Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data
Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model wa...
Saved in:
Published in | Advances in meteorology Vol. 2018; no. 2018; pp. 1 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1687-9309 1687-9317 |
DOI | 10.1155/2018/5024930 |
Cover
Abstract | Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management. |
---|---|
AbstractList | Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management. |
Audience | Academic |
Author | Kim, Jongsung Kim, Jeonghwan Kim, Donghyun Choi, Changhyun Bae, Younghye Kim, Hung Soo |
Author_xml | – sequence: 1 fullname: Bae, Younghye – sequence: 2 fullname: Kim, Donghyun – sequence: 3 fullname: Kim, Jongsung – sequence: 4 fullname: Kim, Jeonghwan – sequence: 5 fullname: Choi, Changhyun – sequence: 6 fullname: Kim, Hung Soo |
BookMark | eNqFkc1v1DAQxSNUJErpjTOyxBG29Ucc28d-AK20FQjRCxdr1hkHrxJ7cdKi_vc4pGoFAmEfbI1-783Y73m1F1PEqnrJ6BFjUh5zyvSxpLw2gj6p9lmj1coIpvYe7tQ8qw7HcUvLEkY2Ru1XX8_xFvu0GzBOJHlygXB7Rz5DiOQcBuiQfMrYBjeFFMlVarEn12OIHbkC9y1EJGuEHOfCKYzYkkKdhq5oJ3hRPfXQj3h4fx5U1-_ffTm7WK0_frg8O1mvXMP4tOK65sr7WmiqykiMC8XYxnBXg2813dTCbZhQUhpPVc1qQxHlhrW8EbRmuhUH1eXi2ybY2l0OA-Q7myDYX4WUOwt5Cq5Hy2YHYxA99TVCY5x2qHVDefkP50Xxer147XL6foPjZLfpJscyvuVUam0kN_qR6qCYhujTlMENYXT2RKpGKKWpKdTRX6iyWxyCK-H5UOq_Cd4uApfTOGb0D49h1M4Z2zlje59xwfkfuAsTzEGVPqH_l-jNIirhtfAj_K_Fq4XGwqCHR5oxrRQXPwHkwrv_ |
CitedBy_id | crossref_primary_10_9798_KOSHAM_2024_24_4_185 crossref_primary_10_1002_ece3_7562 crossref_primary_10_1007_s11831_021_09616_4 crossref_primary_10_1007_s13762_021_03139_y crossref_primary_10_1088_1755_1315_1105_1_012024 crossref_primary_10_3390_rs14041002 crossref_primary_10_1007_s11069_024_06549_6 crossref_primary_10_1007_s11069_021_04620_0 crossref_primary_10_1016_j_jhydrol_2021_127415 crossref_primary_10_1155_2019_6542410 crossref_primary_10_9798_KOSHAM_2018_18_7_435 crossref_primary_10_1007_s00704_023_04571_5 crossref_primary_10_1007_s11600_022_00925_1 crossref_primary_10_1007_s12205_023_1147_0 crossref_primary_10_1007_s11069_024_06871_z crossref_primary_10_1016_j_ijdrr_2022_103010 crossref_primary_10_1007_s12205_023_2175_5 crossref_primary_10_3390_w14030466 crossref_primary_10_3390_w16070968 crossref_primary_10_9798_KOSHAM_2019_19_6_115 crossref_primary_10_3390_w11122516 crossref_primary_10_1007_s10311_023_01617_y crossref_primary_10_1007_s11069_023_05829_x crossref_primary_10_3390_w12010093 crossref_primary_10_2139_ssrn_3804983 crossref_primary_10_1016_j_eti_2023_103387 crossref_primary_10_1016_j_ijdrr_2022_102884 crossref_primary_10_1016_j_tcrr_2021_12_002 crossref_primary_10_3390_w12071942 crossref_primary_10_1016_j_ijdrr_2021_102121 crossref_primary_10_3390_su142113817 crossref_primary_10_1007_s00146_021_01294_x crossref_primary_10_1109_ACCESS_2019_2963819 crossref_primary_10_31015_jaefs_2023_1_26 crossref_primary_10_31436_iiumej_v23i1_1822 crossref_primary_10_9798_KOSHAM_2019_19_6_129 crossref_primary_10_9798_KOSHAM_2019_19_6_105 crossref_primary_10_1007_s11069_020_04429_3 crossref_primary_10_9798_KOSHAM_2019_19_3_23 |
Cites_doi | 10.1016/j.econlet.2006.06.020 10.9798/kosham.2017.17.2.371 10.1029/2012gl050961 10.1088/1748-9326/9/6/064019 10.1007/s00521-015-1930-z 10.1023/a:1005492126814 10.9798/kosham.2017.17.3.331 10.15683/kosdi.2016.3.31.74 10.1023/a:1010933404324 10.1029/2012gl052740 10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2 10.1023/a:1018054314350 10.1007/s11069-016-2579-3 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Changhyun Choi et al. COPYRIGHT 2018 John Wiley & Sons, Inc. Copyright © 2018 Changhyun Choi et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Copyright_xml | – notice: Copyright © 2018 Changhyun Choi et al. – notice: COPYRIGHT 2018 John Wiley & Sons, Inc. – notice: Copyright © 2018 Changhyun Choi et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7TG 7TN 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CWDGH DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1155/2018/5024930 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Middle East & Africa Database Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1687-9317 |
Editor | Williams, Alastair |
Editor_xml | – sequence: 1 givenname: Alastair surname: Williams fullname: Williams, Alastair |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3 A576377809 10_1155_2018_5024930 1118772 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Inha University |
GroupedDBID | 188 24P 2UF 2XV 3V. 4.4 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAJEY ABDBF ABUWG ADBBV ADJCN AENEX AFKRA AFPKN AHFXO AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR BPHCQ C1A CCPQU CNMHZ CVCKV CWDGH D1K E3Z EBS EDH EJD ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC K6- KQ8 LK5 M7R M~E OK1 P62 PCBAR PIMPY PQQKQ PROAC Q2X RHU RHX TR2 TUS UZ4 ~8M RHW 0R~ AAYXX ACCMX ACUHS AEUYN CITATION IEP PHGZM PHGZT PMFND 7TG 7TN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c612t-28427ff43807697123711b92c4afd80b43cb137559f0741490ee5b1d2630418d3 |
IEDL.DBID | DOA |
ISSN | 1687-9309 |
IngestDate | Wed Aug 27 01:22:12 EDT 2025 Sat Aug 30 16:42:34 EDT 2025 Tue Jun 17 22:03:13 EDT 2025 Tue Jun 10 21:04:17 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Sun Jun 02 18:54:06 EDT 2024 Tue Nov 26 17:05:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2018 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-28427ff43807697123711b92c4afd80b43cb137559f0741490ee5b1d2630418d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8345-0610 |
OpenAccessLink | https://doaj.org/article/1074199eef0f4ea69c8ce88602395cf3 |
PQID | 2058895298 |
PQPubID | 237348 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3 proquest_journals_2058895298 gale_infotracmisc_A576377809 gale_infotracacademiconefile_A576377809 crossref_primary_10_1155_2018_5024930 crossref_citationtrail_10_1155_2018_5024930 hindawi_primary_10_1155_2018_5024930 emarefa_primary_1118772 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Advances in meteorology |
PublicationYear | 2018 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 12 13 14 (22) 2013; 2 (3) 2004; 14 17 (15) 2011 18 19 (1) 2016 (2) 1992 5 6 7 8 (4) 2006; 26 9 (11) 2017; 18 10 21 |
References_xml | – ident: 14 doi: 10.1016/j.econlet.2006.06.020 – volume: 14 start-page: 211 issue: 2 year: 2004 ident: 3 publication-title: Journal of Engineering Geology – year: 2016 ident: 1 – ident: 9 doi: 10.9798/kosham.2017.17.2.371 – ident: 6 doi: 10.1029/2012gl050961 – ident: 7 doi: 10.1088/1748-9326/9/6/064019 – ident: 17 doi: 10.1007/s00521-015-1930-z – volume: 2 start-page: 1 issue: 1 year: 2013 ident: 22 publication-title: International Journal of Computer Science and Network – ident: 12 doi: 10.1023/a:1005492126814 – ident: 10 doi: 10.9798/kosham.2017.17.3.331 – ident: 8 doi: 10.15683/kosdi.2016.3.31.74 – ident: 21 doi: 10.1023/a:1010933404324 – ident: 5 doi: 10.1029/2012gl052740 – volume: 18 start-page: 14 issue: 2 year: 2017 ident: 11 publication-title: Journal of the Korea Academia-Industrial Cooperation Society – year: 2011 ident: 15 – ident: 13 doi: 10.1175/1520-0442(2000)013<3625:padfti>2.0.co;2 – year: 1992 ident: 2 – ident: 19 doi: 10.1023/a:1018054314350 – ident: 18 doi: 10.1007/s11069-016-2579-3 – volume: 26 start-page: 39 issue: 1 year: 2006 ident: 4 publication-title: Journal of the Korean Society of Civil Engineers B |
SSID | ssj0000395697 |
Score | 2.3134367 |
Snippet | Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Atmospheric precipitations Big data Climate change Data management Decision trees Dependent variables Disaster management Emergency preparedness Floods Heavy rainfall Machine learning Mathematical models Meteorological data Prediction models Rain Rainfall Regression analysis Socioeconomic factors Storm damage Weather forecasting |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbGJCRe0BgDMrrJD4M9oIg4tmP7cd2YKqROCDGp2ovlOPaoVNqp60D8e-5ct6NMCB6dnBPHd-e7sy_fEXIkwco0sXUlD60shWhjqfG4kHVoDhoYe9qHHF40g0vxcSRHGSTp9uERPlg7CM-Zfi8R2o5DbP5INyi8nwej9VZKxcHJX5ZRaUBlgMysUtz_6L5hfBJGf_oR10Hbrdfkx18xGv4xfrA6J5NzvkOeZl-RniyZ-4xshekuKYbg5s7maTecvqWnkzH4nKn1nFz9lgJEZ5EOgvv-k-IRDj1z32DloJ_meDCDzKBYBW1CU8oAHaaUykAz2uo17YNx6yhQ9cfX0Hfh9sjl-Ycvp4MyF08oPTgtixLMTq1iTIDyMDlgoBRjram9cLHTVSu4bxlXEFBE9CqEqUKQLevqhleC6Y6_INvT2TS8IjTUIlQsIjiYE53onHJO1V5WPEjlG1GQd6tZtT4ji2OBi4lNEYaUFnlgMw8K8mZNfbNE1PgLXR8ZtKZBHOx0AWTDZrWymE7KjAkhVlEE1xivfdBYVwtkwkdekJeZvffvwgLrqi7IMbLboh7DYL3LvyPAJyMilj2BQIwrpStTkN4GJeif37h9lAXmH5_TW0mTzcvELRBIrY2sjd7_v6e8Jk-wudwD6pHtxfwuHIBXtGgPk078An11_OE priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Nb9MwFLdgCIkLGt_ZCvJhwAFFxLEd2ye0DkqFVMSBSRMXy3HsUqk0W1eY9t_znut2mxBwTPPiJnnfzy-_R8iBBC_TxNaVPLSyFKKNpcbtQtahO2jg3lMdcvK5GR-LTyfyJBfcznNb5cYmJkPd9R5r5JCkS62NrI1-d3pW4tQo3F3NIzRukzsMlkY516OP2xpLxSH6X89XaUCXDK_MpvddSliR6bcSIfOwBfqaV0rg_ekLXQfHbmus737HNPli9ofZTr5otEvu5yCSHq65_oDcCouHpJhA_NsvU5mcvqJH8xkEo-noEfl2rTeI9pGOg_t1SXFvh753P8Ck0C9L3LFBLlEcjzanqZeATlKvZaAZhnVKh-D1OgpUw9kUrl25x-R49OHr0bjMUxVKD9HMqgR_VKsYE9I8vBzwXIqx1tReuNjpqhXct4wryDQihhvCVCHIlnV1wyvBdMefkJ1FvwjPCA21CBWLiBrmRCc6p5xTtZcVD1L5RhTkzeatWp8hx3Hyxdym1ENKizywmQcFebmlPl1DbfyFbogM2tIgQHb6oV9ObdY3i32mzJgQYhVFcI3x2geNA7dAJnzkBXma2Xv1Xzh5XdUFeY3stqjgcLPe5e8U4JERKsseQobGldKVKcjgBiUopr9x-iALzH8eZ7CRJpvtx7m9kva9f5_eJ_dwsXVRaEB2Vsuf4TmESav2RdKF37-nB0o priority: 102 providerName: ProQuest |
Title | Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data |
URI | https://search.emarefa.net/detail/BIM-1118772 https://dx.doi.org/10.1155/2018/5024930 https://www.proquest.com/docview/2058895298 https://doaj.org/article/1074199eef0f4ea69c8ce88602395cf3 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2Avo_t2mwY9dNvDMJVsyZYem65ZGKSUskLYi5BlqQ1kyUizjf33vZOVLGWMvuzFYOuMJd3pPqTz7wg5lGBlqtDYvPSNzIVoQq7wuJC3aA4q6HvchxyfVaNL8XkiJ1ulvjAnrIMH7ibuCBMGudbeBxaEt5V2ynmFlZNKLV2IOJ9Ms61gKupgaEyVVSpYRbpkep31LiUE_FwdSQTLw-TnLXsUYfvjv7kW7u1GTT--xgD51_QvhR2t0HCXPE3uIz3uuv2MPPDz5yQbg-e7WMYNcvqOnsym4IbGuxfk61ZWEF0EOvL252-Kpzr0o_0GyoSeL_GsBvlDsTDajMYsAjqOWZaeJgDWKzoAe9dSoBpMr-DdlX1JLoenX05GeaqnkDvwY1Y5WKKiDiFizMPkgM2qOW904YQNrWKNKF3DyxpijICTLjTzXja8LaqSCa7a8hXZmS_m_g2hvhCe8YB4YVa0orW1tXXhJCu9rF0lMvJhPavGJbBxrHkxMzHokNIgD0ziQUbebqi_dyAb_6AbIIM2NAiNHR-AwJgkMOY-gcnI68TeP9_Cmut1kZH3yG6DSxs662z6QwGGjCBZ5hhis7KuFdMZ6d2hhCXp7jQfJoG5Zzi9tTSZpDlugEAqpWWh1d7_GO0-eYKf7DaNemRntfzhD8CNWjV98lANP_XJo8Hp2flFP64fuF6MJrfr5RMl |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgvgkU8MMGDygiH3ZiPyC07kMdW6sJbdLEi-c4dqlUmtEVpv0pfiN3rtNtQsDTHpNcEtv3fT7fEbLGQcsUrtJxbiseM1a5WOB2YVqjOihg7D4OORgW_SP26Zgfr5Bf7VkYTKtsZaIX1HVjMEYOTjoXQvJMio-n32PsGoW7q20LjQVZ7NmLc3DZzj7sbgF-17NsZ_twsx-HrgKxAW0-j0EeZ6VzvtJ6IUuQ3GWaVjIzTLtaJBXLTZXmJVjaDtUtk4m1vErrrADPPxV1Dt-9RVYZnmjtkNXe9vDg8zKqk-Tgbyw6uhTAvTJPZJttzznMIRXvORbpw6TrK3rQtwvwZ4I1XOulerj9FR3z8_EfisJrv5375F4wW-nGgs4ekBU7fUiiAVjczcwH5ukbujkZg_nrrx6RL1eykWjjaN_qnxcUd5Polv4GQowezHCPCOmCYkO2CfXZC3TgszstDYVfR7QHeramANUbj-DduX5Mjm5kxZ-QzrSZ2meE2ozZJHVYp0yzmtW61LrMDE9yy0tTsIi8a1dVmVDkHHttTJR3djhXiAMVcBCR9SX06aK4x1_geoigJQyW5PY3mtlIBQ5XmNmaSmmtSxyzupBGGCuwxRfQhHF5RJ4G9F7-C3u9l1lE3iK6FYoUGKzR4WQETBmLc6kN8AnzshSJjEj3GiSIAnPt8VogmP9Mp9tSkwoS60xd8tfzfz9-Te70Dwf7an93uPeC3MUPL0JSXdKZz37Yl2CkzatXgTMoOblpZvwNrcdCVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxJuFAD60cECr7sNerw8INU2jlJIoQlSquBiv1w6RQlLSQNW_xq9jxvGmrRBw6nF3Zx_eeXwz9niGkC0OKFO4Sse5rXjMWOXiEpcL0xrhoIBv9_OQg2HRP2Lvj_nxBvnV7IXBtMrGJnpDXc8NzpFDkM7LUvJMljsupEWMur13J99j7CCFK61NO42ViBza8zMI307fHnSB19tZ1tv_tNePQ4eB2ACyL2OwzZlwzlddL6QAKy7StJKZYdrVZVKx3FRpLsDrdgi9TCbW8iqtsyJPWFrWOTz3BtkUgIqsRTY7-8PRx_UMT5JD7LHq7lKAJss8kU3mPecwnrTc4ViwDxOwL2Gibx3g9wdrONZrqLj5FYP0s8kfoOGRsHeX3AkuLN1dydw9smFn90k0AO97vvCT9PQV3ZtOwBX2Rw_I50uZSXTuaN_qn-cUV5ZoV38Dg0ZHC1wvQhmh2JxtSn0mAx34TE9LQxHYMe0A5tYUqDqTMdy71A_J0bX88UekNZvP7BNCbcZskjqsWaZZzWottBaZ4UluuTAFi8ib5q8qEwqeY9-NqfKBD-cKeaACDyKyvaY-WRX6-AtdBxm0psHy3P7EfDFWQdsVZrmmUlrrEsesLqQpjS2x3RfIhHF5RB4H9l68C_u-iywir5HdCs0LfKzRYZcEDBkLdaldiA9zIcpERqR9hRLMgrlyeSsIzH-G026kSQXrdaoudO3pvy-_JLdACdWHg-HhM3Ibn7uanWqT1nLxwz4Hf21ZvQiKQcmX69bF3y7wRoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Heavy+Rain+Damage+Prediction+Model+Using+Machine+Learning+Based+on+Big+Data&rft.jtitle=Advances+in+meteorology&rft.au=Changhyun+Choi&rft.au=Jeonghwan+Kim&rft.au=Jongsung+Kim&rft.au=Donghyun+Kim&rft.date=2018-01-01&rft.pub=Wiley&rft.issn=1687-9309&rft.eissn=1687-9317&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F5024930&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1074199eef0f4ea69c8ce88602395cf3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9309&client=summon |