Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data

Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model wa...

Full description

Saved in:
Bibliographic Details
Published inAdvances in meteorology Vol. 2018; no. 2018; pp. 1 - 11
Main Authors Bae, Younghye, Kim, Donghyun, Kim, Jongsung, Kim, Jeonghwan, Choi, Changhyun, Kim, Hung Soo
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1687-9309
1687-9317
DOI10.1155/2018/5024930

Cover

Abstract Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.
AbstractList Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.
Audience Academic
Author Kim, Jongsung
Kim, Jeonghwan
Kim, Donghyun
Choi, Changhyun
Bae, Younghye
Kim, Hung Soo
Author_xml – sequence: 1
  fullname: Bae, Younghye
– sequence: 2
  fullname: Kim, Donghyun
– sequence: 3
  fullname: Kim, Jongsung
– sequence: 4
  fullname: Kim, Jeonghwan
– sequence: 5
  fullname: Choi, Changhyun
– sequence: 6
  fullname: Kim, Hung Soo
BookMark eNqFkc1v1DAQxSNUJErpjTOyxBG29Ucc28d-AK20FQjRCxdr1hkHrxJ7cdKi_vc4pGoFAmEfbI1-783Y73m1F1PEqnrJ6BFjUh5zyvSxpLw2gj6p9lmj1coIpvYe7tQ8qw7HcUvLEkY2Ru1XX8_xFvu0GzBOJHlygXB7Rz5DiOQcBuiQfMrYBjeFFMlVarEn12OIHbkC9y1EJGuEHOfCKYzYkkKdhq5oJ3hRPfXQj3h4fx5U1-_ffTm7WK0_frg8O1mvXMP4tOK65sr7WmiqykiMC8XYxnBXg2813dTCbZhQUhpPVc1qQxHlhrW8EbRmuhUH1eXi2ybY2l0OA-Q7myDYX4WUOwt5Cq5Hy2YHYxA99TVCY5x2qHVDefkP50Xxer147XL6foPjZLfpJscyvuVUam0kN_qR6qCYhujTlMENYXT2RKpGKKWpKdTRX6iyWxyCK-H5UOq_Cd4uApfTOGb0D49h1M4Z2zlje59xwfkfuAsTzEGVPqH_l-jNIirhtfAj_K_Fq4XGwqCHR5oxrRQXPwHkwrv_
CitedBy_id crossref_primary_10_9798_KOSHAM_2024_24_4_185
crossref_primary_10_1002_ece3_7562
crossref_primary_10_1007_s11831_021_09616_4
crossref_primary_10_1007_s13762_021_03139_y
crossref_primary_10_1088_1755_1315_1105_1_012024
crossref_primary_10_3390_rs14041002
crossref_primary_10_1007_s11069_024_06549_6
crossref_primary_10_1007_s11069_021_04620_0
crossref_primary_10_1016_j_jhydrol_2021_127415
crossref_primary_10_1155_2019_6542410
crossref_primary_10_9798_KOSHAM_2018_18_7_435
crossref_primary_10_1007_s00704_023_04571_5
crossref_primary_10_1007_s11600_022_00925_1
crossref_primary_10_1007_s12205_023_1147_0
crossref_primary_10_1007_s11069_024_06871_z
crossref_primary_10_1016_j_ijdrr_2022_103010
crossref_primary_10_1007_s12205_023_2175_5
crossref_primary_10_3390_w14030466
crossref_primary_10_3390_w16070968
crossref_primary_10_9798_KOSHAM_2019_19_6_115
crossref_primary_10_3390_w11122516
crossref_primary_10_1007_s10311_023_01617_y
crossref_primary_10_1007_s11069_023_05829_x
crossref_primary_10_3390_w12010093
crossref_primary_10_2139_ssrn_3804983
crossref_primary_10_1016_j_eti_2023_103387
crossref_primary_10_1016_j_ijdrr_2022_102884
crossref_primary_10_1016_j_tcrr_2021_12_002
crossref_primary_10_3390_w12071942
crossref_primary_10_1016_j_ijdrr_2021_102121
crossref_primary_10_3390_su142113817
crossref_primary_10_1007_s00146_021_01294_x
crossref_primary_10_1109_ACCESS_2019_2963819
crossref_primary_10_31015_jaefs_2023_1_26
crossref_primary_10_31436_iiumej_v23i1_1822
crossref_primary_10_9798_KOSHAM_2019_19_6_129
crossref_primary_10_9798_KOSHAM_2019_19_6_105
crossref_primary_10_1007_s11069_020_04429_3
crossref_primary_10_9798_KOSHAM_2019_19_3_23
Cites_doi 10.1016/j.econlet.2006.06.020
10.9798/kosham.2017.17.2.371
10.1029/2012gl050961
10.1088/1748-9326/9/6/064019
10.1007/s00521-015-1930-z
10.1023/a:1005492126814
10.9798/kosham.2017.17.3.331
10.15683/kosdi.2016.3.31.74
10.1023/a:1010933404324
10.1029/2012gl052740
10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2
10.1023/a:1018054314350
10.1007/s11069-016-2579-3
ContentType Journal Article
Copyright Copyright © 2018 Changhyun Choi et al.
COPYRIGHT 2018 John Wiley & Sons, Inc.
Copyright © 2018 Changhyun Choi et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2018 Changhyun Choi et al.
– notice: COPYRIGHT 2018 John Wiley & Sons, Inc.
– notice: Copyright © 2018 Changhyun Choi et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7TG
7TN
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CWDGH
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1155/2018/5024930
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Middle East & Africa Database
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1687-9317
Editor Williams, Alastair
Editor_xml – sequence: 1
  givenname: Alastair
  surname: Williams
  fullname: Williams, Alastair
EndPage 11
ExternalDocumentID oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3
A576377809
10_1155_2018_5024930
1118772
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Inha University
GroupedDBID 188
24P
2UF
2XV
3V.
4.4
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABUWG
ADBBV
ADJCN
AENEX
AFKRA
AFPKN
AHFXO
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
C1A
CCPQU
CNMHZ
CVCKV
CWDGH
D1K
E3Z
EBS
EDH
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P62
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHX
TR2
TUS
UZ4
~8M
RHW
0R~
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
IEP
PHGZM
PHGZT
PMFND
7TG
7TN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c612t-28427ff43807697123711b92c4afd80b43cb137559f0741490ee5b1d2630418d3
IEDL.DBID DOA
ISSN 1687-9309
IngestDate Wed Aug 27 01:22:12 EDT 2025
Sat Aug 30 16:42:34 EDT 2025
Tue Jun 17 22:03:13 EDT 2025
Tue Jun 10 21:04:17 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Sun Jun 02 18:54:06 EDT 2024
Tue Nov 26 17:05:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2018
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-28427ff43807697123711b92c4afd80b43cb137559f0741490ee5b1d2630418d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8345-0610
OpenAccessLink https://doaj.org/article/1074199eef0f4ea69c8ce88602395cf3
PQID 2058895298
PQPubID 237348
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3
proquest_journals_2058895298
gale_infotracmisc_A576377809
gale_infotracacademiconefile_A576377809
crossref_primary_10_1155_2018_5024930
crossref_citationtrail_10_1155_2018_5024930
hindawi_primary_10_1155_2018_5024930
emarefa_primary_1118772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Advances in meteorology
PublicationYear 2018
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 12
13
14
(22) 2013; 2
(3) 2004; 14
17
(15) 2011
18
19
(1) 2016
(2) 1992
5
6
7
8
(4) 2006; 26
9
(11) 2017; 18
10
21
References_xml – ident: 14
  doi: 10.1016/j.econlet.2006.06.020
– volume: 14
  start-page: 211
  issue: 2
  year: 2004
  ident: 3
  publication-title: Journal of Engineering Geology
– year: 2016
  ident: 1
– ident: 9
  doi: 10.9798/kosham.2017.17.2.371
– ident: 6
  doi: 10.1029/2012gl050961
– ident: 7
  doi: 10.1088/1748-9326/9/6/064019
– ident: 17
  doi: 10.1007/s00521-015-1930-z
– volume: 2
  start-page: 1
  issue: 1
  year: 2013
  ident: 22
  publication-title: International Journal of Computer Science and Network
– ident: 12
  doi: 10.1023/a:1005492126814
– ident: 10
  doi: 10.9798/kosham.2017.17.3.331
– ident: 8
  doi: 10.15683/kosdi.2016.3.31.74
– ident: 21
  doi: 10.1023/a:1010933404324
– ident: 5
  doi: 10.1029/2012gl052740
– volume: 18
  start-page: 14
  issue: 2
  year: 2017
  ident: 11
  publication-title: Journal of the Korea Academia-Industrial Cooperation Society
– year: 2011
  ident: 15
– ident: 13
  doi: 10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2
– year: 1992
  ident: 2
– ident: 19
  doi: 10.1023/a:1018054314350
– ident: 18
  doi: 10.1007/s11069-016-2579-3
– volume: 26
  start-page: 39
  issue: 1
  year: 2006
  ident: 4
  publication-title: Journal of the Korean Society of Civil Engineers B
SSID ssj0000395697
Score 2.3134367
Snippet Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Atmospheric precipitations
Big data
Climate change
Data management
Decision trees
Dependent variables
Disaster management
Emergency preparedness
Floods
Heavy rainfall
Machine learning
Mathematical models
Meteorological data
Prediction models
Rain
Rainfall
Regression analysis
Socioeconomic factors
Storm damage
Weather forecasting
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbGJCRe0BgDMrrJD4M9oIg4tmP7cd2YKqROCDGp2ovlOPaoVNqp60D8e-5ct6NMCB6dnBPHd-e7sy_fEXIkwco0sXUlD60shWhjqfG4kHVoDhoYe9qHHF40g0vxcSRHGSTp9uERPlg7CM-Zfi8R2o5DbP5INyi8nwej9VZKxcHJX5ZRaUBlgMysUtz_6L5hfBJGf_oR10Hbrdfkx18xGv4xfrA6J5NzvkOeZl-RniyZ-4xshekuKYbg5s7maTecvqWnkzH4nKn1nFz9lgJEZ5EOgvv-k-IRDj1z32DloJ_meDCDzKBYBW1CU8oAHaaUykAz2uo17YNx6yhQ9cfX0Hfh9sjl-Ycvp4MyF08oPTgtixLMTq1iTIDyMDlgoBRjram9cLHTVSu4bxlXEFBE9CqEqUKQLevqhleC6Y6_INvT2TS8IjTUIlQsIjiYE53onHJO1V5WPEjlG1GQd6tZtT4ji2OBi4lNEYaUFnlgMw8K8mZNfbNE1PgLXR8ZtKZBHOx0AWTDZrWymE7KjAkhVlEE1xivfdBYVwtkwkdekJeZvffvwgLrqi7IMbLboh7DYL3LvyPAJyMilj2BQIwrpStTkN4GJeif37h9lAXmH5_TW0mTzcvELRBIrY2sjd7_v6e8Jk-wudwD6pHtxfwuHIBXtGgPk078An11_OE
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFLdgCIkLGt_ZCvJhwAFFxLEd2ye0DkqFVMSBSRMXy3HsUqk0W1eY9t_znut2mxBwTPPiJnnfzy-_R8iBBC_TxNaVPLSyFKKNpcbtQtahO2jg3lMdcvK5GR-LTyfyJBfcznNb5cYmJkPd9R5r5JCkS62NrI1-d3pW4tQo3F3NIzRukzsMlkY516OP2xpLxSH6X89XaUCXDK_MpvddSliR6bcSIfOwBfqaV0rg_ekLXQfHbmus737HNPli9ofZTr5otEvu5yCSHq65_oDcCouHpJhA_NsvU5mcvqJH8xkEo-noEfl2rTeI9pGOg_t1SXFvh753P8Ck0C9L3LFBLlEcjzanqZeATlKvZaAZhnVKh-D1OgpUw9kUrl25x-R49OHr0bjMUxVKD9HMqgR_VKsYE9I8vBzwXIqx1tReuNjpqhXct4wryDQihhvCVCHIlnV1wyvBdMefkJ1FvwjPCA21CBWLiBrmRCc6p5xTtZcVD1L5RhTkzeatWp8hx3Hyxdym1ENKizywmQcFebmlPl1DbfyFbogM2tIgQHb6oV9ObdY3i32mzJgQYhVFcI3x2geNA7dAJnzkBXma2Xv1Xzh5XdUFeY3stqjgcLPe5e8U4JERKsseQobGldKVKcjgBiUopr9x-iALzH8eZ7CRJpvtx7m9kva9f5_eJ_dwsXVRaEB2Vsuf4TmESav2RdKF37-nB0o
  priority: 102
  providerName: ProQuest
Title Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data
URI https://search.emarefa.net/detail/BIM-1118772
https://dx.doi.org/10.1155/2018/5024930
https://www.proquest.com/docview/2058895298
https://doaj.org/article/1074199eef0f4ea69c8ce88602395cf3
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2Avo_t2mwY9dNvDMJVsyZYem65ZGKSUskLYi5BlqQ1kyUizjf33vZOVLGWMvuzFYOuMJd3pPqTz7wg5lGBlqtDYvPSNzIVoQq7wuJC3aA4q6HvchxyfVaNL8XkiJ1ulvjAnrIMH7ibuCBMGudbeBxaEt5V2ynmFlZNKLV2IOJ9Ms61gKupgaEyVVSpYRbpkep31LiUE_FwdSQTLw-TnLXsUYfvjv7kW7u1GTT--xgD51_QvhR2t0HCXPE3uIz3uuv2MPPDz5yQbg-e7WMYNcvqOnsym4IbGuxfk61ZWEF0EOvL252-Kpzr0o_0GyoSeL_GsBvlDsTDajMYsAjqOWZaeJgDWKzoAe9dSoBpMr-DdlX1JLoenX05GeaqnkDvwY1Y5WKKiDiFizMPkgM2qOW904YQNrWKNKF3DyxpijICTLjTzXja8LaqSCa7a8hXZmS_m_g2hvhCe8YB4YVa0orW1tXXhJCu9rF0lMvJhPavGJbBxrHkxMzHokNIgD0ziQUbebqi_dyAb_6AbIIM2NAiNHR-AwJgkMOY-gcnI68TeP9_Cmut1kZH3yG6DSxs662z6QwGGjCBZ5hhis7KuFdMZ6d2hhCXp7jQfJoG5Zzi9tTSZpDlugEAqpWWh1d7_GO0-eYKf7DaNemRntfzhD8CNWjV98lANP_XJo8Hp2flFP64fuF6MJrfr5RMl
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgvgkU8MMGDygiH3ZiPyC07kMdW6sJbdLEi-c4dqlUmtEVpv0pfiN3rtNtQsDTHpNcEtv3fT7fEbLGQcsUrtJxbiseM1a5WOB2YVqjOihg7D4OORgW_SP26Zgfr5Bf7VkYTKtsZaIX1HVjMEYOTjoXQvJMio-n32PsGoW7q20LjQVZ7NmLc3DZzj7sbgF-17NsZ_twsx-HrgKxAW0-j0EeZ6VzvtJ6IUuQ3GWaVjIzTLtaJBXLTZXmJVjaDtUtk4m1vErrrADPPxV1Dt-9RVYZnmjtkNXe9vDg8zKqk-Tgbyw6uhTAvTJPZJttzznMIRXvORbpw6TrK3rQtwvwZ4I1XOulerj9FR3z8_EfisJrv5375F4wW-nGgs4ekBU7fUiiAVjczcwH5ukbujkZg_nrrx6RL1eykWjjaN_qnxcUd5Polv4GQowezHCPCOmCYkO2CfXZC3TgszstDYVfR7QHeramANUbj-DduX5Mjm5kxZ-QzrSZ2meE2ozZJHVYp0yzmtW61LrMDE9yy0tTsIi8a1dVmVDkHHttTJR3djhXiAMVcBCR9SX06aK4x1_geoigJQyW5PY3mtlIBQ5XmNmaSmmtSxyzupBGGCuwxRfQhHF5RJ4G9F7-C3u9l1lE3iK6FYoUGKzR4WQETBmLc6kN8AnzshSJjEj3GiSIAnPt8VogmP9Mp9tSkwoS60xd8tfzfz9-Te70Dwf7an93uPeC3MUPL0JSXdKZz37Yl2CkzatXgTMoOblpZvwNrcdCVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxJuFAD60cECr7sNerw8INU2jlJIoQlSquBiv1w6RQlLSQNW_xq9jxvGmrRBw6nF3Zx_eeXwz9niGkC0OKFO4Sse5rXjMWOXiEpcL0xrhoIBv9_OQg2HRP2Lvj_nxBvnV7IXBtMrGJnpDXc8NzpFDkM7LUvJMljsupEWMur13J99j7CCFK61NO42ViBza8zMI307fHnSB19tZ1tv_tNePQ4eB2ACyL2OwzZlwzlddL6QAKy7StJKZYdrVZVKx3FRpLsDrdgi9TCbW8iqtsyJPWFrWOTz3BtkUgIqsRTY7-8PRx_UMT5JD7LHq7lKAJss8kU3mPecwnrTc4ViwDxOwL2Gibx3g9wdrONZrqLj5FYP0s8kfoOGRsHeX3AkuLN1dydw9smFn90k0AO97vvCT9PQV3ZtOwBX2Rw_I50uZSXTuaN_qn-cUV5ZoV38Dg0ZHC1wvQhmh2JxtSn0mAx34TE9LQxHYMe0A5tYUqDqTMdy71A_J0bX88UekNZvP7BNCbcZskjqsWaZZzWottBaZ4UluuTAFi8ib5q8qEwqeY9-NqfKBD-cKeaACDyKyvaY-WRX6-AtdBxm0psHy3P7EfDFWQdsVZrmmUlrrEsesLqQpjS2x3RfIhHF5RB4H9l68C_u-iywir5HdCs0LfKzRYZcEDBkLdaldiA9zIcpERqR9hRLMgrlyeSsIzH-G026kSQXrdaoudO3pvy-_JLdACdWHg-HhM3Ibn7uanWqT1nLxwz4Hf21ZvQiKQcmX69bF3y7wRoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Heavy+Rain+Damage+Prediction+Model+Using+Machine+Learning+Based+on+Big+Data&rft.jtitle=Advances+in+meteorology&rft.au=Changhyun+Choi&rft.au=Jeonghwan+Kim&rft.au=Jongsung+Kim&rft.au=Donghyun+Kim&rft.date=2018-01-01&rft.pub=Wiley&rft.issn=1687-9309&rft.eissn=1687-9317&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F5024930&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9309&client=summon