publication-title: Pharmacol Rev – volume: 9 start-page: e102598 year: 2014 ident: bib0385 article-title: West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood–brain barrier model publication-title: PLOS ONE – volume: 17 start-page: 942 year: 2004 end-page: 964 ident: bib0270 article-title: Role of microglia in central nervous system infections publication-title: Clin Microbiol Rev – volume: 8 start-page: e2980 year: 2014 ident: bib0435 article-title: Neuropathogenesis of Japanese encephalitis in a primate model publication-title: PLoS Neglect Trop Dis – volume: 36 start-page: 2536 year: 2008 end-page: 2541 ident: bib0335 article-title: Serious acute chikungunya virus infection requiring intensive care during the reunion island outbreak in 2005–2006 publication-title: Crit Care Med – volume: 63 start-page: 1915 year: 2015 end-page: 1932 ident: bib0430 article-title: Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes publication-title: Glia – volume: 1 start-page: 1 year: 1913 end-page: 60 ident: bib0245 article-title: Vitalfarbung am zentralnervensystem publication-title: Abhandl Konigl preuss Akad Wiss – volume: 27 start-page: 337 year: 2014 end-page: 341 ident: bib0230 article-title: What is new about epidemiology of acute infectious encephalitis? publication-title: Curr Opin Neurol – volume: 40 start-page: 648 year: 1969 end-page: 677 ident: bib0255 article-title: Junctions between intimately apposed cell membranes in the vertebrate brain publication-title: J Cell Biol – volume: 85 start-page: 10682 year: 2011 end-page: 10690 ident: bib0320 article-title: The role of the blood–brain barrier during venezuelan equine encephalitis virus infection publication-title: J Virol – volume: 14 start-page: 136 year: 2013 end-page: 147 ident: bib0365 article-title: Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors publication-title: Cell Host Microbe – volume: 115 start-page: 4963 year: 2010 end-page: 4972 ident: bib0375 article-title: Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor publication-title: Blood – volume: 1399 start-page: 96 year: 2011 end-page: 115 ident: bib0390 article-title: Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier publication-title: Brain Res – volume: 11 start-page: 44 year: 2015 end-page: 54 ident: bib0290 article-title: Viral diseases of the central nervous system publication-title: Curr Opin Virol – volume: 104 start-page: 89 year: 2010 end-page: 96 ident: bib0330 article-title: Atypical manifestations of chikungunya infection publication-title: Trans R Soc Trop Med Hyg – volume: 136 start-page: 1277 year: 2008 end-page: 1280 ident: bib0345 article-title: Four cases of acute flaccid paralysis associated with chikungunya virus infection publication-title: Epidemiol Infect – volume: 89 start-page: 9896 year: 2015 end-page: 9908 ident: bib0380 article-title: Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells publication-title: J Virol – volume: 92 start-page: 1213 year: 2012 end-page: 1233 ident: bib0400 article-title: CCL2 disrupts the adherens junction: implications for neuroinflammation publication-title: Lab Invest – volume: 82 start-page: 11273 year: 2008 end-page: 11282 ident: bib0300 article-title: Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers publication-title: J Virol – volume: 8 start-page: 404 year: 2014 ident: bib0350 article-title: The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history publication-title: Front Neurosci – volume: 397 start-page: 130 year: 2010 end-page: 138 ident: bib0415 article-title: Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor publication-title: Virology – volume: 82 start-page: 8978 year: 2008 end-page: 8985 ident: bib0425 article-title: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain publication-title: J Virol – volume: 385 start-page: 425 year: 2009 end-page: 433 ident: bib0310 article-title: West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier publication-title: Virology – volume: 164 start-page: 451 year: 2004 end-page: 459 ident: bib0260 article-title: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans publication-title: J Cell Biol – year: 1885 ident: 10.1016/j.coi.2015.10.008_bib0240 – volume: 9 start-page: e102598 year: 2014 ident: 10.1016/j.coi.2015.10.008_bib0385 article-title: West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood–brain barrier model publication-title: PLOS ONE doi: 10.1371/journal.pone.0102598 – volume: 31 start-page: 9456 year: 2011 ident: 10.1016/j.coi.2015.10.008_bib0395 article-title: Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1460-11.2011 – volume: 40 start-page: 648 year: 1969 ident: 10.1016/j.coi.2015.10.008_bib0255 article-title: Junctions between intimately apposed cell membranes in the vertebrate brain publication-title: J Cell Biol doi: 10.1083/jcb.40.3.648 – year: 2015 ident: 10.1016/j.coi.2015.10.008_sbref0370 article-title: The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity publication-title: Nat Med doi: 10.1038/nm.3974 – volume: 81 start-page: 8996 year: 2007 ident: 10.1016/j.coi.2015.10.008_bib0315 article-title: Retrograde axonal transport: a major transmission route of enterovirus 71 in mice publication-title: J Virol doi: 10.1128/JVI.00236-07 – volume: 104 start-page: 89 year: 2010 ident: 10.1016/j.coi.2015.10.008_bib0330 article-title: Atypical manifestations of chikungunya infection publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2009.07.031 – volume: 36 start-page: 2536 year: 2008 ident: 10.1016/j.coi.2015.10.008_bib0335 article-title: Serious acute chikungunya virus infection requiring intensive care during the reunion island outbreak in 2005–2006 publication-title: Crit Care Med doi: 10.1097/CCM.0b013e318183f2d2 – volume: 14 start-page: 136 year: 2013 ident: 10.1016/j.coi.2015.10.008_bib0365 article-title: Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.07.005 – volume: 92 start-page: 1213 year: 2012 ident: 10.1016/j.coi.2015.10.008_bib0400 article-title: CCL2 disrupts the adherens junction: implications for neuroinflammation publication-title: Lab Invest doi: 10.1038/labinvest.2012.80 – volume: 85 start-page: 10682 year: 2011 ident: 10.1016/j.coi.2015.10.008_bib0320 article-title: The role of the blood–brain barrier during venezuelan equine encephalitis virus infection publication-title: J Virol doi: 10.1128/JVI.05032-11 – volume: 397 start-page: 130 year: 2010 ident: 10.1016/j.coi.2015.10.008_bib0415 article-title: Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor publication-title: Virology doi: 10.1016/j.virol.2009.10.036 – volume: 27 start-page: 337 year: 2014 ident: 10.1016/j.coi.2015.10.008_bib0230 article-title: What is new about epidemiology of acute infectious encephalitis? publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000097 – volume: 69 start-page: 2105 year: 2007 ident: 10.1016/j.coi.2015.10.008_bib0340 article-title: Guillain–Barre syndrome complicating a chikungunya virus infection publication-title: Neurology doi: 10.1212/01.wnl.0000277267.07220.88 – volume: 1 start-page: 1 year: 1913 ident: 10.1016/j.coi.2015.10.008_bib0245 article-title: Vitalfarbung am zentralnervensystem publication-title: Abhandl Konigl preuss Akad Wiss – volume: 385 start-page: 425 year: 2009 ident: 10.1016/j.coi.2015.10.008_bib0310 article-title: West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier publication-title: Virology doi: 10.1016/j.virol.2008.11.047 – volume: 136 start-page: 1277 year: 2008 ident: 10.1016/j.coi.2015.10.008_bib0345 article-title: Four cases of acute flaccid paralysis associated with chikungunya virus infection publication-title: Epidemiol Infect doi: 10.1017/S0950268807009739 – volume: 89 start-page: 9896 year: 2015 ident: 10.1016/j.coi.2015.10.008_sbref0380 article-title: Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells publication-title: J Virol doi: 10.1128/JVI.01501-15 – volume: 3 start-page: 46 year: 2012 ident: 10.1016/j.coi.2015.10.008_bib0355 article-title: Barrier mechanisms in the developing brain publication-title: Front Pharmacol doi: 10.3389/fphar.2012.00046 – volume: 88 start-page: 1150 year: 2014 ident: 10.1016/j.coi.2015.10.008_sbref0410 article-title: Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier publication-title: J Virol doi: 10.1128/JVI.02738-13 – volume: 17 start-page: 942 year: 2004 ident: 10.1016/j.coi.2015.10.008_bib0270 article-title: Role of microglia in central nervous system infections publication-title: Clin Microbiol Rev doi: 10.1128/CMR.17.4.942-964.2004 – volume: 57 start-page: 173 year: 2005 ident: 10.1016/j.coi.2015.10.008_bib0265 article-title: The blood–brain barrier/neurovascular unit in health and disease publication-title: Pharmacol Rev doi: 10.1124/pr.57.2.4 – volume: 12 start-page: 544 year: 2012 ident: 10.1016/j.coi.2015.10.008_bib0360 article-title: The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.08.009 – volume: 134 start-page: e642 year: 2014 ident: 10.1016/j.coi.2015.10.008_bib0225 article-title: Neuroinvasive arboviral disease in the United States: 2003 to 2012 publication-title: Pediatrics doi: 10.1542/peds.2014-0498 – volume: 1 start-page: 161 year: 1955 ident: 10.1016/j.coi.2015.10.008_bib0250 article-title: Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope publication-title: J Biophys Biochem Cytol doi: 10.1083/jcb.1.2.161 – start-page: 1 year: 2015 ident: 10.1016/j.coi.2015.10.008_bib0235 article-title: West Nile virus infection in children publication-title: Expert Rev Anti Infect Ther – volume: 93 start-page: 1193 year: 2012 ident: 10.1016/j.coi.2015.10.008_bib0420 article-title: West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases publication-title: J Gen Virol doi: 10.1099/vir.0.040899-0 – volume: 13 start-page: 379 year: 2013 ident: 10.1016/j.coi.2015.10.008_bib0295 article-title: Virus infections in the nervous system publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.03.010 – start-page: 5 year: 2014 ident: 10.1016/j.coi.2015.10.008_sbref0280 article-title: Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals publication-title: mBio – volume: 63 start-page: 1915 year: 2015 ident: 10.1016/j.coi.2015.10.008_sbref0430 article-title: Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes publication-title: Glia doi: 10.1002/glia.22857 – volume: 11 start-page: 44 year: 2015 ident: 10.1016/j.coi.2015.10.008_bib0290 article-title: Viral diseases of the central nervous system publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2014.12.009 – volume: 82 start-page: 11273 year: 2008 ident: 10.1016/j.coi.2015.10.008_bib0300 article-title: Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers publication-title: J Virol doi: 10.1128/JVI.00775-08 – volume: 82 start-page: 8978 year: 2008 ident: 10.1016/j.coi.2015.10.008_bib0425 article-title: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain publication-title: J Virol doi: 10.1128/JVI.00314-08 – volume: 26 start-page: 109 year: 2006 ident: 10.1016/j.coi.2015.10.008_bib0275 article-title: Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5 publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-006-9028-x – volume: 66 start-page: 15 year: 1937 ident: 10.1016/j.coi.2015.10.008_bib0325 article-title: Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: I. Effect of age on the invasion of the brain by virus instilled in the nose publication-title: J Exp Med doi: 10.1084/jem.66.1.15 – volume: 57 start-page: 734 year: 2009 ident: 10.1016/j.coi.2015.10.008_bib0405 article-title: Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes publication-title: Glia doi: 10.1002/glia.20801 – volume: 8 start-page: 404 year: 2014 ident: 10.1016/j.coi.2015.10.008_bib0350 article-title: The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history publication-title: Front Neurosci doi: 10.3389/fnins.2014.00404 – volume: 7 year: 2015 ident: 10.1016/j.coi.2015.10.008_sbref0285 article-title: Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood–brain barrier publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa4304 – volume: 115 start-page: 4963 year: 2010 ident: 10.1016/j.coi.2015.10.008_bib0375 article-title: Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor publication-title: Blood doi: 10.1182/blood-2010-01-262386 – volume: 8 start-page: e2980 year: 2014 ident: 10.1016/j.coi.2015.10.008_bib0435 article-title: Neuropathogenesis of Japanese encephalitis in a primate model publication-title: PLoS Neglect Trop Dis doi: 10.1371/journal.pntd.0002980 – volume: 110 start-page: 229 year: 2006 ident: 10.1016/j.coi.2015.10.008_bib0305 article-title: Replication of West Nile virus in equine peripheral blood mononuclear cells publication-title: Vet Immunol Immunopathol doi: 10.1016/j.vetimm.2005.10.003 – volume: 1399 start-page: 96 year: 2011 ident: 10.1016/j.coi.2015.10.008_bib0390 article-title: Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier publication-title: Brain Res doi: 10.1016/j.brainres.2011.05.015 – volume: 6 year: 2014 ident: 10.1016/j.coi.2015.10.008_sbref0440 article-title: The gut microbiota influences blood–brain barrier permeability in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3009759 – volume: 164 start-page: 451 year: 2004 ident: 10.1016/j.coi.2015.10.008_bib0260 article-title: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans publication-title: J Cell Biol doi: 10.1083/jcb.200311112 |
SSID | ssj0005530 |
Score | 2.4811409 |
SecondaryResourceType | review_article |
Snippet | •Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB).•Pro-inflammatory cytokines promote BBB... Highlights • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines... The blood-brain barrier (BBB) consists of highly specialized cells including brain microvascular endothelial cells, astrocytes, microglia, pericytes, and... • Neurotropic viruses invade the CNS via several routes including direct transit across the blood–brain barrier (BBB). • Pro-inflammatory cytokines promote BBB... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18 |
SubjectTerms | Allergy and Immunology Animals Astrocytes - immunology Astrocytes - pathology Astrocytes - virology Blood-Brain Barrier - immunology Blood-Brain Barrier - pathology Blood-Brain Barrier - virology Brain - blood supply Brain - immunology Brain - pathology Brain - virology Cell Movement Cytokines - genetics Cytokines - immunology Endothelial Cells - immunology Endothelial Cells - pathology Endothelial Cells - virology Gene Expression Regulation Host-Pathogen Interactions Humans Leukocytes - immunology Leukocytes - pathology Leukocytes - virology Microglia - immunology Microglia - pathology Microglia - virology Neurons - immunology Neurons - pathology Neurons - virology Pericytes - immunology Pericytes - pathology Pericytes - virology Signal Transduction Virus Diseases - immunology Virus Diseases - pathology Virus Diseases - virology Viruses - immunology Viruses - pathogenicity |
Title | Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0952791515001454 https://www.clinicalkey.es/playcontent/1-s2.0-S0952791515001454 https://dx.doi.org/10.1016/j.coi.2015.10.008 https://www.ncbi.nlm.nih.gov/pubmed/26590675 https://www.proquest.com/docview/1760864740 https://www.proquest.com/docview/1762360050 https://pubmed.ncbi.nlm.nih.gov/PMC4715944 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqIhAbBOU1PCojsUJKJ3H8SJZVRTWAphuK1J3lpwgqmWoyRWKD-Af-kC_h3sQZdSgMErs8bMW5ubaP43PPJeSlMcZaY8uMWVllHGUIrQoyqyL3snA81hzjnecncvaBvz0TZzvkaIyFQVplGvuHMb0frdOVabLm9KJppu8BHDBV44SMOF-gJijnCr384NsVmofo841gYZRmFOPOZs_xcosG2V3ioCd4VX-bm65jz98plFfmpOO75E4Ck_RwaO89shPaPXJzSC_5dY_cmqeN8_tkPg8Y4tt0nzu6iBQTciybPqQBT5Hoe057acum_WLwBxo1KwrYkPbE9p_ff1hMJUGtWWKGuwfk9Pj16dEsS5kUMgcIZpXBGqIsXF4yH7jxSkgTrfcFgMUqOq5KFZkDrFFU1gLiqyofChdlgAOvapOXD8luu2jDY0KdLUVkALKkZ9wxb3ywMcRQy1jnIvgJyUcTapdUxjHZxbke6WSfNFhdo9XxErRgQl6tq1wMEhvbCrPxu-gxdhRGOw0TwLZK6k-VQpf6a6cL3TGd62s-NSF8XXPDLf_1wBejy2jorrgHY9qwuIQHKQmLSK54vrUMKyUq80zIo8HN1oZhUtS4yINX2nDAdQGUC9-80zYfe9lwgCGi5vzJ_73SU3IbzhJh_RnZXS0vw3PAYyu733e4fXLj8M272ckvTRM2rw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLgvJankaCC1K6iWM7yYEDAqot7fbCIvVm-SmC2my12YJ6QfwH_gk_iV_CTB6rLoVFQuotcew8xvbM5_ibGUKeaa2N0SaNmJF5xDEMocm8jPLAnUwsDwVHf-fxvhx94O8OxMEa-dH7wiCtstP9rU5vtHVXMuykOTwuy-F7AAcsK9AgI84XvGNW7vrTL7Buq1_uvIFOfs7Y9tvJ61HUpRaILJj0eQSgOk1snDLnuXaZkDoY5xJAT3mwPEuzwCwY3yQ3BiBQnjuf2CA9HLis0HEKt71ELnPQFpg1YevrGVqJaPKb4MthKEjR76Q2nDI7LZFNJrYaQln-N1t4Huv-Ttk8YwO3b5DrHXilr1r53CRrvtokV9p0lqeb5Oq426i_RcZjjy7FZX1U02mgmABkVjYuFHiKxOJD2oTSLKvPGn_YUT2ngEVpQ6T_-e27wdQV1OgZZtS7TSYXId47ZL2aVv4eodakIjAAddIxbpnTzpvggy9kKGLh3YDEvQiV7aKaY3KNQ9XT1z4pkLpCqWMRvMGAvFg0OW5DeqyqzPp-Ub2vKmhXBQZnVaPsT4183emHWiWqZipW58bwgPBFy6Vp8K8HPu2HjAL1gHs-uvLTE3hQJmHRyjMer6zDUomRgAbkbjvMFoJhUhS4qIRPWhqAiwoYnnz5SlV-bMKUA-wRBef3_--TnpCN0WS8p_Z29ncfkGtwpSPLPyTr89mJfwRYcG4eN5OPEnXBk_0XWipxqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+restriction+of+viral+neuroinvasion+at+the+blood-brain+barrier&rft.jtitle=Current+opinion+in+immunology&rft.au=Miner%2C+Jonathan+J&rft.au=Diamond%2C+Michael+S&rft.date=2016-02-01&rft.issn=1879-0372&rft.eissn=1879-0372&rft.volume=38&rft.spage=18&rft_id=info:doi/10.1016%2Fj.coi.2015.10.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09527915%2FS0952791515X00057%2Fcov150h.gif |