Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus

•Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere....

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 139; pp. 644 - 651
Main Authors Houben, David, Sonnet, Philippe
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text
ISSN0045-6535
1879-1298
1879-1298
DOI10.1016/j.chemosphere.2014.12.036

Cover

Loading…
Abstract •Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere.•Limiting rhizosphere acidification is suggested to optimize the effects of biochar. Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.
AbstractList Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.
•Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced acidification counteracts the liming effect of biochar in rhizosphere.•Metals shifted to carbonate-bound pool were re-mobilized in rhizosphere.•Limiting rhizosphere acidification is suggested to optimize the effects of biochar. Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.
Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier’s scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.
Author Sonnet, Philippe
Houben, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-0574-3033
  surname: Houben
  fullname: Houben, David
  email: david.houben@lasalle-beauvais.fr, david.houben@outlook.com
  organization: Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium
– sequence: 2
  givenname: Philippe
  surname: Sonnet
  fullname: Sonnet, Philippe
  organization: Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25559173$$D View this record in MEDLINE/PubMed
BookMark eNqNkkGP1CAUx4lZ486ufgWDNy-tUFqgJ7OZ6LrJJF70TCh9s2XSQgVqXD-9NDNrjKeeeIHf--Xl8b9BV847QOgdJSUllH84lWaAycd5gABlRWhd0qokjL9AOypFW9CqlVdoR0jdFLxhzTW6ifFESG5u2lfoumqapqWC7dCvh2nWJmF_xJ31ZtABa9fj4H0qrOsXAz3Ot-4RIvYOT5D0iPsnpydrIrYOpwFwGOzvyzSr6O4x-JhsxEbPdhx1yOUqPSyzdUuux26Jr9HLox4jvLmct-j750_f9l-Kw9f7h_3doTCcVqmoKdOctz1rOyHNUbKmpkAZMZ3oiaRGE0Yhv4iu4qAzzAStTde2rOYN6SW7Re_P3jn4HwvEpCYbDeSxHPglKioZ54LQagMqhMwrFIxsQGsuhRRcbEApa2vG-Gp9e0GXboJezcFOOjyp5-_KQHsGTN5wDHD8i1Ci1miok_onGmqNhqKVytHIvR__6zU26WS9S0HbcZNhfzZA_q-fFoKKxoLLEbEBTFK9txssfwB_otxT
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118642
crossref_primary_10_1007_s11356_017_0652_4
crossref_primary_10_1038_s41598_018_35881_8
crossref_primary_10_1080_10643389_2019_1642832
crossref_primary_10_1016_j_ecoenv_2017_01_036
crossref_primary_10_1021_acs_jafc_6b05813
crossref_primary_10_1016_j_ibiod_2025_106005
crossref_primary_10_1016_j_chemosphere_2019_01_188
crossref_primary_10_1016_j_chemosphere_2017_12_081
crossref_primary_10_1016_j_envpol_2024_125224
crossref_primary_10_1016_j_envpol_2023_121219
crossref_primary_10_1016_j_chemosphere_2019_125152
crossref_primary_10_1016_j_envpol_2022_120525
crossref_primary_10_1016_j_jhazmat_2024_134345
crossref_primary_10_3389_fenvs_2021_661423
crossref_primary_10_1038_s41598_022_14282_y
crossref_primary_10_1111_gcbb_12993
crossref_primary_10_1007_s10653_021_00900_7
crossref_primary_10_1016_j_ecoenv_2020_111261
crossref_primary_10_1007_s10653_021_01157_w
crossref_primary_10_1016_j_jhazmat_2016_05_042
crossref_primary_10_1007_s10661_019_7561_6
crossref_primary_10_1007_s42729_023_01581_0
crossref_primary_10_4081_ija_2021_1777
crossref_primary_10_1080_15226514_2023_2199876
crossref_primary_10_1016_j_chemosphere_2019_124916
crossref_primary_10_1007_s42773_023_00278_y
crossref_primary_10_1016_j_envexpbot_2022_104779
crossref_primary_10_1007_s12665_022_10595_3
crossref_primary_10_1016_j_jhazmat_2019_121799
crossref_primary_10_3390_agronomy14122907
crossref_primary_10_1016_j_geoderma_2022_116125
crossref_primary_10_1007_s11368_019_02296_5
crossref_primary_10_1080_01904167_2018_1485158
crossref_primary_10_3390_su11247136
crossref_primary_10_1007_s00267_021_01530_6
crossref_primary_10_1016_j_scienta_2019_109001
crossref_primary_10_1016_j_scitotenv_2018_02_185
crossref_primary_10_1007_s11356_019_05501_7
crossref_primary_10_1016_j_envpol_2020_114586
crossref_primary_10_1007_s11356_019_06295_4
crossref_primary_10_1016_j_scitotenv_2019_133729
crossref_primary_10_1016_j_scitotenv_2020_139946
crossref_primary_10_1007_s11356_021_12953_3
crossref_primary_10_1021_acs_est_0c07206
crossref_primary_10_18006_2020_8_3__253_264
crossref_primary_10_1007_s11356_020_10476_x
crossref_primary_10_1016_j_jece_2025_115462
crossref_primary_10_1016_j_chemosphere_2020_126800
crossref_primary_10_1016_j_ecoenv_2020_110868
crossref_primary_10_1016_j_chemosphere_2019_125414
crossref_primary_10_1016_j_heliyon_2024_e26478
crossref_primary_10_1016_j_scitotenv_2017_12_223
crossref_primary_10_3390_su12062212
crossref_primary_10_1016_j_heliyon_2018_e00543
crossref_primary_10_1016_j_scitotenv_2023_164811
crossref_primary_10_1080_09593330_2016_1151463
crossref_primary_10_1007_s42773_021_00106_1
crossref_primary_10_1016_j_envint_2019_02_022
crossref_primary_10_1016_j_jhazmat_2023_130965
crossref_primary_10_1016_j_scitotenv_2024_176709
crossref_primary_10_1016_j_envpol_2017_04_024
crossref_primary_10_1016_j_chemosphere_2022_134592
crossref_primary_10_1016_j_geoderma_2020_114919
crossref_primary_10_1016_j_scitotenv_2024_172702
crossref_primary_10_1007_s11270_019_4249_z
crossref_primary_10_1007_s11356_015_5697_7
crossref_primary_10_1007_s11356_019_06764_w
crossref_primary_10_1007_s13399_022_03308_0
crossref_primary_10_1007_s11356_024_34734_4
crossref_primary_10_1007_s11368_015_1326_9
crossref_primary_10_1016_j_scitotenv_2018_12_018
crossref_primary_10_1007_s11104_019_04256_x
crossref_primary_10_1007_s11356_019_04313_z
crossref_primary_10_3390_agriculture14122165
crossref_primary_10_1007_s11368_022_03298_6
crossref_primary_10_1080_10643389_2017_1328918
crossref_primary_10_1016_S1002_0160_19_60805_2
crossref_primary_10_1016_j_ecoenv_2018_06_065
crossref_primary_10_1016_j_scitotenv_2017_07_046
crossref_primary_10_1007_s10653_020_00603_5
crossref_primary_10_1016_j_chemosphere_2022_137556
crossref_primary_10_3389_fmicb_2022_929730
crossref_primary_10_1016_j_scitotenv_2019_134710
crossref_primary_10_1007_s11270_022_05902_4
crossref_primary_10_1016_j_jece_2017_04_015
crossref_primary_10_3389_fpls_2024_1481732
crossref_primary_10_1016_j_chemosphere_2021_130344
crossref_primary_10_2134_jeq2016_10_0388
crossref_primary_10_1007_s10646_017_1871_7
crossref_primary_10_1016_j_envres_2022_114769
crossref_primary_10_1016_j_jenvman_2021_112824
crossref_primary_10_1007_s11356_024_34911_5
crossref_primary_10_1016_S1002_0160_21_60025_5
crossref_primary_10_1007_s00344_024_11335_6
crossref_primary_10_1007_s11356_020_11215_y
Cites_doi 10.2134/jeq2002.1561
10.1016/j.chemosphere.2014.06.024
10.1016/S0168-9452(01)00373-9
10.1007/BF00283457
10.1016/j.biortech.2010.11.018
10.1016/B978-0-12-385538-1.00004-4
10.1016/j.jhazmat.2010.09.082
10.1016/j.jhazmat.2012.05.086
10.1007/s11270-006-9178-y
10.2134/jeq2010.0419
10.1039/B711896A
10.1016/S0045-6535(99)00414-2
10.1016/j.envpol.2010.07.029
10.1016/j.chemosphere.2011.07.034
10.1016/j.envpol.2011.07.023
10.1016/j.apgeochem.2012.05.004
10.1016/j.scitotenv.2013.08.072
10.1007/s11104-011-0948-y
10.1021/ac50043a017
10.5194/se-5-65-2014
10.1023/A:1022371130939
10.1016/j.ecoenv.2009.12.009
10.1111/ejss.12107
10.1016/S0003-2670(00)88973-4
10.1007/s11270-010-0591-x
10.1016/j.gexplo.2011.10.004
10.1016/j.chemosphere.2013.03.055
10.1021/es5002874
10.1006/anbo.1993.1113
10.1080/00103628409367568
10.1371/journal.pone.0095218
10.1007/s11104-013-1885-8
10.2134/jeq2011.0124
10.2134/jeq2003.8240
10.1038/ncomms1053
10.2134/jeq2010.0057
10.1016/S0065-2113(10)05002-9
10.1023/B:PLSO.0000030173.71500.e1
10.1016/j.gca.2012.01.031
10.1016/j.biombioe.2013.07.019
10.1007/BF02277359
10.1093/aob/mcf066
10.1007/s11104-008-9686-1
10.1007/s11368-012-0546-5
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
7U7
C1K
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.chemosphere.2014.12.036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Pollution Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 651
ExternalDocumentID 25559173
10_1016_j_chemosphere_2014_12_036
S0045653514014647
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
7U7
C1K
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c612t-413a669d39b78cf83541e130cb7d081ca031e78c7b26ea13a3714cb9934650d83
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 13:06:21 EDT 2025
Fri Jul 11 08:01:30 EDT 2025
Fri Jul 11 14:53:54 EDT 2025
Fri Jul 11 16:02:03 EDT 2025
Thu Apr 03 06:55:09 EDT 2025
Tue Jul 01 00:45:13 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Fri Feb 23 02:20:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Immobilization
Rhizosphere
Sequential extractions
Biochar
Heavy metal
Phytoremediation
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-413a669d39b78cf83541e130cb7d081ca031e78c7b26ea13a3714cb9934650d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0574-3033
PMID 25559173
PQID 1713943360
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1836670128
proquest_miscellaneous_1778001730
proquest_miscellaneous_1746878767
proquest_miscellaneous_1713943360
pubmed_primary_25559173
crossref_primary_10_1016_j_chemosphere_2014_12_036
crossref_citationtrail_10_1016_j_chemosphere_2014_12_036
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2014_12_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Martínez-Alcalá, Walker, Bernal (b0160) 2010; 73
Tordoff, Baker, Willis (b0230) 2000; 41
Loss, Robson, Ritchie (b0140) 1993; 72
Bolan, Park, Robinson, Naidu, Huh (b0015) 2011
Taghizadeh-Toosi, Clough, Condron, Sherlock, Anderson, Craigie (b0220) 2011; 40
Mehlich (b0165) 1984; 15
Bravin, Michaud, Larabi, Hinsinger (b0025) 2010; 158
Chaignon, Hinsinger (b0035) 2003; 32
Hashimoto, Takaoka, Shiota (b0060) 2011; 40
Vazquez, Agha, Granado, Sarro, Esteban, Penalosa, Carpena (b0235) 2006; 177
Chapman (b0040) 1965
Bravin, Garnier, Lenoble, Gérard, Dudal, Hinsinger (b0020) 2012; 84
Sas, Rengel, Tang (b0205) 2001; 160
Houben, Sonnet, Tricot, Mattielli, Couder, Opfergelt (b0110) 2014
Park, Lamb, Paneerselvam, Choppala, Bolan, Chung (b0190) 2011; 185
Hammer, Keller (b0055) 2002; 31
Wenzel (b0240) 2009; 321
Jiang, Xu, Jiang, Li (b0115) 2012; 229–230
Hinsinger (b0070) 2001
Houben, Sonnet (b0100) 2012; 27
Page, Miller, Keeney (b0180) 1982
Nye (b0175) 1981; 61
Hass, Gonzalez, Lima, Godwin, Halvorson, Boyer (b0065) 2012; 41
Hinsinger, Plassard, Tang, Jaillard (b0075) 2003; 248
Rees, Simonnot, Morel (b0200) 2014; 65
Houben, Evrard, Sonnet (b0090) 2013; 92
Lambrechts, Gustot, Couder, Houben, Iserentant, Lutts (b0125) 2011; 85
Loosemore, Straczek, Hinsinger, Jaillard (b0135) 2004; 260
Tessier, Campbell, Bisson (b0225) 1979; 51
De Nul (b0045) 2010
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (b0245) 2010; 1
Paz-Ferreiro, Lu, Fu, Méndez, Gascó (b0195) 2014; 5
Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (b0010) 2011; 159
Park, Choppala, Bolan, Chung, Chuasavathi (b0185) 2011; 348
Lu, Li, Fu, Méndez, Gascó, Paz-Ferreiro (b0150) 2015; 119
Houben, Pircar, Sonnet (b0095) 2012; 123
Xian, In Shokohifard (b0250) 1989; 45
Fellet, Marmiroli, Marchiol (b0050) 2014; 468–469
Bacon, Davidson (b0005) 2008; 133
Sas, Rengel, Tang (b0210) 2002; 89
Lambrechts, Couder, Bernal, Faz, Iserentant, Lutts (b0120) 2011; 217
Houben, Sonnet, Cornelis (b0105) 2014; 374
Houben, Couder, Sonnet (b0080) 2013; 13
Houben, Evrard, Sonnet (b0085) 2013; 57
Sohi, Krull, Lopez-Capel, Bol (b0215) 2010
Yuan, Xu, Zhang (b0255) 2011; 102
Lindsay (b0130) 1979
Marschner, Römheld (b0155) 1996
Mench, Vangronsveld, Bleeker, Ruttens, Geebelen, Lepp (b0170) 2006
Bremner, Keeney (b0030) 1965; 32
Lu, Li, Fu, Méndez, Gascó, Paz-Ferreiro (b0145) 2014; 9
De Nul (10.1016/j.chemosphere.2014.12.036_b0045) 2010
Hinsinger (10.1016/j.chemosphere.2014.12.036_b0070) 2001
Tordoff (10.1016/j.chemosphere.2014.12.036_b0230) 2000; 41
Paz-Ferreiro (10.1016/j.chemosphere.2014.12.036_b0195) 2014; 5
Sas (10.1016/j.chemosphere.2014.12.036_b0205) 2001; 160
Sas (10.1016/j.chemosphere.2014.12.036_b0210) 2002; 89
Lindsay (10.1016/j.chemosphere.2014.12.036_b0130) 1979
Rees (10.1016/j.chemosphere.2014.12.036_b0200) 2014; 65
Beesley (10.1016/j.chemosphere.2014.12.036_b0010) 2011; 159
Park (10.1016/j.chemosphere.2014.12.036_b0185) 2011; 348
Houben (10.1016/j.chemosphere.2014.12.036_b0110) 2014
Sohi (10.1016/j.chemosphere.2014.12.036_b0215) 2010
Houben (10.1016/j.chemosphere.2014.12.036_b0085) 2013; 57
Wenzel (10.1016/j.chemosphere.2014.12.036_b0240) 2009; 321
Yuan (10.1016/j.chemosphere.2014.12.036_b0255) 2011; 102
Tessier (10.1016/j.chemosphere.2014.12.036_b0225) 1979; 51
Loosemore (10.1016/j.chemosphere.2014.12.036_b0135) 2004; 260
Chaignon (10.1016/j.chemosphere.2014.12.036_b0035) 2003; 32
Martínez-Alcalá (10.1016/j.chemosphere.2014.12.036_b0160) 2010; 73
Park (10.1016/j.chemosphere.2014.12.036_b0190) 2011; 185
Houben (10.1016/j.chemosphere.2014.12.036_b0105) 2014; 374
Page (10.1016/j.chemosphere.2014.12.036_b0180) 1982
Nye (10.1016/j.chemosphere.2014.12.036_b0175) 1981; 61
Lambrechts (10.1016/j.chemosphere.2014.12.036_b0125) 2011; 85
Lu (10.1016/j.chemosphere.2014.12.036_b0145) 2014; 9
Vazquez (10.1016/j.chemosphere.2014.12.036_b0235) 2006; 177
Bravin (10.1016/j.chemosphere.2014.12.036_b0025) 2010; 158
Houben (10.1016/j.chemosphere.2014.12.036_b0095) 2012; 123
Hass (10.1016/j.chemosphere.2014.12.036_b0065) 2012; 41
Mehlich (10.1016/j.chemosphere.2014.12.036_b0165) 1984; 15
Bremner (10.1016/j.chemosphere.2014.12.036_b0030) 1965; 32
Chapman (10.1016/j.chemosphere.2014.12.036_b0040) 1965
Lu (10.1016/j.chemosphere.2014.12.036_b0150) 2015; 119
Jiang (10.1016/j.chemosphere.2014.12.036_b0115) 2012; 229–230
Xian (10.1016/j.chemosphere.2014.12.036_b0250) 1989; 45
Houben (10.1016/j.chemosphere.2014.12.036_b0100) 2012; 27
Taghizadeh-Toosi (10.1016/j.chemosphere.2014.12.036_b0220) 2011; 40
Fellet (10.1016/j.chemosphere.2014.12.036_b0050) 2014; 468–469
Hammer (10.1016/j.chemosphere.2014.12.036_b0055) 2002; 31
Houben (10.1016/j.chemosphere.2014.12.036_b0080) 2013; 13
Marschner (10.1016/j.chemosphere.2014.12.036_b0155) 1996
Hashimoto (10.1016/j.chemosphere.2014.12.036_b0060) 2011; 40
Mench (10.1016/j.chemosphere.2014.12.036_b0170) 2006
Loss (10.1016/j.chemosphere.2014.12.036_b0140) 1993; 72
Woolf (10.1016/j.chemosphere.2014.12.036_b0245) 2010; 1
Houben (10.1016/j.chemosphere.2014.12.036_b0090) 2013; 92
Lambrechts (10.1016/j.chemosphere.2014.12.036_b0120) 2011; 217
Bacon (10.1016/j.chemosphere.2014.12.036_b0005) 2008; 133
Bolan (10.1016/j.chemosphere.2014.12.036_b0015) 2011
Hinsinger (10.1016/j.chemosphere.2014.12.036_b0075) 2003; 248
Bravin (10.1016/j.chemosphere.2014.12.036_b0020) 2012; 84
References_xml – volume: 177
  start-page: 349
  year: 2006
  end-page: 365
  ident: b0235
  article-title: Use of white lupin plant for phytostabilization of Cd and As polluted acid soil
  publication-title: Water Air Soil Pollut.
– volume: 84
  start-page: 256
  year: 2012
  end-page: 268
  ident: b0020
  article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere
  publication-title: Geochim. Cosmochim. Acta
– volume: 92
  start-page: 1450
  year: 2013
  end-page: 1457
  ident: b0090
  article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar
  publication-title: Chemosphere
– volume: 1
  start-page: 56
  year: 2010
  ident: b0245
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 32
  start-page: 824
  year: 2003
  end-page: 833
  ident: b0035
  article-title: A biotest for evaluating copper bioavailability to plants in a contaminated soil
  publication-title: J. Environ. Qual.
– volume: 61
  start-page: 7
  year: 1981
  end-page: 26
  ident: b0175
  article-title: Changes of pH across the rhizosphere induced by roots
  publication-title: Plant Soil
– year: 2014
  ident: b0110
  article-title: Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 149
  year: 2014
  end-page: 161
  ident: b0200
  article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase
  publication-title: Eur. J. Soil Sci.
– volume: 40
  start-page: 696
  year: 2011
  end-page: 703
  ident: b0060
  article-title: Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an X-ray absorption fine structure spectroscopy investigation
  publication-title: J. Environ. Qual.
– volume: 229–230
  start-page: 145
  year: 2012
  end-page: 150
  ident: b0115
  article-title: Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol
  publication-title: J. Hazard. Mater.
– start-page: 145
  year: 2011
  end-page: 204
  ident: b0015
  article-title: Phytostabilization: a green approach to contaminant containment
  publication-title: Adv. Agron.
– volume: 374
  start-page: 871
  year: 2014
  end-page: 882
  ident: b0105
  article-title: Biochar from
  publication-title: Plant Soil
– start-page: 25
  year: 2001
  end-page: 41
  ident: b0070
  article-title: Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere
  publication-title: Trace Elements in the Rhizosphere
– volume: 85
  start-page: 1290
  year: 2011
  end-page: 1298
  ident: b0125
  article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with
  publication-title: Chemosphere
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: b0010
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 72
  start-page: 315
  year: 1993
  end-page: 320
  ident: b0140
  article-title: H+/OH- excretion and nutrient uptake in upper and lower parts of lupin (
  publication-title: Ann. Bot.
– volume: 468–469
  start-page: 598
  year: 2014
  end-page: 608
  ident: b0050
  article-title: Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar
  publication-title: Sci. Total Environ.
– volume: 123
  start-page: 87
  year: 2012
  end-page: 94
  ident: b0095
  article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability
  publication-title: J. Geochem. Explor.
– volume: 321
  start-page: 385
  year: 2009
  end-page: 408
  ident: b0240
  article-title: Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils
  publication-title: Plant Soil
– volume: 119
  start-page: 209
  year: 2015
  end-page: 216
  ident: b0150
  article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd
  publication-title: Chemosphere
– volume: 133
  start-page: 25
  year: 2008
  end-page: 46
  ident: b0005
  article-title: Is there a future for sequential chemical extraction?
  publication-title: Analyst
– volume: 32
  start-page: 485
  year: 1965
  end-page: 495
  ident: b0030
  article-title: Steam distillation methods for determination of ammonium, nitrate and nitrite
  publication-title: Anal. Chim. Acta
– volume: 348
  start-page: 439
  year: 2011
  end-page: 451
  ident: b0185
  article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals
  publication-title: Plant Soil
– volume: 41
  start-page: 1096
  year: 2012
  end-page: 1106
  ident: b0065
  article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil
  publication-title: J. Environ. Qual.
– volume: 15
  start-page: 1409
  year: 1984
  end-page: 1416
  ident: b0165
  article-title: Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 160
  start-page: 1191
  year: 2001
  end-page: 1198
  ident: b0205
  article-title: Excess cation uptake, and extrusion of protons and organic acid anions by
  publication-title: Plant Sci.
– volume: 9
  start-page: e95218
  year: 2014
  ident: b0145
  article-title: Can biochar and phytoextractors be jointly used for cadmium remediation?
  publication-title: PLoS ONE
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: b0255
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– start-page: 47
  year: 2010
  end-page: 82
  ident: b0215
  article-title: Chapter 2 – A Review of Biochar and Its Use and Function in Soil
  publication-title: Adv. Agron.
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  ident: b0075
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
– year: 1979
  ident: b0130
  article-title: Chemical Equilibria in Soils
– volume: 158
  start-page: 3330
  year: 2010
  end-page: 3337
  ident: b0025
  article-title: RHIZOtest: a plant-based biotest to account for rhizosphere processes when assessing copper bioavailability
  publication-title: Environ. Pollut.
– volume: 260
  start-page: 19
  year: 2004
  end-page: 32
  ident: b0135
  article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH
  publication-title: Plant Soil
– volume: 40
  start-page: 468
  year: 2011
  end-page: 476
  ident: b0220
  article-title: Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches
  publication-title: J. Environ. Qual.
– volume: 217
  start-page: 333
  year: 2011
  end-page: 346
  ident: b0120
  article-title: Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test
  publication-title: Water Air Soil Pollut.
– year: 1982
  ident: b0180
  article-title: Methods of Soil Analysis. Part 2—Chemical and Microbiological Properties
– start-page: 557
  year: 1996
  end-page: 580
  ident: b0155
  article-title: Root-induced changes in the availability of micronutrients in the rhizosphere
  publication-title: Plant Roots The Hidden Half
– volume: 13
  start-page: 543
  year: 2013
  end-page: 554
  ident: b0080
  article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization
  publication-title: J. Soils Sediments
– volume: 41
  start-page: 219
  year: 2000
  end-page: 228
  ident: b0230
  article-title: Current approaches to the revegetation and reclamation of metalliferous mine wastes
  publication-title: Chemosphere
– start-page: 349
  year: 2010
  end-page: 372
  ident: b0045
  article-title: Les minéraux des scories métallurgiques de Sclaigneaux (Andenne)
  publication-title: Terres, pierres et feu en vallée mosane
– volume: 5
  start-page: 65
  year: 2014
  end-page: 75
  ident: b0195
  article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review
  publication-title: Solid Earth
– volume: 31
  start-page: 1561
  year: 2002
  end-page: 1569
  ident: b0055
  article-title: Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants
  publication-title: J. Environ. Qual.
– volume: 27
  start-page: 1587
  year: 2012
  end-page: 1592
  ident: b0100
  article-title: Zinc mineral weathering as affected by plant roots
  publication-title: Appl. Geochem.
– volume: 45
  start-page: 265
  year: 1989
  end-page: 273
  ident: b0250
  article-title: Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils
  publication-title: Water Air Soil Pollut.
– volume: 89
  start-page: 435
  year: 2002
  end-page: 442
  ident: b0210
  article-title: The effect of nitrogen nutrition on cluster root formation and proton extrusion by
  publication-title: Ann. Bot.
– volume: 51
  start-page: 844
  year: 1979
  end-page: 851
  ident: b0225
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
– start-page: 109
  year: 2006
  end-page: 190
  ident: b0170
  article-title: Phytostabilisation of metal-contaminated sites
  publication-title: Phytoremediation of Metal-Contaminated Soils
– volume: 185
  start-page: 549
  year: 2011
  end-page: 574
  ident: b0190
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils
  publication-title: J. Hazard. Mater.
– volume: 73
  start-page: 595
  year: 2010
  end-page: 602
  ident: b0160
  article-title: Chemical and biological properties in the rhizosphere of
  publication-title: Ecotoxicol. Environ. Saf.
– start-page: 891
  year: 1965
  end-page: 901
  ident: b0040
  article-title: Cation exchange capacity
  publication-title: Methods of soil analysis: Part 1, physical and mineralogical methods
– volume: 57
  start-page: 196
  year: 2013
  end-page: 204
  ident: b0085
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (
  publication-title: Biomass Bioenerg.
– volume: 31
  start-page: 1561
  year: 2002
  ident: 10.1016/j.chemosphere.2014.12.036_b0055
  article-title: Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2002.1561
– volume: 119
  start-page: 209
  year: 2015
  ident: 10.1016/j.chemosphere.2014.12.036_b0150
  article-title: Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.06.024
– volume: 160
  start-page: 1191
  year: 2001
  ident: 10.1016/j.chemosphere.2014.12.036_b0205
  article-title: Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(01)00373-9
– volume: 45
  start-page: 265
  year: 1989
  ident: 10.1016/j.chemosphere.2014.12.036_b0250
  article-title: Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00283457
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0255
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– start-page: 557
  year: 1996
  ident: 10.1016/j.chemosphere.2014.12.036_b0155
  article-title: Root-induced changes in the availability of micronutrients in the rhizosphere
– start-page: 145
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0015
  article-title: Phytostabilization: a green approach to contaminant containment
  doi: 10.1016/B978-0-12-385538-1.00004-4
– volume: 185
  start-page: 549
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0190
  article-title: Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.09.082
– volume: 229–230
  start-page: 145
  year: 2012
  ident: 10.1016/j.chemosphere.2014.12.036_b0115
  article-title: Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.05.086
– volume: 177
  start-page: 349
  year: 2006
  ident: 10.1016/j.chemosphere.2014.12.036_b0235
  article-title: Use of white lupin plant for phytostabilization of Cd and As polluted acid soil
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-006-9178-y
– volume: 40
  start-page: 468
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0220
  article-title: Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0419
– volume: 133
  start-page: 25
  year: 2008
  ident: 10.1016/j.chemosphere.2014.12.036_b0005
  article-title: Is there a future for sequential chemical extraction?
  publication-title: Analyst
  doi: 10.1039/B711896A
– start-page: 25
  year: 2001
  ident: 10.1016/j.chemosphere.2014.12.036_b0070
  article-title: Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere
– volume: 41
  start-page: 219
  year: 2000
  ident: 10.1016/j.chemosphere.2014.12.036_b0230
  article-title: Current approaches to the revegetation and reclamation of metalliferous mine wastes
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00414-2
– volume: 158
  start-page: 3330
  year: 2010
  ident: 10.1016/j.chemosphere.2014.12.036_b0025
  article-title: RHIZOtest: a plant-based biotest to account for rhizosphere processes when assessing copper bioavailability
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.07.029
– volume: 85
  start-page: 1290
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0125
  article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.07.034
– volume: 159
  start-page: 3269
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0010
  article-title: A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 27
  start-page: 1587
  year: 2012
  ident: 10.1016/j.chemosphere.2014.12.036_b0100
  article-title: Zinc mineral weathering as affected by plant roots
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.05.004
– volume: 468–469
  start-page: 598
  year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0050
  article-title: Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.08.072
– year: 1979
  ident: 10.1016/j.chemosphere.2014.12.036_b0130
– start-page: 349
  year: 2010
  ident: 10.1016/j.chemosphere.2014.12.036_b0045
  article-title: Les minéraux des scories métallurgiques de Sclaigneaux (Andenne)
– volume: 348
  start-page: 439
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0185
  article-title: Biochar reduces the bioavailability and phytotoxicity of heavy metals
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0948-y
– volume: 51
  start-page: 844
  year: 1979
  ident: 10.1016/j.chemosphere.2014.12.036_b0225
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
  doi: 10.1021/ac50043a017
– volume: 5
  start-page: 65
  year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0195
  article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review
  publication-title: Solid Earth
  doi: 10.5194/se-5-65-2014
– volume: 248
  start-page: 43
  year: 2003
  ident: 10.1016/j.chemosphere.2014.12.036_b0075
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 73
  start-page: 595
  year: 2010
  ident: 10.1016/j.chemosphere.2014.12.036_b0160
  article-title: Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2009.12.009
– volume: 65
  start-page: 149
  year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0200
  article-title: Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12107
– volume: 32
  start-page: 485
  year: 1965
  ident: 10.1016/j.chemosphere.2014.12.036_b0030
  article-title: Steam distillation methods for determination of ammonium, nitrate and nitrite
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88973-4
– volume: 217
  start-page: 333
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0120
  article-title: Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-010-0591-x
– volume: 123
  start-page: 87
  year: 2012
  ident: 10.1016/j.chemosphere.2014.12.036_b0095
  article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.10.004
– volume: 92
  start-page: 1450
  year: 2013
  ident: 10.1016/j.chemosphere.2014.12.036_b0090
  article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.03.055
– year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0110
  article-title: Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5002874
– volume: 72
  start-page: 315
  year: 1993
  ident: 10.1016/j.chemosphere.2014.12.036_b0140
  article-title: H+/OH- excretion and nutrient uptake in upper and lower parts of lupin (Lupinus angustifolius L.) root systems
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1993.1113
– volume: 15
  start-page: 1409
  year: 1984
  ident: 10.1016/j.chemosphere.2014.12.036_b0165
  article-title: Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103628409367568
– volume: 9
  start-page: e95218
  year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0145
  article-title: Can biochar and phytoextractors be jointly used for cadmium remediation?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095218
– volume: 374
  start-page: 871
  year: 2014
  ident: 10.1016/j.chemosphere.2014.12.036_b0105
  article-title: Biochar from Miscanthus: a potential silicon fertilizer
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1885-8
– volume: 41
  start-page: 1096
  year: 2012
  ident: 10.1016/j.chemosphere.2014.12.036_b0065
  article-title: Chicken manure biochar as liming and nutrient source for acid Appalachian soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0124
– volume: 32
  start-page: 824
  year: 2003
  ident: 10.1016/j.chemosphere.2014.12.036_b0035
  article-title: A biotest for evaluating copper bioavailability to plants in a contaminated soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.8240
– start-page: 891
  year: 1965
  ident: 10.1016/j.chemosphere.2014.12.036_b0040
  article-title: Cation exchange capacity
– year: 1982
  ident: 10.1016/j.chemosphere.2014.12.036_b0180
– volume: 1
  start-page: 56
  year: 2010
  ident: 10.1016/j.chemosphere.2014.12.036_b0245
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– start-page: 109
  year: 2006
  ident: 10.1016/j.chemosphere.2014.12.036_b0170
  article-title: Phytostabilisation of metal-contaminated sites
– volume: 40
  start-page: 696
  year: 2011
  ident: 10.1016/j.chemosphere.2014.12.036_b0060
  article-title: Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an X-ray absorption fine structure spectroscopy investigation
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2010.0057
– start-page: 47
  year: 2010
  ident: 10.1016/j.chemosphere.2014.12.036_b0215
  article-title: Chapter 2 – A Review of Biochar and Its Use and Function in Soil
  doi: 10.1016/S0065-2113(10)05002-9
– volume: 260
  start-page: 19
  year: 2004
  ident: 10.1016/j.chemosphere.2014.12.036_b0135
  article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000030173.71500.e1
– volume: 84
  start-page: 256
  year: 2012
  ident: 10.1016/j.chemosphere.2014.12.036_b0020
  article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.01.031
– volume: 57
  start-page: 196
  year: 2013
  ident: 10.1016/j.chemosphere.2014.12.036_b0085
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2013.07.019
– volume: 61
  start-page: 7
  year: 1981
  ident: 10.1016/j.chemosphere.2014.12.036_b0175
  article-title: Changes of pH across the rhizosphere induced by roots
  publication-title: Plant Soil
  doi: 10.1007/BF02277359
– volume: 89
  start-page: 435
  year: 2002
  ident: 10.1016/j.chemosphere.2014.12.036_b0210
  article-title: The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcf066
– volume: 321
  start-page: 385
  year: 2009
  ident: 10.1016/j.chemosphere.2014.12.036_b0240
  article-title: Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9686-1
– volume: 13
  start-page: 543
  year: 2013
  ident: 10.1016/j.chemosphere.2014.12.036_b0080
  article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-012-0546-5
SSID ssj0001659
Score 2.506726
Snippet •Biochar application has a liming effect in bulk soil.•Adding biochar shift metals from exchangeable pool to carbonate-bound pool in bulk soil.•Root-induced...
Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 644
SubjectTerms Acidification
Agrostis - metabolism
Agrostis capillaris
Biochar
Biodegradation, Environmental
Cadmium
Charcoal - chemistry
Dynamics
Exchange
Extraction
Heavy metal
Immobilization
lead
liming
Lupinus - metabolism
Lupinus albus
Metals, Heavy - analysis
Metals, Heavy - chemistry
Metals, Heavy - isolation & purification
Metals, Heavy - metabolism
Phytoremediation
Plant Roots - metabolism
Plants (organisms)
Pools
Rhizosphere
roots
Sequential extractions
shoots
soil
Soil (material)
Soil - chemistry
Soil Pollutants - analysis
Soil Pollutants - chemistry
Soil Pollutants - isolation & purification
Soil Pollutants - metabolism
zinc
Title Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus
URI https://dx.doi.org/10.1016/j.chemosphere.2014.12.036
https://www.ncbi.nlm.nih.gov/pubmed/25559173
https://www.proquest.com/docview/1713943360
https://www.proquest.com/docview/1746878767
https://www.proquest.com/docview/1778001730
https://www.proquest.com/docview/1836670128
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CQttcSps-sm0TFOjVTWTLshZyWZaETR85NZCbkGS5uCT2Eq-hvfS3d0aykxaaJdCbH5KwNfLMN_J8MwDvKytSUR3ZhDuFDor3KrGCTxMvDeWHy10aqjV8OZeLC_HxMr_cgPnIhaGwykH3R50etPVw5XCYzcNlXRPHl9AIRaJTAhRBjHIhClrlH37dhXlwmUcILPKEWj-Gg7sYL5yX67Yj_j5lzOQi7AyGbM3_tFH3YdBgi06fwdMBRLJZfM7nsOGbHXgyH2u37cCjk5CM-ucL-HEWaJCsrZitW-JYMdOUDPHyKkF3HAVbskj-7VjbsGuPYJyVsUx9x-qGIUBkNxSYF1-ABpp9I6pI3TFnllS0CPVEGPRzv6ybHo-vbN-9hIvTk6_zRTJUW0gcopxVgtbMSDkts6ktlKtoQ4h7tHDOFiXiBmfw8_d4p7Cp9AYbkyydRXwjEOWVKnsFm03b-F1gvEyJcFtWiBWEkdyaorLeS4X2EgGcm4Aa51e7IRU5VcS40mPM2Xf9h2g0iUbzVKNoJpDedl3GfBwP6XQ8ClH_tbg02o2HdD8YBa9RjvRHxTS-7TvN0cWfiiyTR-vaCKlQLcpiXZtCEV7I1o2jMikLwhMTeB1X3-0MoF-Yo9-dvfm_F30L23iWR6rlO9hc3fR-DzHXyu6Hj2oftmZnnxbnvwFmTCzb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lK17GVv3lX2qsFfTypZlBfYSQkuypnlqoW9CkuXh0dqhjmH773dn2dkGWyjszdiSsHTy3e_k-90BfCqsiEVxYiPuFDoo3qvICj6JvDSUHy51cVet4WIl51fiy3V6vQezgQtDYZW97g86vdPW_Z3jfjWP12VJHF9CIxSJTglQRPYA9ik7VTqC_enifL7aKmQu04CCRRpRh0dw9CvMC5fmtm6Iwk9JM7noDge7hM1_NVP_gqGdOTp7Ck96HMmm4VWfwZ6vDuFgNpRvO4SHp10-6h_P4fuiY0KyumC2rIlmxUyVM4TMmwg9cpRtzgL_t2F1xW494nGWh0r1DSsrhhiR3VFsXpgADTT9SmyRsmHOrKluEaqKbtBluy6rFq9vbNu8gKuz08vZPOoLLkQOgc4mQoNmpJzkycRmyhV0JsQ9GjlnsxyhgzOoATw-yWwsvcHGJE5nEeIIBHq5Sl7CqKor_xoYz2Pi3OYFwgVhJLcmK6z3UqHJRAznxqCG9dWuz0ZORTFu9BB29k3_JhpNotE81iiaMcTbruuQkuM-nT4PQtR_7C-NpuM-3Y8GwWuUI_1UMZWv20Zz9PInIknkya42QirUjDLb1SZTBBmSXeOoRMqMIMUYXoXdt10BdA1TdL2TN_830Y9wML-8WOrlYnX-Fh7jkzQwL9_BaHPX-vcIwTb2Q_-J_QSXri-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+and+root-induced+changes+on+metal+dynamics+in+the+rhizosphere+of+Agrostis+capillaris+and+Lupinus+albus&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Houben%2C+David&rft.au=Sonnet%2C+Philippe&rft.date=2015-11-01&rft.eissn=1879-1298&rft.volume=139&rft.spage=644&rft_id=info:doi/10.1016%2Fj.chemosphere.2014.12.036&rft_id=info%3Apmid%2F25559173&rft.externalDocID=25559173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon