Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unkn...
Saved in:
Published in | Cell Vol. 152; no. 1-2; pp. 352 - 364 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
[Display omitted]
► Genome-wide single-nucleotide resolution methylation maps in 86 silencing mutants ► Complex interplays between different DNA methylation pathways ► Identification of novel regulators of DNA methylation
A genome-wide study of DNA methylation in a comprehensive list of Arabidopsis mutants implicated in gene silencing and histone modification reveals that different pathways regulate DNA methylation site specifically, and the study uncovers new factors that regulate DNA methylation. |
---|---|
AbstractList | Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. [Display omitted] ► Genome-wide single-nucleotide resolution methylation maps in 86 silencing mutants ► Complex interplays between different DNA methylation pathways ► Identification of novel regulators of DNA methylation A genome-wide study of DNA methylation in a comprehensive list of Arabidopsis mutants implicated in gene silencing and histone modification reveals that different pathways regulate DNA methylation site specifically, and the study uncovers new factors that regulate DNA methylation. Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning. |
Author | Greenberg, Maxim V.C. Jacobsen, Steven E. Stroud, Hume Feng, Suhua Bernatavichute, Yana V. |
AuthorAffiliation | 3 Howard Hughes Medical Institute University of California, Los Angeles, Los Angeles, CA 90095, USA 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, Los Angeles, CA 90095, USA 1 Department of Molecular, Cell and Developmental Biology, Los Angeles, Los Angeles, CA 90095, USA |
AuthorAffiliation_xml | – name: 3 Howard Hughes Medical Institute University of California, Los Angeles, Los Angeles, CA 90095, USA – name: 2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, Los Angeles, CA 90095, USA – name: 1 Department of Molecular, Cell and Developmental Biology, Los Angeles, Los Angeles, CA 90095, USA |
Author_xml | – sequence: 1 givenname: Hume surname: Stroud fullname: Stroud, Hume organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 2 givenname: Maxim V.C. surname: Greenberg fullname: Greenberg, Maxim V.C. organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 4 givenname: Yana V. surname: Bernatavichute fullname: Bernatavichute, Yana V. organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 5 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23313553$$D View this record in MEDLINE/PubMed https://hal.science/hal-03439061$$DView record in HAL |
BookMark | eNqFkk1v1DAQhi1URLeFP8ABcoRDFn_EdiIhpNUKKNJWSJSeLa8z2XiVtRc7idh_j0NaBD2UQxx5_LzveDxzgc6cd4DQS4KXBBPxbr800HVLiglNgSXmxRO0ILiSeUEkPUMLjCual0IW5-gixj3GuOScP0PnlDHCOGcLZNb-cAzQgot2hGzldHeKNma-yW5sB85Yt8uuh167PmbfYATdxWzSdPAz7XdDp3vr3cT3bdIHvbW1P04W19C3p84f4Dl62iQZvLj7X6LbTx-_r6_yzdfPX9arTW4EoX0u67qQwExT0obVtW6k2FZMEMlrCoVJnwQqKKVYGlzLbSEKo1nBmlKmhWp2iT7Mvsdhe4DagOuD7tQx2IMOJ-W1Vf-eONuqnR8V45VkHCeDt7NB-0B2tdqoKYZTugoLMpLEvrlLFvyPAWKvDjZO_dAO_BAVTa9NMKMF_y9KqGSiKrFgCX31dwl_LnHfsASUM2CCjzFAo4ztf7cgVWQ7RbCaZkPt1ZRATbMxxdJsJCl9IL13f1T0ehY12iu9Czaq25sEiFQe5YKXiXg_E5BaO1oIKhqbBgdqG8D0qvb2sQS_AKtt3BQ |
CitedBy_id | crossref_primary_10_1093_nar_gkaa766 crossref_primary_10_3390_epigenomes5030019 crossref_primary_10_1186_s12859_015_0678_x crossref_primary_10_1111_nph_17103 crossref_primary_10_1111_nph_17226 crossref_primary_10_1371_journal_pgen_1004446 crossref_primary_10_1016_j_bbagrm_2016_07_002 crossref_primary_10_1007_s00299_019_02414_0 crossref_primary_10_1126_science_abg6130 crossref_primary_10_3389_fpls_2021_691790 crossref_primary_10_1111_tpj_14348 crossref_primary_10_1146_annurev_arplant_070523_041445 crossref_primary_10_1111_tpj_14584 crossref_primary_10_3389_fpls_2017_00082 crossref_primary_10_1111_tpj_13252 crossref_primary_10_1371_journal_pgen_1006749 crossref_primary_10_1016_j_envexpbot_2024_105688 crossref_primary_10_1093_dnares_dsx021 crossref_primary_10_1186_s13059_017_1226_y crossref_primary_10_1146_annurev_genet_022620_100039 crossref_primary_10_1093_nar_gkab746 crossref_primary_10_1093_plcell_koab098 crossref_primary_10_1007_s11103_015_0328_8 crossref_primary_10_1038_s41477_023_01498_7 crossref_primary_10_1016_j_pbi_2023_102436 crossref_primary_10_1073_pnas_2023347118 crossref_primary_10_1111_tpj_15441 crossref_primary_10_1186_s13059_022_02768_x crossref_primary_10_1016_j_molp_2020_02_009 crossref_primary_10_1073_pnas_2125016118 crossref_primary_10_1038_s41467_022_28262_3 crossref_primary_10_3390_ijms241311081 crossref_primary_10_1111_pce_13355 crossref_primary_10_1111_pce_13596 crossref_primary_10_1016_j_tig_2020_06_019 crossref_primary_10_1111_pce_14320 crossref_primary_10_1111_pbi_12230 crossref_primary_10_1016_j_foodres_2021_110183 crossref_primary_10_1146_annurev_arplant_043014_114633 crossref_primary_10_1016_j_cpb_2023_100282 crossref_primary_10_1101_gr_279379_124 crossref_primary_10_1128_JVI_00656_16 crossref_primary_10_3390_plants8050135 crossref_primary_10_1093_plphys_kiac285 crossref_primary_10_1093_pcp_pcab091 crossref_primary_10_1093_genetics_iyab061 crossref_primary_10_3390_plants8120564 crossref_primary_10_1016_j_febslet_2015_09_017 crossref_primary_10_3389_fgene_2018_00609 crossref_primary_10_3390_ijms22189681 crossref_primary_10_3390_genes8080198 crossref_primary_10_1038_s41477_017_0100_y crossref_primary_10_1080_21541264_2020_1825906 crossref_primary_10_1111_pce_13324 crossref_primary_10_1186_s13059_016_1059_0 crossref_primary_10_3389_fpls_2023_1258100 crossref_primary_10_1016_j_cell_2019_01_029 crossref_primary_10_1101_gad_270876_115 crossref_primary_10_1016_j_tig_2013_06_004 crossref_primary_10_1073_pnas_1618019113 crossref_primary_10_1080_15476286_2016_1218591 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1111_tpj_15781 crossref_primary_10_1146_annurev_genet_120215_035254 crossref_primary_10_1038_s41598_019_39239_6 crossref_primary_10_1186_s13072_020_00361_9 crossref_primary_10_1016_j_bbrc_2022_03_135 crossref_primary_10_1073_pnas_1619047114 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_1111_tpj_15302 crossref_primary_10_3390_ijms231810492 crossref_primary_10_1038_s41438_020_0336_y crossref_primary_10_1073_pnas_1515072113 crossref_primary_10_3390_ijms21186849 crossref_primary_10_3390_ijms22073314 crossref_primary_10_1016_j_pbi_2020_101990 crossref_primary_10_1101_gr_205468_116 crossref_primary_10_1093_jxb_eru120 crossref_primary_10_1016_j_pbi_2016_12_007 crossref_primary_10_1016_j_pbi_2021_102060 crossref_primary_10_1534_genetics_118_301721 crossref_primary_10_1080_10409238_2017_1279119 crossref_primary_10_1042_BST20210908 crossref_primary_10_1111_nph_15082 crossref_primary_10_1038_ncomms5104 crossref_primary_10_1111_tpj_15637 crossref_primary_10_3390_v14020432 crossref_primary_10_1186_gb_2013_14_11_r129 crossref_primary_10_3390_ijms17060938 crossref_primary_10_1105_tpc_114_126011 crossref_primary_10_1073_pnas_1700368114 crossref_primary_10_3390_cells11020251 crossref_primary_10_7554_eLife_69396 crossref_primary_10_1007_s13562_024_00942_9 crossref_primary_10_1016_j_pbi_2014_02_008 crossref_primary_10_1016_j_tplants_2017_03_013 crossref_primary_10_1093_jxb_eru132 crossref_primary_10_1093_plphys_kiae392 crossref_primary_10_1007_s00299_019_02427_9 crossref_primary_10_1016_j_ijbiomac_2023_125921 crossref_primary_10_1016_j_celrep_2023_112738 crossref_primary_10_1093_jxb_eraa346 crossref_primary_10_1146_annurev_genet_110711_155527 crossref_primary_10_1016_j_dnarep_2016_12_002 crossref_primary_10_1016_j_sbi_2022_102430 crossref_primary_10_1186_s12870_018_1585_x crossref_primary_10_1038_nature13069 crossref_primary_10_1016_j_tcb_2013_08_001 crossref_primary_10_1111_pce_13670 crossref_primary_10_1038_s41598_023_35166_9 crossref_primary_10_1111_tpj_13463 crossref_primary_10_1016_j_tplants_2017_04_009 crossref_primary_10_1093_pcp_pcy100 crossref_primary_10_1093_dnares_dsx046 crossref_primary_10_1093_jxb_eraa132 crossref_primary_10_1016_j_tig_2013_07_004 crossref_primary_10_1038_s41467_021_24553_3 crossref_primary_10_1038_cr_2015_145 crossref_primary_10_1038_s41467_018_03289_7 crossref_primary_10_1093_plcell_koac072 crossref_primary_10_1073_pnas_1406611111 crossref_primary_10_4161_rna_24085 crossref_primary_10_1016_j_cell_2014_06_006 crossref_primary_10_1093_plcell_koac197 crossref_primary_10_1038_s41477_020_0671_x crossref_primary_10_1128_JVI_01320_17 crossref_primary_10_3389_fpls_2023_1258023 crossref_primary_10_1111_pce_12793 crossref_primary_10_7554_eLife_61894 crossref_primary_10_1186_s13059_024_03163_4 crossref_primary_10_3389_fpls_2022_1111623 crossref_primary_10_1016_j_molp_2017_12_006 crossref_primary_10_1371_journal_pgen_1006526 crossref_primary_10_1038_s41467_019_10026_1 crossref_primary_10_3389_fpls_2016_00571 crossref_primary_10_1038_nplants_2016_61 crossref_primary_10_1038_nplants_2016_58 crossref_primary_10_1126_sciadv_abg5442 crossref_primary_10_1073_pnas_2001332117 crossref_primary_10_3389_fpls_2021_703667 crossref_primary_10_1073_pnas_1713078114 crossref_primary_10_1093_plcell_koad295 crossref_primary_10_1073_pnas_1423603112 crossref_primary_10_1016_j_ygeno_2018_04_014 crossref_primary_10_1016_j_cell_2015_09_032 crossref_primary_10_1038_ng_2703 crossref_primary_10_1371_journal_pgen_1007843 crossref_primary_10_1111_tpj_14531 crossref_primary_10_1093_molbev_msz195 crossref_primary_10_1016_j_plantsci_2019_110376 crossref_primary_10_1111_jipb_13068 crossref_primary_10_1016_j_celrep_2025_115345 crossref_primary_10_1007_s13580_020_00310_1 crossref_primary_10_1038_s44319_024_00304_5 crossref_primary_10_1038_nplants_2016_49 crossref_primary_10_1007_s00497_021_00421_4 crossref_primary_10_1093_plphys_kiae089 crossref_primary_10_3389_fpls_2017_01449 crossref_primary_10_3390_plants10091884 crossref_primary_10_1098_rstb_2019_0338 crossref_primary_10_1186_s13059_017_1221_3 crossref_primary_10_3389_fpls_2017_00363 crossref_primary_10_1080_07352689_2021_1920731 crossref_primary_10_1093_pcp_pcz080 crossref_primary_10_1111_tpj_13658 crossref_primary_10_1105_tpc_114_126730 crossref_primary_10_1038_s41467_023_39751_4 crossref_primary_10_1111_tpj_12563 crossref_primary_10_1186_s12864_020_06902_6 crossref_primary_10_1111_tpj_14861 crossref_primary_10_1038_s41467_020_17963_2 crossref_primary_10_3389_fpls_2016_01003 crossref_primary_10_1007_s12298_020_00759_5 crossref_primary_10_1038_s41467_022_31627_3 crossref_primary_10_1111_jipb_13376 crossref_primary_10_1371_journal_pgen_1010041 crossref_primary_10_3389_fpls_2019_00778 crossref_primary_10_1038_nprot_2014_114 crossref_primary_10_1080_21655979_2021_2014387 crossref_primary_10_1111_pbi_13955 crossref_primary_10_1534_genetics_115_174714 crossref_primary_10_1534_g3_115_025668 crossref_primary_10_1371_journal_pgen_1003867 crossref_primary_10_1111_nph_18389 crossref_primary_10_3390_ijms19051414 crossref_primary_10_1038_s41421_020_0150_6 crossref_primary_10_1111_nph_19593 crossref_primary_10_1093_plphys_kiae072 crossref_primary_10_1111_tpj_15848 crossref_primary_10_7554_eLife_19092 crossref_primary_10_1073_pnas_1921055117 crossref_primary_10_1007_s11103_020_01051_6 crossref_primary_10_3389_fpls_2015_01161 crossref_primary_10_3390_agronomy8100225 crossref_primary_10_7554_eLife_13546 crossref_primary_10_1186_s12870_020_02445_w crossref_primary_10_1038_nrg_2016_45 crossref_primary_10_1186_s13059_020_02163_4 crossref_primary_10_1261_rna_069294_118 crossref_primary_10_1186_s13059_021_02543_4 crossref_primary_10_4161_epi_28906 crossref_primary_10_1271_kagakutoseibutsu_55_810 crossref_primary_10_1038_s41477_025_01924_y crossref_primary_10_7554_eLife_57117 crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1111_mec_13550 crossref_primary_10_1093_nar_gkw1330 crossref_primary_10_1038_s41437_018_0095_9 crossref_primary_10_1186_s13059_021_02359_2 crossref_primary_10_1007_s44154_021_00013_2 crossref_primary_10_7554_eLife_89353_3 crossref_primary_10_1038_nrg3685 crossref_primary_10_1093_bioinformatics_bty1053 crossref_primary_10_1534_genetics_116_188151 crossref_primary_10_1038_nrg3683 crossref_primary_10_3390_ijms232415950 crossref_primary_10_1038_s41598_018_24515_8 crossref_primary_10_1111_tpj_12545 crossref_primary_10_1186_s12864_019_6101_7 crossref_primary_10_1093_bfgp_elv025 crossref_primary_10_3390_agronomy12071675 crossref_primary_10_1038_s41467_019_08736_7 crossref_primary_10_1093_dnares_dst046 crossref_primary_10_1111_jipb_13037 crossref_primary_10_1016_j_molcel_2015_11_015 crossref_primary_10_1016_j_xplc_2024_100824 crossref_primary_10_1093_dnares_dsab014 crossref_primary_10_1186_s13059_021_02578_7 crossref_primary_10_4161_epi_25524 crossref_primary_10_1038_s41580_024_00769_1 crossref_primary_10_1038_s41477_023_01457_2 crossref_primary_10_1093_jxb_erv485 crossref_primary_10_1038_nrm4043 crossref_primary_10_1371_journal_pone_0105267 crossref_primary_10_1515_hmbci_2022_0043 crossref_primary_10_1371_journal_pgen_1009034 crossref_primary_10_1016_j_jmb_2019_12_043 crossref_primary_10_1038_s41467_019_11759_9 crossref_primary_10_1016_j_bbagrm_2016_08_009 crossref_primary_10_1111_tpj_14612 crossref_primary_10_1080_15592294_2019_1631113 crossref_primary_10_1093_bib_bbaa322 crossref_primary_10_1093_gigascience_giad034 crossref_primary_10_1371_journal_pone_0279688 crossref_primary_10_1038_s41467_023_38954_z crossref_primary_10_1002_1873_3468_12981 crossref_primary_10_1038_ncomms15122 crossref_primary_10_1093_molbev_msx099 crossref_primary_10_1007_s11427_017_9146_2 crossref_primary_10_1007_s10725_018_0389_1 crossref_primary_10_1186_s13059_022_02750_7 crossref_primary_10_1016_j_tplants_2014_01_014 crossref_primary_10_1590_1678_4685_gmb_2022_0166 crossref_primary_10_7554_eLife_47891 crossref_primary_10_15252_embj_201489453 crossref_primary_10_1093_gbe_evv171 crossref_primary_10_3390_ijms25137180 crossref_primary_10_1021_acs_jafc_4c02650 crossref_primary_10_1007_s11103_018_0715_z crossref_primary_10_1016_j_bbagen_2024_130593 crossref_primary_10_1111_tpj_14818 crossref_primary_10_1038_s41588_017_0008_5 crossref_primary_10_7717_peerj_8432 crossref_primary_10_1093_nar_gkv1463 crossref_primary_10_1007_s11103_020_01061_4 crossref_primary_10_1038_cr_2014_156 crossref_primary_10_1038_s41477_020_0710_7 crossref_primary_10_1093_genetics_iyad146 crossref_primary_10_1186_s12859_017_1836_0 crossref_primary_10_1186_s13059_021_02348_5 crossref_primary_10_1016_j_pbi_2022_102199 crossref_primary_10_1093_nsr_nwx008 crossref_primary_10_1371_journal_pone_0103145 crossref_primary_10_1073_pnas_1600672113 crossref_primary_10_1094_MPMI_06_23_0080_R crossref_primary_10_3389_fpls_2018_01447 crossref_primary_10_1371_journal_pone_0150002 crossref_primary_10_1371_journal_pone_0192170 crossref_primary_10_1093_pcp_pcz034 crossref_primary_10_7554_eLife_87714_3 crossref_primary_10_3390_foods10092198 crossref_primary_10_1038_nature12931 crossref_primary_10_1038_nsmb_2735 crossref_primary_10_1139_gen_2019_0190 crossref_primary_10_1038_s41598_019_38607_6 crossref_primary_10_1111_nph_14703 crossref_primary_10_1146_annurev_arplant_050213_035728 crossref_primary_10_1186_s13059_020_02161_6 crossref_primary_10_1093_nar_gkv958 crossref_primary_10_1093_jxb_erw486 crossref_primary_10_3390_ijms21072307 crossref_primary_10_1186_s13072_017_0148_y crossref_primary_10_1371_journal_pone_0105338 crossref_primary_10_1007_s00425_022_03829_y crossref_primary_10_1080_15592324_2016_1151599 crossref_primary_10_1038_ncomms3301 crossref_primary_10_1101_gr_202465_115 crossref_primary_10_1186_s13059_020_02099_9 crossref_primary_10_1016_j_molcel_2014_02_019 crossref_primary_10_1073_pnas_1805371115 crossref_primary_10_7554_eLife_15716 crossref_primary_10_1101_gr_182238_114 crossref_primary_10_1016_j_ygeno_2020_04_006 crossref_primary_10_1038_s41477_017_0004_x crossref_primary_10_1111_nph_19499 crossref_primary_10_1159_000365264 crossref_primary_10_1093_nar_gkab128 crossref_primary_10_2139_ssrn_3244796 crossref_primary_10_1007_s00412_017_0655_4 crossref_primary_10_1105_tpc_114_133025 crossref_primary_10_1007_s10142_013_0319_2 crossref_primary_10_3389_fpls_2022_728167 crossref_primary_10_1186_s12870_017_0997_3 crossref_primary_10_1073_pnas_1613623113 crossref_primary_10_1038_s41477_021_01086_7 crossref_primary_10_1093_bib_bbx136 crossref_primary_10_1007_s11427_021_1970_x crossref_primary_10_1104_pp_15_00543 crossref_primary_10_7554_eLife_89353 crossref_primary_10_1016_j_jhazmat_2022_129987 crossref_primary_10_15252_embj_2019103667 crossref_primary_10_1371_journal_pgen_1008492 crossref_primary_10_1186_s12284_017_0177_y crossref_primary_10_1270_jsbbs_19005 crossref_primary_10_4161_epi_29022 crossref_primary_10_1038_srep18985 crossref_primary_10_3390_ijms140815233 crossref_primary_10_1016_j_pbi_2017_03_004 crossref_primary_10_1111_nph_14874 crossref_primary_10_1016_j_pbi_2017_03_002 crossref_primary_10_1093_plphys_kiab531 crossref_primary_10_1038_s41477_020_00843_4 crossref_primary_10_3390_genes9120602 crossref_primary_10_1146_annurev_phyto_010820_012805 crossref_primary_10_1093_jxb_erac167 crossref_primary_10_1111_jipb_13406 crossref_primary_10_1093_nar_gkab191 crossref_primary_10_1371_journal_pgen_1008476 crossref_primary_10_1186_s12864_024_10798_x crossref_primary_10_1186_s13148_022_01382_9 crossref_primary_10_1080_07352689_2014_852920 crossref_primary_10_1186_1471_2229_14_177 crossref_primary_10_1016_j_jgg_2016_10_009 crossref_primary_10_1016_j_molcel_2014_06_009 crossref_primary_10_1038_s41467_024_48940_8 crossref_primary_10_1111_jipb_13883 crossref_primary_10_1073_pnas_1609686113 crossref_primary_10_1016_j_molp_2016_05_006 crossref_primary_10_1016_j_cub_2020_10_098 crossref_primary_10_2139_ssrn_3376664 crossref_primary_10_1105_tpc_113_113209 crossref_primary_10_1016_j_pbi_2013_11_017 crossref_primary_10_1016_j_tplants_2015_03_003 crossref_primary_10_1186_s13059_019_1652_0 crossref_primary_10_1016_j_virol_2017_07_013 crossref_primary_10_1021_bi401436h crossref_primary_10_1038_ncomms11715 crossref_primary_10_1101_gad_274647_115 crossref_primary_10_1101_gr_232371_117 crossref_primary_10_1093_nar_gkac012 crossref_primary_10_1038_srep05540 crossref_primary_10_1186_s12864_022_08312_2 crossref_primary_10_1093_jxb_erx144 crossref_primary_10_1016_j_devcel_2018_05_023 crossref_primary_10_1016_j_tplants_2013_07_005 crossref_primary_10_1073_pnas_1420515111 crossref_primary_10_1101_gad_343871_120 crossref_primary_10_1186_s13059_017_1251_x crossref_primary_10_3390_plants10071423 crossref_primary_10_1111_tpj_12832 crossref_primary_10_1534_genetics_120_303264 crossref_primary_10_1093_nar_gkab1218 crossref_primary_10_1111_nph_15931 crossref_primary_10_1111_nph_16902 crossref_primary_10_1016_j_cell_2014_03_056 crossref_primary_10_1093_nsr_nwu003 crossref_primary_10_1101_gr_172015_114 crossref_primary_10_1007_s10142_023_01069_1 crossref_primary_10_1111_tpj_16164 crossref_primary_10_1105_tpc_114_130120 crossref_primary_10_1111_jipb_12767 crossref_primary_10_1371_journal_pgen_1004920 crossref_primary_10_1093_molbev_msaa105 crossref_primary_10_1093_nar_gky602 crossref_primary_10_1007_s11103_013_0165_6 crossref_primary_10_1126_sciadv_adc9454 crossref_primary_10_1038_s41477_024_01773_1 crossref_primary_10_3389_fpls_2024_1427578 crossref_primary_10_1101_gad_295501_116 crossref_primary_10_1016_j_pbi_2024_102598 crossref_primary_10_1038_nrg_2017_45 crossref_primary_10_1186_s13059_016_1032_y crossref_primary_10_1111_tpj_17250 crossref_primary_10_1242_dev_106104 crossref_primary_10_1371_journal_pgen_1004806 crossref_primary_10_1371_journal_pgen_1003946 crossref_primary_10_1007_s10142_016_0502_3 crossref_primary_10_1111_nph_14421 crossref_primary_10_1093_nar_gkx524 crossref_primary_10_1111_mpp_13104 crossref_primary_10_1186_s13072_019_0307_4 crossref_primary_10_1534_g3_116_030262 crossref_primary_10_1016_j_semcdb_2022_02_026 crossref_primary_10_1016_j_jgg_2016_03_010 crossref_primary_10_1093_gbe_evac038 crossref_primary_10_1038_s41467_022_35722_3 crossref_primary_10_1007_s42976_024_00603_6 crossref_primary_10_26508_lsa_201800197 crossref_primary_10_1093_plphys_kiad624 crossref_primary_10_1371_journal_pgen_1003948 crossref_primary_10_1073_pnas_1410761111 crossref_primary_10_1007_s11103_019_00949_0 crossref_primary_10_1186_s12864_021_07600_7 crossref_primary_10_1371_journal_pgen_1006092 crossref_primary_10_1186_s13059_020_02068_2 crossref_primary_10_1007_s00438_016_1187_y crossref_primary_10_1038_srep17832 crossref_primary_10_1371_journal_pgen_1010345 crossref_primary_10_15252_embj_201798482 crossref_primary_10_1016_j_cell_2016_06_044 crossref_primary_10_1371_journal_pone_0074739 crossref_primary_10_1093_plphys_kiac520 crossref_primary_10_1111_jipb_12787 crossref_primary_10_1146_annurev_genet_120417_031404 crossref_primary_10_1111_nph_17804 crossref_primary_10_1186_s13059_017_1288_x crossref_primary_10_1016_j_biosystems_2021_104566 crossref_primary_10_3389_fpls_2018_01194 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_1007_s10682_020_10038_0 crossref_primary_10_1186_1471_2164_16_S12_S11 crossref_primary_10_1111_aab_12280 crossref_primary_10_1016_j_jgg_2013_03_010 crossref_primary_10_1038_s41598_020_71907_w crossref_primary_10_3389_fpls_2023_1181039 crossref_primary_10_1159_000360774 crossref_primary_10_1038_ncomms11640 crossref_primary_10_1093_pcp_pcv036 crossref_primary_10_1007_s11103_016_0487_2 crossref_primary_10_3390_ijms23158299 crossref_primary_10_1186_s12859_024_05722_9 crossref_primary_10_7554_eLife_05255 crossref_primary_10_1038_s41467_020_14995_6 crossref_primary_10_1093_plphys_kiac462 crossref_primary_10_1186_s13072_019_0299_0 crossref_primary_10_1371_journal_pone_0084687 crossref_primary_10_1073_pnas_1716945115 crossref_primary_10_1093_nar_gkv258 crossref_primary_10_1073_pnas_1619074114 crossref_primary_10_7554_eLife_19893 crossref_primary_10_3390_agronomy15010094 crossref_primary_10_1186_s12870_017_1055_x crossref_primary_10_1038_nplants_2016_163 crossref_primary_10_1093_plphys_kiac228 crossref_primary_10_1101_gr_215186_116 crossref_primary_10_3897_CompCytogen_v14i2_51895 crossref_primary_10_1016_j_envint_2019_105014 crossref_primary_10_1093_mp_ssu075 crossref_primary_10_1101_gr_155879_113 crossref_primary_10_1111_nph_15432 crossref_primary_10_1093_mp_ssu079 crossref_primary_10_1111_nyas_14675 crossref_primary_10_1111_mpp_12850 crossref_primary_10_1186_s13059_016_1127_5 crossref_primary_10_1038_s41559_019_0810_9 crossref_primary_10_1042_BST20210725 crossref_primary_10_1186_s12864_019_5554_z crossref_primary_10_1073_pnas_1604666113 crossref_primary_10_1111_nph_15434 crossref_primary_10_1111_pbi_12198 crossref_primary_10_1371_journal_pgen_1008637 crossref_primary_10_1002_dvg_23399 crossref_primary_10_1111_nph_15439 crossref_primary_10_1111_nph_17738 crossref_primary_10_1186_s12870_019_1923_7 crossref_primary_10_1093_nar_gkt1285 crossref_primary_10_1111_pbi_13049 crossref_primary_10_1038_ncomms7386 crossref_primary_10_1186_s13059_017_1281_4 crossref_primary_10_1038_ncomms9326 crossref_primary_10_1126_science_abi7489 crossref_primary_10_1111_nph_70078 crossref_primary_10_1111_febs_16633 crossref_primary_10_1371_journal_pgen_1009710 crossref_primary_10_3390_ijms24043978 crossref_primary_10_1007_s00425_022_03962_8 crossref_primary_10_7554_eLife_42530 crossref_primary_10_7717_peerj_3560 crossref_primary_10_1093_hr_uhac132 crossref_primary_10_1186_s13059_020_02190_1 crossref_primary_10_1101_gr_279532_124 crossref_primary_10_1073_pnas_2026806118 crossref_primary_10_1101_gad_301499_117 crossref_primary_10_1111_tpj_13193 crossref_primary_10_1038_srep26443 crossref_primary_10_1093_jxb_erae522 crossref_primary_10_1038_s41467_022_28468_5 crossref_primary_10_1111_pbi_13299 crossref_primary_10_1111_jipb_12733 crossref_primary_10_3389_fpls_2023_1123211 crossref_primary_10_1186_s12864_018_4641_x crossref_primary_10_3390_ijms25052795 crossref_primary_10_1038_srep36247 crossref_primary_10_1038_s41598_021_95054_y crossref_primary_10_1080_07388551_2022_2058460 crossref_primary_10_1038_s41467_020_16951_w crossref_primary_10_1038_s41467_018_06965_w crossref_primary_10_3390_genes6041140 crossref_primary_10_1038_s41421_018_0056_8 crossref_primary_10_1038_s41467_019_09496_0 crossref_primary_10_1073_pnas_1502279112 crossref_primary_10_1186_s13059_023_03059_9 crossref_primary_10_1111_tpj_14380 crossref_primary_10_1111_pbi_14435 crossref_primary_10_3390_plants7030059 crossref_primary_10_1111_nph_18876 crossref_primary_10_1016_j_pbi_2015_06_012 crossref_primary_10_1186_s13059_022_02833_5 crossref_primary_10_3389_fpls_2021_596236 crossref_primary_10_1002_pld3_79 crossref_primary_10_3390_ijms232113495 crossref_primary_10_1093_jxb_ert439 crossref_primary_10_1093_plcell_koab162 crossref_primary_10_3390_plants12061384 crossref_primary_10_1093_plcell_koab284 crossref_primary_10_1371_journal_pgen_1008324 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1104_pp_113_216481 crossref_primary_10_1111_mpp_12518 crossref_primary_10_1371_journal_pgen_1006026 crossref_primary_10_3389_fpls_2021_757165 crossref_primary_10_3390_ijms21186817 crossref_primary_10_1093_mp_sst165 crossref_primary_10_1111_tpj_14143 crossref_primary_10_1016_j_celrep_2017_05_091 crossref_primary_10_1007_s13580_019_00205_w crossref_primary_10_1186_s13072_018_0240_y crossref_primary_10_1111_tpj_70116 crossref_primary_10_1016_j_molp_2020_09_010 crossref_primary_10_3389_fpls_2024_1372880 crossref_primary_10_1371_journal_pbio_3001602 crossref_primary_10_7554_eLife_87714 crossref_primary_10_1093_nar_gkab706 crossref_primary_10_1016_j_jgg_2021_04_004 crossref_primary_10_1186_s12864_016_3326_6 crossref_primary_10_1017_qpb_2022_14 crossref_primary_10_1073_pnas_1809841115 crossref_primary_10_1111_1758_2229_70000 crossref_primary_10_1016_j_molcel_2014_07_008 crossref_primary_10_3390_cells10112952 crossref_primary_10_1038_ncomms13522 crossref_primary_10_1126_sciadv_abf3898 crossref_primary_10_3390_plants13192700 crossref_primary_10_1038_s41580_018_0016_z crossref_primary_10_1126_sciadv_abd9224 crossref_primary_10_1371_journal_pone_0088947 crossref_primary_10_1093_jxb_eru502 crossref_primary_10_26508_lsa_202000848 crossref_primary_10_3389_fpls_2023_1204279 crossref_primary_10_1105_tpc_114_130427 crossref_primary_10_7554_eLife_17214 crossref_primary_10_1371_journal_pgen_1005154 crossref_primary_10_1186_s13059_017_1195_1 crossref_primary_10_1016_j_pbi_2015_07_005 crossref_primary_10_2478_gsr_2016_0010 crossref_primary_10_1038_s41588_018_0115_y crossref_primary_10_1016_j_molp_2017_10_002 crossref_primary_10_1111_pbi_13018 crossref_primary_10_1073_pnas_1515170112 crossref_primary_10_1093_plphys_kiac471 crossref_primary_10_1186_s13059_015_0867_y crossref_primary_10_7554_eLife_06671 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_1186_s40168_022_01236_9 crossref_primary_10_3390_plants13101400 crossref_primary_10_1038_s41477_020_00810_z crossref_primary_10_1186_s13059_014_0458_3 crossref_primary_10_15252_embj_201695602 crossref_primary_10_1038_s41437_021_00441_w crossref_primary_10_1101_gr_225599_117 crossref_primary_10_1186_s13072_023_00521_7 crossref_primary_10_1111_nph_18729 crossref_primary_10_1186_s12870_024_05156_8 crossref_primary_10_1016_j_pbi_2017_01_005 crossref_primary_10_15252_embj_201798770 |
Cites_doi | 10.4161/epi.6.3.14242 10.1073/pnas.162371599 10.1093/nar/29.21.4319 10.1016/j.tplants.2008.05.004 10.1007/978-1-61779-089-8_16 10.1186/1471-2105-11-203 10.1016/j.cell.2008.03.029 10.1038/nrg2540 10.1371/journal.pgen.1002195 10.1105/tpc.106.041400 10.1186/gb-2009-10-6-r62 10.1126/science.1146565 10.1016/S0065-2296(10)53001-5 10.1023/A:1022923508198 10.1105/tpc.110.079962 10.1101/gr.125872.111 10.1371/journal.pgen.1002055 10.1073/pnas.0701861104 10.1093/emboj/cdf663 10.1073/pnas.1010478107 10.1371/journal.pone.0003156 10.1038/emboj.2009.59 10.1038/nature06745 10.1038/ng1804 10.1186/gb-2005-6-11-r90 10.1371/journal.pgen.1002366 10.1038/nature731 10.1126/science.1059745 10.1371/journal.pgen.1002808 10.1093/emboj/cdf657 10.1073/pnas.1432939100 10.1038/nrm3152 10.1371/journal.pgen.1000156 10.1126/science.1165313 10.1016/j.cell.2007.07.007 10.1038/8803 10.1016/S0960-9822(02)00925-9 10.1073/pnas.93.22.12406 10.4161/epi.20290 10.1371/journal.pgen.1001152 10.1101/gad.1765209 10.1038/nsmb.2354 10.1038/nsmb.1690 10.1128/MCB.01607-07 10.1073/pnas.1002720107 10.1074/jbc.M513426200 10.1186/gb-2009-10-3-r25 10.1038/nrg2719 10.1104/pp.111.184275 10.1126/science.1095989 10.1101/gad.1914110 10.1534/genetics.108.090621 10.1038/nature02651 10.1126/science.8316832 10.1038/sj.emboj.7601603 10.1038/emboj.2011.103 10.1101/gad.1868009 10.1038/nsmb.1611 10.1038/ng.854 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2013 Elsevier Inc. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2013 Elsevier Inc. 2013 |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1016/j.cell.2012.10.054 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 364 |
ExternalDocumentID | PMC3597350 oai_HAL_hal_03439061v1 23313553 10_1016_j_cell_2012_10_054 US201600025658 S0092867412014304 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM07104 – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIGMS NIH HHS grantid: T32 GM007104 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R37 GM060398 || GM |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AAQFI AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 6TJ 9M8 AALRI AAQXK ABEFU ABPTK ABTAH ADMUD AEQTP AETEA AI. FBQ FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M XFK YYP ZGI ZHY ZKB ZY4 AAHBH AAMRU AAYWO AAYXX ABDGV ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC EFKBS 5PM |
ID | FETCH-LOGICAL-c612t-7dd47e3cf82f3ddaf76b936175d2e4c2e47e2622207c0d7b464ca343f8743f2a3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 14:04:13 EDT 2025 Wed Aug 13 07:44:57 EDT 2025 Fri Jul 11 03:41:06 EDT 2025 Fri Jul 11 01:35:19 EDT 2025 Thu Jan 02 22:59:03 EST 2025 Tue Jul 01 03:52:05 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Wed Dec 27 18:46:06 EST 2023 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-7dd47e3cf82f3ddaf76b936175d2e4c2e47e2622207c0d7b464ca343f8743f2a3 |
Notes | http://dx.doi.org/10.1016/j.cell.2012.10.054 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC3597350 These authors contributed equally to this work |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867412014304 |
PMID | 23313553 |
PQID | 1273698063 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597350 hal_primary_oai_HAL_hal_03439061v1 proquest_miscellaneous_2000103245 proquest_miscellaneous_1273698063 pubmed_primary_23313553 crossref_citationtrail_10_1016_j_cell_2012_10_054 crossref_primary_10_1016_j_cell_2012_10_054 fao_agris_US201600025658 elsevier_sciencedirect_doi_10_1016_j_cell_2012_10_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-17 |
PublicationDateYYYYMMDD | 2013-01-17 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Teixeira, Heredia, Sarazin, Roudier, Boccara, Ciaudo, Cruaud, Poulain, Berdasco, Fraga (bib45) 2009; 323 Schotta, Ebert, Reuter (bib42) 2003; 117 Chan, Zilberman, Xie, Johansen, Carrington, Jacobsen (bib10) 2004; 303 Soppe, Jasencakova, Houben, Kakutani, Meister, Huang, Jacobsen, Schubert, Fransz (bib43) 2002; 21 Jackson, Lindroth, Cao, Jacobsen (bib24) 2002; 416 Onodera, Nakagawa, Haag, Pikaard, Mikami, Ream, Ito, Pikaard (bib37) 2008; 180 Miura, Nakamura, Inagaki, Kobayashi, Saze, Kakutani (bib36) 2009; 28 Roudier, Ahmed, Bérard, Sarazin, Mary-Huard, Cortijo, Bouyer, Caillieux, Duvernois-Berthet, Al-Shikhley (bib40) 2011; 30 Weinhofer, Hehenberger, Roszak, Hennig, Köhler (bib50) 2010; 6 Earley, Pontvianne, Wierzbicki, Blevins, Tucker, Costa-Nunes, Pontes, Pikaard (bib13) 2010; 24 Woo, Dittmer, Richards (bib51) 2008; 4 Zhong, Hale, Law, Johnson, Feng, Tu, Jacobsen (bib56) 2012; 19 Zheng, Zhu, Kapoor, Zhu (bib54) 2007; 26 Law, Jacobsen (bib28) 2010; 11 Jeddeloh, Stokes, Richards (bib26) 1999; 22 Aufsatz, Mette, van der Winden, Matzke, Matzke (bib1) 2002; 21 Mathieu, Reinders, Caikovski, Smathajitt, Paszkowski (bib35) 2007; 130 Zhang, Bernatavichute, Cokus, Pellegrini, Jacobsen (bib53) 2009; 10 Lu, Cui, Zhang, Jenuwein, Cao (bib34) 2011; 43 Penterman, Zilberman, Huh, Ballinger, Henikoff, Fischer (bib38) 2007; 104 Cokus, Feng, Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, Pellegrini, Jacobsen (bib12) 2008; 452 Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib25) 2009; 16 Chen, Cokus, Pellegrini (bib11) 2010; 11 Bäurle, Smith, Baulcombe, Dean (bib4) 2007; 318 Zheng, Wang, Li, Yu, Liu, Chen (bib55) 2009; 23 Haag, Pikaard (bib20) 2011; 12 Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib30) 2001; 292 Liu, Yu, Duan, Luo, Wang, Tian, Cui, Wu (bib33) 2012; 158 Berr, McCallum, Ménard, Meyer, Fuchs, Dong, Shen (bib6) 2010; 22 Ebbs, Bender (bib14) 2006; 18 Kakutani, Jeddeloh, Flowers, Munakata, Richards (bib27) 1996; 93 Henderson, Zhang, Lu, Johnson, Meyers, Green, Jacobsen (bib22) 2006; 38 Cao, Jacobsen (bib7) 2002; 99 Feng, Cokus, Zhang, Chen, Bostick, Goll, Hetzel, Jain, Strauss, Halpern (bib15) 2010; 107 Gu, Jiang, Yang, Jacob, Michaels, He (bib18) 2011; 7 Xu, Zhao, Dong, Soubigou-Taconnat, Renou, Steinmetz, Shen (bib52) 2008; 28 Ausin, Mockler, Chory, Jacobsen (bib2) 2009; 16 Greenberg, Ausin, Chan, Cokus, Cuperus, Feng, Law, Chu, Pellegrini, Carrington, Jacobsen (bib17) 2011; 6 Pontvianne, Blevins, Pikaard (bib39) 2010; 53 Feng, Rubbi, Jacobsen, Pellegrini (bib16) 2011; 733 Baumbusch, Thorstensen, Krauss, Fischer, Naumann, Assalkhou, Schulz, Reuter, Aalen (bib3) 2001; 29 Vongs, Kakutani, Martienssen, Richards (bib49) 1993; 260 He, Hsu, Pontes, Zhu, Lu, Bressan, Pikaard, Wang, Zhu (bib21) 2009; 23 Cao, Jacobsen (bib8) 2002; 12 Guo, Yu, Law, Zhang (bib19) 2010; 107 Cedar, Bergman (bib9) 2009; 10 Lee, Gurazada, Zhai, Li, Simon, Matzke, Chen, Meyers (bib29) 2012; 7 Lister, O’Malley, Tonti-Filippini, Gregory, Berry, Millar, Ecker (bib32) 2008; 133 Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib5) 2008; 3 Tran, Zilberman, de Bustos, Ditt, Henikoff, Lindroth, Delrow, Boyle, Kwong, Bryson (bib47) 2005; 6 Hon, Hawkins, Caballero, Lo, Lister, Pelizzola, Valsesia, Ye, Kuan, Edsall (bib23) 2012; 22 To, Kim, Matsui, Kurihara, Morosawa, Ishida, Tanaka, Endo, Kakutani, Toyoda (bib46) 2011; 7 Voinnet (bib48) 2008; 13 Lippman, Gendrel, Black, Vaughn, Dedhia, McCombie, Lavine, Mittal, May, Kasschau (bib31) 2004; 430 Schönrock, Exner, Probst, Gruissem, Hennig (bib41) 2006; 281 Tariq, Saze, Probst, Lichota, Habu, Paszkowski (bib44) 2003; 100 Law (10.1016/j.cell.2012.10.054_bib28) 2010; 11 Teixeira (10.1016/j.cell.2012.10.054_bib45) 2009; 323 Chan (10.1016/j.cell.2012.10.054_bib10) 2004; 303 Kakutani (10.1016/j.cell.2012.10.054_bib27) 1996; 93 Lippman (10.1016/j.cell.2012.10.054_bib31) 2004; 430 Lu (10.1016/j.cell.2012.10.054_bib34) 2011; 43 Weinhofer (10.1016/j.cell.2012.10.054_bib50) 2010; 6 Lister (10.1016/j.cell.2012.10.054_bib32) 2008; 133 Mathieu (10.1016/j.cell.2012.10.054_bib35) 2007; 130 Baumbusch (10.1016/j.cell.2012.10.054_bib3) 2001; 29 Xu (10.1016/j.cell.2012.10.054_bib52) 2008; 28 Berr (10.1016/j.cell.2012.10.054_bib6) 2010; 22 Lee (10.1016/j.cell.2012.10.054_bib29) 2012; 7 Woo (10.1016/j.cell.2012.10.054_bib51) 2008; 4 Haag (10.1016/j.cell.2012.10.054_bib20) 2011; 12 Jeddeloh (10.1016/j.cell.2012.10.054_bib26) 1999; 22 Schönrock (10.1016/j.cell.2012.10.054_bib41) 2006; 281 Cokus (10.1016/j.cell.2012.10.054_bib12) 2008; 452 Zheng (10.1016/j.cell.2012.10.054_bib55) 2009; 23 Voinnet (10.1016/j.cell.2012.10.054_bib48) 2008; 13 Henderson (10.1016/j.cell.2012.10.054_bib22) 2006; 38 Vongs (10.1016/j.cell.2012.10.054_bib49) 1993; 260 Miura (10.1016/j.cell.2012.10.054_bib36) 2009; 28 Onodera (10.1016/j.cell.2012.10.054_bib37) 2008; 180 Earley (10.1016/j.cell.2012.10.054_bib13) 2010; 24 Ausin (10.1016/j.cell.2012.10.054_bib2) 2009; 16 Jackson (10.1016/j.cell.2012.10.054_bib24) 2002; 416 Jacob (10.1016/j.cell.2012.10.054_bib25) 2009; 16 Tran (10.1016/j.cell.2012.10.054_bib47) 2005; 6 Cedar (10.1016/j.cell.2012.10.054_bib9) 2009; 10 Chen (10.1016/j.cell.2012.10.054_bib11) 2010; 11 Greenberg (10.1016/j.cell.2012.10.054_bib17) 2011; 6 Feng (10.1016/j.cell.2012.10.054_bib15) 2010; 107 Tariq (10.1016/j.cell.2012.10.054_bib44) 2003; 100 Pontvianne (10.1016/j.cell.2012.10.054_bib39) 2010; 53 Penterman (10.1016/j.cell.2012.10.054_bib38) 2007; 104 Cao (10.1016/j.cell.2012.10.054_bib8) 2002; 12 10.1016/j.cell.2012.10.054_bib57 Zhong (10.1016/j.cell.2012.10.054_bib56) 2012; 19 10.1016/j.cell.2012.10.054_bib58 Soppe (10.1016/j.cell.2012.10.054_bib43) 2002; 21 10.1016/j.cell.2012.10.054_bib59 Bernatavichute (10.1016/j.cell.2012.10.054_bib5) 2008; 3 Bäurle (10.1016/j.cell.2012.10.054_bib4) 2007; 318 Lindroth (10.1016/j.cell.2012.10.054_bib30) 2001; 292 Zheng (10.1016/j.cell.2012.10.054_bib54) 2007; 26 Ebbs (10.1016/j.cell.2012.10.054_bib14) 2006; 18 Roudier (10.1016/j.cell.2012.10.054_bib40) 2011; 30 Aufsatz (10.1016/j.cell.2012.10.054_bib1) 2002; 21 Hon (10.1016/j.cell.2012.10.054_bib23) 2012; 22 Gu (10.1016/j.cell.2012.10.054_bib18) 2011; 7 To (10.1016/j.cell.2012.10.054_bib46) 2011; 7 He (10.1016/j.cell.2012.10.054_bib21) 2009; 23 Feng (10.1016/j.cell.2012.10.054_bib16) 2011; 733 Guo (10.1016/j.cell.2012.10.054_bib19) 2010; 107 Schotta (10.1016/j.cell.2012.10.054_bib42) 2003; 117 Cao (10.1016/j.cell.2012.10.054_bib7) 2002; 99 Liu (10.1016/j.cell.2012.10.054_bib33) 2012; 158 Zhang (10.1016/j.cell.2012.10.054_bib53) 2009; 10 Cell. 2015 Jun 18;161(7):1697-8 |
References_xml | – volume: 13 start-page: 317 year: 2008 end-page: 328 ident: bib48 article-title: Use, tolerance and avoidance of amplified RNA silencing by plants publication-title: Trends Plant Sci. – volume: 26 start-page: 1691 year: 2007 end-page: 1701 ident: bib54 article-title: Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing publication-title: EMBO J. – volume: 16 start-page: 1325 year: 2009 end-page: 1327 ident: bib2 article-title: IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana publication-title: Nat. Struct. Mol. Biol. – volume: 16 start-page: 763 year: 2009 end-page: 768 ident: bib25 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. – volume: 53 start-page: 1 year: 2010 end-page: 22 ident: bib39 article-title: Arabidopsis Histone Lysine Methyltransferases publication-title: Adv. Bot. Res. – volume: 100 start-page: 8823 year: 2003 end-page: 8827 ident: bib44 article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 4319 year: 2001 end-page: 4333 ident: bib3 article-title: The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes publication-title: Nucleic Acids Res. – volume: 3 start-page: e3156 year: 2008 ident: bib5 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE – volume: 23 start-page: 318 year: 2009 end-page: 330 ident: bib21 article-title: NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation publication-title: Genes Dev. – volume: 22 start-page: 94 year: 1999 end-page: 97 ident: bib26 article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein publication-title: Nat. Genet. – volume: 303 start-page: 1336 year: 2004 ident: bib10 article-title: RNA silencing genes control de novo DNA methylation publication-title: Science – volume: 22 start-page: 3232 year: 2010 end-page: 3248 ident: bib6 article-title: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development publication-title: Plant Cell – volume: 733 start-page: 223 year: 2011 end-page: 238 ident: bib16 article-title: Determining DNA methylation profiles using sequencing publication-title: Methods Mol. Biol. – volume: 93 start-page: 12406 year: 1996 end-page: 12411 ident: bib27 article-title: Developmental abnormalities and epimutations associated with DNA hypomethylation mutations publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 870 year: 2012 end-page: 875 ident: bib56 article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons publication-title: Nat. Struct. Mol. Biol. – volume: 6 start-page: e1001152 year: 2010 ident: bib50 article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation publication-title: PLoS Genet. – volume: 23 start-page: 2850 year: 2009 end-page: 2860 ident: bib55 article-title: Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis publication-title: Genes Dev. – volume: 318 start-page: 109 year: 2007 end-page: 112 ident: bib4 article-title: Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing publication-title: Science – volume: 133 start-page: 523 year: 2008 end-page: 536 ident: bib32 article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis publication-title: Cell – volume: 21 start-page: 6549 year: 2002 end-page: 6559 ident: bib43 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis publication-title: EMBO J. – volume: 452 start-page: 215 year: 2008 end-page: 219 ident: bib12 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature – volume: 38 start-page: 721 year: 2006 end-page: 725 ident: bib22 article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning publication-title: Nat. Genet. – volume: 30 start-page: 1928 year: 2011 end-page: 1938 ident: bib40 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J. – volume: 18 start-page: 1166 year: 2006 end-page: 1176 ident: bib14 article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase publication-title: Plant Cell – volume: 260 start-page: 1926 year: 1993 end-page: 1928 ident: bib49 article-title: Arabidopsis thaliana DNA methylation mutants publication-title: Science – volume: 11 start-page: 203 year: 2010 ident: bib11 article-title: BS Seeker: precise mapping for bisulfite sequencing publication-title: BMC Bioinformatics – volume: 43 start-page: 715 year: 2011 end-page: 719 ident: bib34 article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase publication-title: Nat. Genet. – volume: 22 start-page: 246 year: 2012 end-page: 258 ident: bib23 article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer publication-title: Genome Res. – volume: 7 start-page: 781 year: 2012 end-page: 795 ident: bib29 article-title: RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats publication-title: Epigenetics – volume: 158 start-page: 119 year: 2012 end-page: 129 ident: bib33 article-title: HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis publication-title: Plant Physiol. – volume: 323 start-page: 1600 year: 2009 end-page: 1604 ident: bib45 article-title: A role for RNAi in the selective correction of DNA methylation defects publication-title: Science – volume: 21 start-page: 6832 year: 2002 end-page: 6841 ident: bib1 article-title: HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA publication-title: EMBO J. – volume: 10 start-page: 295 year: 2009 end-page: 304 ident: bib9 article-title: Linking DNA methylation and histone modification: patterns and paradigms publication-title: Nat. Rev. Genet. – volume: 104 start-page: 6752 year: 2007 end-page: 6757 ident: bib38 article-title: DNA demethylation in the Arabidopsis genome publication-title: Proc. Natl. Acad. Sci. USA – volume: 281 start-page: 9560 year: 2006 end-page: 9568 ident: bib41 article-title: Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana publication-title: J. Biol. Chem. – volume: 24 start-page: 1119 year: 2010 end-page: 1132 ident: bib13 article-title: Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation publication-title: Genes Dev. – volume: 4 start-page: e1000156 year: 2008 ident: bib51 article-title: Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis publication-title: PLoS Genet. – volume: 10 start-page: R62 year: 2009 ident: bib53 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana publication-title: Genome Biol. – volume: 99 start-page: 16491 year: 2002 end-page: 16498 ident: bib7 article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes publication-title: Proc. Natl. Acad. Sci. USA – volume: 430 start-page: 471 year: 2004 end-page: 476 ident: bib31 article-title: Role of transposable elements in heterochromatin and epigenetic control publication-title: Nature – volume: 7 start-page: e1002366 year: 2011 ident: bib18 article-title: Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing publication-title: PLoS Genet. – volume: 28 start-page: 1348 year: 2008 end-page: 1360 ident: bib52 article-title: Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana publication-title: Mol. Cell. Biol. – volume: 11 start-page: 204 year: 2010 end-page: 220 ident: bib28 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. – volume: 7 start-page: e1002055 year: 2011 ident: bib46 article-title: Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1 publication-title: PLoS Genet. – volume: 117 start-page: 149 year: 2003 end-page: 158 ident: bib42 article-title: SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing publication-title: Genetica – volume: 130 start-page: 851 year: 2007 end-page: 862 ident: bib35 article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation publication-title: Cell – volume: 28 start-page: 1078 year: 2009 end-page: 1086 ident: bib36 article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites publication-title: EMBO J. – volume: 180 start-page: 207 year: 2008 end-page: 218 ident: bib37 article-title: Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis publication-title: Genetics – volume: 107 start-page: 18557 year: 2010 end-page: 18562 ident: bib19 article-title: SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 483 year: 2011 end-page: 492 ident: bib20 article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing publication-title: Nat. Rev. Mol. Cell Biol. – volume: 12 start-page: 1138 year: 2002 end-page: 1144 ident: bib8 article-title: Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing publication-title: Curr. Biol. – volume: 6 start-page: 344 year: 2011 end-page: 354 ident: bib17 article-title: Identification of genes required for de novo DNA methylation in Arabidopsis publication-title: Epigenetics – volume: 292 start-page: 2077 year: 2001 end-page: 2080 ident: bib30 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science – volume: 6 start-page: R90 year: 2005 ident: bib47 article-title: Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis publication-title: Genome Biol. – volume: 107 start-page: 8689 year: 2010 end-page: 8694 ident: bib15 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl. Acad. Sci. USA – volume: 416 start-page: 556 year: 2002 end-page: 560 ident: bib24 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature – volume: 6 start-page: 344 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib17 article-title: Identification of genes required for de novo DNA methylation in Arabidopsis publication-title: Epigenetics doi: 10.4161/epi.6.3.14242 – volume: 99 start-page: 16491 issue: Suppl 4 year: 2002 ident: 10.1016/j.cell.2012.10.054_bib7 article-title: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.162371599 – volume: 29 start-page: 4319 year: 2001 ident: 10.1016/j.cell.2012.10.054_bib3 article-title: The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.21.4319 – volume: 13 start-page: 317 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib48 article-title: Use, tolerance and avoidance of amplified RNA silencing by plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.05.004 – volume: 733 start-page: 223 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib16 article-title: Determining DNA methylation profiles using sequencing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-089-8_16 – volume: 11 start-page: 203 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib11 article-title: BS Seeker: precise mapping for bisulfite sequencing publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-203 – volume: 133 start-page: 523 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib32 article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2008.03.029 – volume: 10 start-page: 295 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib9 article-title: Linking DNA methylation and histone modification: patterns and paradigms publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2540 – ident: 10.1016/j.cell.2012.10.054_bib58 doi: 10.1371/journal.pgen.1002195 – volume: 18 start-page: 1166 year: 2006 ident: 10.1016/j.cell.2012.10.054_bib14 article-title: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase publication-title: Plant Cell doi: 10.1105/tpc.106.041400 – volume: 10 start-page: R62 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib53 article-title: Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana publication-title: Genome Biol. doi: 10.1186/gb-2009-10-6-r62 – volume: 318 start-page: 109 year: 2007 ident: 10.1016/j.cell.2012.10.054_bib4 article-title: Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing publication-title: Science doi: 10.1126/science.1146565 – volume: 53 start-page: 1 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib39 article-title: Arabidopsis Histone Lysine Methyltransferases publication-title: Adv. Bot. Res. doi: 10.1016/S0065-2296(10)53001-5 – volume: 117 start-page: 149 year: 2003 ident: 10.1016/j.cell.2012.10.054_bib42 article-title: SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing publication-title: Genetica doi: 10.1023/A:1022923508198 – volume: 22 start-page: 3232 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib6 article-title: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development publication-title: Plant Cell doi: 10.1105/tpc.110.079962 – volume: 22 start-page: 246 year: 2012 ident: 10.1016/j.cell.2012.10.054_bib23 article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer publication-title: Genome Res. doi: 10.1101/gr.125872.111 – volume: 7 start-page: e1002055 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib46 article-title: Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002055 – volume: 104 start-page: 6752 year: 2007 ident: 10.1016/j.cell.2012.10.054_bib38 article-title: DNA demethylation in the Arabidopsis genome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0701861104 – volume: 21 start-page: 6832 year: 2002 ident: 10.1016/j.cell.2012.10.054_bib1 article-title: HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA publication-title: EMBO J. doi: 10.1093/emboj/cdf663 – volume: 107 start-page: 18557 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib19 article-title: SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1010478107 – volume: 3 start-page: e3156 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib5 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 28 start-page: 1078 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib36 article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites publication-title: EMBO J. doi: 10.1038/emboj.2009.59 – volume: 452 start-page: 215 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib12 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 38 start-page: 721 year: 2006 ident: 10.1016/j.cell.2012.10.054_bib22 article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning publication-title: Nat. Genet. doi: 10.1038/ng1804 – volume: 6 start-page: R90 year: 2005 ident: 10.1016/j.cell.2012.10.054_bib47 article-title: Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis publication-title: Genome Biol. doi: 10.1186/gb-2005-6-11-r90 – volume: 7 start-page: e1002366 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib18 article-title: Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002366 – volume: 416 start-page: 556 year: 2002 ident: 10.1016/j.cell.2012.10.054_bib24 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature doi: 10.1038/nature731 – volume: 292 start-page: 2077 year: 2001 ident: 10.1016/j.cell.2012.10.054_bib30 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science doi: 10.1126/science.1059745 – ident: 10.1016/j.cell.2012.10.054_bib59 doi: 10.1371/journal.pgen.1002808 – volume: 21 start-page: 6549 year: 2002 ident: 10.1016/j.cell.2012.10.054_bib43 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis publication-title: EMBO J. doi: 10.1093/emboj/cdf657 – volume: 100 start-page: 8823 year: 2003 ident: 10.1016/j.cell.2012.10.054_bib44 article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1432939100 – volume: 12 start-page: 483 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib20 article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3152 – volume: 4 start-page: e1000156 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib51 article-title: Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000156 – volume: 323 start-page: 1600 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib45 article-title: A role for RNAi in the selective correction of DNA methylation defects publication-title: Science doi: 10.1126/science.1165313 – volume: 130 start-page: 851 year: 2007 ident: 10.1016/j.cell.2012.10.054_bib35 article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation publication-title: Cell doi: 10.1016/j.cell.2007.07.007 – volume: 22 start-page: 94 year: 1999 ident: 10.1016/j.cell.2012.10.054_bib26 article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein publication-title: Nat. Genet. doi: 10.1038/8803 – volume: 12 start-page: 1138 year: 2002 ident: 10.1016/j.cell.2012.10.054_bib8 article-title: Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00925-9 – volume: 93 start-page: 12406 year: 1996 ident: 10.1016/j.cell.2012.10.054_bib27 article-title: Developmental abnormalities and epimutations associated with DNA hypomethylation mutations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.22.12406 – volume: 7 start-page: 781 year: 2012 ident: 10.1016/j.cell.2012.10.054_bib29 article-title: RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats publication-title: Epigenetics doi: 10.4161/epi.20290 – volume: 6 start-page: e1001152 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib50 article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001152 – volume: 23 start-page: 318 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib21 article-title: NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation publication-title: Genes Dev. doi: 10.1101/gad.1765209 – volume: 19 start-page: 870 year: 2012 ident: 10.1016/j.cell.2012.10.054_bib56 article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2354 – volume: 16 start-page: 1325 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib2 article-title: IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1690 – volume: 28 start-page: 1348 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib52 article-title: Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01607-07 – volume: 107 start-page: 8689 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib15 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002720107 – volume: 281 start-page: 9560 year: 2006 ident: 10.1016/j.cell.2012.10.054_bib41 article-title: Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M513426200 – ident: 10.1016/j.cell.2012.10.054_bib57 doi: 10.1186/gb-2009-10-3-r25 – volume: 11 start-page: 204 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib28 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 158 start-page: 119 year: 2012 ident: 10.1016/j.cell.2012.10.054_bib33 article-title: HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.111.184275 – volume: 303 start-page: 1336 year: 2004 ident: 10.1016/j.cell.2012.10.054_bib10 article-title: RNA silencing genes control de novo DNA methylation publication-title: Science doi: 10.1126/science.1095989 – volume: 24 start-page: 1119 year: 2010 ident: 10.1016/j.cell.2012.10.054_bib13 article-title: Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation publication-title: Genes Dev. doi: 10.1101/gad.1914110 – volume: 180 start-page: 207 year: 2008 ident: 10.1016/j.cell.2012.10.054_bib37 article-title: Sex-biased lethality or transmission of defective transcription machinery in Arabidopsis publication-title: Genetics doi: 10.1534/genetics.108.090621 – volume: 430 start-page: 471 year: 2004 ident: 10.1016/j.cell.2012.10.054_bib31 article-title: Role of transposable elements in heterochromatin and epigenetic control publication-title: Nature doi: 10.1038/nature02651 – volume: 260 start-page: 1926 year: 1993 ident: 10.1016/j.cell.2012.10.054_bib49 article-title: Arabidopsis thaliana DNA methylation mutants publication-title: Science doi: 10.1126/science.8316832 – volume: 26 start-page: 1691 year: 2007 ident: 10.1016/j.cell.2012.10.054_bib54 article-title: Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing publication-title: EMBO J. doi: 10.1038/sj.emboj.7601603 – volume: 30 start-page: 1928 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib40 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J. doi: 10.1038/emboj.2011.103 – volume: 23 start-page: 2850 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib55 article-title: Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.1868009 – volume: 16 start-page: 763 year: 2009 ident: 10.1016/j.cell.2012.10.054_bib25 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1611 – volume: 43 start-page: 715 year: 2011 ident: 10.1016/j.cell.2012.10.054_bib34 article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase publication-title: Nat. Genet. doi: 10.1038/ng.854 – reference: - Cell. 2015 Jun 18;161(7):1697-8 |
SSID | ssj0008555 |
Score | 2.5986402 |
Snippet | Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate... |
SourceID | pubmedcentral hal proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 352 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis Proteins - metabolism CpG Islands data analysis DNA Methylation Gene Silencing genome Genome, Plant Genome-Wide Association Study Histones - metabolism Life Sciences mutants RNA Interference RNA Polymerase II - metabolism RNA Splicing Factors transposons |
Title | Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome |
URI | https://dx.doi.org/10.1016/j.cell.2012.10.054 https://www.ncbi.nlm.nih.gov/pubmed/23313553 https://www.proquest.com/docview/1273698063 https://www.proquest.com/docview/2000103245 https://hal.science/hal-03439061 https://pubmed.ncbi.nlm.nih.gov/PMC3597350 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VSkhcEO8GCjKIGzK19-FdH0tFFSHCgRIpt9U-G1fBjpqkgn_fGT8i0qo9cLAlr2e91szszGdrHoR85DyUwnuTuhBlylUUqaXw4QqqIYtomVEMk5MnP4rxlH-bidkeORlyYTCssrf9nU1vrXU_ctRz82hZVZjjW1JVgEekWKOurQnKuGqT-GZfttZYCdF1MShh5wN1nzjTxXjhz3EM76KfMcJL8Luc04NoGjjPMVbyNhC9GU_5j4M6fUIe98gyOe5e_inZC_Uz8rDrNfn3OXG48y_DvAtYT4ZiJEkTk7MKM4_AhyWTDTYVXiU_wxUAyFWCcxbhD1yf922-kB4wIyxjbOWbJT5iEkDai-Z3eEGmp19_nYzTvsNC6gDZrFPpPZeBuahoZCCxKAtbMgA1wtPAHRwy0AIgRCZd5qXlBXeGcRYVAI9IDXtJ9uumDgckiUJ5ILQ2N4FH70wmVOSAx6wKJgYxIvnAWu368uPYBWOhhzizC43i0CgOHANxjMin7ZxlV3zjXmoxSEzvqJAG73DvvAMQrzbnYFX19Ixizb0WCgo1Ih9A5tu1sRT3-Pi7xrEM2FACGLrKR-T9oBIa9iY-3tSh2ax0DtiwKBWgwLtpMFUKixpy4NCrTo2261HGcsCDMFvuKNjOC-3eqat5WyOcwYciE9nr_-TJG_KItn0_8jSXh2R_fbkJbwF9re27dntdAxceLAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RYheqvJqU14GwQmZ2vvwrg8cyqNKaNIDbaTclrW92xgFO2qSQn9X_yAzfkQE1B6QerAlr_elmfHMt9Y8CHnNuY1Flhk_tU76XDnhJxQOriAaMnIJM4phcPLgOOoO-ZeRGK2RqzYWBt0qG91f6_RKWzct-w0196d5jjG-MVURWESKOeoC3nhWHtnLn3Bum73vfQImv6H08PPpx67flBbwUzDpc19mGZeWpU5Rx2CrTkZJzMCai4xansIlLY3AdgYyDTKZ8IinhnHmFFhcRw2DedfJHUAfErVBb_Rhqf6VEHXZhBhUDWyvidSpncrwbzz6k9F36FIm-HXWcN2ZEu5jdM78F_n-7cD5h0U83CZbDZT1Dmpq3SdrtnhA7tbFLS8fkhRVzbkd1x7yXpv9xCudd5JjqBMYTW-wwCrGM--rvQDEOvNwzMT-guezpq4Y9geQCsuYJM_KKU4xsCBek_KHfUSGt0L3x2SjKAu7SzwnVAYdkyQ0lrssNYFQjgMATJQ1zooOCVvS6rTJd45lNya6dWz7rpEdGtmBbcCODnm7HDOts33c2Fu0HNMrMqvBHN04bhfYq80ZqHE9PKGY5K_CnkJ1yCvg-XJtzP3dPehrbAuADDGgr4uwQ162IqFBGeD0prDlYqZDAKNRrAB2Xt8HY7MwiyIHCu3UYrRcjzIWAgCF0XJFwFY2tPqmyMdVUnIGJ1Mmgr3_pMkLcq97Oujrfu_46AnZpFXRkdAP5VOyMT9f2GcA_ebJ8-pT88i32_62fwNIu2kI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Analysis+of+Silencing+Mutants+Reveals+Complex+Regulation+of+the+Arabidopsis+Methylome&rft.jtitle=Cell&rft.au=Stroud%2C+Hume&rft.au=Greenberg%2C+Maxim+V.C.&rft.au=Feng%2C+Suhua&rft.au=Bernatavichute%2C+Yana+V.&rft.date=2013-01-17&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=152&rft.issue=1-2&rft.spage=352&rft.epage=364&rft_id=info:doi/10.1016%2Fj.cell.2012.10.054&rft_id=info%3Apmid%2F23313553&rft.externalDocID=PMC3597350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |