Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus
•Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere....
Saved in:
Published in | Chemosphere (Oxford) Vol. 139; pp. 644 - 651 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2014.12.036 |
Cover
Loading…
Abstract | •Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere.•Limiting rhizosphere acidification is suggested to optimize the effects of biochar.
Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. |
---|---|
AbstractList | Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. •Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere.•Limiting rhizosphere acidification is suggested to optimize the effects of biochar. Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. |
Author | Sonnet, Philippe Houben, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-0574-3033 surname: Houben fullname: Houben, David email: david.houben@lasalle-beauvais.fr, david.houben@outlook.com organization: Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium – sequence: 2 givenname: Philippe surname: Sonnet fullname: Sonnet, Philippe organization: Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25559173$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkGP1CAUx4lZ486ufgWDNy-tUFqgJ7OZ6LrJJF70TCh9s2XSQgVqXD-9NDNrjKeeeIHf--Xl8b9BV847QOgdJSUllH84lWaAycd5gABlRWhd0qokjL9AOypFW9CqlVdoR0jdFLxhzTW6ifFESG5u2lfoumqapqWC7dCvh2nWJmF_xJ31ZtABa9fj4H0qrOsXAz3Ot-4RIvYOT5D0iPsnpydrIrYOpwFwGOzvyzSr6O4x-JhsxEbPdhx1yOUqPSyzdUuux26Jr9HLox4jvLmct-j750_f9l-Kw9f7h_3doTCcVqmoKdOctz1rOyHNUbKmpkAZMZ3oiaRGE0Yhv4iu4qAzzAStTde2rOYN6SW7Re_P3jn4HwvEpCYbDeSxHPglKioZ54LQagMqhMwrFIxsQGsuhRRcbEApa2vG-Gp9e0GXboJezcFOOjyp5-_KQHsGTN5wDHD8i1Ci1miok_onGmqNhqKVytHIvR__6zU26WS9S0HbcZNhfzZA_q-fFoKKxoLLEbEBTFK9txssfwB_otxT |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118642 crossref_primary_10_1007_s11356_017_0652_4 crossref_primary_10_1038_s41598_018_35881_8 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1016_j_ecoenv_2017_01_036 crossref_primary_10_1021_acs_jafc_6b05813 crossref_primary_10_1016_j_ibiod_2025_106005 crossref_primary_10_1016_j_chemosphere_2019_01_188 crossref_primary_10_1016_j_chemosphere_2017_12_081 crossref_primary_10_1016_j_envpol_2024_125224 crossref_primary_10_1016_j_envpol_2023_121219 crossref_primary_10_1016_j_chemosphere_2019_125152 crossref_primary_10_1016_j_envpol_2022_120525 crossref_primary_10_1016_j_jhazmat_2024_134345 crossref_primary_10_3389_fenvs_2021_661423 crossref_primary_10_1038_s41598_022_14282_y crossref_primary_10_1111_gcbb_12993 crossref_primary_10_1007_s10653_021_00900_7 crossref_primary_10_1016_j_ecoenv_2020_111261 crossref_primary_10_1007_s10653_021_01157_w crossref_primary_10_1016_j_jhazmat_2016_05_042 crossref_primary_10_1007_s10661_019_7561_6 crossref_primary_10_1007_s42729_023_01581_0 crossref_primary_10_4081_ija_2021_1777 crossref_primary_10_1080_15226514_2023_2199876 crossref_primary_10_1016_j_chemosphere_2019_124916 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_1016_j_envexpbot_2022_104779 crossref_primary_10_1007_s12665_022_10595_3 crossref_primary_10_1016_j_jhazmat_2019_121799 crossref_primary_10_3390_agronomy14122907 crossref_primary_10_1016_j_geoderma_2022_116125 crossref_primary_10_1007_s11368_019_02296_5 crossref_primary_10_1080_01904167_2018_1485158 crossref_primary_10_3390_su11247136 crossref_primary_10_1007_s00267_021_01530_6 crossref_primary_10_1016_j_scienta_2019_109001 crossref_primary_10_1016_j_scitotenv_2018_02_185 crossref_primary_10_1007_s11356_019_05501_7 crossref_primary_10_1016_j_envpol_2020_114586 crossref_primary_10_1007_s11356_019_06295_4 crossref_primary_10_1016_j_scitotenv_2019_133729 crossref_primary_10_1016_j_scitotenv_2020_139946 crossref_primary_10_1007_s11356_021_12953_3 crossref_primary_10_1021_acs_est_0c07206 crossref_primary_10_18006_2020_8_3__253_264 crossref_primary_10_1007_s11356_020_10476_x crossref_primary_10_1016_j_jece_2025_115462 crossref_primary_10_1016_j_chemosphere_2020_126800 crossref_primary_10_1016_j_ecoenv_2020_110868 crossref_primary_10_1016_j_chemosphere_2019_125414 crossref_primary_10_1016_j_heliyon_2024_e26478 crossref_primary_10_1016_j_scitotenv_2017_12_223 crossref_primary_10_3390_su12062212 crossref_primary_10_1016_j_heliyon_2018_e00543 crossref_primary_10_1016_j_scitotenv_2023_164811 crossref_primary_10_1080_09593330_2016_1151463 crossref_primary_10_1007_s42773_021_00106_1 crossref_primary_10_1016_j_envint_2019_02_022 crossref_primary_10_1016_j_jhazmat_2023_130965 crossref_primary_10_1016_j_scitotenv_2024_176709 crossref_primary_10_1016_j_envpol_2017_04_024 crossref_primary_10_1016_j_chemosphere_2022_134592 crossref_primary_10_1016_j_geoderma_2020_114919 crossref_primary_10_1016_j_scitotenv_2024_172702 crossref_primary_10_1007_s11270_019_4249_z crossref_primary_10_1007_s11356_015_5697_7 crossref_primary_10_1007_s11356_019_06764_w crossref_primary_10_1007_s13399_022_03308_0 crossref_primary_10_1007_s11356_024_34734_4 crossref_primary_10_1007_s11368_015_1326_9 crossref_primary_10_1016_j_scitotenv_2018_12_018 crossref_primary_10_1007_s11104_019_04256_x crossref_primary_10_1007_s11356_019_04313_z crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1007_s11368_022_03298_6 crossref_primary_10_1080_10643389_2017_1328918 crossref_primary_10_1016_S1002_0160_19_60805_2 crossref_primary_10_1016_j_ecoenv_2018_06_065 crossref_primary_10_1016_j_scitotenv_2017_07_046 crossref_primary_10_1007_s10653_020_00603_5 crossref_primary_10_1016_j_chemosphere_2022_137556 crossref_primary_10_3389_fmicb_2022_929730 crossref_primary_10_1016_j_scitotenv_2019_134710 crossref_primary_10_1007_s11270_022_05902_4 crossref_primary_10_1016_j_jece_2017_04_015 crossref_primary_10_3389_fpls_2024_1481732 crossref_primary_10_1016_j_chemosphere_2021_130344 crossref_primary_10_2134_jeq2016_10_0388 crossref_primary_10_1007_s10646_017_1871_7 crossref_primary_10_1016_j_envres_2022_114769 crossref_primary_10_1016_j_jenvman_2021_112824 crossref_primary_10_1007_s11356_024_34911_5 crossref_primary_10_1016_S1002_0160_21_60025_5 crossref_primary_10_1007_s00344_024_11335_6 crossref_primary_10_1007_s11356_020_11215_y |
Cites_doi | 10.2134/jeq2002.1561 10.1016/j.chemosphere.2014.06.024 10.1016/S0168-9452(01)00373-9 10.1007/BF00283457 10.1016/j.biortech.2010.11.018 10.1016/B978-0-12-385538-1.00004-4 10.1016/j.jhazmat.2010.09.082 10.1016/j.jhazmat.2012.05.086 10.1007/s11270-006-9178-y 10.2134/jeq2010.0419 10.1039/B711896A 10.1016/S0045-6535(99)00414-2 10.1016/j.envpol.2010.07.029 10.1016/j.chemosphere.2011.07.034 10.1016/j.envpol.2011.07.023 10.1016/j.apgeochem.2012.05.004 10.1016/j.scitotenv.2013.08.072 10.1007/s11104-011-0948-y 10.1021/ac50043a017 10.5194/se-5-65-2014 10.1023/A:1022371130939 10.1016/j.ecoenv.2009.12.009 10.1111/ejss.12107 10.1016/S0003-2670(00)88973-4 10.1007/s11270-010-0591-x 10.1016/j.gexplo.2011.10.004 10.1016/j.chemosphere.2013.03.055 10.1021/es5002874 10.1006/anbo.1993.1113 10.1080/00103628409367568 10.1371/journal.pone.0095218 10.1007/s11104-013-1885-8 10.2134/jeq2011.0124 10.2134/jeq2003.8240 10.1038/ncomms1053 10.2134/jeq2010.0057 10.1016/S0065-2113(10)05002-9 10.1023/B:PLSO.0000030173.71500.e1 10.1016/j.gca.2012.01.031 10.1016/j.biombioe.2013.07.019 10.1007/BF02277359 10.1093/aob/mcf066 10.1007/s11104-008-9686-1 10.1007/s11368-012-0546-5 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7TV 7U7 C1K SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2014.12.036 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Pollution Abstracts Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Pollution Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 651 |
ExternalDocumentID | 25559173 10_1016_j_chemosphere_2014_12_036 S0045653514014647 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7ST 7TV 7U7 C1K SOI 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c612t-413a669d39b78cf83541e130cb7d081ca031e78c7b26ea13a3714cb9934650d83 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 13:06:21 EDT 2025 Fri Jul 11 08:01:30 EDT 2025 Fri Jul 11 14:53:54 EDT 2025 Fri Jul 11 16:02:03 EDT 2025 Thu Apr 03 06:55:09 EDT 2025 Tue Jul 01 00:45:13 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Fri Feb 23 02:20:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Immobilization Rhizosphere Sequential extractions Biochar Heavy metal Phytoremediation |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-413a669d39b78cf83541e130cb7d081ca031e78c7b26ea13a3714cb9934650d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0574-3033 |
PMID | 25559173 |
PQID | 1713943360 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1836670128 proquest_miscellaneous_1778001730 proquest_miscellaneous_1746878767 proquest_miscellaneous_1713943360 pubmed_primary_25559173 crossref_primary_10_1016_j_chemosphere_2014_12_036 crossref_citationtrail_10_1016_j_chemosphere_2014_12_036 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2014_12_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Martínez-Alcalá, Walker, Bernal (b0160) 2010; 73 Tordoff, Baker, Willis (b0230) 2000; 41 Loss, Robson, Ritchie (b0140) 1993; 72 Bolan, Park, Robinson, Naidu, Huh (b0015) 2011 Taghizadeh-Toosi, Clough, Condron, Sherlock, Anderson, Craigie (b0220) 2011; 40 Mehlich (b0165) 1984; 15 Bravin, Michaud, Larabi, Hinsinger (b0025) 2010; 158 Chaignon, Hinsinger (b0035) 2003; 32 Hashimoto, Takaoka, Shiota (b0060) 2011; 40 Vazquez, Agha, Granado, Sarro, Esteban, Penalosa, Carpena (b0235) 2006; 177 Chapman (b0040) 1965 Bravin, Garnier, Lenoble, Gérard, Dudal, Hinsinger (b0020) 2012; 84 Sas, Rengel, Tang (b0205) 2001; 160 Houben, Sonnet, Tricot, Mattielli, Couder, Opfergelt (b0110) 2014 Park, Lamb, Paneerselvam, Choppala, Bolan, Chung (b0190) 2011; 185 Hammer, Keller (b0055) 2002; 31 Wenzel (b0240) 2009; 321 Jiang, Xu, Jiang, Li (b0115) 2012; 229–230 Hinsinger (b0070) 2001 Houben, Sonnet (b0100) 2012; 27 Page, Miller, Keeney (b0180) 1982 Nye (b0175) 1981; 61 Hass, Gonzalez, Lima, Godwin, Halvorson, Boyer (b0065) 2012; 41 Hinsinger, Plassard, Tang, Jaillard (b0075) 2003; 248 Rees, Simonnot, Morel (b0200) 2014; 65 Houben, Evrard, Sonnet (b0090) 2013; 92 Lambrechts, Gustot, Couder, Houben, Iserentant, Lutts (b0125) 2011; 85 Loosemore, Straczek, Hinsinger, Jaillard (b0135) 2004; 260 Tessier, Campbell, Bisson (b0225) 1979; 51 De Nul (b0045) 2010 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (b0245) 2010; 1 Paz-Ferreiro, Lu, Fu, Méndez, Gascó (b0195) 2014; 5 Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (b0010) 2011; 159 Park, Choppala, Bolan, Chung, Chuasavathi (b0185) 2011; 348 Lu, Li, Fu, Méndez, Gascó, Paz-Ferreiro (b0150) 2015; 119 Houben, Pircar, Sonnet (b0095) 2012; 123 Xian, In Shokohifard (b0250) 1989; 45 Fellet, Marmiroli, Marchiol (b0050) 2014; 468–469 Bacon, Davidson (b0005) 2008; 133 Sas, Rengel, Tang (b0210) 2002; 89 Lambrechts, Couder, Bernal, Faz, Iserentant, Lutts (b0120) 2011; 217 Houben, Sonnet, Cornelis (b0105) 2014; 374 Houben, Couder, Sonnet (b0080) 2013; 13 Houben, Evrard, Sonnet (b0085) 2013; 57 Sohi, Krull, Lopez-Capel, Bol (b0215) 2010 Yuan, Xu, Zhang (b0255) 2011; 102 Lindsay (b0130) 1979 Marschner, Römheld (b0155) 1996 Mench, Vangronsveld, Bleeker, Ruttens, Geebelen, Lepp (b0170) 2006 Bremner, Keeney (b0030) 1965; 32 Lu, Li, Fu, Méndez, Gascó, Paz-Ferreiro (b0145) 2014; 9 De Nul (10.1016/j.chemosphere.2014.12.036_b0045) 2010 Hinsinger (10.1016/j.chemosphere.2014.12.036_b0070) 2001 Tordoff (10.1016/j.chemosphere.2014.12.036_b0230) 2000; 41 Paz-Ferreiro (10.1016/j.chemosphere.2014.12.036_b0195) 2014; 5 Sas (10.1016/j.chemosphere.2014.12.036_b0205) 2001; 160 Sas (10.1016/j.chemosphere.2014.12.036_b0210) 2002; 89 Lindsay (10.1016/j.chemosphere.2014.12.036_b0130) 1979 Rees (10.1016/j.chemosphere.2014.12.036_b0200) 2014; 65 Beesley (10.1016/j.chemosphere.2014.12.036_b0010) 2011; 159 Park (10.1016/j.chemosphere.2014.12.036_b0185) 2011; 348 Houben (10.1016/j.chemosphere.2014.12.036_b0110) 2014 Sohi (10.1016/j.chemosphere.2014.12.036_b0215) 2010 Houben (10.1016/j.chemosphere.2014.12.036_b0085) 2013; 57 Wenzel (10.1016/j.chemosphere.2014.12.036_b0240) 2009; 321 Yuan (10.1016/j.chemosphere.2014.12.036_b0255) 2011; 102 Tessier (10.1016/j.chemosphere.2014.12.036_b0225) 1979; 51 Loosemore (10.1016/j.chemosphere.2014.12.036_b0135) 2004; 260 Chaignon (10.1016/j.chemosphere.2014.12.036_b0035) 2003; 32 Martínez-Alcalá (10.1016/j.chemosphere.2014.12.036_b0160) 2010; 73 Park (10.1016/j.chemosphere.2014.12.036_b0190) 2011; 185 Houben (10.1016/j.chemosphere.2014.12.036_b0105) 2014; 374 Page (10.1016/j.chemosphere.2014.12.036_b0180) 1982 Nye (10.1016/j.chemosphere.2014.12.036_b0175) 1981; 61 Lambrechts (10.1016/j.chemosphere.2014.12.036_b0125) 2011; 85 Lu (10.1016/j.chemosphere.2014.12.036_b0145) 2014; 9 Vazquez (10.1016/j.chemosphere.2014.12.036_b0235) 2006; 177 Bravin (10.1016/j.chemosphere.2014.12.036_b0025) 2010; 158 Houben (10.1016/j.chemosphere.2014.12.036_b0095) 2012; 123 Hass (10.1016/j.chemosphere.2014.12.036_b0065) 2012; 41 Mehlich (10.1016/j.chemosphere.2014.12.036_b0165) 1984; 15 Bremner (10.1016/j.chemosphere.2014.12.036_b0030) 1965; 32 Chapman (10.1016/j.chemosphere.2014.12.036_b0040) 1965 Lu (10.1016/j.chemosphere.2014.12.036_b0150) 2015; 119 Jiang (10.1016/j.chemosphere.2014.12.036_b0115) 2012; 229–230 Xian (10.1016/j.chemosphere.2014.12.036_b0250) 1989; 45 Houben (10.1016/j.chemosphere.2014.12.036_b0100) 2012; 27 Taghizadeh-Toosi (10.1016/j.chemosphere.2014.12.036_b0220) 2011; 40 Fellet (10.1016/j.chemosphere.2014.12.036_b0050) 2014; 468–469 Hammer (10.1016/j.chemosphere.2014.12.036_b0055) 2002; 31 Houben (10.1016/j.chemosphere.2014.12.036_b0080) 2013; 13 Marschner (10.1016/j.chemosphere.2014.12.036_b0155) 1996 Hashimoto (10.1016/j.chemosphere.2014.12.036_b0060) 2011; 40 Mench (10.1016/j.chemosphere.2014.12.036_b0170) 2006 Loss (10.1016/j.chemosphere.2014.12.036_b0140) 1993; 72 Woolf (10.1016/j.chemosphere.2014.12.036_b0245) 2010; 1 Houben (10.1016/j.chemosphere.2014.12.036_b0090) 2013; 92 Lambrechts (10.1016/j.chemosphere.2014.12.036_b0120) 2011; 217 Bacon (10.1016/j.chemosphere.2014.12.036_b0005) 2008; 133 Bolan (10.1016/j.chemosphere.2014.12.036_b0015) 2011 Hinsinger (10.1016/j.chemosphere.2014.12.036_b0075) 2003; 248 Bravin (10.1016/j.chemosphere.2014.12.036_b0020) 2012; 84 |
References_xml | – volume: 177 start-page: 349 year: 2006 end-page: 365 ident: b0235 article-title: Use of white lupin plant for phytostabilization of Cd and As polluted acid soil publication-title: Water Air Soil Pollut. – volume: 84 start-page: 256 year: 2012 end-page: 268 ident: b0020 article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere publication-title: Geochim. Cosmochim. Acta – volume: 92 start-page: 1450 year: 2013 end-page: 1457 ident: b0090 article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar publication-title: Chemosphere – volume: 1 start-page: 56 year: 2010 ident: b0245 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 32 start-page: 824 year: 2003 end-page: 833 ident: b0035 article-title: A biotest for evaluating copper bioavailability to plants in a contaminated soil publication-title: J. Environ. Qual. – volume: 61 start-page: 7 year: 1981 end-page: 26 ident: b0175 article-title: Changes of pH across the rhizosphere induced by roots publication-title: Plant Soil – year: 2014 ident: b0110 article-title: Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system publication-title: Environ. Sci. Technol. – volume: 65 start-page: 149 year: 2014 end-page: 161 ident: b0200 article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase publication-title: Eur. J. Soil Sci. – volume: 40 start-page: 696 year: 2011 end-page: 703 ident: b0060 article-title: Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an X-ray absorption fine structure spectroscopy investigation publication-title: J. Environ. Qual. – volume: 229–230 start-page: 145 year: 2012 end-page: 150 ident: b0115 article-title: Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol publication-title: J. Hazard. Mater. – start-page: 145 year: 2011 end-page: 204 ident: b0015 article-title: Phytostabilization: a green approach to contaminant containment publication-title: Adv. Agron. – volume: 374 start-page: 871 year: 2014 end-page: 882 ident: b0105 article-title: Biochar from publication-title: Plant Soil – start-page: 25 year: 2001 end-page: 41 ident: b0070 article-title: Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere publication-title: Trace Elements in the Rhizosphere – volume: 85 start-page: 1290 year: 2011 end-page: 1298 ident: b0125 article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with publication-title: Chemosphere – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: b0010 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 72 start-page: 315 year: 1993 end-page: 320 ident: b0140 article-title: H+/OH- excretion and nutrient uptake in upper and lower parts of lupin ( publication-title: Ann. Bot. – volume: 468–469 start-page: 598 year: 2014 end-page: 608 ident: b0050 article-title: Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar publication-title: Sci. Total Environ. – volume: 123 start-page: 87 year: 2012 end-page: 94 ident: b0095 article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability publication-title: J. Geochem. Explor. – volume: 321 start-page: 385 year: 2009 end-page: 408 ident: b0240 article-title: Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils publication-title: Plant Soil – volume: 119 start-page: 209 year: 2015 end-page: 216 ident: b0150 article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd publication-title: Chemosphere – volume: 133 start-page: 25 year: 2008 end-page: 46 ident: b0005 article-title: Is there a future for sequential chemical extraction? publication-title: Analyst – volume: 32 start-page: 485 year: 1965 end-page: 495 ident: b0030 article-title: Steam distillation methods for determination of ammonium, nitrate and nitrite publication-title: Anal. Chim. Acta – volume: 348 start-page: 439 year: 2011 end-page: 451 ident: b0185 article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals publication-title: Plant Soil – volume: 41 start-page: 1096 year: 2012 end-page: 1106 ident: b0065 article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil publication-title: J. Environ. Qual. – volume: 15 start-page: 1409 year: 1984 end-page: 1416 ident: b0165 article-title: Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant publication-title: Commun. Soil Sci. Plant Anal. – volume: 160 start-page: 1191 year: 2001 end-page: 1198 ident: b0205 article-title: Excess cation uptake, and extrusion of protons and organic acid anions by publication-title: Plant Sci. – volume: 9 start-page: e95218 year: 2014 ident: b0145 article-title: Can biochar and phytoextractors be jointly used for cadmium remediation? publication-title: PLoS ONE – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: b0255 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – start-page: 47 year: 2010 end-page: 82 ident: b0215 article-title: Chapter 2 – A Review of Biochar and Its Use and Function in Soil publication-title: Adv. Agron. – volume: 248 start-page: 43 year: 2003 end-page: 59 ident: b0075 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil – year: 1979 ident: b0130 article-title: Chemical Equilibria in Soils – volume: 158 start-page: 3330 year: 2010 end-page: 3337 ident: b0025 article-title: RHIZOtest: a plant-based biotest to account for rhizosphere processes when assessing copper bioavailability publication-title: Environ. Pollut. – volume: 260 start-page: 19 year: 2004 end-page: 32 ident: b0135 article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH publication-title: Plant Soil – volume: 40 start-page: 468 year: 2011 end-page: 476 ident: b0220 article-title: Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches publication-title: J. Environ. Qual. – volume: 217 start-page: 333 year: 2011 end-page: 346 ident: b0120 article-title: Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test publication-title: Water Air Soil Pollut. – year: 1982 ident: b0180 article-title: Methods of Soil Analysis. Part 2—Chemical and Microbiological Properties – start-page: 557 year: 1996 end-page: 580 ident: b0155 article-title: Root-induced changes in the availability of micronutrients in the rhizosphere publication-title: Plant Roots The Hidden Half – volume: 13 start-page: 543 year: 2013 end-page: 554 ident: b0080 article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization publication-title: J. Soils Sediments – volume: 41 start-page: 219 year: 2000 end-page: 228 ident: b0230 article-title: Current approaches to the revegetation and reclamation of metalliferous mine wastes publication-title: Chemosphere – start-page: 349 year: 2010 end-page: 372 ident: b0045 article-title: Les minéraux des scories métallurgiques de Sclaigneaux (Andenne) publication-title: Terres, pierres et feu en vallée mosane – volume: 5 start-page: 65 year: 2014 end-page: 75 ident: b0195 article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review publication-title: Solid Earth – volume: 31 start-page: 1561 year: 2002 end-page: 1569 ident: b0055 article-title: Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants publication-title: J. Environ. Qual. – volume: 27 start-page: 1587 year: 2012 end-page: 1592 ident: b0100 article-title: Zinc mineral weathering as affected by plant roots publication-title: Appl. Geochem. – volume: 45 start-page: 265 year: 1989 end-page: 273 ident: b0250 article-title: Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils publication-title: Water Air Soil Pollut. – volume: 89 start-page: 435 year: 2002 end-page: 442 ident: b0210 article-title: The effect of nitrogen nutrition on cluster root formation and proton extrusion by publication-title: Ann. Bot. – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: b0225 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. – start-page: 109 year: 2006 end-page: 190 ident: b0170 article-title: Phytostabilisation of metal-contaminated sites publication-title: Phytoremediation of Metal-Contaminated Soils – volume: 185 start-page: 549 year: 2011 end-page: 574 ident: b0190 article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils publication-title: J. Hazard. Mater. – volume: 73 start-page: 595 year: 2010 end-page: 602 ident: b0160 article-title: Chemical and biological properties in the rhizosphere of publication-title: Ecotoxicol. Environ. Saf. – start-page: 891 year: 1965 end-page: 901 ident: b0040 article-title: Cation exchange capacity publication-title: Methods of soil analysis: Part 1, physical and mineralogical methods – volume: 57 start-page: 196 year: 2013 end-page: 204 ident: b0085 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed ( publication-title: Biomass Bioenerg. – volume: 31 start-page: 1561 year: 2002 ident: 10.1016/j.chemosphere.2014.12.036_b0055 article-title: Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1561 – volume: 119 start-page: 209 year: 2015 ident: 10.1016/j.chemosphere.2014.12.036_b0150 article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.06.024 – volume: 160 start-page: 1191 year: 2001 ident: 10.1016/j.chemosphere.2014.12.036_b0205 article-title: Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency publication-title: Plant Sci. doi: 10.1016/S0168-9452(01)00373-9 – volume: 45 start-page: 265 year: 1989 ident: 10.1016/j.chemosphere.2014.12.036_b0250 article-title: Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils publication-title: Water Air Soil Pollut. doi: 10.1007/BF00283457 – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0255 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – start-page: 557 year: 1996 ident: 10.1016/j.chemosphere.2014.12.036_b0155 article-title: Root-induced changes in the availability of micronutrients in the rhizosphere – start-page: 145 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0015 article-title: Phytostabilization: a green approach to contaminant containment doi: 10.1016/B978-0-12-385538-1.00004-4 – volume: 185 start-page: 549 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0190 article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.09.082 – volume: 229–230 start-page: 145 year: 2012 ident: 10.1016/j.chemosphere.2014.12.036_b0115 article-title: Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.05.086 – volume: 177 start-page: 349 year: 2006 ident: 10.1016/j.chemosphere.2014.12.036_b0235 article-title: Use of white lupin plant for phytostabilization of Cd and As polluted acid soil publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-006-9178-y – volume: 40 start-page: 468 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0220 article-title: Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0419 – volume: 133 start-page: 25 year: 2008 ident: 10.1016/j.chemosphere.2014.12.036_b0005 article-title: Is there a future for sequential chemical extraction? publication-title: Analyst doi: 10.1039/B711896A – start-page: 25 year: 2001 ident: 10.1016/j.chemosphere.2014.12.036_b0070 article-title: Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere – volume: 41 start-page: 219 year: 2000 ident: 10.1016/j.chemosphere.2014.12.036_b0230 article-title: Current approaches to the revegetation and reclamation of metalliferous mine wastes publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00414-2 – volume: 158 start-page: 3330 year: 2010 ident: 10.1016/j.chemosphere.2014.12.036_b0025 article-title: RHIZOtest: a plant-based biotest to account for rhizosphere processes when assessing copper bioavailability publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.07.029 – volume: 85 start-page: 1290 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0125 article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.07.034 – volume: 159 start-page: 3269 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0010 article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 27 start-page: 1587 year: 2012 ident: 10.1016/j.chemosphere.2014.12.036_b0100 article-title: Zinc mineral weathering as affected by plant roots publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.05.004 – volume: 468–469 start-page: 598 year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0050 article-title: Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.08.072 – year: 1979 ident: 10.1016/j.chemosphere.2014.12.036_b0130 – start-page: 349 year: 2010 ident: 10.1016/j.chemosphere.2014.12.036_b0045 article-title: Les minéraux des scories métallurgiques de Sclaigneaux (Andenne) – volume: 348 start-page: 439 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0185 article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals publication-title: Plant Soil doi: 10.1007/s11104-011-0948-y – volume: 51 start-page: 844 year: 1979 ident: 10.1016/j.chemosphere.2014.12.036_b0225 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. doi: 10.1021/ac50043a017 – volume: 5 start-page: 65 year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0195 article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review publication-title: Solid Earth doi: 10.5194/se-5-65-2014 – volume: 248 start-page: 43 year: 2003 ident: 10.1016/j.chemosphere.2014.12.036_b0075 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil doi: 10.1023/A:1022371130939 – volume: 73 start-page: 595 year: 2010 ident: 10.1016/j.chemosphere.2014.12.036_b0160 article-title: Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2009.12.009 – volume: 65 start-page: 149 year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0200 article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12107 – volume: 32 start-page: 485 year: 1965 ident: 10.1016/j.chemosphere.2014.12.036_b0030 article-title: Steam distillation methods for determination of ammonium, nitrate and nitrite publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88973-4 – volume: 217 start-page: 333 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0120 article-title: Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-010-0591-x – volume: 123 start-page: 87 year: 2012 ident: 10.1016/j.chemosphere.2014.12.036_b0095 article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.10.004 – volume: 92 start-page: 1450 year: 2013 ident: 10.1016/j.chemosphere.2014.12.036_b0090 article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.03.055 – year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0110 article-title: Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system publication-title: Environ. Sci. Technol. doi: 10.1021/es5002874 – volume: 72 start-page: 315 year: 1993 ident: 10.1016/j.chemosphere.2014.12.036_b0140 article-title: H+/OH- excretion and nutrient uptake in upper and lower parts of lupin (Lupinus angustifolius L.) root systems publication-title: Ann. Bot. doi: 10.1006/anbo.1993.1113 – volume: 15 start-page: 1409 year: 1984 ident: 10.1016/j.chemosphere.2014.12.036_b0165 article-title: Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103628409367568 – volume: 9 start-page: e95218 year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0145 article-title: Can biochar and phytoextractors be jointly used for cadmium remediation? publication-title: PLoS ONE doi: 10.1371/journal.pone.0095218 – volume: 374 start-page: 871 year: 2014 ident: 10.1016/j.chemosphere.2014.12.036_b0105 article-title: Biochar from Miscanthus: a potential silicon fertilizer publication-title: Plant Soil doi: 10.1007/s11104-013-1885-8 – volume: 41 start-page: 1096 year: 2012 ident: 10.1016/j.chemosphere.2014.12.036_b0065 article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0124 – volume: 32 start-page: 824 year: 2003 ident: 10.1016/j.chemosphere.2014.12.036_b0035 article-title: A biotest for evaluating copper bioavailability to plants in a contaminated soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.8240 – start-page: 891 year: 1965 ident: 10.1016/j.chemosphere.2014.12.036_b0040 article-title: Cation exchange capacity – year: 1982 ident: 10.1016/j.chemosphere.2014.12.036_b0180 – volume: 1 start-page: 56 year: 2010 ident: 10.1016/j.chemosphere.2014.12.036_b0245 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – start-page: 109 year: 2006 ident: 10.1016/j.chemosphere.2014.12.036_b0170 article-title: Phytostabilisation of metal-contaminated sites – volume: 40 start-page: 696 year: 2011 ident: 10.1016/j.chemosphere.2014.12.036_b0060 article-title: Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an X-ray absorption fine structure spectroscopy investigation publication-title: J. Environ. Qual. doi: 10.2134/jeq2010.0057 – start-page: 47 year: 2010 ident: 10.1016/j.chemosphere.2014.12.036_b0215 article-title: Chapter 2 – A Review of Biochar and Its Use and Function in Soil doi: 10.1016/S0065-2113(10)05002-9 – volume: 260 start-page: 19 year: 2004 ident: 10.1016/j.chemosphere.2014.12.036_b0135 article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH publication-title: Plant Soil doi: 10.1023/B:PLSO.0000030173.71500.e1 – volume: 84 start-page: 256 year: 2012 ident: 10.1016/j.chemosphere.2014.12.036_b0020 article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.01.031 – volume: 57 start-page: 196 year: 2013 ident: 10.1016/j.chemosphere.2014.12.036_b0085 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2013.07.019 – volume: 61 start-page: 7 year: 1981 ident: 10.1016/j.chemosphere.2014.12.036_b0175 article-title: Changes of pH across the rhizosphere induced by roots publication-title: Plant Soil doi: 10.1007/BF02277359 – volume: 89 start-page: 435 year: 2002 ident: 10.1016/j.chemosphere.2014.12.036_b0210 article-title: The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus publication-title: Ann. Bot. doi: 10.1093/aob/mcf066 – volume: 321 start-page: 385 year: 2009 ident: 10.1016/j.chemosphere.2014.12.036_b0240 article-title: Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils publication-title: Plant Soil doi: 10.1007/s11104-008-9686-1 – volume: 13 start-page: 543 year: 2013 ident: 10.1016/j.chemosphere.2014.12.036_b0080 article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization publication-title: J. Soils Sediments doi: 10.1007/s11368-012-0546-5 |
SSID | ssj0001659 |
Score | 2.506726 |
Snippet | •Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced... Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 644 |
SubjectTerms | Acidification Agrostis - metabolism Agrostis capillaris Biochar Biodegradation, Environmental Cadmium Charcoal - chemistry Dynamics Exchange Extraction Heavy metal Immobilization lead liming Lupinus - metabolism Lupinus albus Metals, Heavy - analysis Metals, Heavy - chemistry Metals, Heavy - isolation & purification Metals, Heavy - metabolism Phytoremediation Plant Roots - metabolism Plants (organisms) Pools Rhizosphere roots Sequential extractions shoots soil Soil (material) Soil - chemistry Soil Pollutants - analysis Soil Pollutants - chemistry Soil Pollutants - isolation & purification Soil Pollutants - metabolism zinc |
Title | Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus |
URI | https://dx.doi.org/10.1016/j.chemosphere.2014.12.036 https://www.ncbi.nlm.nih.gov/pubmed/25559173 https://www.proquest.com/docview/1713943360 https://www.proquest.com/docview/1746878767 https://www.proquest.com/docview/1778001730 https://www.proquest.com/docview/1836670128 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CQttcSps-sm0TFOjVTWTLshZyWZaETR85NZCbkGS5uCT2Eq-hvfS3d0aykxaaJdCbH5KwNfLMN_J8MwDvKytSUR3ZhDuFDor3KrGCTxMvDeWHy10aqjV8OZeLC_HxMr_cgPnIhaGwykH3R50etPVw5XCYzcNlXRPHl9AIRaJTAhRBjHIhClrlH37dhXlwmUcILPKEWj-Gg7sYL5yX67Yj_j5lzOQi7AyGbM3_tFH3YdBgi06fwdMBRLJZfM7nsOGbHXgyH2u37cCjk5CM-ucL-HEWaJCsrZitW-JYMdOUDPHyKkF3HAVbskj-7VjbsGuPYJyVsUx9x-qGIUBkNxSYF1-ABpp9I6pI3TFnllS0CPVEGPRzv6ybHo-vbN-9hIvTk6_zRTJUW0gcopxVgtbMSDkts6ktlKtoQ4h7tHDOFiXiBmfw8_d4p7Cp9AYbkyydRXwjEOWVKnsFm03b-F1gvEyJcFtWiBWEkdyaorLeS4X2EgGcm4Aa51e7IRU5VcS40mPM2Xf9h2g0iUbzVKNoJpDedl3GfBwP6XQ8ClH_tbg02o2HdD8YBa9RjvRHxTS-7TvN0cWfiiyTR-vaCKlQLcpiXZtCEV7I1o2jMikLwhMTeB1X3-0MoF-Yo9-dvfm_F30L23iWR6rlO9hc3fR-DzHXyu6Hj2oftmZnnxbnvwFmTCzb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lK17GVv3lX2qsFfTypZlBfYSQkuypnlqoW9CkuXh0dqhjmH773dn2dkGWyjszdiSsHTy3e_k-90BfCqsiEVxYiPuFDoo3qvICj6JvDSUHy51cVet4WIl51fiy3V6vQezgQtDYZW97g86vdPW_Z3jfjWP12VJHF9CIxSJTglQRPYA9ik7VTqC_enifL7aKmQu04CCRRpRh0dw9CvMC5fmtm6Iwk9JM7noDge7hM1_NVP_gqGdOTp7Ck96HMmm4VWfwZ6vDuFgNpRvO4SHp10-6h_P4fuiY0KyumC2rIlmxUyVM4TMmwg9cpRtzgL_t2F1xW494nGWh0r1DSsrhhiR3VFsXpgADTT9SmyRsmHOrKluEaqKbtBluy6rFq9vbNu8gKuz08vZPOoLLkQOgc4mQoNmpJzkycRmyhV0JsQ9GjlnsxyhgzOoATw-yWwsvcHGJE5nEeIIBHq5Sl7CqKor_xoYz2Pi3OYFwgVhJLcmK6z3UqHJRAznxqCG9dWuz0ZORTFu9BB29k3_JhpNotE81iiaMcTbruuQkuM-nT4PQtR_7C-NpuM-3Y8GwWuUI_1UMZWv20Zz9PInIknkya42QirUjDLb1SZTBBmSXeOoRMqMIMUYXoXdt10BdA1TdL2TN_830Y9wML-8WOrlYnX-Fh7jkzQwL9_BaHPX-vcIwTb2Q_-J_QSXri-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+and+root-induced+changes+on+metal+dynamics+in+the+rhizosphere+of+Agrostis+capillaris+and+Lupinus+albus&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Houben%2C+David&rft.au=Sonnet%2C+Philippe&rft.date=2015-11-01&rft.eissn=1879-1298&rft.volume=139&rft.spage=644&rft_id=info:doi/10.1016%2Fj.chemosphere.2014.12.036&rft_id=info%3Apmid%2F25559173&rft.externalDocID=25559173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |