Quantized circular photogalvanic effect in Weyl semimetals
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a cl...
Saved in:
Published in | Nature communications Vol. 8; no. 1; p. 15995 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.07.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi
2
) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants
e
,
h
,
c
and
with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Photocurrent switches depend on circular polarization of the incident light. Here, De Juan
et al
. report a quantized circular photogalvanic effect as a measure of the topological charge of Weyl points in a class of Weyl semimetals and three-dimensional Rashba materials. |
---|---|
AbstractList | The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi
2
) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants
e
,
h
,
c
and
with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Photocurrent switches depend on circular polarization of the incident light. Here, De Juan
et al
. report a quantized circular photogalvanic effect as a measure of the topological charge of Weyl points in a class of Weyl semimetals and three-dimensional Rashba materials. The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2 ) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques. Abstract The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi 2 ) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e , h , c and "Equation missing" with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques. Photocurrent switches depend on circular polarization of the incident light. Here, De Juanet al. report a quantized circular photogalvanic effect as a measure of the topological charge of Weyl points in a class of Weyl semimetals and three-dimensional Rashba materials. The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi ) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques. |
ArticleNumber | 15995 |
Author | Grushin, Adolfo G. Morimoto, Takahiro de Juan, Fernando Moore, Joel E |
Author_xml | – sequence: 1 givenname: Fernando orcidid: 0000-0001-6852-1484 surname: de Juan fullname: de Juan, Fernando email: fernando.dejuan@physics.ox.ac.uk organization: Department of Physics, University of California, Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Rudolf Peierls Centre for Theoretical Physics – sequence: 2 givenname: Adolfo G. surname: Grushin fullname: Grushin, Adolfo G. organization: Department of Physics, University of California – sequence: 3 givenname: Takahiro surname: Morimoto fullname: Morimoto, Takahiro organization: Department of Physics, University of California – sequence: 4 givenname: Joel E surname: Moore fullname: Moore, Joel E organization: Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28681840$$D View this record in MEDLINE/PubMed https://hal.science/hal-01908345$$DView record in HAL |
BookMark | eNptkt9rFDEQx4NUbK198l0WfFH0NJNsNlkfhFLUFg5EUHwM-bV3OXaTa7J7UP96c91arsW8zDDzyXcyk3mOjkIMDqGXgD8ApuJjMHEYMrC2ZU_QCcE1LIATenTgH6OznDe4HNqCqOtn6JiIRhQXn6BPPyYVRv_H2cr4ZKZepWq7jmNcqX6ngjeV6zpnxsqH6re76avsBj-4UfX5BXraFePO7uwp-vX1y8-Ly8Xy-7eri_PlwjRAxgU1tVFWGW3aDre6gRYLQSjXDqgm1hLQ1Brg1kJnoFGMlYq8wUKDoIILeoquZl0b1UZukx9UupFReXkbiGklVRq96Z00tmWdtYxwzmvdGN1QowXXWDSkJHTR-jxrbSc9OGtcGJPqH4g-zAS_lqu4k4zhmgheBN7OAutH1y7Pl3Ifw_v-aM12UNg3d8VSvJ5cHuXgs3F9r4KLU5bQQsOBCNYU9PUjdBOnFMpYbylgQrD9JN7NlEkx5-S6-xcAlvt1kAfrUOhXh73es_8-vwDvZyCXVFi5dFD0P3p_AXfbwaQ |
CitedBy_id | crossref_primary_10_1103_RevModPhys_90_015001 crossref_primary_10_1103_PhysRevB_109_205115 crossref_primary_10_1103_PhysRevLett_127_125901 crossref_primary_10_1364_OME_437838 crossref_primary_10_1038_s41586_020_2011_8 crossref_primary_10_1038_s41467_023_40373_z crossref_primary_10_1103_PhysRevLett_125_047402 crossref_primary_10_1088_1361_6463_ac6cb3 crossref_primary_10_1038_s42005_022_01086_9 crossref_primary_10_1103_PhysRevB_102_235167 crossref_primary_10_1103_PhysRevB_97_195151 crossref_primary_10_1038_s41567_020_01104_z crossref_primary_10_1103_PhysRevLett_128_076801 crossref_primary_10_1063_5_0080357 crossref_primary_10_1016_j_crhy_2018_03_002 crossref_primary_10_1103_PhysRevB_107_155434 crossref_primary_10_1103_PhysRevB_109_045106 crossref_primary_10_1021_acs_chemmater_2c00175 crossref_primary_10_1103_PhysRevB_104_L180407 crossref_primary_10_1063_5_0158271 crossref_primary_10_1103_PhysRevApplied_20_064034 crossref_primary_10_1063_1_5124314 crossref_primary_10_1103_PhysRevX_10_011026 crossref_primary_10_1103_PhysRevB_105_024308 crossref_primary_10_1093_nsr_nwz193 crossref_primary_10_1103_PhysRevB_103_144308 crossref_primary_10_1103_PhysRevB_108_165405 crossref_primary_10_1016_j_aop_2021_168455 crossref_primary_10_1021_acsphotonics_3c00068 crossref_primary_10_1103_PhysRevB_103_075105 crossref_primary_10_1088_1361_648X_ab7f05 crossref_primary_10_1103_PhysRevB_102_155147 crossref_primary_10_1038_s41467_024_46264_1 crossref_primary_10_1103_PhysRevB_101_174419 crossref_primary_10_1103_PhysRevLett_130_156402 crossref_primary_10_1038_s41563_020_00882_4 crossref_primary_10_1126_sciadv_aay4213 crossref_primary_10_1103_PhysRevLett_122_186801 crossref_primary_10_1103_PhysRevB_105_195126 crossref_primary_10_1038_s41467_020_19459_5 crossref_primary_10_1103_PhysRevResearch_4_013164 crossref_primary_10_1103_PhysRevB_108_104110 crossref_primary_10_1073_pnas_1820331116 crossref_primary_10_1103_PhysRevB_106_125416 crossref_primary_10_1038_s42005_022_00975_3 crossref_primary_10_1038_s41563_019_0296_5 crossref_primary_10_1103_PhysRevLett_128_187401 crossref_primary_10_1103_PhysRevMaterials_6_114202 crossref_primary_10_1021_acs_jctc_3c00598 crossref_primary_10_1038_s42005_022_01106_8 crossref_primary_10_1088_1674_1056_ac9220 crossref_primary_10_1103_PhysRevB_102_235139 crossref_primary_10_1103_PhysRevB_102_195410 crossref_primary_10_1103_PhysRevB_97_241118 crossref_primary_10_1103_PhysRevResearch_2_033100 crossref_primary_10_1103_PhysRevB_106_L220302 crossref_primary_10_1103_PhysRevB_107_224308 crossref_primary_10_1002_adma_202306772 crossref_primary_10_1103_PhysRevB_105_125106 crossref_primary_10_1103_PhysRevResearch_6_L012005 crossref_primary_10_1002_smll_202204380 crossref_primary_10_1103_PhysRevB_109_045437 crossref_primary_10_1002_adma_201804629 crossref_primary_10_1093_nsr_nwy164 crossref_primary_10_1103_PhysRevB_100_245206 crossref_primary_10_1103_PhysRevB_97_035153 crossref_primary_10_1103_PhysRevMaterials_7_054201 crossref_primary_10_1103_PhysRevB_108_L020305 crossref_primary_10_1093_nsr_nwad114 crossref_primary_10_1103_PhysRevX_14_011058 crossref_primary_10_1038_s42005_023_01440_5 crossref_primary_10_1038_s42254_021_00344_z crossref_primary_10_1093_nsr_nwac020 crossref_primary_10_1021_acs_nanolett_2c02802 crossref_primary_10_1063_5_0160032 crossref_primary_10_1002_andp_201900287 crossref_primary_10_1103_PhysRevB_106_L081112 crossref_primary_10_1209_0295_5075_ad29b4 crossref_primary_10_1103_PhysRevLett_127_187002 crossref_primary_10_1103_PhysRevB_104_115116 crossref_primary_10_1103_PhysRevB_106_205205 crossref_primary_10_1103_PhysRevB_105_125201 crossref_primary_10_1209_0295_5075_119_57008 crossref_primary_10_1103_PhysRevResearch_1_033029 crossref_primary_10_1038_s41524_022_00782_y crossref_primary_10_1103_PhysRevB_104_L100404 crossref_primary_10_1063_10_0019424 crossref_primary_10_1103_PhysRevLett_123_247401 crossref_primary_10_1063_5_0035878 crossref_primary_10_1103_PhysRevB_99_075150 crossref_primary_10_1515_nanoph_2020_0226 crossref_primary_10_1126_sciadv_add7856 crossref_primary_10_1103_PhysRevResearch_2_042011 crossref_primary_10_1103_PhysRevB_109_205415 crossref_primary_10_1103_PhysRevLett_127_157405 crossref_primary_10_1103_PhysRevB_107_075141 crossref_primary_10_1002_adma_201801372 crossref_primary_10_1103_PhysRevResearch_6_013208 crossref_primary_10_1126_sciadv_abl9020 crossref_primary_10_1038_s41467_021_26765_z crossref_primary_10_1360_SSPMA_2022_0443 crossref_primary_10_1038_s41563_020_0715_7 crossref_primary_10_1038_s41427_022_00429_w crossref_primary_10_1038_s41586_022_04548_w crossref_primary_10_1038_s42254_021_00388_1 crossref_primary_10_1103_PhysRevResearch_3_L032012 crossref_primary_10_1103_PhysRevB_106_205423 crossref_primary_10_1039_D2NR05337C crossref_primary_10_1103_PhysRevB_106_035423 crossref_primary_10_1103_PhysRevB_101_045201 crossref_primary_10_1038_s41467_019_11832_3 crossref_primary_10_1103_PhysRevB_103_085106 crossref_primary_10_1038_s41567_019_0511_y crossref_primary_10_1088_2515_7639_aadd61 crossref_primary_10_1103_PhysRevB_107_235115 crossref_primary_10_1103_PhysRevMaterials_8_L021201 crossref_primary_10_1103_PhysRevB_102_245123 crossref_primary_10_1103_PhysRevB_97_195423 crossref_primary_10_1103_PhysRevResearch_5_043165 crossref_primary_10_1134_S0021364017120062 crossref_primary_10_1021_acsnano_3c02812 crossref_primary_10_1103_PhysRevB_104_115420 crossref_primary_10_1103_PhysRevB_106_224304 crossref_primary_10_1103_PhysRevB_108_205115 crossref_primary_10_1103_PhysRevB_104_115424 crossref_primary_10_1103_PhysRevB_105_L081117 crossref_primary_10_1103_PhysRevB_99_075405 crossref_primary_10_1103_PhysRevB_100_155201 crossref_primary_10_1146_annurev_conmatphys_060220_100347 crossref_primary_10_1038_s41567_018_0189_6 crossref_primary_10_1073_pnas_2307425121 crossref_primary_10_1038_s41563_021_00992_7 crossref_primary_10_1038_s41524_021_00499_4 crossref_primary_10_1021_acs_nanolett_4c01277 crossref_primary_10_1103_PhysRevB_109_075160 crossref_primary_10_1103_PhysRevB_98_205149 crossref_primary_10_1103_PhysRevLett_122_076402 crossref_primary_10_1002_adma_202201058 crossref_primary_10_1103_PhysRevB_102_245116 crossref_primary_10_1186_s11671_019_3222_5 crossref_primary_10_1038_nphys4146 crossref_primary_10_1021_acsnano_0c09162 crossref_primary_10_1103_PhysRevB_104_064307 crossref_primary_10_1038_s41578_021_00301_3 crossref_primary_10_1103_PhysRevB_109_155154 crossref_primary_10_1002_qute_202100056 crossref_primary_10_1103_PhysRevB_98_155145 crossref_primary_10_1103_PhysRevB_104_064304 crossref_primary_10_1103_PhysRevB_100_064301 crossref_primary_10_1103_PhysRevB_105_165307 crossref_primary_10_1103_PhysRevB_102_115206 crossref_primary_10_1126_sciadv_abb6500 crossref_primary_10_1038_s41524_020_00462_9 crossref_primary_10_1038_s41598_022_27200_z crossref_primary_10_1103_PhysRevB_107_035131 crossref_primary_10_1007_s44214_023_00029_x crossref_primary_10_1103_PhysRevB_106_195129 crossref_primary_10_1103_PhysRevB_106_195126 crossref_primary_10_1103_PhysRevResearch_4_013209 crossref_primary_10_1021_acsaelm_2c01376 crossref_primary_10_1103_PhysRevB_109_184514 crossref_primary_10_1103_PhysRevB_106_235424 crossref_primary_10_1140_epjb_e2019_90514_3 crossref_primary_10_1103_PhysRevLett_126_185303 crossref_primary_10_1103_PhysRevB_103_115112 crossref_primary_10_1103_PhysRevB_103_L161109 crossref_primary_10_1103_PhysRevB_108_035428 crossref_primary_10_1103_PhysRevLett_127_126604 crossref_primary_10_1038_s41524_024_01263_0 crossref_primary_10_34133_ultrafastscience_0047 crossref_primary_10_1103_PhysRevB_106_165102 crossref_primary_10_1126_sciadv_aaw9485 crossref_primary_10_1088_1361_648X_ab51ff crossref_primary_10_1103_PhysRevApplied_16_064030 crossref_primary_10_1038_s42005_021_00564_w crossref_primary_10_1103_PhysRevB_104_155120 crossref_primary_10_1103_PhysRevB_107_125151 crossref_primary_10_1002_pssb_201900305 crossref_primary_10_1103_PhysRevLett_132_266601 crossref_primary_10_1088_1367_2630_ac254f crossref_primary_10_1103_PhysRevB_106_195148 crossref_primary_10_1016_j_sse_2018_06_002 crossref_primary_10_1103_PhysRevB_107_035114 crossref_primary_10_1038_s41567_019_0564_y crossref_primary_10_1103_PhysRevB_104_075115 crossref_primary_10_1103_PhysRevB_104_155131 crossref_primary_10_1103_PhysRevB_105_235132 crossref_primary_10_1038_s41563_019_0330_7 crossref_primary_10_1103_PhysRevX_10_041041 crossref_primary_10_1103_PhysRevB_102_125148 crossref_primary_10_1103_PhysRevB_109_054201 crossref_primary_10_1002_lpor_202301008 crossref_primary_10_1021_jacs_2c12780 crossref_primary_10_1038_s41598_021_87302_y crossref_primary_10_1103_RevModPhys_93_025002 crossref_primary_10_1103_PhysRevB_101_014308 crossref_primary_10_1002_pssb_202000033 crossref_primary_10_1039_D1MA01053K crossref_primary_10_1103_PhysRevB_101_165426 crossref_primary_10_1103_PhysRevB_106_214526 crossref_primary_10_1103_PhysRevB_104_155149 crossref_primary_10_1103_PhysRevB_102_035440 crossref_primary_10_1146_annurev_conmatphys_031218_013712 crossref_primary_10_1103_PhysRevLett_129_227401 crossref_primary_10_1002_adfm_201800511 crossref_primary_10_1103_PhysRevLett_131_096901 crossref_primary_10_1103_PhysRevResearch_3_013288 crossref_primary_10_3390_cryst11020080 crossref_primary_10_1103_PhysRevB_102_104111 crossref_primary_10_1364_OL_525200 crossref_primary_10_1103_PhysRevB_107_195125 crossref_primary_10_1002_adts_201900247 crossref_primary_10_1103_PhysRevLett_124_166404 crossref_primary_10_1103_PhysRevResearch_4_023021 crossref_primary_10_1016_j_cej_2023_146805 crossref_primary_10_1038_s42254_022_00551_2 crossref_primary_10_1126_science_abg9094 crossref_primary_10_1103_PhysRevB_102_115138 crossref_primary_10_1103_PhysRevB_103_L161303 crossref_primary_10_1002_adfm_202305179 crossref_primary_10_1142_S0217979224502163 crossref_primary_10_7498_aps_70_20210498 crossref_primary_10_1039_D2CP01009G crossref_primary_10_1103_PhysRevB_102_115131 crossref_primary_10_1103_PhysRevB_99_155145 crossref_primary_10_1103_PhysRevB_105_L121407 crossref_primary_10_1002_pssb_202000027 crossref_primary_10_1209_0295_5075_ac1b65 crossref_primary_10_1103_PhysRevB_108_L241104 crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1038_s41467_018_05734_z crossref_primary_10_1063_1_5098846 crossref_primary_10_1038_s41586_018_0367_9 crossref_primary_10_1039_D3MH02250A crossref_primary_10_1103_PhysRevB_97_201117 crossref_primary_10_1103_PhysRevResearch_2_013073 crossref_primary_10_1103_PhysRevB_102_115146 crossref_primary_10_1002_adma_202209730 crossref_primary_10_1103_PhysRevResearch_2_013069 crossref_primary_10_1103_PhysRevB_109_165136 crossref_primary_10_1063_5_0083187 crossref_primary_10_1007_s11433_021_1750_2 crossref_primary_10_1364_OE_414524 crossref_primary_10_1002_adfm_202208023 crossref_primary_10_1103_PhysRevMaterials_5_124201 crossref_primary_10_1038_s41699_021_00217_0 crossref_primary_10_3390_app11010293 crossref_primary_10_1103_PhysRevB_97_041104 crossref_primary_10_3390_nano13131979 crossref_primary_10_1038_s41467_020_15825_5 crossref_primary_10_1103_PhysRevB_107_205101 crossref_primary_10_1038_s41565_023_01417_z crossref_primary_10_1103_PhysRevB_107_205107 crossref_primary_10_1103_PhysRevLett_124_126602 crossref_primary_10_1002_pssr_202200365 crossref_primary_10_1021_acsnano_3c04153 crossref_primary_10_1039_D3MA00182B crossref_primary_10_1103_PhysRevB_98_165113 crossref_primary_10_1038_s41567_019_0417_8 crossref_primary_10_1088_1361_6528_ad2639 crossref_primary_10_1103_PhysRevB_97_041101 crossref_primary_10_1103_PhysRevB_109_085117 crossref_primary_10_1364_OE_494763 crossref_primary_10_1103_PhysRevB_107_195202 crossref_primary_10_1103_PhysRevB_103_L201120 crossref_primary_10_1038_s41467_020_16879_1 crossref_primary_10_1088_2515_7639_abf0b5 crossref_primary_10_1021_acs_jpcc_1c01162 crossref_primary_10_1103_PhysRevB_107_L081110 crossref_primary_10_1103_PhysRevB_104_075139 crossref_primary_10_1134_S0021364021100015 crossref_primary_10_1021_acs_nanolett_4c00124 crossref_primary_10_1103_PhysRevB_109_155414 crossref_primary_10_1103_PhysRevB_108_075130 crossref_primary_10_1038_s41586_019_1037_2 crossref_primary_10_1103_PhysRevB_104_L161202 crossref_primary_10_1002_advs_202207508 crossref_primary_10_1103_PhysRevX_13_031011 crossref_primary_10_1103_PhysRevA_102_053325 crossref_primary_10_1103_PhysRevLett_125_143001 crossref_primary_10_1038_s41467_020_14819_7 crossref_primary_10_1038_s41567_018_0196_7 crossref_primary_10_1103_PhysRevB_107_L241202 crossref_primary_10_1016_j_apmt_2020_100732 crossref_primary_10_1103_PhysRevB_107_L161102 crossref_primary_10_1103_PhysRevResearch_4_043060 crossref_primary_10_1002_adfm_202110655 crossref_primary_10_1103_PhysRevLett_129_107201 crossref_primary_10_7498_aps_70_20202132 crossref_primary_10_1103_PhysRevB_105_214307 crossref_primary_10_1103_RevModPhys_93_011001 crossref_primary_10_1103_PhysRevB_105_075123 crossref_primary_10_1038_s41578_020_0208_y crossref_primary_10_1134_S1063776119070070 crossref_primary_10_1103_PhysRevResearch_2_013263 crossref_primary_10_1103_PhysRevB_103_L201105 crossref_primary_10_1103_PhysRevB_105_235408 crossref_primary_10_1103_PhysRevB_105_235403 crossref_primary_10_1038_s41563_018_0169_3 crossref_primary_10_1103_PhysRevMaterials_8_034202 crossref_primary_10_1103_PhysRevLett_131_116603 crossref_primary_10_1073_pnas_2100736118 crossref_primary_10_1016_j_scib_2020_09_036 crossref_primary_10_1103_PhysRevB_103_195133 crossref_primary_10_1038_s41563_019_0421_5 crossref_primary_10_1103_PhysRevB_103_035102 crossref_primary_10_1126_sciadv_aav9743 crossref_primary_10_1002_apxr_202200044 crossref_primary_10_1038_s41467_020_17261_x crossref_primary_10_1063_5_0016256 crossref_primary_10_1103_PhysRevResearch_4_L022022 crossref_primary_10_1038_s41567_024_02486_0 crossref_primary_10_1126_sciadv_abe5748 crossref_primary_10_1103_PhysRevLett_122_167401 crossref_primary_10_1063_5_0101513 crossref_primary_10_1021_acsphotonics_0c00836 crossref_primary_10_1103_PhysRevResearch_2_012073 crossref_primary_10_1103_PhysRevB_98_075305 crossref_primary_10_1038_s41467_023_37931_w crossref_primary_10_1088_1361_648X_ad52dd crossref_primary_10_1103_PhysRevB_108_L161113 crossref_primary_10_1126_sciadv_aba0509 crossref_primary_10_1103_PhysRevA_97_061602 crossref_primary_10_1186_s43593_022_00036_w crossref_primary_10_1103_PhysRevB_102_081115 crossref_primary_10_1088_1361_6463_acad10 crossref_primary_10_1063_5_0155104 crossref_primary_10_1103_PhysRevB_106_245410 crossref_primary_10_1103_PhysRevB_99_115205 crossref_primary_10_1103_PhysRevLett_121_246403 crossref_primary_10_1021_acs_chemrev_0c00732 crossref_primary_10_1038_s41534_021_00365_7 crossref_primary_10_1063_5_0156426 crossref_primary_10_1038_s41467_021_22903_9 crossref_primary_10_1103_PhysRevB_98_155125 crossref_primary_10_1103_PhysRevB_106_085206 crossref_primary_10_1103_PhysRevA_109_L021701 crossref_primary_10_1016_j_xinn_2022_100343 crossref_primary_10_1103_PhysRevB_103_L041301 crossref_primary_10_1103_PhysRevB_104_045111 crossref_primary_10_1103_PhysRevB_108_235209 crossref_primary_10_1103_PhysRevB_104_245122 crossref_primary_10_1063_1_5035304 crossref_primary_10_1038_s41567_021_01465_z crossref_primary_10_1103_PhysRevB_96_075126 crossref_primary_10_1088_2053_1583_abd6b3 crossref_primary_10_1038_s41467_020_14463_1 crossref_primary_10_1021_acs_nanolett_2c02723 crossref_primary_10_1103_PhysRevResearch_2_012017 crossref_primary_10_34133_adi_0024 crossref_primary_10_1103_PhysRevB_98_121109 crossref_primary_10_1103_PhysRevResearch_3_L042032 crossref_primary_10_1103_PhysRevB_109_035142 crossref_primary_10_1103_PhysRevB_96_075123 crossref_primary_10_1103_PhysRevB_99_155404 crossref_primary_10_1103_PhysRevX_11_011001 crossref_primary_10_1038_s41467_019_11964_6 crossref_primary_10_1103_PhysRevB_108_L201102 crossref_primary_10_1103_PhysRevLett_125_216402 crossref_primary_10_1038_s41567_022_01892_6 crossref_primary_10_7566_JPSJ_92_072001 crossref_primary_10_1103_PRXEnergy_3_023004 crossref_primary_10_1002_adma_202208343 crossref_primary_10_1103_PhysRevLett_124_077401 crossref_primary_10_1103_PhysRevResearch_2_023018 crossref_primary_10_1126_science_aba9192 crossref_primary_10_1146_annurev_matsci_070218_010023 crossref_primary_10_1103_PhysRevLett_119_206401 crossref_primary_10_1103_PhysRevB_104_245141 crossref_primary_10_21468_SciPostPhys_11_4_075 crossref_primary_10_1103_PhysRevB_103_235143 crossref_primary_10_1140_epjb_e2018_90302_7 crossref_primary_10_1038_s41535_023_00589_0 crossref_primary_10_1103_PhysRevMaterials_4_124203 crossref_primary_10_1021_acsphotonics_4c00306 crossref_primary_10_1103_PhysRevB_107_L201112 crossref_primary_10_1103_PhysRevB_103_235151 crossref_primary_10_1146_annurev_conmatphys_040721_021331 crossref_primary_10_1103_PhysRevResearch_4_043213 crossref_primary_10_1103_PhysRevB_106_205104 crossref_primary_10_1039_D1NR05812F crossref_primary_10_1088_1361_648X_ac2928 crossref_primary_10_1103_PhysRevB_108_165144 crossref_primary_10_1103_PhysRevResearch_2_033065 crossref_primary_10_1103_PhysRevLett_122_197401 crossref_primary_10_1021_acs_nanolett_3c00780 crossref_primary_10_1103_PhysRevB_106_125126 crossref_primary_10_1103_PhysRevB_110_014201 crossref_primary_10_1103_PhysRevB_109_235403 crossref_primary_10_1038_s41535_020_00298_y crossref_primary_10_1021_acsphotonics_3c01416 crossref_primary_10_1134_S1063776122100053 crossref_primary_10_1103_PhysRevB_104_L041405 crossref_primary_10_1016_j_mtelec_2024_100101 crossref_primary_10_1103_PhysRevB_102_121111 crossref_primary_10_1146_annurev_matsci_070218_010049 crossref_primary_10_1103_PhysRevB_103_214309 crossref_primary_10_1103_PhysRevB_99_045121 crossref_primary_10_1103_PhysRevLett_125_146402 crossref_primary_10_1038_s41467_024_45036_1 crossref_primary_10_1103_PhysRevB_109_235415 crossref_primary_10_1103_PhysRevB_100_195305 crossref_primary_10_1103_PhysRevB_105_184412 crossref_primary_10_1103_PhysRevB_102_205413 crossref_primary_10_1103_PhysRevB_108_155419 crossref_primary_10_1140_epjb_e2019_100495_6 crossref_primary_10_1088_1361_648X_acbc02 crossref_primary_10_1088_1367_2630_ad2822 crossref_primary_10_1103_PhysRevB_107_064403 crossref_primary_10_1103_PhysRevB_107_205306 crossref_primary_10_7498_aps_72_20231324 crossref_primary_10_1021_acsnano_9b09997 crossref_primary_10_1103_PhysRevB_101_125207 crossref_primary_10_1126_sciadv_1701207 crossref_primary_10_1038_s41377_023_01163_w crossref_primary_10_1088_1367_2630_aca34d crossref_primary_10_1103_PhysRevLett_124_196603 crossref_primary_10_1103_PhysRevLett_130_066402 crossref_primary_10_1103_PhysRevB_99_201410 crossref_primary_10_1038_s41524_020_00449_6 crossref_primary_10_1103_PhysRevB_108_155308 crossref_primary_10_1038_s41467_024_46821_8 crossref_primary_10_1002_zaac_202200055 crossref_primary_10_1103_PhysRevResearch_6_013048 crossref_primary_10_1103_PhysRevB_98_121301 crossref_primary_10_1103_PhysRevB_105_125138 crossref_primary_10_1088_1674_1056_ad2bfb crossref_primary_10_1103_PhysRevB_107_155137 crossref_primary_10_1103_PhysRevB_105_045201 crossref_primary_10_1364_OL_452929 crossref_primary_10_1103_PhysRevB_102_155116 crossref_primary_10_21468_SciPostPhysCore_7_1_002 crossref_primary_10_1073_pnas_2010752117 crossref_primary_10_1103_PhysRevLett_123_246602 crossref_primary_10_1126_science_aaz3480 crossref_primary_10_1021_acs_nanolett_3c03736 crossref_primary_10_1103_PhysRevB_108_085403 crossref_primary_10_1103_PhysRevB_102_085202 crossref_primary_10_1038_s41467_020_20408_5 crossref_primary_10_3390_sym12060919 |
Cites_doi | 10.1038/ncomms8373 10.1103/PhysRevB.91.121109 10.1103/PhysRevLett.116.077201 10.1103/PhysRevLett.105.026805 10.1103/PhysRevD.78.074033 10.1103/PhysRevB.93.201202 10.1088/1367-2630/9/9/356 10.1038/nmat3051 10.1103/PhysRevB.88.104412 10.1126/science.aac6089 10.1103/PhysRevLett.115.265304 10.1038/nature15768 10.1103/PhysRevLett.107.127205 10.1103/PhysRevB.94.125132 10.1103/PhysRevB.93.081403 10.1103/PhysRevD.86.045001 10.1103/PhysRevB.94.235123 10.1103/PhysRevLett.114.206401 10.1103/PhysRevB.85.165110 10.1103/PhysRevB.89.245121 10.1103/PhysRevLett.115.216806 10.1103/PhysRevLett.111.027201 10.1126/science.1156965 10.1103/PhysRevLett.117.136602 10.1103/PhysRevB.92.235205 10.1103/PhysRevB.88.125105 10.1103/PhysRevB.92.161110 10.1016/0550-3213(81)90361-8 10.1103/PhysRevB.93.075114 10.1103/PhysRevB.83.205101 10.1103/PhysRevLett.117.216601 10.1103/PhysRevLett.108.266802 10.1103/PhysRevB.95.041104 10.1103/PhysRevB.85.241101 10.1103/PhysRevB.94.165111 10.1038/nnano.2014.183 10.1073/pnas.1514581113 10.1103/PhysRevB.79.121302 10.1126/sciadv.1501524 10.1103/PhysRevB.61.5337 10.3367/UFNr.0130.198003b.0415 10.1038/nphys3425 10.1103/PhysRevB.93.205133 10.1038/nnano.2011.214 10.1103/PhysRevLett.108.235301 10.1126/science.aaa9297 10.1103/PhysRevB.88.245107 10.1103/PhysRevB.91.115203 10.1126/science.aaf5037 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jul 2017 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jul 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC 5PM DOA |
DOI | 10.1038/ncomms15995 |
DatabaseName | Springer Open Access PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 15995 |
ExternalDocumentID | oai_doaj_org_article_cd95fdd527774b6cb63cb87b08625fdb oai_HAL_hal_01908345v1 10_1038_ncomms15995 28681840 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI PRINS RC3 SOI 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c612t-3c4cadacbc9f09b619088237be13b2dd21b3dc17dd1fc16a55eff7608b1838783 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:16:07 EDT 2024 Tue Sep 17 21:05:40 EDT 2024 Tue Oct 15 15:32:56 EDT 2024 Fri Oct 25 00:39:55 EDT 2024 Thu Oct 10 19:26:36 EDT 2024 Fri Aug 23 00:45:32 EDT 2024 Sat Nov 02 12:02:06 EDT 2024 Fri Oct 11 20:46:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-3c4cadacbc9f09b619088237be13b2dd21b3dc17dd1fc16a55eff7608b1838783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5504287 |
ORCID | 0000-0001-6852-1484 0000-0001-7678-7100 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504287/ |
PMID | 28681840 |
PQID | 1916158858 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd95fdd527774b6cb63cb87b08625fdb pubmedcentral_primary_oai_pubmedcentral_nih_gov_5504287 hal_primary_oai_HAL_hal_01908345v1 proquest_miscellaneous_1916712856 proquest_journals_1916158858 crossref_primary_10_1038_ncomms15995 pubmed_primary_28681840 springer_journals_10_1038_ncomms15995 |
PublicationCentury | 2000 |
PublicationDate | 2017-07-06 |
PublicationDateYYYYMMDD | 2017-07-06 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Cortijo (CR24) 2016; 94 Zhong, Moore, Souza (CR20) 2016; 116 Sipe, Shkrebtii (CR36) 2000; 61 Ishizuka, Hayata, Ueda, Nagaosa (CR38) 2016; 117 Soluyanov (CR54) 2015; 527 CR34 Moore, Orenstein (CR33) 2010; 105 Lv (CR8) 2015; 5 Weng, Fang, Fang, Bernevig, Dai (CR4) 2015; 5 Bradlyn (CR51) 2016; 353 Xu (CR6) 2015; 349 Nair (CR10) 2008; 320 Parameswaran, Grover, Abanin, Pesin, Vishwanath (CR23) 2014; 4 Yuan (CR30) 2014; 9 Nielsen, Ninomiya (CR40) 1981; 185 CR46 CR45 Huang (CR5) 2015; 6 Yu, Weng, Fang, Ding, Dai (CR27) 2016; 93 Belinicher, Sturman (CR41) 1980; 130 Grushin, Venderbos, Bardarson (CR56) 2015; 91 Chang, Yang (CR18) 2015; 91 Morimoto, Nagaosa (CR57) 2016; 2 Grushin (CR14) 2012; 86 Behrends, Grushin, Ojanen, Bardarson (CR44) 2016; 93 Hirayama, Okugawa, Ishibashi, Murakami, Miyake (CR47) 2015; 114 Burkov, Kim (CR26) 2016; 117 Son, Spivak (CR22) 2013; 88 Chen, Wu, Burkov (CR17) 2013; 88 Yang (CR9) 2015; 11 Fukushima, Kharzeev, Warringa (CR11) 2008; 78 Carbotte (CR52) 2016; 94 Huang (CR42) 2016; 113 McIver, Hsieh, Steinberg, Jarillo-Herrero, Gedik (CR31) 2012; 7 Ishizaka (CR48) 2011; 10 Volovik, Konyshev (CR49) 1988; 47 Anderson, Juzeliūnas, Galitski, Spielman (CR43) 2012; 108 Chan, Lindner, Refael, Lee (CR39) 2017; 95 Xu, Zhang, Zhang (CR53) 2015; 115 Huang (CR7) 2015; 5 Zyuzin, Wu, Burkov (CR13) 2012; 85 Olbrich (CR29) 2009; 79 Okada (CR32) 2016; 93 Sodemann, Fu (CR35) 2015; 115 Taguchi, Imaeda, Sato, Tanaka (CR37) 2016; 93 Goswami, Sharma, Tewari (CR19) 2015; 92 Fang, Gilbert, Dai, Bernevig (CR50) 2012; 108 Burkov, Balents (CR3) 2011; 107 Xiong (CR25) 2015; 350 Goswami, Tewari (CR15) 2013; 88 Ashby, Carbotte (CR55) 2014; 89 Aji (CR12) 2012; 85 Murakami (CR1) 2007; 9 Ma, Pesin (CR21) 2015; 92 Kourtis (CR28) 2016; 94 Wan, Turner, Vishwanath, Savrasov (CR2) 2011; 83 Vazifeh, Franz (CR16) 2013; 111 AA Soluyanov (BFncomms15995_CR54) 2015; 527 J Xiong (BFncomms15995_CR25) 2015; 350 AG Grushin (BFncomms15995_CR14) 2012; 86 VI Belinicher (BFncomms15995_CR41) 1980; 130 BFncomms15995_CR34 PEC Ashby (BFncomms15995_CR55) 2014; 89 S-M Huang (BFncomms15995_CR42) 2016; 113 JP Carbotte (BFncomms15995_CR52) 2016; 94 AA Zyuzin (BFncomms15995_CR13) 2012; 85 X Huang (BFncomms15995_CR7) 2015; 5 H Weng (BFncomms15995_CR4) 2015; 5 JE Sipe (BFncomms15995_CR36) 2000; 61 J Ma (BFncomms15995_CR21) 2015; 92 V Aji (BFncomms15995_CR12) 2012; 85 KN Okada (BFncomms15995_CR32) 2016; 93 AG Grushin (BFncomms15995_CR56) 2015; 91 BFncomms15995_CR46 BFncomms15995_CR45 LX Yang (BFncomms15995_CR9) 2015; 11 Y Chen (BFncomms15995_CR17) 2013; 88 X Wan (BFncomms15995_CR2) 2011; 83 J Behrends (BFncomms15995_CR44) 2016; 93 MM Vazifeh (BFncomms15995_CR16) 2013; 111 HB Nielsen (BFncomms15995_CR40) 1981; 185 P Goswami (BFncomms15995_CR15) 2013; 88 A Cortijo (BFncomms15995_CR24) 2016; 94 RR Nair (BFncomms15995_CR10) 2008; 320 Y Xu (BFncomms15995_CR53) 2015; 115 M-C Chang (BFncomms15995_CR18) 2015; 91 BQ Lv (BFncomms15995_CR8) 2015; 5 S Kourtis (BFncomms15995_CR28) 2016; 94 C Fang (BFncomms15995_CR50) 2012; 108 T Morimoto (BFncomms15995_CR57) 2016; 2 S-Y Xu (BFncomms15995_CR6) 2015; 349 DT Son (BFncomms15995_CR22) 2013; 88 P Goswami (BFncomms15995_CR19) 2015; 92 BM Anderson (BFncomms15995_CR43) 2012; 108 H Ishizuka (BFncomms15995_CR38) 2016; 117 H Yuan (BFncomms15995_CR30) 2014; 9 SA Parameswaran (BFncomms15995_CR23) 2014; 4 AA Burkov (BFncomms15995_CR26) 2016; 117 K Ishizaka (BFncomms15995_CR48) 2011; 10 P Olbrich (BFncomms15995_CR29) 2009; 79 GE Volovik (BFncomms15995_CR49) 1988; 47 JW McIver (BFncomms15995_CR31) 2012; 7 JE Moore (BFncomms15995_CR33) 2010; 105 M Hirayama (BFncomms15995_CR47) 2015; 114 K Taguchi (BFncomms15995_CR37) 2016; 93 C-K Chan (BFncomms15995_CR39) 2017; 95 S Murakami (BFncomms15995_CR1) 2007; 9 AA Burkov (BFncomms15995_CR3) 2011; 107 S-M Huang (BFncomms15995_CR5) 2015; 6 I Sodemann (BFncomms15995_CR35) 2015; 115 R Yu (BFncomms15995_CR27) 2016; 93 B Bradlyn (BFncomms15995_CR51) 2016; 353 K Fukushima (BFncomms15995_CR11) 2008; 78 S Zhong (BFncomms15995_CR20) 2016; 116 |
References_xml | – volume: 88 start-page: 125105 year: 2013 ident: CR17 article-title: Axion response in weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Burkov – ident: CR45 – volume: 91 start-page: 115203 year: 2015 ident: CR18 article-title: Chiral magnetic effect in a two-band lattice model of weyl semimetal publication-title: Phys. Rev. B contributor: fullname: Yang – volume: 47 start-page: 250 year: 1988 ident: CR49 article-title: Properties of superfluid systems with multiple zeros in the spectrum of fermions publication-title: JETP Lett. contributor: fullname: Konyshev – volume: 86 start-page: 045001 year: 2012 ident: CR14 article-title: Consequences of a condensed matter realization of lorentz-violating QED in weyl semi-metals publication-title: Phys. Rev. D contributor: fullname: Grushin – volume: 94 start-page: 125132 year: 2016 ident: CR28 article-title: Bulk spectroscopic measurement of the topological charge of weyl nodes with resonant x rays publication-title: Phys. Rev. B contributor: fullname: Kourtis – volume: 5 start-page: 011029 year: 2015 ident: CR4 article-title: Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides publication-title: Phys. Rev. X contributor: fullname: Dai – volume: 61 start-page: 5337 year: 2000 end-page: 5352 ident: CR36 article-title: Second-order optical response in semiconductors publication-title: Phys. Rev. B contributor: fullname: Shkrebtii – volume: 107 start-page: 127205 year: 2011 ident: CR3 article-title: Weyl semimetal in a topological insulator multilayer publication-title: Phys. Rev. Lett. contributor: fullname: Balents – volume: 94 start-page: 235123 year: 2016 ident: CR24 article-title: Magnetic-field-induced nonlinear optical responses in inversion symmetric dirac semimetals publication-title: Phys. Rev. B contributor: fullname: Cortijo – volume: 88 start-page: 245107 year: 2013 ident: CR15 article-title: Axionic field theory of (3+1)-dimensional weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Tewari – volume: 94 start-page: 165111 year: 2016 ident: CR52 article-title: Dirac cone tilt on interband optical background of type-i and type-ii weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Carbotte – volume: 130 start-page: 415 year: 1980 end-page: 458 ident: CR41 article-title: The photogalvanic effect in media lacking a center of symmetry publication-title: Usp. Fiz. Nauk contributor: fullname: Sturman – volume: 2 start-page: e1501524 year: 2016 ident: CR57 article-title: Topological nature of nonlinear optical effects in solids publication-title: Sci. Adv. contributor: fullname: Nagaosa – volume: 113 start-page: 1180 year: 2016 ident: CR42 article-title: New type of weyl semimetal with quadratic double weyl fermions publication-title: Proc. Natl Acad. Sci. USA contributor: fullname: Huang – ident: CR46 – volume: 349 start-page: 613 year: 2015 end-page: 617 ident: CR6 article-title: Discovery of a weyl fermion semimetal and topological fermi arcs publication-title: Science contributor: fullname: Xu – volume: 350 start-page: 413 year: 2015 end-page: 416 ident: CR25 article-title: Evidence for the chiral anomaly in the dirac semimetal Na Bi publication-title: Science contributor: fullname: Xiong – volume: 92 start-page: 161110 year: 2015 ident: CR19 article-title: Optical activity as a test for dynamic chiral magnetic effect of weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Tewari – volume: 9 start-page: 851 year: 2014 end-page: 857 ident: CR30 article-title: Generation and electric control of spin–valley-coupled circular photogalvanic current in WTe publication-title: Nat. Nanotech. contributor: fullname: Yuan – volume: 93 start-page: 081403 year: 2016 ident: CR32 article-title: Enhanced photogalvanic current in topological insulators via fermi energy tuning publication-title: Phys. Rev. B contributor: fullname: Okada – volume: 353 start-page: aaf5037 year: 2016 ident: CR51 article-title: Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals publication-title: Science contributor: fullname: Bradlyn – volume: 91 start-page: 121109 year: 2015 ident: CR56 article-title: Coexistence of fermi arcs with twodimensional gapless dirac states publication-title: Phys. Rev. B contributor: fullname: Bardarson – volume: 320 start-page: 1308 year: 2008 ident: CR10 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science contributor: fullname: Nair – volume: 117 start-page: 136602 year: 2016 ident: CR26 article-title: Z and chiral anomalies in topological dirac semimetals publication-title: Phys. Rev. Lett. contributor: fullname: Kim – volume: 115 start-page: 216806 year: 2015 ident: CR35 article-title: Quantum nonlinear hall effect induced by berry curvature dipole in time-reversal invariant materials publication-title: Phys. Rev. Lett. contributor: fullname: Fu – volume: 116 start-page: 077201 year: 2016 ident: CR20 article-title: Gyrotropic magnetic effect and the magnetic moment on the fermi surface publication-title: Phys. Rev. Lett. contributor: fullname: Souza – volume: 115 start-page: 265304 year: 2015 ident: CR53 article-title: Structured weyl points in spin-orbit coupled fermionic Superfluids publication-title: Phys. Rev. Lett. contributor: fullname: Zhang – volume: 5 start-page: 031013 year: 2015 ident: CR8 article-title: Experimental discovery of weyl semimetal TaAs publication-title: Phys. Rev. X contributor: fullname: Lv – volume: 117 start-page: 216601 year: 2016 ident: CR38 article-title: Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric weyl semimetals publication-title: Phys. Rev. Lett. contributor: fullname: Nagaosa – volume: 7 start-page: 96 year: 2012 end-page: 100 ident: CR31 article-title: Control over topological insulator photocurrents with light polarization publication-title: Nat. Nanotech. contributor: fullname: Gedik – volume: 108 start-page: 266802 year: 2012 ident: CR50 article-title: Multi-weyl topological semimetals stabilized by point group symmetry publication-title: Phys. Rev. Lett. contributor: fullname: Bernevig – volume: 185 start-page: 20 year: 1981 end-page: 40 ident: CR40 article-title: Absence of neutrinos on a lattice: (i). proof by homotopy theory publication-title: Nucl. Phys. B contributor: fullname: Ninomiya – volume: 10 start-page: 521 year: 2011 end-page: 526 ident: CR48 article-title: Giant rashba-type spin splitting in bulk BiTeI publication-title: Nat. Mater. contributor: fullname: Ishizaka – volume: 5 start-page: 031023 year: 2015 ident: CR7 article-title: Observation of the chiral anomaly-induced negative magnetoresistance in 3d weyl semimetal TaAs publication-title: Phys. Rev. X contributor: fullname: Huang – volume: 85 start-page: 165110 year: 2012 ident: CR13 article-title: Weyl semimetal with broken time reversal and inversion symmetries publication-title: Phys. Rev. B contributor: fullname: Burkov – volume: 527 start-page: 495 year: 2015 end-page: 498 ident: CR54 article-title: Type-ii weyl semimetals publication-title: Nature contributor: fullname: Soluyanov – volume: 93 start-page: 205133 year: 2016 ident: CR27 article-title: Determining the chirality of weyl fermions from circular dichroism spectra in time-dependent angleresolved photoemission publication-title: Phys. Rev. B contributor: fullname: Dai – volume: 85 start-page: 241101 year: 2012 ident: CR12 article-title: Adler-bell-jackiw anomaly in weyl semimetals: application to pyrochlore iridates publication-title: Phys. Rev. B contributor: fullname: Aji – volume: 83 start-page: 205101 year: 2011 ident: CR2 article-title: Topological semimetal and Fermiarc surface states in the electronic structure of pyrochlore iridates publication-title: Phys. Rev. B contributor: fullname: Savrasov – volume: 88 start-page: 104412 year: 2013 ident: CR22 article-title: Chiral anomaly and classical negative magnetoresistance of weyl metals publication-title: Phys. Rev. B contributor: fullname: Spivak – volume: 78 start-page: 074033 year: 2008 ident: CR11 article-title: Chiral magnetic effect publication-title: Phys. Rev. D contributor: fullname: Warringa – volume: 105 start-page: 026805 year: 2010 ident: CR33 article-title: Confinement-induced berry phase and helicity-dependent photocurrents publication-title: Phys. Rev. Lett. contributor: fullname: Orenstein – volume: 9 start-page: 356 year: 2007 ident: CR1 article-title: Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase publication-title: New J. Phys. contributor: fullname: Murakami – volume: 111 start-page: 027201 year: 2013 ident: CR16 article-title: Electromagnetic response of weyl semimetals publication-title: Phys. Rev. Lett. contributor: fullname: Franz – volume: 93 start-page: 201202 year: 2016 ident: CR37 article-title: Photovoltaic chiral magnetic effect in weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Tanaka – volume: 92 start-page: 235205 year: 2015 ident: CR21 article-title: Chiral magnetic effect and natural optical activity in metals with or without weyl points publication-title: Phys. Rev. B contributor: fullname: Pesin – volume: 79 start-page: 121302 year: 2009 ident: CR29 article-title: Observation of the orbital circular photogalvanic effect publication-title: Phys. Rev. B contributor: fullname: Olbrich – volume: 11 start-page: 728 year: 2015 end-page: 732 ident: CR9 article-title: Weyl semimetal phase in the noncentrosymmetric compound TaAs publication-title: Nat. Phys. contributor: fullname: Yang – volume: 89 start-page: 245121 year: 2014 ident: CR55 article-title: Chiral anomaly and optical absorption in weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Carbotte – volume: 108 start-page: 235301 year: 2012 ident: CR43 article-title: Synthetic 3d spin-orbit coupling publication-title: Phys. Rev. Lett. contributor: fullname: Spielman – ident: CR34 – volume: 114 start-page: 206401 year: 2015 ident: CR47 article-title: Weyl node and spin texture in trigonal tellurium and selenium publication-title: Phys. Rev. Lett. contributor: fullname: Miyake – volume: 6 start-page: 7373 year: 2015 ident: CR5 article-title: A weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class publication-title: Nat. Commun. contributor: fullname: Huang – volume: 93 start-page: 075114 year: 2016 ident: CR44 article-title: Visualizing the chiral anomaly in dirac and weyl semimetals with photoemission spectroscopy publication-title: Phys. Rev. B contributor: fullname: Bardarson – volume: 4 start-page: 031035 year: 2014 ident: CR23 article-title: Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals publication-title: Phys. Rev. X contributor: fullname: Vishwanath – volume: 95 start-page: 041104 year: 2017 ident: CR39 article-title: Photocurrents in weyl semimetals publication-title: Phys. Rev. B contributor: fullname: Lee – volume: 6 start-page: 7373 year: 2015 ident: BFncomms15995_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms8373 contributor: fullname: S-M Huang – volume: 91 start-page: 121109 year: 2015 ident: BFncomms15995_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.121109 contributor: fullname: AG Grushin – volume: 116 start-page: 077201 year: 2016 ident: BFncomms15995_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.077201 contributor: fullname: S Zhong – ident: BFncomms15995_CR45 – volume: 105 start-page: 026805 year: 2010 ident: BFncomms15995_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.026805 contributor: fullname: JE Moore – volume: 5 start-page: 031023 year: 2015 ident: BFncomms15995_CR7 publication-title: Phys. Rev. X contributor: fullname: X Huang – volume: 78 start-page: 074033 year: 2008 ident: BFncomms15995_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.074033 contributor: fullname: K Fukushima – volume: 47 start-page: 250 year: 1988 ident: BFncomms15995_CR49 publication-title: JETP Lett. contributor: fullname: GE Volovik – volume: 5 start-page: 011029 year: 2015 ident: BFncomms15995_CR4 publication-title: Phys. Rev. X contributor: fullname: H Weng – volume: 93 start-page: 201202 year: 2016 ident: BFncomms15995_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.201202 contributor: fullname: K Taguchi – volume: 9 start-page: 356 year: 2007 ident: BFncomms15995_CR1 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/9/356 contributor: fullname: S Murakami – volume: 10 start-page: 521 year: 2011 ident: BFncomms15995_CR48 publication-title: Nat. Mater. doi: 10.1038/nmat3051 contributor: fullname: K Ishizaka – volume: 88 start-page: 104412 year: 2013 ident: BFncomms15995_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.104412 contributor: fullname: DT Son – volume: 350 start-page: 413 year: 2015 ident: BFncomms15995_CR25 publication-title: Science doi: 10.1126/science.aac6089 contributor: fullname: J Xiong – volume: 115 start-page: 265304 year: 2015 ident: BFncomms15995_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.265304 contributor: fullname: Y Xu – volume: 527 start-page: 495 year: 2015 ident: BFncomms15995_CR54 publication-title: Nature doi: 10.1038/nature15768 contributor: fullname: AA Soluyanov – volume: 107 start-page: 127205 year: 2011 ident: BFncomms15995_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.127205 contributor: fullname: AA Burkov – volume: 94 start-page: 125132 year: 2016 ident: BFncomms15995_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.125132 contributor: fullname: S Kourtis – volume: 93 start-page: 081403 year: 2016 ident: BFncomms15995_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.081403 contributor: fullname: KN Okada – volume: 86 start-page: 045001 year: 2012 ident: BFncomms15995_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.045001 contributor: fullname: AG Grushin – volume: 94 start-page: 235123 year: 2016 ident: BFncomms15995_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.235123 contributor: fullname: A Cortijo – volume: 114 start-page: 206401 year: 2015 ident: BFncomms15995_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.206401 contributor: fullname: M Hirayama – volume: 85 start-page: 165110 year: 2012 ident: BFncomms15995_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165110 contributor: fullname: AA Zyuzin – volume: 89 start-page: 245121 year: 2014 ident: BFncomms15995_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.245121 contributor: fullname: PEC Ashby – volume: 115 start-page: 216806 year: 2015 ident: BFncomms15995_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.216806 contributor: fullname: I Sodemann – volume: 111 start-page: 027201 year: 2013 ident: BFncomms15995_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.027201 contributor: fullname: MM Vazifeh – volume: 320 start-page: 1308 year: 2008 ident: BFncomms15995_CR10 publication-title: Science doi: 10.1126/science.1156965 contributor: fullname: RR Nair – volume: 117 start-page: 136602 year: 2016 ident: BFncomms15995_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.136602 contributor: fullname: AA Burkov – volume: 92 start-page: 235205 year: 2015 ident: BFncomms15995_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.235205 contributor: fullname: J Ma – ident: BFncomms15995_CR34 – volume: 4 start-page: 031035 year: 2014 ident: BFncomms15995_CR23 publication-title: Phys. Rev. X contributor: fullname: SA Parameswaran – volume: 88 start-page: 125105 year: 2013 ident: BFncomms15995_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125105 contributor: fullname: Y Chen – volume: 92 start-page: 161110 year: 2015 ident: BFncomms15995_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.161110 contributor: fullname: P Goswami – volume: 185 start-page: 20 year: 1981 ident: BFncomms15995_CR40 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(81)90361-8 contributor: fullname: HB Nielsen – volume: 93 start-page: 075114 year: 2016 ident: BFncomms15995_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.075114 contributor: fullname: J Behrends – volume: 83 start-page: 205101 year: 2011 ident: BFncomms15995_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.205101 contributor: fullname: X Wan – volume: 117 start-page: 216601 year: 2016 ident: BFncomms15995_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.216601 contributor: fullname: H Ishizuka – volume: 108 start-page: 266802 year: 2012 ident: BFncomms15995_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.266802 contributor: fullname: C Fang – volume: 95 start-page: 041104 year: 2017 ident: BFncomms15995_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.041104 contributor: fullname: C-K Chan – volume: 85 start-page: 241101 year: 2012 ident: BFncomms15995_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.241101 contributor: fullname: V Aji – volume: 94 start-page: 165111 year: 2016 ident: BFncomms15995_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.165111 contributor: fullname: JP Carbotte – volume: 9 start-page: 851 year: 2014 ident: BFncomms15995_CR30 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.183 contributor: fullname: H Yuan – volume: 113 start-page: 1180 year: 2016 ident: BFncomms15995_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1514581113 contributor: fullname: S-M Huang – volume: 79 start-page: 121302 year: 2009 ident: BFncomms15995_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.121302 contributor: fullname: P Olbrich – volume: 2 start-page: e1501524 year: 2016 ident: BFncomms15995_CR57 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501524 contributor: fullname: T Morimoto – volume: 61 start-page: 5337 year: 2000 ident: BFncomms15995_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.5337 contributor: fullname: JE Sipe – volume: 130 start-page: 415 year: 1980 ident: BFncomms15995_CR41 publication-title: Usp. Fiz. Nauk doi: 10.3367/UFNr.0130.198003b.0415 contributor: fullname: VI Belinicher – volume: 11 start-page: 728 year: 2015 ident: BFncomms15995_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys3425 contributor: fullname: LX Yang – volume: 93 start-page: 205133 year: 2016 ident: BFncomms15995_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.205133 contributor: fullname: R Yu – volume: 5 start-page: 031013 year: 2015 ident: BFncomms15995_CR8 publication-title: Phys. Rev. X contributor: fullname: BQ Lv – ident: BFncomms15995_CR46 – volume: 7 start-page: 96 year: 2012 ident: BFncomms15995_CR31 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2011.214 contributor: fullname: JW McIver – volume: 108 start-page: 235301 year: 2012 ident: BFncomms15995_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.235301 contributor: fullname: BM Anderson – volume: 349 start-page: 613 year: 2015 ident: BFncomms15995_CR6 publication-title: Science doi: 10.1126/science.aaa9297 contributor: fullname: S-Y Xu – volume: 88 start-page: 245107 year: 2013 ident: BFncomms15995_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245107 contributor: fullname: P Goswami – volume: 91 start-page: 115203 year: 2015 ident: BFncomms15995_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.115203 contributor: fullname: M-C Chang – volume: 353 start-page: aaf5037 year: 2016 ident: BFncomms15995_CR51 publication-title: Science doi: 10.1126/science.aaf5037 contributor: fullname: B Bradlyn |
SSID | ssj0000391844 |
Score | 2.7073684 |
Snippet | The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It... Abstract The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident... Photocurrent switches depend on circular polarization of the incident light. Here, De Juanet al. report a quantized circular photogalvanic effect as a measure... |
SourceID | doaj pubmedcentral hal proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15995 |
SubjectTerms | 639/766/119/2792 Circular polarization Condensed Matter Electromagnetism Graphene Humanities and Social Sciences Incident light Injection Inversion Metalloids multidisciplinary Photoelectric effect Photoelectric emission Physics Polarization Science Science (multidisciplinary) Switches Symmetry Topology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoNBLadMvp0lwS3o0WUnWh3tLQ8NS2kKhobkZaySxhq43ZHcL6a_vSPYu6-6hl14l2xLzPJr30GgEcOZKrW1QrmAhNEXZWFoHkavCGVX5iTA-mHga-ctXNb0uP93Im52rvmJOWF8euDfcObpKBuck10RUrEKrBFqjbaTi1GHT6jupdsRUWoNFRdKlHA7k0ZjnHQE4X7JYX2sUglKlfgoss5gHuU8y93Ml_9owTXHo6gk8HghkftFP_Ck88N0hPOyvlLx_Bu-_rclW7W_vcmzvUpJpfjtbrBYUCYg0t5j3GRx52-U__P3PfOnn7dwTBV8-h-urj98vp8VwP0KBxEtWhcASG9egxSpMKktSKPJloa1nwnLnOLPCIdPOsYBMNVLSCFpNjCU_NtqIF3DQLTr_CnJFbk_vIHJpS64rI3kwjW4EBvJZhhmcbUxW3_ZlMOq0fS1MvWPZDD5Ec24fibWrUwMhWg-I1v9CNIO3BMboG9OLz3VsiwffjSjlL5bB8QarevC6ZU3akwiaMdJk8GbbTf4SN0Gazi_W_TOagrJUGbzsod0OxY0yUfFmoEegj-Yy7unaWarJTUIvis8M3m1-j51p7Rvq6H8Y6jU84pFkpATGYzhY3a39CVGklT1N3vAHpKwR6w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyRe0PjOGCig8RitseOP7AVtaFOFYALExN6i-OzQSDTpmhZp--t3TtKyUIm3yHZs687n-53vfAY4sIlSppA2iosij5Lc0D6ITEZWy9SNuXaF9reRv5zLyUXy6VJc9gduTR9Wud4T243a1ujPyA_JriDlq7XQH-ZXkX81yntX-yc07sMOI0thPIKdk9Pzr983pyw-_7lOkv5iHo19WFGnsyb2ebYGqqjN2E8KZurjIbfB5nbM5D-O01Yfne3Cox5Ihscd5x_DPVc9gQfd05LX9NWGdmLzFI6-rYh65Y2zIZaLNuw0nE_rZU26gWB0iWEX0xGWVfjTXf8OGzcrZ45AefMMLs5Of3ycRP2LCRESUllGHBPMbY4G02KcGjKOPILmyriYG2Ytiw23GCtr4wJjmQtBIyg51oYkWyvNn8Ooqiv3EkJJGwH9g8iESZhKtWCFzlXOsSApjjGAgzXxsnmXGCNrHdpcZ3doHMCJJ-ymic9m3RbUi19ZLxwZ2lQU1gqmCIwaiUZyNFoZb25RhQngHbFl0Mfk-HPmy_xVeM0T8ScOYH_NtayXwyb7u2oCeLupJgnybpG8cvWqa6NITQsZwIuOyZuhmJba28ABqAH7B3MZ1lTltM3STaafN0cDeL9eKHemtU2ovf9P_xU8ZB5QtMGK-zBaLlbuNcGhpXnTr_lbb00M4A priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ri9QwEB_OE8Ev4tt6p1Q5P1Y3SfOoIHKKxyIqCC7et9I8elu4bc_t7uH61ztJ2-V6K34reTRhJpP5_chkAnBkUyl1KWxCyrJI0kLjPmioSKwSmZsw5UrlbyN__Sams_TzKT_dg-Exzl6A7T-pnX9ParY8f_371-Y9Gvy77sq4elOjbhYt8amzbsBNmiJF9zF8Pc4PWzLLkMmk_f28a31GHikk7kc_M_dhkbuYczd08tr5aXBLJ3fhTo8n4-NuAdyDPVffh1vdC5Mb_AoRnqZ9AG-_r1GI1R9nY1MtQ_RpfDFvVg26CETTlYm70I64quOfbnMet25RLRyKpX0Is5NPPz5Ok_7hhMQgYFklzKSmsIXRJisnmUaO5IE0k9oRpqm1lGhmDZHWktIQUXCOI0gxURoNXEnFHsF-3dTuCcQC9wPsYwzlOqUyU5yWqpAFMyUaMzERHA3Cyy-6_Bh5ONdmKr8i4wg-eMFum_ik1qGgWZ7lvY3kxma8tJZTiZhUC6MFM1pJ7VkXVugIXqJaRv-YHn_JfZm_Ea9Yyi9JBIeD1vJhNeVIShG5KcVVBC-21WhI_nSkqF2z7tpI9NZcRPC4U_J2KKqE8lQ4AjlS_2gu45q6modk3cgAPSuN4NWwUK5Ma1dQT_8__QO4TT2uCDGLh7C_Wq7dM0RFK_08rPi_eiEObQ priority: 102 providerName: Scholars Portal – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SlEAupY-kdZsWt02OpivJksa9pUvDUppAoaG5GevFGrLekN0tpL--I9u7xNlLr3pYYkaj-cbzEMCJy7U2QbmMhVBleWXoHrRcZQ5V4UcCfcCYjXxxqSZX-fdreb0Dn9a5MAP_vcDPDdF9tmCxLNYuPCHlizFua6zGmx8pscQ55nmfe_dozkDbtEX5SYdMY8jjNp7cDot85BttVc75M3jaY8X0rGPuc9jxzQvY716PvH8JX36uiCz1X-9SW9-18aTp7XS-nNOlT_i4tmkXrJHWTfrb39-kCz-rZ57Q9uIQrs6__RpPsv4phMwSBFlmwua2cpU1tgijwpDVE6Gx0MYzYbhznBnhLNPOsWCZqqSkFbQaoSGRRY3iCPaaeeNfQ6pIwmmOtVyanOsCJQ9Y6UrYQOLJbAIna5KVt13Fi7L1VAssH1A2ga-RnJshsUx120DcK_tTX1pXyOCc5JpQplHWKGENahPtKOowCXwkZgy-MTn7Uca2mOOOIpd_WALHa16VvYAtSjIzVTwMEhP4sOkm0Yj-jqrx81U3RpP-lSqBVx1rN0txVBiN2wT0gOmDvQx7mnralt8mmy7amQmcro_Hg21tE-rNf457Cwc8QoY2HPEY9pZ3K_-OAM_SvG8P_D-7MABT priority: 102 providerName: Springer Nature |
Title | Quantized circular photogalvanic effect in Weyl semimetals |
URI | https://link.springer.com/article/10.1038/ncomms15995 https://www.ncbi.nlm.nih.gov/pubmed/28681840 https://www.proquest.com/docview/1916158858 https://search.proquest.com/docview/1916712856 https://hal.science/hal-01908345 https://pubmed.ncbi.nlm.nih.gov/PMC5504287 https://doaj.org/article/cd95fdd527774b6cb63cb87b08625fdb |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD60HYO9jO7utQve6B7dxJZ18d7S0CyEpXSXsrwZ6-LFUDshl0H363ck2yFZ3vYigyRb4lx0vmMdHQFc6JhzmTMdhHmeBXEmcR1UEQu0YInpEWFyYU8jT27Y6C4eT-n0CGh7FsYF7StZXFb35WVVzFxs5aJU3TZOrHs7GSCqtki_ewzHKKA7LrpbfkmCXkvcnMXD4boV8q5chTa1ls39K5iwbs2eIXL5-tG8zGw05CHUPIyY_Gfb1Fmj4Sk8bWCk36-n-wyOTPUcHtcXSz68gE9fN0ix4o_RviqWLtTUX8zm6znaA4TOhfLrOA6_qPyf5uHeX5myKA0C8dVLuBte_xiMguaWhEAhOlkHRMUq05mSKsl7iUSHyKJmwqUJiYy0jkJJtAq51mGuQpZRiiNw1hMStVlwQV7BSTWvzBvwGSo_vqNURGUc8UTQKBcZz4jKUXND5cFFS7J0USfDSN0mNhHpDpE9uLLk3HaxGaxdxXz5K234mCqd0FxrGnEEoJIpyYiSgkvrYmGD9OADMmPvG6P-l9TW2ePvgsT0d-jBecurtNG9VYoeKMI0Iajw4P22GbXGboVklZlv6j4cTTNlHryuWbsdqhUQD_ge0_fmst-CguoyczeC6cHHVjx2pnVIqLf_PcIZPIksvnCxi-dwsl5uzDtER2vZQZ2YcizF8HMHHvX74-9jfF5d39x-w9oBG3TcfwcsJ7HoON35C6_yGQo |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74079,74369,74636 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BEGIviG8CAwIaj9GaOP4IL2ggpgLdJKRN9C2Kzw6NRJOuaZHGX8_ZSctCJd4i27GtO5_vd_b5DuDQpFLqUpgoLssiSgtN-yAmIjJKZHbElC2Ve418eibGF-mXKZ_2B25t71a52RP9Rm0adGfkR2RXkPJViqv3i8vIZY1yt6t9Co2bcMvF4XIZDORUbs9YXPRzlab9szwa-aimLudt7KJsDRSRj9dP6mXmvCF3oeaux-Q_16ZeG53cg7s9jAyPO77fhxu2fgC3u8SSV_TlHTuxfQjvvq2JdtVva0Kslt7pNFzMmlVDmoFAdIVh59ERVnX43V79DFs7r-aWIHn7CC5OPp1_HEd9voQICaesIoYpFqZAjVk5yjSZRg4_M6ltzHRiTBJrZjCWxsQlxqLgnEaQYqQ0ybWSij2Gvbqp7VMIBW0D9A9iwnWayEzxpFSFLBiWJMMxBnC4IV6-6MJi5P46m6n8Go0D-OAIu23iYln7gmb5I-9FI0eT8dIYnkiColqgFgy1ktoZW1ShA3hDbBn0MT6e5K7MPYRXLOW_4gAONlzLeyls879rJoDX22qSH3cpUtS2WXdtJClpLgJ40jF5O1SihHIWcABywP7BXIY1dTXzMbrJ8HPGaABvNwvl2rR2CfXs_9N_BXfG56eTfPL57Otz2E8ctPBuiwewt1qu7QsCRiv90q_-P7riDms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIhAXxHMJLBDQcoxax_EjXNDyKAWWFUis2FsUv2gkmpSmRVp-PWMnLRsqcYtsJ7HGM55v7M9jgEOTCaEcNwlxrkyyUuE8qFOeGMlzO6bSOulPI3864dPT7MMZO-v5T21Pq9zMiWGiNo32a-QjjCvQ-UrJ5Mj1tIjPbyYvFz8Tf4OU32ntr9O4DFfQK3Kv4XLybrve4jOhyyzrj-hhL0Y1fn7eEp9xa-CUQu5-dDUzz4zchZ277Ml_tlCDZ5rchBs9pIyPOh24BZdsfRuudpdMnuNTIHnq9g68-LJGOVa_rYl1tQwE1Hgxa1YNegkE1JWOO3ZHXNXxN3v-I27tvJpbhOftXTidvP36epr0dyckGjHLKqE606UptdK5G-cKwySPpalQllCVGpMSRY0mwhjiNOElY_gHwcdSoY1LIek92Kub2t6HmOOUgO9onTKVpSKXLHWyFCXVDu2Z6AgON8IrFl2KjCJsbVNZXJBxBK-8YLdNfF7rUNAsvxe9mRTa5MwZw1KBsFRxrTjVSgrlAy-sUBE8w2EZfGN6dFz4Mn8oXtKM_SIRHGxGregtsi3-6k8ET7fVaEt-g6SsbbPu2gh02IxHsN8N8vZXqeTSR8MRiMHwD_oyrKmrWcjXjUGgD0wjeL5RlAvd2hXUg_93_wlcQ8Uvjt-ffHwI11OPMgKD8QD2Vsu1fYQYaaUeB-X_A3KTEqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+circular+photogalvanic+effect+in+Weyl+semimetals&rft.jtitle=Nature+communications&rft.au=De+Juan%2C+Fernando&rft.au=Grushin%2C+Adolfo+G&rft.au=Morimoto%2C+Takahiro&rft.au=Moore%2C+Joel+E&rft.date=2017-07-06&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=8&rft.spage=15995&rft_id=info:doi/10.1038%2Fncomms15995&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |