Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome

Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unkn...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 152; no. 1-2; pp. 352 - 364
Main Authors Stroud, Hume, Greenberg, Maxim V.C., Feng, Suhua, Bernatavichute, Yana V., Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. [Display omitted] ► Genome-wide single-nucleotide resolution methylation maps in 86 silencing mutants ► Complex interplays between different DNA methylation pathways ► Identification of novel regulators of DNA methylation A genome-wide study of DNA methylation in a comprehensive list of Arabidopsis mutants implicated in gene silencing and histone modification reveals that different pathways regulate DNA methylation site specifically, and the study uncovers new factors that regulate DNA methylation.
AbstractList Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. [Display omitted] ► Genome-wide single-nucleotide resolution methylation maps in 86 silencing mutants ► Complex interplays between different DNA methylation pathways ► Identification of novel regulators of DNA methylation A genome-wide study of DNA methylation in a comprehensive list of Arabidopsis mutants implicated in gene silencing and histone modification reveals that different pathways regulate DNA methylation site specifically, and the study uncovers new factors that regulate DNA methylation.
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Author Greenberg, Maxim V.C.
Jacobsen, Steven E.
Stroud, Hume
Feng, Suhua
Bernatavichute, Yana V.
AuthorAffiliation 3 Howard Hughes Medical Institute University of California, Los Angeles, Los Angeles, CA 90095, USA
2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, Los Angeles, CA 90095, USA
1 Department of Molecular, Cell and Developmental Biology, Los Angeles, Los Angeles, CA 90095, USA
AuthorAffiliation_xml – name: 3 Howard Hughes Medical Institute University of California, Los Angeles, Los Angeles, CA 90095, USA
– name: 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, Los Angeles, CA 90095, USA
– name: 1 Department of Molecular, Cell and Developmental Biology, Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Hume
  surname: Stroud
  fullname: Stroud, Hume
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Maxim V.C.
  surname: Greenberg
  fullname: Greenberg, Maxim V.C.
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Yana V.
  surname: Bernatavichute
  fullname: Bernatavichute, Yana V.
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23313553$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03439061$$DView record in HAL
BookMark eNqFkk1v1DAQhi1URLeFP8ABcoRDFn_EdiIhpNUKKNJWSJSeLa8z2XiVtRc7idh_j0NaBD2UQxx5_LzveDxzgc6cd4DQS4KXBBPxbr800HVLiglNgSXmxRO0ILiSeUEkPUMLjCual0IW5-gixj3GuOScP0PnlDHCOGcLZNb-cAzQgot2hGzldHeKNma-yW5sB85Yt8uuh167PmbfYATdxWzSdPAz7XdDp3vr3cT3bdIHvbW1P04W19C3p84f4Dl62iQZvLj7X6LbTx-_r6_yzdfPX9arTW4EoX0u67qQwExT0obVtW6k2FZMEMlrCoVJnwQqKKVYGlzLbSEKo1nBmlKmhWp2iT7Mvsdhe4DagOuD7tQx2IMOJ-W1Vf-eONuqnR8V45VkHCeDt7NB-0B2tdqoKYZTugoLMpLEvrlLFvyPAWKvDjZO_dAO_BAVTa9NMKMF_y9KqGSiKrFgCX31dwl_LnHfsASUM2CCjzFAo4ztf7cgVWQ7RbCaZkPt1ZRATbMxxdJsJCl9IL13f1T0ehY12iu9Czaq25sEiFQe5YKXiXg_E5BaO1oIKhqbBgdqG8D0qvb2sQS_AKtt3BQ
CitedBy_id crossref_primary_10_1093_nar_gkaa766
crossref_primary_10_3390_epigenomes5030019
crossref_primary_10_1186_s12859_015_0678_x
crossref_primary_10_1111_nph_17103
crossref_primary_10_1111_nph_17226
crossref_primary_10_1371_journal_pgen_1004446
crossref_primary_10_1016_j_bbagrm_2016_07_002
crossref_primary_10_1007_s00299_019_02414_0
crossref_primary_10_1126_science_abg6130
crossref_primary_10_3389_fpls_2021_691790
crossref_primary_10_1111_tpj_14348
crossref_primary_10_1146_annurev_arplant_070523_041445
crossref_primary_10_1111_tpj_14584
crossref_primary_10_3389_fpls_2017_00082
crossref_primary_10_1111_tpj_13252
crossref_primary_10_1371_journal_pgen_1006749
crossref_primary_10_1016_j_envexpbot_2024_105688
crossref_primary_10_1093_dnares_dsx021
crossref_primary_10_1186_s13059_017_1226_y
crossref_primary_10_1146_annurev_genet_022620_100039
crossref_primary_10_1093_nar_gkab746
crossref_primary_10_1093_plcell_koab098
crossref_primary_10_1007_s11103_015_0328_8
crossref_primary_10_1038_s41477_023_01498_7
crossref_primary_10_1016_j_pbi_2023_102436
crossref_primary_10_1073_pnas_2023347118
crossref_primary_10_1111_tpj_15441
crossref_primary_10_1186_s13059_022_02768_x
crossref_primary_10_1016_j_molp_2020_02_009
crossref_primary_10_1073_pnas_2125016118
crossref_primary_10_1038_s41467_022_28262_3
crossref_primary_10_3390_ijms241311081
crossref_primary_10_1111_pce_13355
crossref_primary_10_1111_pce_13596
crossref_primary_10_1016_j_tig_2020_06_019
crossref_primary_10_1111_pce_14320
crossref_primary_10_1111_pbi_12230
crossref_primary_10_1016_j_foodres_2021_110183
crossref_primary_10_1146_annurev_arplant_043014_114633
crossref_primary_10_1016_j_cpb_2023_100282
crossref_primary_10_1101_gr_279379_124
crossref_primary_10_1128_JVI_00656_16
crossref_primary_10_3390_plants8050135
crossref_primary_10_1093_plphys_kiac285
crossref_primary_10_1093_pcp_pcab091
crossref_primary_10_1093_genetics_iyab061
crossref_primary_10_3390_plants8120564
crossref_primary_10_1016_j_febslet_2015_09_017
crossref_primary_10_3389_fgene_2018_00609
crossref_primary_10_3390_ijms22189681
crossref_primary_10_3390_genes8080198
crossref_primary_10_1038_s41477_017_0100_y
crossref_primary_10_1080_21541264_2020_1825906
crossref_primary_10_1111_pce_13324
crossref_primary_10_1186_s13059_016_1059_0
crossref_primary_10_3389_fpls_2023_1258100
crossref_primary_10_1016_j_cell_2019_01_029
crossref_primary_10_1101_gad_270876_115
crossref_primary_10_1016_j_tig_2013_06_004
crossref_primary_10_1073_pnas_1618019113
crossref_primary_10_1080_15476286_2016_1218591
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1111_tpj_15781
crossref_primary_10_1146_annurev_genet_120215_035254
crossref_primary_10_1038_s41598_019_39239_6
crossref_primary_10_1186_s13072_020_00361_9
crossref_primary_10_1016_j_bbrc_2022_03_135
crossref_primary_10_1073_pnas_1619047114
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_1111_tpj_15302
crossref_primary_10_3390_ijms231810492
crossref_primary_10_1038_s41438_020_0336_y
crossref_primary_10_1073_pnas_1515072113
crossref_primary_10_3390_ijms21186849
crossref_primary_10_3390_ijms22073314
crossref_primary_10_1016_j_pbi_2020_101990
crossref_primary_10_1101_gr_205468_116
crossref_primary_10_1093_jxb_eru120
crossref_primary_10_1016_j_pbi_2016_12_007
crossref_primary_10_1016_j_pbi_2021_102060
crossref_primary_10_1534_genetics_118_301721
crossref_primary_10_1080_10409238_2017_1279119
crossref_primary_10_1042_BST20210908
crossref_primary_10_1111_nph_15082
crossref_primary_10_1038_ncomms5104
crossref_primary_10_1111_tpj_15637
crossref_primary_10_3390_v14020432
crossref_primary_10_1186_gb_2013_14_11_r129
crossref_primary_10_3390_ijms17060938
crossref_primary_10_1105_tpc_114_126011
crossref_primary_10_1073_pnas_1700368114
crossref_primary_10_3390_cells11020251
crossref_primary_10_7554_eLife_69396
crossref_primary_10_1007_s13562_024_00942_9
crossref_primary_10_1016_j_pbi_2014_02_008
crossref_primary_10_1016_j_tplants_2017_03_013
crossref_primary_10_1093_jxb_eru132
crossref_primary_10_1093_plphys_kiae392
crossref_primary_10_1007_s00299_019_02427_9
crossref_primary_10_1016_j_ijbiomac_2023_125921
crossref_primary_10_1016_j_celrep_2023_112738
crossref_primary_10_1093_jxb_eraa346
crossref_primary_10_1146_annurev_genet_110711_155527
crossref_primary_10_1016_j_dnarep_2016_12_002
crossref_primary_10_1016_j_sbi_2022_102430
crossref_primary_10_1186_s12870_018_1585_x
crossref_primary_10_1038_nature13069
crossref_primary_10_1016_j_tcb_2013_08_001
crossref_primary_10_1111_pce_13670
crossref_primary_10_1038_s41598_023_35166_9
crossref_primary_10_1111_tpj_13463
crossref_primary_10_1016_j_tplants_2017_04_009
crossref_primary_10_1093_pcp_pcy100
crossref_primary_10_1093_dnares_dsx046
crossref_primary_10_1093_jxb_eraa132
crossref_primary_10_1016_j_tig_2013_07_004
crossref_primary_10_1038_s41467_021_24553_3
crossref_primary_10_1038_cr_2015_145
crossref_primary_10_1038_s41467_018_03289_7
crossref_primary_10_1093_plcell_koac072
crossref_primary_10_1073_pnas_1406611111
crossref_primary_10_4161_rna_24085
crossref_primary_10_1016_j_cell_2014_06_006
crossref_primary_10_1093_plcell_koac197
crossref_primary_10_1038_s41477_020_0671_x
crossref_primary_10_1128_JVI_01320_17
crossref_primary_10_3389_fpls_2023_1258023
crossref_primary_10_1111_pce_12793
crossref_primary_10_7554_eLife_61894
crossref_primary_10_1186_s13059_024_03163_4
crossref_primary_10_3389_fpls_2022_1111623
crossref_primary_10_1016_j_molp_2017_12_006
crossref_primary_10_1371_journal_pgen_1006526
crossref_primary_10_1038_s41467_019_10026_1
crossref_primary_10_3389_fpls_2016_00571
crossref_primary_10_1038_nplants_2016_61
crossref_primary_10_1038_nplants_2016_58
crossref_primary_10_1126_sciadv_abg5442
crossref_primary_10_1073_pnas_2001332117
crossref_primary_10_3389_fpls_2021_703667
crossref_primary_10_1073_pnas_1713078114
crossref_primary_10_1093_plcell_koad295
crossref_primary_10_1073_pnas_1423603112
crossref_primary_10_1016_j_ygeno_2018_04_014
crossref_primary_10_1016_j_cell_2015_09_032
crossref_primary_10_1038_ng_2703
crossref_primary_10_1371_journal_pgen_1007843
crossref_primary_10_1111_tpj_14531
crossref_primary_10_1093_molbev_msz195
crossref_primary_10_1016_j_plantsci_2019_110376
crossref_primary_10_1111_jipb_13068
crossref_primary_10_1016_j_celrep_2025_115345
crossref_primary_10_1007_s13580_020_00310_1
crossref_primary_10_1038_s44319_024_00304_5
crossref_primary_10_1038_nplants_2016_49
crossref_primary_10_1007_s00497_021_00421_4
crossref_primary_10_1093_plphys_kiae089
crossref_primary_10_3389_fpls_2017_01449
crossref_primary_10_3390_plants10091884
crossref_primary_10_1098_rstb_2019_0338
crossref_primary_10_1186_s13059_017_1221_3
crossref_primary_10_3389_fpls_2017_00363
crossref_primary_10_1080_07352689_2021_1920731
crossref_primary_10_1093_pcp_pcz080
crossref_primary_10_1111_tpj_13658
crossref_primary_10_1105_tpc_114_126730
crossref_primary_10_1038_s41467_023_39751_4
crossref_primary_10_1111_tpj_12563
crossref_primary_10_1186_s12864_020_06902_6
crossref_primary_10_1111_tpj_14861
crossref_primary_10_1038_s41467_020_17963_2
crossref_primary_10_3389_fpls_2016_01003
crossref_primary_10_1007_s12298_020_00759_5
crossref_primary_10_1038_s41467_022_31627_3
crossref_primary_10_1111_jipb_13376
crossref_primary_10_1371_journal_pgen_1010041
crossref_primary_10_3389_fpls_2019_00778
crossref_primary_10_1038_nprot_2014_114
crossref_primary_10_1080_21655979_2021_2014387
crossref_primary_10_1111_pbi_13955
crossref_primary_10_1534_genetics_115_174714
crossref_primary_10_1534_g3_115_025668
crossref_primary_10_1371_journal_pgen_1003867
crossref_primary_10_1111_nph_18389
crossref_primary_10_3390_ijms19051414
crossref_primary_10_1038_s41421_020_0150_6
crossref_primary_10_1111_nph_19593
crossref_primary_10_1093_plphys_kiae072
crossref_primary_10_1111_tpj_15848
crossref_primary_10_7554_eLife_19092
crossref_primary_10_1073_pnas_1921055117
crossref_primary_10_1007_s11103_020_01051_6
crossref_primary_10_3389_fpls_2015_01161
crossref_primary_10_3390_agronomy8100225
crossref_primary_10_7554_eLife_13546
crossref_primary_10_1186_s12870_020_02445_w
crossref_primary_10_1038_nrg_2016_45
crossref_primary_10_1186_s13059_020_02163_4
crossref_primary_10_1261_rna_069294_118
crossref_primary_10_1186_s13059_021_02543_4
crossref_primary_10_4161_epi_28906
crossref_primary_10_1271_kagakutoseibutsu_55_810
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_7554_eLife_57117
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1111_mec_13550
crossref_primary_10_1093_nar_gkw1330
crossref_primary_10_1038_s41437_018_0095_9
crossref_primary_10_1186_s13059_021_02359_2
crossref_primary_10_1007_s44154_021_00013_2
crossref_primary_10_7554_eLife_89353_3
crossref_primary_10_1038_nrg3685
crossref_primary_10_1093_bioinformatics_bty1053
crossref_primary_10_1534_genetics_116_188151
crossref_primary_10_1038_nrg3683
crossref_primary_10_3390_ijms232415950
crossref_primary_10_1038_s41598_018_24515_8
crossref_primary_10_1111_tpj_12545
crossref_primary_10_1186_s12864_019_6101_7
crossref_primary_10_1093_bfgp_elv025
crossref_primary_10_3390_agronomy12071675
crossref_primary_10_1038_s41467_019_08736_7
crossref_primary_10_1093_dnares_dst046
crossref_primary_10_1111_jipb_13037
crossref_primary_10_1016_j_molcel_2015_11_015
crossref_primary_10_1016_j_xplc_2024_100824
crossref_primary_10_1093_dnares_dsab014
crossref_primary_10_1186_s13059_021_02578_7
crossref_primary_10_4161_epi_25524
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1038_s41477_023_01457_2
crossref_primary_10_1093_jxb_erv485
crossref_primary_10_1038_nrm4043
crossref_primary_10_1371_journal_pone_0105267
crossref_primary_10_1515_hmbci_2022_0043
crossref_primary_10_1371_journal_pgen_1009034
crossref_primary_10_1016_j_jmb_2019_12_043
crossref_primary_10_1038_s41467_019_11759_9
crossref_primary_10_1016_j_bbagrm_2016_08_009
crossref_primary_10_1111_tpj_14612
crossref_primary_10_1080_15592294_2019_1631113
crossref_primary_10_1093_bib_bbaa322
crossref_primary_10_1093_gigascience_giad034
crossref_primary_10_1371_journal_pone_0279688
crossref_primary_10_1038_s41467_023_38954_z
crossref_primary_10_1002_1873_3468_12981
crossref_primary_10_1038_ncomms15122
crossref_primary_10_1093_molbev_msx099
crossref_primary_10_1007_s11427_017_9146_2
crossref_primary_10_1007_s10725_018_0389_1
crossref_primary_10_1186_s13059_022_02750_7
crossref_primary_10_1016_j_tplants_2014_01_014
crossref_primary_10_1590_1678_4685_gmb_2022_0166
crossref_primary_10_7554_eLife_47891
crossref_primary_10_15252_embj_201489453
crossref_primary_10_1093_gbe_evv171
crossref_primary_10_3390_ijms25137180
crossref_primary_10_1021_acs_jafc_4c02650
crossref_primary_10_1007_s11103_018_0715_z
crossref_primary_10_1016_j_bbagen_2024_130593
crossref_primary_10_1111_tpj_14818
crossref_primary_10_1038_s41588_017_0008_5
crossref_primary_10_7717_peerj_8432
crossref_primary_10_1093_nar_gkv1463
crossref_primary_10_1007_s11103_020_01061_4
crossref_primary_10_1038_cr_2014_156
crossref_primary_10_1038_s41477_020_0710_7
crossref_primary_10_1093_genetics_iyad146
crossref_primary_10_1186_s12859_017_1836_0
crossref_primary_10_1186_s13059_021_02348_5
crossref_primary_10_1016_j_pbi_2022_102199
crossref_primary_10_1093_nsr_nwx008
crossref_primary_10_1371_journal_pone_0103145
crossref_primary_10_1073_pnas_1600672113
crossref_primary_10_1094_MPMI_06_23_0080_R
crossref_primary_10_3389_fpls_2018_01447
crossref_primary_10_1371_journal_pone_0150002
crossref_primary_10_1371_journal_pone_0192170
crossref_primary_10_1093_pcp_pcz034
crossref_primary_10_7554_eLife_87714_3
crossref_primary_10_3390_foods10092198
crossref_primary_10_1038_nature12931
crossref_primary_10_1038_nsmb_2735
crossref_primary_10_1139_gen_2019_0190
crossref_primary_10_1038_s41598_019_38607_6
crossref_primary_10_1111_nph_14703
crossref_primary_10_1146_annurev_arplant_050213_035728
crossref_primary_10_1186_s13059_020_02161_6
crossref_primary_10_1093_nar_gkv958
crossref_primary_10_1093_jxb_erw486
crossref_primary_10_3390_ijms21072307
crossref_primary_10_1186_s13072_017_0148_y
crossref_primary_10_1371_journal_pone_0105338
crossref_primary_10_1007_s00425_022_03829_y
crossref_primary_10_1080_15592324_2016_1151599
crossref_primary_10_1038_ncomms3301
crossref_primary_10_1101_gr_202465_115
crossref_primary_10_1186_s13059_020_02099_9
crossref_primary_10_1016_j_molcel_2014_02_019
crossref_primary_10_1073_pnas_1805371115
crossref_primary_10_7554_eLife_15716
crossref_primary_10_1101_gr_182238_114
crossref_primary_10_1016_j_ygeno_2020_04_006
crossref_primary_10_1038_s41477_017_0004_x
crossref_primary_10_1111_nph_19499
crossref_primary_10_1159_000365264
crossref_primary_10_1093_nar_gkab128
crossref_primary_10_2139_ssrn_3244796
crossref_primary_10_1007_s00412_017_0655_4
crossref_primary_10_1105_tpc_114_133025
crossref_primary_10_1007_s10142_013_0319_2
crossref_primary_10_3389_fpls_2022_728167
crossref_primary_10_1186_s12870_017_0997_3
crossref_primary_10_1073_pnas_1613623113
crossref_primary_10_1038_s41477_021_01086_7
crossref_primary_10_1093_bib_bbx136
crossref_primary_10_1007_s11427_021_1970_x
crossref_primary_10_1104_pp_15_00543
crossref_primary_10_7554_eLife_89353
crossref_primary_10_1016_j_jhazmat_2022_129987
crossref_primary_10_15252_embj_2019103667
crossref_primary_10_1371_journal_pgen_1008492
crossref_primary_10_1186_s12284_017_0177_y
crossref_primary_10_1270_jsbbs_19005
crossref_primary_10_4161_epi_29022
crossref_primary_10_1038_srep18985
crossref_primary_10_3390_ijms140815233
crossref_primary_10_1016_j_pbi_2017_03_004
crossref_primary_10_1111_nph_14874
crossref_primary_10_1016_j_pbi_2017_03_002
crossref_primary_10_1093_plphys_kiab531
crossref_primary_10_1038_s41477_020_00843_4
crossref_primary_10_3390_genes9120602
crossref_primary_10_1146_annurev_phyto_010820_012805
crossref_primary_10_1093_jxb_erac167
crossref_primary_10_1111_jipb_13406
crossref_primary_10_1093_nar_gkab191
crossref_primary_10_1371_journal_pgen_1008476
crossref_primary_10_1186_s12864_024_10798_x
crossref_primary_10_1186_s13148_022_01382_9
crossref_primary_10_1080_07352689_2014_852920
crossref_primary_10_1186_1471_2229_14_177
crossref_primary_10_1016_j_jgg_2016_10_009
crossref_primary_10_1016_j_molcel_2014_06_009
crossref_primary_10_1038_s41467_024_48940_8
crossref_primary_10_1111_jipb_13883
crossref_primary_10_1073_pnas_1609686113
crossref_primary_10_1016_j_molp_2016_05_006
crossref_primary_10_1016_j_cub_2020_10_098
crossref_primary_10_2139_ssrn_3376664
crossref_primary_10_1105_tpc_113_113209
crossref_primary_10_1016_j_pbi_2013_11_017
crossref_primary_10_1016_j_tplants_2015_03_003
crossref_primary_10_1186_s13059_019_1652_0
crossref_primary_10_1016_j_virol_2017_07_013
crossref_primary_10_1021_bi401436h
crossref_primary_10_1038_ncomms11715
crossref_primary_10_1101_gad_274647_115
crossref_primary_10_1101_gr_232371_117
crossref_primary_10_1093_nar_gkac012
crossref_primary_10_1038_srep05540
crossref_primary_10_1186_s12864_022_08312_2
crossref_primary_10_1093_jxb_erx144
crossref_primary_10_1016_j_devcel_2018_05_023
crossref_primary_10_1016_j_tplants_2013_07_005
crossref_primary_10_1073_pnas_1420515111
crossref_primary_10_1101_gad_343871_120
crossref_primary_10_1186_s13059_017_1251_x
crossref_primary_10_3390_plants10071423
crossref_primary_10_1111_tpj_12832
crossref_primary_10_1534_genetics_120_303264
crossref_primary_10_1093_nar_gkab1218
crossref_primary_10_1111_nph_15931
crossref_primary_10_1111_nph_16902
crossref_primary_10_1016_j_cell_2014_03_056
crossref_primary_10_1093_nsr_nwu003
crossref_primary_10_1101_gr_172015_114
crossref_primary_10_1007_s10142_023_01069_1
crossref_primary_10_1111_tpj_16164
crossref_primary_10_1105_tpc_114_130120
crossref_primary_10_1111_jipb_12767
crossref_primary_10_1371_journal_pgen_1004920
crossref_primary_10_1093_molbev_msaa105
crossref_primary_10_1093_nar_gky602
crossref_primary_10_1007_s11103_013_0165_6
crossref_primary_10_1126_sciadv_adc9454
crossref_primary_10_1038_s41477_024_01773_1
crossref_primary_10_3389_fpls_2024_1427578
crossref_primary_10_1101_gad_295501_116
crossref_primary_10_1016_j_pbi_2024_102598
crossref_primary_10_1038_nrg_2017_45
crossref_primary_10_1186_s13059_016_1032_y
crossref_primary_10_1111_tpj_17250
crossref_primary_10_1242_dev_106104
crossref_primary_10_1371_journal_pgen_1004806
crossref_primary_10_1371_journal_pgen_1003946
crossref_primary_10_1007_s10142_016_0502_3
crossref_primary_10_1111_nph_14421
crossref_primary_10_1093_nar_gkx524
crossref_primary_10_1111_mpp_13104
crossref_primary_10_1186_s13072_019_0307_4
crossref_primary_10_1534_g3_116_030262
crossref_primary_10_1016_j_semcdb_2022_02_026
crossref_primary_10_1016_j_jgg_2016_03_010
crossref_primary_10_1093_gbe_evac038
crossref_primary_10_1038_s41467_022_35722_3
crossref_primary_10_1007_s42976_024_00603_6
crossref_primary_10_26508_lsa_201800197
crossref_primary_10_1093_plphys_kiad624
crossref_primary_10_1371_journal_pgen_1003948
crossref_primary_10_1073_pnas_1410761111
crossref_primary_10_1007_s11103_019_00949_0
crossref_primary_10_1186_s12864_021_07600_7
crossref_primary_10_1371_journal_pgen_1006092
crossref_primary_10_1186_s13059_020_02068_2
crossref_primary_10_1007_s00438_016_1187_y
crossref_primary_10_1038_srep17832
crossref_primary_10_1371_journal_pgen_1010345
crossref_primary_10_15252_embj_201798482
crossref_primary_10_1016_j_cell_2016_06_044
crossref_primary_10_1371_journal_pone_0074739
crossref_primary_10_1093_plphys_kiac520
crossref_primary_10_1111_jipb_12787
crossref_primary_10_1146_annurev_genet_120417_031404
crossref_primary_10_1111_nph_17804
crossref_primary_10_1186_s13059_017_1288_x
crossref_primary_10_1016_j_biosystems_2021_104566
crossref_primary_10_3389_fpls_2018_01194
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_1007_s10682_020_10038_0
crossref_primary_10_1186_1471_2164_16_S12_S11
crossref_primary_10_1111_aab_12280
crossref_primary_10_1016_j_jgg_2013_03_010
crossref_primary_10_1038_s41598_020_71907_w
crossref_primary_10_3389_fpls_2023_1181039
crossref_primary_10_1159_000360774
crossref_primary_10_1038_ncomms11640
crossref_primary_10_1093_pcp_pcv036
crossref_primary_10_1007_s11103_016_0487_2
crossref_primary_10_3390_ijms23158299
crossref_primary_10_1186_s12859_024_05722_9
crossref_primary_10_7554_eLife_05255
crossref_primary_10_1038_s41467_020_14995_6
crossref_primary_10_1093_plphys_kiac462
crossref_primary_10_1186_s13072_019_0299_0
crossref_primary_10_1371_journal_pone_0084687
crossref_primary_10_1073_pnas_1716945115
crossref_primary_10_1093_nar_gkv258
crossref_primary_10_1073_pnas_1619074114
crossref_primary_10_7554_eLife_19893
crossref_primary_10_3390_agronomy15010094
crossref_primary_10_1186_s12870_017_1055_x
crossref_primary_10_1038_nplants_2016_163
crossref_primary_10_1093_plphys_kiac228
crossref_primary_10_1101_gr_215186_116
crossref_primary_10_3897_CompCytogen_v14i2_51895
crossref_primary_10_1016_j_envint_2019_105014
crossref_primary_10_1093_mp_ssu075
crossref_primary_10_1101_gr_155879_113
crossref_primary_10_1111_nph_15432
crossref_primary_10_1093_mp_ssu079
crossref_primary_10_1111_nyas_14675
crossref_primary_10_1111_mpp_12850
crossref_primary_10_1186_s13059_016_1127_5
crossref_primary_10_1038_s41559_019_0810_9
crossref_primary_10_1042_BST20210725
crossref_primary_10_1186_s12864_019_5554_z
crossref_primary_10_1073_pnas_1604666113
crossref_primary_10_1111_nph_15434
crossref_primary_10_1111_pbi_12198
crossref_primary_10_1371_journal_pgen_1008637
crossref_primary_10_1002_dvg_23399
crossref_primary_10_1111_nph_15439
crossref_primary_10_1111_nph_17738
crossref_primary_10_1186_s12870_019_1923_7
crossref_primary_10_1093_nar_gkt1285
crossref_primary_10_1111_pbi_13049
crossref_primary_10_1038_ncomms7386
crossref_primary_10_1186_s13059_017_1281_4
crossref_primary_10_1038_ncomms9326
crossref_primary_10_1126_science_abi7489
crossref_primary_10_1111_nph_70078
crossref_primary_10_1111_febs_16633
crossref_primary_10_1371_journal_pgen_1009710
crossref_primary_10_3390_ijms24043978
crossref_primary_10_1007_s00425_022_03962_8
crossref_primary_10_7554_eLife_42530
crossref_primary_10_7717_peerj_3560
crossref_primary_10_1093_hr_uhac132
crossref_primary_10_1186_s13059_020_02190_1
crossref_primary_10_1101_gr_279532_124
crossref_primary_10_1073_pnas_2026806118
crossref_primary_10_1101_gad_301499_117
crossref_primary_10_1111_tpj_13193
crossref_primary_10_1038_srep26443
crossref_primary_10_1093_jxb_erae522
crossref_primary_10_1038_s41467_022_28468_5
crossref_primary_10_1111_pbi_13299
crossref_primary_10_1111_jipb_12733
crossref_primary_10_3389_fpls_2023_1123211
crossref_primary_10_1186_s12864_018_4641_x
crossref_primary_10_3390_ijms25052795
crossref_primary_10_1038_srep36247
crossref_primary_10_1038_s41598_021_95054_y
crossref_primary_10_1080_07388551_2022_2058460
crossref_primary_10_1038_s41467_020_16951_w
crossref_primary_10_1038_s41467_018_06965_w
crossref_primary_10_3390_genes6041140
crossref_primary_10_1038_s41421_018_0056_8
crossref_primary_10_1038_s41467_019_09496_0
crossref_primary_10_1073_pnas_1502279112
crossref_primary_10_1186_s13059_023_03059_9
crossref_primary_10_1111_tpj_14380
crossref_primary_10_1111_pbi_14435
crossref_primary_10_3390_plants7030059
crossref_primary_10_1111_nph_18876
crossref_primary_10_1016_j_pbi_2015_06_012
crossref_primary_10_1186_s13059_022_02833_5
crossref_primary_10_3389_fpls_2021_596236
crossref_primary_10_1002_pld3_79
crossref_primary_10_3390_ijms232113495
crossref_primary_10_1093_jxb_ert439
crossref_primary_10_1093_plcell_koab162
crossref_primary_10_3390_plants12061384
crossref_primary_10_1093_plcell_koab284
crossref_primary_10_1371_journal_pgen_1008324
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1104_pp_113_216481
crossref_primary_10_1111_mpp_12518
crossref_primary_10_1371_journal_pgen_1006026
crossref_primary_10_3389_fpls_2021_757165
crossref_primary_10_3390_ijms21186817
crossref_primary_10_1093_mp_sst165
crossref_primary_10_1111_tpj_14143
crossref_primary_10_1016_j_celrep_2017_05_091
crossref_primary_10_1007_s13580_019_00205_w
crossref_primary_10_1186_s13072_018_0240_y
crossref_primary_10_1111_tpj_70116
crossref_primary_10_1016_j_molp_2020_09_010
crossref_primary_10_3389_fpls_2024_1372880
crossref_primary_10_1371_journal_pbio_3001602
crossref_primary_10_7554_eLife_87714
crossref_primary_10_1093_nar_gkab706
crossref_primary_10_1016_j_jgg_2021_04_004
crossref_primary_10_1186_s12864_016_3326_6
crossref_primary_10_1017_qpb_2022_14
crossref_primary_10_1073_pnas_1809841115
crossref_primary_10_1111_1758_2229_70000
crossref_primary_10_1016_j_molcel_2014_07_008
crossref_primary_10_3390_cells10112952
crossref_primary_10_1038_ncomms13522
crossref_primary_10_1126_sciadv_abf3898
crossref_primary_10_3390_plants13192700
crossref_primary_10_1038_s41580_018_0016_z
crossref_primary_10_1126_sciadv_abd9224
crossref_primary_10_1371_journal_pone_0088947
crossref_primary_10_1093_jxb_eru502
crossref_primary_10_26508_lsa_202000848
crossref_primary_10_3389_fpls_2023_1204279
crossref_primary_10_1105_tpc_114_130427
crossref_primary_10_7554_eLife_17214
crossref_primary_10_1371_journal_pgen_1005154
crossref_primary_10_1186_s13059_017_1195_1
crossref_primary_10_1016_j_pbi_2015_07_005
crossref_primary_10_2478_gsr_2016_0010
crossref_primary_10_1038_s41588_018_0115_y
crossref_primary_10_1016_j_molp_2017_10_002
crossref_primary_10_1111_pbi_13018
crossref_primary_10_1073_pnas_1515170112
crossref_primary_10_1093_plphys_kiac471
crossref_primary_10_1186_s13059_015_0867_y
crossref_primary_10_7554_eLife_06671
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_1186_s40168_022_01236_9
crossref_primary_10_3390_plants13101400
crossref_primary_10_1038_s41477_020_00810_z
crossref_primary_10_1186_s13059_014_0458_3
crossref_primary_10_15252_embj_201695602
crossref_primary_10_1038_s41437_021_00441_w
crossref_primary_10_1101_gr_225599_117
crossref_primary_10_1186_s13072_023_00521_7
crossref_primary_10_1111_nph_18729
crossref_primary_10_1186_s12870_024_05156_8
crossref_primary_10_1016_j_pbi_2017_01_005
crossref_primary_10_15252_embj_201798770
Cites_doi 10.4161/epi.6.3.14242
10.1073/pnas.162371599
10.1093/nar/29.21.4319
10.1016/j.tplants.2008.05.004
10.1007/978-1-61779-089-8_16
10.1186/1471-2105-11-203
10.1016/j.cell.2008.03.029
10.1038/nrg2540
10.1371/journal.pgen.1002195
10.1105/tpc.106.041400
10.1186/gb-2009-10-6-r62
10.1126/science.1146565
10.1016/S0065-2296(10)53001-5
10.1023/A:1022923508198
10.1105/tpc.110.079962
10.1101/gr.125872.111
10.1371/journal.pgen.1002055
10.1073/pnas.0701861104
10.1093/emboj/cdf663
10.1073/pnas.1010478107
10.1371/journal.pone.0003156
10.1038/emboj.2009.59
10.1038/nature06745
10.1038/ng1804
10.1186/gb-2005-6-11-r90
10.1371/journal.pgen.1002366
10.1038/nature731
10.1126/science.1059745
10.1371/journal.pgen.1002808
10.1093/emboj/cdf657
10.1073/pnas.1432939100
10.1038/nrm3152
10.1371/journal.pgen.1000156
10.1126/science.1165313
10.1016/j.cell.2007.07.007
10.1038/8803
10.1016/S0960-9822(02)00925-9
10.1073/pnas.93.22.12406
10.4161/epi.20290
10.1371/journal.pgen.1001152
10.1101/gad.1765209
10.1038/nsmb.2354
10.1038/nsmb.1690
10.1128/MCB.01607-07
10.1073/pnas.1002720107
10.1074/jbc.M513426200
10.1186/gb-2009-10-3-r25
10.1038/nrg2719
10.1104/pp.111.184275
10.1126/science.1095989
10.1101/gad.1914110
10.1534/genetics.108.090621
10.1038/nature02651
10.1126/science.8316832
10.1038/sj.emboj.7601603
10.1038/emboj.2011.103
10.1101/gad.1868009
10.1038/nsmb.1611
10.1038/ng.854
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
2013 Elsevier Inc. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2013 Elsevier Inc. 2013
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
5PM
DOI 10.1016/j.cell.2012.10.054
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 364
ExternalDocumentID PMC3597350
oai_HAL_hal_03439061v1
23313553
10_1016_j_cell_2012_10_054
US201600025658
S0092867412014304
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM07104
– fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIGMS NIH HHS
  grantid: T32 GM007104
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R37 GM060398 || GM
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
9M8
AALRI
AAQXK
ABEFU
ABPTK
ABTAH
ADMUD
AEQTP
AETEA
AI.
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
XFK
YYP
ZGI
ZHY
ZKB
ZY4
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
EFKBS
5PM
ID FETCH-LOGICAL-c612t-7dd47e3cf82f3ddaf76b936175d2e4c2e47e2622207c0d7b464ca343f8743f2a3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 14:04:13 EDT 2025
Wed Aug 13 07:44:57 EDT 2025
Fri Jul 11 03:41:06 EDT 2025
Fri Jul 11 01:35:19 EDT 2025
Thu Jan 02 22:59:03 EST 2025
Tue Jul 01 03:52:05 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Wed Dec 27 18:46:06 EST 2023
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-7dd47e3cf82f3ddaf76b936175d2e4c2e47e2622207c0d7b464ca343f8743f2a3
Notes http://dx.doi.org/10.1016/j.cell.2012.10.054
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC3597350
These authors contributed equally to this work
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867412014304
PMID 23313553
PQID 1273698063
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597350
hal_primary_oai_HAL_hal_03439061v1
proquest_miscellaneous_2000103245
proquest_miscellaneous_1273698063
pubmed_primary_23313553
crossref_citationtrail_10_1016_j_cell_2012_10_054
crossref_primary_10_1016_j_cell_2012_10_054
fao_agris_US201600025658
elsevier_sciencedirect_doi_10_1016_j_cell_2012_10_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-17
PublicationDateYYYYMMDD 2013-01-17
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Teixeira, Heredia, Sarazin, Roudier, Boccara, Ciaudo, Cruaud, Poulain, Berdasco, Fraga (bib45) 2009; 323
Schotta, Ebert, Reuter (bib42) 2003; 117
Chan, Zilberman, Xie, Johansen, Carrington, Jacobsen (bib10) 2004; 303
Soppe, Jasencakova, Houben, Kakutani, Meister, Huang, Jacobsen, Schubert, Fransz (bib43) 2002; 21
Jackson, Lindroth, Cao, Jacobsen (bib24) 2002; 416
Onodera, Nakagawa, Haag, Pikaard, Mikami, Ream, Ito, Pikaard (bib37) 2008; 180
Miura, Nakamura, Inagaki, Kobayashi, Saze, Kakutani (bib36) 2009; 28
Roudier, Ahmed, Bérard, Sarazin, Mary-Huard, Cortijo, Bouyer, Caillieux, Duvernois-Berthet, Al-Shikhley (bib40) 2011; 30
Weinhofer, Hehenberger, Roszak, Hennig, Köhler (bib50) 2010; 6
Earley, Pontvianne, Wierzbicki, Blevins, Tucker, Costa-Nunes, Pontes, Pikaard (bib13) 2010; 24
Woo, Dittmer, Richards (bib51) 2008; 4
Zhong, Hale, Law, Johnson, Feng, Tu, Jacobsen (bib56) 2012; 19
Zheng, Zhu, Kapoor, Zhu (bib54) 2007; 26
Law, Jacobsen (bib28) 2010; 11
Jeddeloh, Stokes, Richards (bib26) 1999; 22
Aufsatz, Mette, van der Winden, Matzke, Matzke (bib1) 2002; 21
Mathieu, Reinders, Caikovski, Smathajitt, Paszkowski (bib35) 2007; 130
Zhang, Bernatavichute, Cokus, Pellegrini, Jacobsen (bib53) 2009; 10
Lu, Cui, Zhang, Jenuwein, Cao (bib34) 2011; 43
Penterman, Zilberman, Huh, Ballinger, Henikoff, Fischer (bib38) 2007; 104
Cokus, Feng, Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, Pellegrini, Jacobsen (bib12) 2008; 452
Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib25) 2009; 16
Chen, Cokus, Pellegrini (bib11) 2010; 11
Bäurle, Smith, Baulcombe, Dean (bib4) 2007; 318
Zheng, Wang, Li, Yu, Liu, Chen (bib55) 2009; 23
Haag, Pikaard (bib20) 2011; 12
Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib30) 2001; 292
Liu, Yu, Duan, Luo, Wang, Tian, Cui, Wu (bib33) 2012; 158
Berr, McCallum, Ménard, Meyer, Fuchs, Dong, Shen (bib6) 2010; 22
Ebbs, Bender (bib14) 2006; 18
Kakutani, Jeddeloh, Flowers, Munakata, Richards (bib27) 1996; 93
Henderson, Zhang, Lu, Johnson, Meyers, Green, Jacobsen (bib22) 2006; 38
Cao, Jacobsen (bib7) 2002; 99
Feng, Cokus, Zhang, Chen, Bostick, Goll, Hetzel, Jain, Strauss, Halpern (bib15) 2010; 107
Gu, Jiang, Yang, Jacob, Michaels, He (bib18) 2011; 7
Xu, Zhao, Dong, Soubigou-Taconnat, Renou, Steinmetz, Shen (bib52) 2008; 28
Ausin, Mockler, Chory, Jacobsen (bib2) 2009; 16
Greenberg, Ausin, Chan, Cokus, Cuperus, Feng, Law, Chu, Pellegrini, Carrington, Jacobsen (bib17) 2011; 6
Pontvianne, Blevins, Pikaard (bib39) 2010; 53
Feng, Rubbi, Jacobsen, Pellegrini (bib16) 2011; 733
Baumbusch, Thorstensen, Krauss, Fischer, Naumann, Assalkhou, Schulz, Reuter, Aalen (bib3) 2001; 29
Vongs, Kakutani, Martienssen, Richards (bib49) 1993; 260
He, Hsu, Pontes, Zhu, Lu, Bressan, Pikaard, Wang, Zhu (bib21) 2009; 23
Cao, Jacobsen (bib8) 2002; 12
Guo, Yu, Law, Zhang (bib19) 2010; 107
Cedar, Bergman (bib9) 2009; 10
Lee, Gurazada, Zhai, Li, Simon, Matzke, Chen, Meyers (bib29) 2012; 7
Lister, O’Malley, Tonti-Filippini, Gregory, Berry, Millar, Ecker (bib32) 2008; 133
Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib5) 2008; 3
Tran, Zilberman, de Bustos, Ditt, Henikoff, Lindroth, Delrow, Boyle, Kwong, Bryson (bib47) 2005; 6
Hon, Hawkins, Caballero, Lo, Lister, Pelizzola, Valsesia, Ye, Kuan, Edsall (bib23) 2012; 22
To, Kim, Matsui, Kurihara, Morosawa, Ishida, Tanaka, Endo, Kakutani, Toyoda (bib46) 2011; 7
Voinnet (bib48) 2008; 13
Lippman, Gendrel, Black, Vaughn, Dedhia, McCombie, Lavine, Mittal, May, Kasschau (bib31) 2004; 430
Schönrock, Exner, Probst, Gruissem, Hennig (bib41) 2006; 281
Tariq, Saze, Probst, Lichota, Habu, Paszkowski (bib44) 2003; 100
Law (10.1016/j.cell.2012.10.054_bib28) 2010; 11
Teixeira (10.1016/j.cell.2012.10.054_bib45) 2009; 323
Chan (10.1016/j.cell.2012.10.054_bib10) 2004; 303
Kakutani (10.1016/j.cell.2012.10.054_bib27) 1996; 93
Lippman (10.1016/j.cell.2012.10.054_bib31) 2004; 430
Lu (10.1016/j.cell.2012.10.054_bib34) 2011; 43
Weinhofer (10.1016/j.cell.2012.10.054_bib50) 2010; 6
Lister (10.1016/j.cell.2012.10.054_bib32) 2008; 133
Mathieu (10.1016/j.cell.2012.10.054_bib35) 2007; 130
Baumbusch (10.1016/j.cell.2012.10.054_bib3) 2001; 29
Xu (10.1016/j.cell.2012.10.054_bib52) 2008; 28
Berr (10.1016/j.cell.2012.10.054_bib6) 2010; 22
Lee (10.1016/j.cell.2012.10.054_bib29) 2012; 7
Woo (10.1016/j.cell.2012.10.054_bib51) 2008; 4
Haag (10.1016/j.cell.2012.10.054_bib20) 2011; 12
Jeddeloh (10.1016/j.cell.2012.10.054_bib26) 1999; 22
Schönrock (10.1016/j.cell.2012.10.054_bib41) 2006; 281
Cokus (10.1016/j.cell.2012.10.054_bib12) 2008; 452
Zheng (10.1016/j.cell.2012.10.054_bib55) 2009; 23
Voinnet (10.1016/j.cell.2012.10.054_bib48) 2008; 13
Henderson (10.1016/j.cell.2012.10.054_bib22) 2006; 38
Vongs (10.1016/j.cell.2012.10.054_bib49) 1993; 260
Miura (10.1016/j.cell.2012.10.054_bib36) 2009; 28
Onodera (10.1016/j.cell.2012.10.054_bib37) 2008; 180
Earley (10.1016/j.cell.2012.10.054_bib13) 2010; 24
Ausin (10.1016/j.cell.2012.10.054_bib2) 2009; 16
Jackson (10.1016/j.cell.2012.10.054_bib24) 2002; 416
Jacob (10.1016/j.cell.2012.10.054_bib25) 2009; 16
Tran (10.1016/j.cell.2012.10.054_bib47) 2005; 6
Cedar (10.1016/j.cell.2012.10.054_bib9) 2009; 10
Chen (10.1016/j.cell.2012.10.054_bib11) 2010; 11
Greenberg (10.1016/j.cell.2012.10.054_bib17) 2011; 6
Feng (10.1016/j.cell.2012.10.054_bib15) 2010; 107
Tariq (10.1016/j.cell.2012.10.054_bib44) 2003; 100
Pontvianne (10.1016/j.cell.2012.10.054_bib39) 2010; 53
Penterman (10.1016/j.cell.2012.10.054_bib38) 2007; 104
Cao (10.1016/j.cell.2012.10.054_bib8) 2002; 12
10.1016/j.cell.2012.10.054_bib57
Zhong (10.1016/j.cell.2012.10.054_bib56) 2012; 19
10.1016/j.cell.2012.10.054_bib58
Soppe (10.1016/j.cell.2012.10.054_bib43) 2002; 21
10.1016/j.cell.2012.10.054_bib59
Bernatavichute (10.1016/j.cell.2012.10.054_bib5) 2008; 3
Bäurle (10.1016/j.cell.2012.10.054_bib4) 2007; 318
Lindroth (10.1016/j.cell.2012.10.054_bib30) 2001; 292
Zheng (10.1016/j.cell.2012.10.054_bib54) 2007; 26
Ebbs (10.1016/j.cell.2012.10.054_bib14) 2006; 18
Roudier (10.1016/j.cell.2012.10.054_bib40) 2011; 30
Aufsatz (10.1016/j.cell.2012.10.054_bib1) 2002; 21
Hon (10.1016/j.cell.2012.10.054_bib23) 2012; 22
Gu (10.1016/j.cell.2012.10.054_bib18) 2011; 7
To (10.1016/j.cell.2012.10.054_bib46) 2011; 7
He (10.1016/j.cell.2012.10.054_bib21) 2009; 23
Feng (10.1016/j.cell.2012.10.054_bib16) 2011; 733
Guo (10.1016/j.cell.2012.10.054_bib19) 2010; 107
Schotta (10.1016/j.cell.2012.10.054_bib42) 2003; 117
Cao (10.1016/j.cell.2012.10.054_bib7) 2002; 99
Liu (10.1016/j.cell.2012.10.054_bib33) 2012; 158
Zhang (10.1016/j.cell.2012.10.054_bib53) 2009; 10
Cell. 2015 Jun 18;161(7):1697-8
References_xml – volume: 13
  start-page: 317
  year: 2008
  end-page: 328
  ident: bib48
  article-title: Use, tolerance and avoidance of amplified RNA silencing by plants
  publication-title: Trends Plant Sci.
– volume: 26
  start-page: 1691
  year: 2007
  end-page: 1701
  ident: bib54
  article-title: Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing
  publication-title: EMBO J.
– volume: 16
  start-page: 1325
  year: 2009
  end-page: 1327
  ident: bib2
  article-title: IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana
  publication-title: Nat. Struct. Mol. Biol.
– volume: 16
  start-page: 763
  year: 2009
  end-page: 768
  ident: bib25
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib39
  article-title: Arabidopsis Histone Lysine Methyltransferases
  publication-title: Adv. Bot. Res.
– volume: 100
  start-page: 8823
  year: 2003
  end-page: 8827
  ident: bib44
  article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 4319
  year: 2001
  end-page: 4333
  ident: bib3
  article-title: The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: e3156
  year: 2008
  ident: bib5
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
– volume: 23
  start-page: 318
  year: 2009
  end-page: 330
  ident: bib21
  article-title: NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation
  publication-title: Genes Dev.
– volume: 22
  start-page: 94
  year: 1999
  end-page: 97
  ident: bib26
  article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein
  publication-title: Nat. Genet.
– volume: 303
  start-page: 1336
  year: 2004
  ident: bib10
  article-title: RNA silencing genes control de novo DNA methylation
  publication-title: Science
– volume: 22
  start-page: 3232
  year: 2010
  end-page: 3248
  ident: bib6
  article-title: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development
  publication-title: Plant Cell
– volume: 733
  start-page: 223
  year: 2011
  end-page: 238
  ident: bib16
  article-title: Determining DNA methylation profiles using sequencing
  publication-title: Methods Mol. Biol.
– volume: 93
  start-page: 12406
  year: 1996
  end-page: 12411
  ident: bib27
  article-title: Developmental abnormalities and epimutations associated with DNA hypomethylation mutations
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 870
  year: 2012
  end-page: 875
  ident: bib56
  article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons
  publication-title: Nat. Struct. Mol. Biol.
– volume: 6
  start-page: e1001152
  year: 2010
  ident: bib50
  article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation
  publication-title: PLoS Genet.
– volume: 23
  start-page: 2850
  year: 2009
  end-page: 2860
  ident: bib55
  article-title: Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis
  publication-title: Genes Dev.
– volume: 318
  start-page: 109
  year: 2007
  end-page: 112
  ident: bib4
  article-title: Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing
  publication-title: Science
– volume: 133
  start-page: 523
  year: 2008
  end-page: 536
  ident: bib32
  article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis
  publication-title: Cell
– volume: 21
  start-page: 6549
  year: 2002
  end-page: 6559
  ident: bib43
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis
  publication-title: EMBO J.
– volume: 452
  start-page: 215
  year: 2008
  end-page: 219
  ident: bib12
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
– volume: 38
  start-page: 721
  year: 2006
  end-page: 725
  ident: bib22
  article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning
  publication-title: Nat. Genet.
– volume: 30
  start-page: 1928
  year: 2011
  end-page: 1938
  ident: bib40
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J.
– volume: 18
  start-page: 1166
  year: 2006
  end-page: 1176
  ident: bib14
  article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase
  publication-title: Plant Cell
– volume: 260
  start-page: 1926
  year: 1993
  end-page: 1928
  ident: bib49
  article-title: Arabidopsis thaliana DNA methylation mutants
  publication-title: Science
– volume: 11
  start-page: 203
  year: 2010
  ident: bib11
  article-title: BS Seeker: precise mapping for bisulfite sequencing
  publication-title: BMC Bioinformatics
– volume: 43
  start-page: 715
  year: 2011
  end-page: 719
  ident: bib34
  article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase
  publication-title: Nat. Genet.
– volume: 22
  start-page: 246
  year: 2012
  end-page: 258
  ident: bib23
  article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
  publication-title: Genome Res.
– volume: 7
  start-page: 781
  year: 2012
  end-page: 795
  ident: bib29
  article-title: RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats
  publication-title: Epigenetics
– volume: 158
  start-page: 119
  year: 2012
  end-page: 129
  ident: bib33
  article-title: HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis
  publication-title: Plant Physiol.
– volume: 323
  start-page: 1600
  year: 2009
  end-page: 1604
  ident: bib45
  article-title: A role for RNAi in the selective correction of DNA methylation defects
  publication-title: Science
– volume: 21
  start-page: 6832
  year: 2002
  end-page: 6841
  ident: bib1
  article-title: HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA
  publication-title: EMBO J.
– volume: 10
  start-page: 295
  year: 2009
  end-page: 304
  ident: bib9
  article-title: Linking DNA methylation and histone modification: patterns and paradigms
  publication-title: Nat. Rev. Genet.
– volume: 104
  start-page: 6752
  year: 2007
  end-page: 6757
  ident: bib38
  article-title: DNA demethylation in the Arabidopsis genome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 281
  start-page: 9560
  year: 2006
  end-page: 9568
  ident: bib41
  article-title: Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 1119
  year: 2010
  end-page: 1132
  ident: bib13
  article-title: Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation
  publication-title: Genes Dev.
– volume: 4
  start-page: e1000156
  year: 2008
  ident: bib51
  article-title: Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis
  publication-title: PLoS Genet.
– volume: 10
  start-page: R62
  year: 2009
  ident: bib53
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol.
– volume: 99
  start-page: 16491
  year: 2002
  end-page: 16498
  ident: bib7
  article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 430
  start-page: 471
  year: 2004
  end-page: 476
  ident: bib31
  article-title: Role of transposable elements in heterochromatin and epigenetic control
  publication-title: Nature
– volume: 7
  start-page: e1002366
  year: 2011
  ident: bib18
  article-title: Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing
  publication-title: PLoS Genet.
– volume: 28
  start-page: 1348
  year: 2008
  end-page: 1360
  ident: bib52
  article-title: Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: bib28
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
– volume: 7
  start-page: e1002055
  year: 2011
  ident: bib46
  article-title: Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1
  publication-title: PLoS Genet.
– volume: 117
  start-page: 149
  year: 2003
  end-page: 158
  ident: bib42
  article-title: SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing
  publication-title: Genetica
– volume: 130
  start-page: 851
  year: 2007
  end-page: 862
  ident: bib35
  article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation
  publication-title: Cell
– volume: 28
  start-page: 1078
  year: 2009
  end-page: 1086
  ident: bib36
  article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites
  publication-title: EMBO J.
– volume: 180
  start-page: 207
  year: 2008
  end-page: 218
  ident: bib37
  article-title: Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis
  publication-title: Genetics
– volume: 107
  start-page: 18557
  year: 2010
  end-page: 18562
  ident: bib19
  article-title: SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 483
  year: 2011
  end-page: 492
  ident: bib20
  article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 12
  start-page: 1138
  year: 2002
  end-page: 1144
  ident: bib8
  article-title: Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing
  publication-title: Curr. Biol.
– volume: 6
  start-page: 344
  year: 2011
  end-page: 354
  ident: bib17
  article-title: Identification of genes required for de novo DNA methylation in Arabidopsis
  publication-title: Epigenetics
– volume: 292
  start-page: 2077
  year: 2001
  end-page: 2080
  ident: bib30
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
– volume: 6
  start-page: R90
  year: 2005
  ident: bib47
  article-title: Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis
  publication-title: Genome Biol.
– volume: 107
  start-page: 8689
  year: 2010
  end-page: 8694
  ident: bib15
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 416
  start-page: 556
  year: 2002
  end-page: 560
  ident: bib24
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
– volume: 6
  start-page: 344
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib17
  article-title: Identification of genes required for de novo DNA methylation in Arabidopsis
  publication-title: Epigenetics
  doi: 10.4161/epi.6.3.14242
– volume: 99
  start-page: 16491
  issue: Suppl 4
  year: 2002
  ident: 10.1016/j.cell.2012.10.054_bib7
  article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.162371599
– volume: 29
  start-page: 4319
  year: 2001
  ident: 10.1016/j.cell.2012.10.054_bib3
  article-title: The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.21.4319
– volume: 13
  start-page: 317
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib48
  article-title: Use, tolerance and avoidance of amplified RNA silencing by plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.05.004
– volume: 733
  start-page: 223
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib16
  article-title: Determining DNA methylation profiles using sequencing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-089-8_16
– volume: 11
  start-page: 203
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib11
  article-title: BS Seeker: precise mapping for bisulfite sequencing
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-203
– volume: 133
  start-page: 523
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib32
  article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.029
– volume: 10
  start-page: 295
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib9
  article-title: Linking DNA methylation and histone modification: patterns and paradigms
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2540
– ident: 10.1016/j.cell.2012.10.054_bib58
  doi: 10.1371/journal.pgen.1002195
– volume: 18
  start-page: 1166
  year: 2006
  ident: 10.1016/j.cell.2012.10.054_bib14
  article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041400
– volume: 10
  start-page: R62
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib53
  article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-6-r62
– volume: 318
  start-page: 109
  year: 2007
  ident: 10.1016/j.cell.2012.10.054_bib4
  article-title: Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing
  publication-title: Science
  doi: 10.1126/science.1146565
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib39
  article-title: Arabidopsis Histone Lysine Methyltransferases
  publication-title: Adv. Bot. Res.
  doi: 10.1016/S0065-2296(10)53001-5
– volume: 117
  start-page: 149
  year: 2003
  ident: 10.1016/j.cell.2012.10.054_bib42
  article-title: SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing
  publication-title: Genetica
  doi: 10.1023/A:1022923508198
– volume: 22
  start-page: 3232
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib6
  article-title: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.079962
– volume: 22
  start-page: 246
  year: 2012
  ident: 10.1016/j.cell.2012.10.054_bib23
  article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
  publication-title: Genome Res.
  doi: 10.1101/gr.125872.111
– volume: 7
  start-page: e1002055
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib46
  article-title: Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002055
– volume: 104
  start-page: 6752
  year: 2007
  ident: 10.1016/j.cell.2012.10.054_bib38
  article-title: DNA demethylation in the Arabidopsis genome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0701861104
– volume: 21
  start-page: 6832
  year: 2002
  ident: 10.1016/j.cell.2012.10.054_bib1
  article-title: HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf663
– volume: 107
  start-page: 18557
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib19
  article-title: SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1010478107
– volume: 3
  start-page: e3156
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib5
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 28
  start-page: 1078
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib36
  article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.59
– volume: 452
  start-page: 215
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib12
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 38
  start-page: 721
  year: 2006
  ident: 10.1016/j.cell.2012.10.054_bib22
  article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning
  publication-title: Nat. Genet.
  doi: 10.1038/ng1804
– volume: 6
  start-page: R90
  year: 2005
  ident: 10.1016/j.cell.2012.10.054_bib47
  article-title: Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis
  publication-title: Genome Biol.
  doi: 10.1186/gb-2005-6-11-r90
– volume: 7
  start-page: e1002366
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib18
  article-title: Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002366
– volume: 416
  start-page: 556
  year: 2002
  ident: 10.1016/j.cell.2012.10.054_bib24
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 292
  start-page: 2077
  year: 2001
  ident: 10.1016/j.cell.2012.10.054_bib30
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
  doi: 10.1126/science.1059745
– ident: 10.1016/j.cell.2012.10.054_bib59
  doi: 10.1371/journal.pgen.1002808
– volume: 21
  start-page: 6549
  year: 2002
  ident: 10.1016/j.cell.2012.10.054_bib43
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf657
– volume: 100
  start-page: 8823
  year: 2003
  ident: 10.1016/j.cell.2012.10.054_bib44
  article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1432939100
– volume: 12
  start-page: 483
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib20
  article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3152
– volume: 4
  start-page: e1000156
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib51
  article-title: Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000156
– volume: 323
  start-page: 1600
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib45
  article-title: A role for RNAi in the selective correction of DNA methylation defects
  publication-title: Science
  doi: 10.1126/science.1165313
– volume: 130
  start-page: 851
  year: 2007
  ident: 10.1016/j.cell.2012.10.054_bib35
  article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.007
– volume: 22
  start-page: 94
  year: 1999
  ident: 10.1016/j.cell.2012.10.054_bib26
  article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein
  publication-title: Nat. Genet.
  doi: 10.1038/8803
– volume: 12
  start-page: 1138
  year: 2002
  ident: 10.1016/j.cell.2012.10.054_bib8
  article-title: Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00925-9
– volume: 93
  start-page: 12406
  year: 1996
  ident: 10.1016/j.cell.2012.10.054_bib27
  article-title: Developmental abnormalities and epimutations associated with DNA hypomethylation mutations
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.22.12406
– volume: 7
  start-page: 781
  year: 2012
  ident: 10.1016/j.cell.2012.10.054_bib29
  article-title: RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats
  publication-title: Epigenetics
  doi: 10.4161/epi.20290
– volume: 6
  start-page: e1001152
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib50
  article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001152
– volume: 23
  start-page: 318
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib21
  article-title: NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1765209
– volume: 19
  start-page: 870
  year: 2012
  ident: 10.1016/j.cell.2012.10.054_bib56
  article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2354
– volume: 16
  start-page: 1325
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib2
  article-title: IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1690
– volume: 28
  start-page: 1348
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib52
  article-title: Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01607-07
– volume: 107
  start-page: 8689
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib15
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002720107
– volume: 281
  start-page: 9560
  year: 2006
  ident: 10.1016/j.cell.2012.10.054_bib41
  article-title: Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M513426200
– ident: 10.1016/j.cell.2012.10.054_bib57
  doi: 10.1186/gb-2009-10-3-r25
– volume: 11
  start-page: 204
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib28
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 158
  start-page: 119
  year: 2012
  ident: 10.1016/j.cell.2012.10.054_bib33
  article-title: HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.184275
– volume: 303
  start-page: 1336
  year: 2004
  ident: 10.1016/j.cell.2012.10.054_bib10
  article-title: RNA silencing genes control de novo DNA methylation
  publication-title: Science
  doi: 10.1126/science.1095989
– volume: 24
  start-page: 1119
  year: 2010
  ident: 10.1016/j.cell.2012.10.054_bib13
  article-title: Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1914110
– volume: 180
  start-page: 207
  year: 2008
  ident: 10.1016/j.cell.2012.10.054_bib37
  article-title: Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis
  publication-title: Genetics
  doi: 10.1534/genetics.108.090621
– volume: 430
  start-page: 471
  year: 2004
  ident: 10.1016/j.cell.2012.10.054_bib31
  article-title: Role of transposable elements in heterochromatin and epigenetic control
  publication-title: Nature
  doi: 10.1038/nature02651
– volume: 260
  start-page: 1926
  year: 1993
  ident: 10.1016/j.cell.2012.10.054_bib49
  article-title: Arabidopsis thaliana DNA methylation mutants
  publication-title: Science
  doi: 10.1126/science.8316832
– volume: 26
  start-page: 1691
  year: 2007
  ident: 10.1016/j.cell.2012.10.054_bib54
  article-title: Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601603
– volume: 30
  start-page: 1928
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib40
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.103
– volume: 23
  start-page: 2850
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib55
  article-title: Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1868009
– volume: 16
  start-page: 763
  year: 2009
  ident: 10.1016/j.cell.2012.10.054_bib25
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1611
– volume: 43
  start-page: 715
  year: 2011
  ident: 10.1016/j.cell.2012.10.054_bib34
  article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase
  publication-title: Nat. Genet.
  doi: 10.1038/ng.854
– reference: - Cell. 2015 Jun 18;161(7):1697-8
SSID ssj0008555
Score 2.5986402
Snippet Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 352
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis Proteins - metabolism
CpG Islands
data analysis
DNA Methylation
Gene Silencing
genome
Genome, Plant
Genome-Wide Association Study
Histones - metabolism
Life Sciences
mutants
RNA Interference
RNA Polymerase II - metabolism
RNA Splicing Factors
transposons
Title Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome
URI https://dx.doi.org/10.1016/j.cell.2012.10.054
https://www.ncbi.nlm.nih.gov/pubmed/23313553
https://www.proquest.com/docview/1273698063
https://www.proquest.com/docview/2000103245
https://hal.science/hal-03439061
https://pubmed.ncbi.nlm.nih.gov/PMC3597350
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VSkhcEO8GCjKIGzK19-FdH0tFFSHCgRIpt9U-G1fBjpqkgn_fGT8i0qo9cLAlr2e91szszGdrHoR85DyUwnuTuhBlylUUqaXw4QqqIYtomVEMk5MnP4rxlH-bidkeORlyYTCssrf9nU1vrXU_ctRz82hZVZjjW1JVgEekWKOurQnKuGqT-GZfttZYCdF1MShh5wN1nzjTxXjhz3EM76KfMcJL8Luc04NoGjjPMVbyNhC9GU_5j4M6fUIe98gyOe5e_inZC_Uz8rDrNfn3OXG48y_DvAtYT4ZiJEkTk7MKM4_AhyWTDTYVXiU_wxUAyFWCcxbhD1yf922-kB4wIyxjbOWbJT5iEkDai-Z3eEGmp19_nYzTvsNC6gDZrFPpPZeBuahoZCCxKAtbMgA1wtPAHRwy0AIgRCZd5qXlBXeGcRYVAI9IDXtJ9uumDgckiUJ5ILQ2N4FH70wmVOSAx6wKJgYxIvnAWu368uPYBWOhhzizC43i0CgOHANxjMin7ZxlV3zjXmoxSEzvqJAG73DvvAMQrzbnYFX19Ixizb0WCgo1Ih9A5tu1sRT3-Pi7xrEM2FACGLrKR-T9oBIa9iY-3tSh2ax0DtiwKBWgwLtpMFUKixpy4NCrTo2261HGcsCDMFvuKNjOC-3eqat5WyOcwYciE9nr_-TJG_KItn0_8jSXh2R_fbkJbwF9re27dntdAxceLAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RYheqvJqU14GwQmZ2vvwrg8cyqNKaNIDbaTclrW92xgFO2qSQn9X_yAzfkQE1B6QerAlr_elmfHMt9Y8CHnNuY1Flhk_tU76XDnhJxQOriAaMnIJM4phcPLgOOoO-ZeRGK2RqzYWBt0qG91f6_RKWzct-w0196d5jjG-MVURWESKOeoC3nhWHtnLn3Bum73vfQImv6H08PPpx67flBbwUzDpc19mGZeWpU5Rx2CrTkZJzMCai4xansIlLY3AdgYyDTKZ8IinhnHmFFhcRw2DedfJHUAfErVBb_Rhqf6VEHXZhBhUDWyvidSpncrwbzz6k9F36FIm-HXWcN2ZEu5jdM78F_n-7cD5h0U83CZbDZT1Dmpq3SdrtnhA7tbFLS8fkhRVzbkd1x7yXpv9xCudd5JjqBMYTW-wwCrGM--rvQDEOvNwzMT-guezpq4Y9geQCsuYJM_KKU4xsCBek_KHfUSGt0L3x2SjKAu7SzwnVAYdkyQ0lrssNYFQjgMATJQ1zooOCVvS6rTJd45lNya6dWz7rpEdGtmBbcCODnm7HDOts33c2Fu0HNMrMqvBHN04bhfYq80ZqHE9PKGY5K_CnkJ1yCvg-XJtzP3dPehrbAuADDGgr4uwQ162IqFBGeD0prDlYqZDAKNRrAB2Xt8HY7MwiyIHCu3UYrRcjzIWAgCF0XJFwFY2tPqmyMdVUnIGJ1Mmgr3_pMkLcq97Oujrfu_46AnZpFXRkdAP5VOyMT9f2GcA_ebJ8-pT88i32_62fwNIu2kI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Analysis+of+Silencing+Mutants+Reveals+Complex+Regulation+of+the+Arabidopsis+Methylome&rft.jtitle=Cell&rft.au=Stroud%2C+Hume&rft.au=Greenberg%2C+Maxim+V.C.&rft.au=Feng%2C+Suhua&rft.au=Bernatavichute%2C+Yana+V.&rft.date=2013-01-17&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=152&rft.issue=1-2&rft.spage=352&rft.epage=364&rft_id=info:doi/10.1016%2Fj.cell.2012.10.054&rft_id=info%3Apmid%2F23313553&rft.externalDocID=PMC3597350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon