Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes
The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF fr...
Saved in:
Published in | Analytical Sciences Vol. 35; no. 11; pp. 1243 - 1249 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
The Japan Society for Analytical Chemistry
10.11.2019
Springer Nature Singapore Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF. |
---|---|
AbstractList | The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF. The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori ( B. mori ) and Antheraea pernyi ( A. pernyi ) through exposure to alkaline proteinase, α -chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β -sheet and the reduction of α -helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi , respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α -chymotrypsin possesses the most cleavage sites among these enzymes, the α -chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF. The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF. |
Author | WANG, Bing CHEN, Ruru YANG, Hui ZHENG, Hailing ZHOU, Yang ZHOU, Lian HU, Zhiwen |
Author_xml | – sequence: 1 fullname: CHEN, Ruru organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University – sequence: 2 fullname: ZHOU, Lian organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University – sequence: 3 fullname: YANG, Hui organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University – sequence: 4 fullname: ZHENG, Hailing organization: Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum – sequence: 5 fullname: ZHOU, Yang organization: Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum – sequence: 6 fullname: HU, Zhiwen organization: Institute of Textile Conservation, Zhejiang Sci-Tech University – sequence: 7 fullname: WANG, Bing organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31353338$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQRi1URLeFK0cUiQuXbDMeJ9k9QrstlSqBRDlbE2ey9ZLYi50gyq9vutkuUqVeZg5-bzya70QcOe9YiPeQzSVAcUaO2mjsHJbfpZSvxAxQLVIpVXEkZtkSsrRAlR2Lkxg3WQZyIeUbcYyAOSIuZuL2gteBauqtd8kXvqM_1oeEXJ1cd93gfOvX1lCbXHDPZgf5Jvlh21_Jpa2Cty5Z_d36OAROep-s3L_7juNb8boZ1-J3-34qfl6ubs-_pjffrq7PP9-kpgDZp8BQ5DmOtcnJqNoQUJU3hgwVy0xhg8hclhnWpjIlNHWuGlVjA0ouKyUJT8Wnae42-N8Dx153NhpuW3Lsh6ilLApEWajliH58hm78EB6PpyVCnkNZljBSH_bUUHVc622wHYV7_XSvEVATYIKPMXCjje13x-sD2VZDph9j0ftY9BTLqM2faU-TXxTOJiGOoFtz-L_ui8ZqMjaxpzUfPqDQW9PyAcdcA-zqzju8mzsKmh0-AAHCud8 |
CitedBy_id | crossref_primary_10_1021_acsomega_3c02254 crossref_primary_10_1111_arcm_12766 crossref_primary_10_1007_s44211_023_00283_y crossref_primary_10_1016_j_cis_2025_103413 crossref_primary_10_1093_burnst_tkab011 crossref_primary_10_1186_s40494_024_01418_8 crossref_primary_10_1186_s40494_023_01064_6 crossref_primary_10_1039_D2NJ00016D crossref_primary_10_1016_j_actbio_2022_09_021 crossref_primary_10_1208_s12249_023_02716_3 crossref_primary_10_3390_ijms241713153 |
Cites_doi | 10.1021/acsbiomaterials.7b01021 10.2116/analsci.18P314 10.1021/acs.biomac.7b01691 10.1074/jbc.M006897200 10.1016/j.colsurfb.2018.10.021 10.1016/S0167-4838(99)00088-6 10.1002/app.13393 10.1021/acs.jafc.7b02789 10.1021/acs.jproteome.7b00077 10.1002/dta.1835 10.1021/bm2006032 10.1038/322747a0 10.1021/bm050294m 10.1021/acs.biomac.7b01687 10.1016/j.biomaterials.2009.12.026 10.1088/1748-6041/10/1/015003 10.1038/462574a 10.1134/S1070427206060012 10.1038/srep18939 10.1016/j.polymdegradstab.2014.04.008 10.1111/j.1462-2920.2011.02584.x 10.1021/jf9013982 10.1016/j.jas.2016.04.001 10.1021/bm101422j 10.1021/acssensors.7b00086 10.1021/acs.analchem.8b00519 10.1039/C6TB01049K |
ContentType | Journal Article |
Copyright | 2019 by The Japan Society for Analytical Chemistry The Japan Society for Analytical Chemistry 2019 Copyright Japan Science and Technology Agency 2019 |
Copyright_xml | – notice: 2019 by The Japan Society for Analytical Chemistry – notice: The Japan Society for Analytical Chemistry 2019 – notice: Copyright Japan Science and Technology Agency 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
DOI | 10.2116/analsci.19P222 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-2246 |
EndPage | 1249 |
ExternalDocumentID | 31353338 10_2116_analsci_19P222 article_analsci_35_11_35_19P222_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23M 2WC 406 5GY 6J9 7.U AATNV AAYFA ACGFO ACIWK ACPRK ADBBV ADOXG AENEX AESKC AFRAH AIAKS ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAWUL CS3 DIK E3Z EBS EJD F5P GX1 HH5 IWAJR JSF JSH JZLTJ KQ8 LLZTM M~E NPVJJ OK1 P2P RDB RJT RNS RSV RZJ RZV SOJ TN5 TR2 UPT XSB ZMTXR ~02 0R~ 3O- 53G AACDK AAJBT AASML ABAKF ABJNI ABTKH ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AFBBN AGMZJ AGQEE AI. AIGIU DPUIP EBLON FIGPU ROL SJYHP TKC VH1 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD ABRTQ FR3 H8G JG9 L7M P64 7X8 |
ID | FETCH-LOGICAL-c612t-1e16553e16f5ac4dca1ab5fcaca69043f33ee7703dcbc71fd54f4d3f1429b42a3 |
ISSN | 0910-6340 1348-2246 |
IngestDate | Thu Jul 10 19:30:40 EDT 2025 Wed Aug 27 14:44:10 EDT 2025 Thu Apr 03 06:56:29 EDT 2025 Tue Jul 01 01:11:38 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 21 02:42:24 EST 2025 Thu Aug 17 20:29:41 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | enzymes Silk fibroin degradation immunoassay |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c612t-1e16553e16f5ac4dca1ab5fcaca69043f33ee7703dcbc71fd54f4d3f1429b42a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/analsci/35/11/35_19P222/_article/-char/en |
PMID | 31353338 |
PQID | 2315517771 |
PQPubID | 1966371 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2266332649 proquest_journals_2315517771 pubmed_primary_31353338 crossref_citationtrail_10_2116_analsci_19P222 crossref_primary_10_2116_analsci_19P222 springer_journals_10_2116_analsci_19P222 jstage_primary_article_analsci_35_11_35_19P222_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Nov-10 |
PublicationDateYYYYMMDD | 2019-11-10 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-Nov-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Japan – name: Tokyo |
PublicationTitle | Analytical Sciences |
PublicationTitleAbbrev | ANAL. SCI |
PublicationTitleAlternate | Anal Sci |
PublicationYear | 2019 |
Publisher | The Japan Society for Analytical Chemistry Springer Nature Singapore Nature Publishing Group |
Publisher_xml | – name: The Japan Society for Analytical Chemistry – name: Springer Nature Singapore – name: Nature Publishing Group |
References | 27. Y. Wang, J. Wen, B. Peng, B. Hu, X. Chen, and Z. Shao, Biomacromolecules, 2018, 19, 1999. 12. K. Numata, P. Cebe, and D. L. Kaplan, Biomaterials, 2010, 31, 2926. 25. S. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 2005, 6, 2563. 3. W. Patrick, S. Hans, and P. Angelika, J. Agric. Food Chem., 2009, 57, 8399. 9. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 2011, 12, 1080. 24. I. Siddiqui and Q. Husain, Colloid. Surf. B, 2019, 173, 733. 7. M. E.-S. Osman, A. A. E.-N. El-Shaphy, D. A. Meligy, and M. M. Ayid, Int. J. Conserv. Sci., 2014, 5, 295. 15. T. Tsumuraya, T. Sato, M. Hirama, and I. Fujii, Anal. Chem., 2018, 90, 7318. 16. J. Gu, C. Xu, M. Li, B. Chen, Y. Shang, H. Zheng, Y. Zhou, Z. Hu, Z. Peng, and B. Wang, Anal. Sci., 2019, 35, 175. 21. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 2000, 275, 40517. 8. K. Sterflinger and F. Pinzari, Environ. Microbiol., 2012, 14, 559. 19. G. Fang, S. Sapru, S. Behera, J. Yao, Z. Shao, S. C. Kundu, and X. Chen, J. Mater. Chem. B, 2016, 4, 4337. 28. D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature, 1986, 322, 747. 1. J. Li, F. Cai, X. Ye, J. Liang, J. Li, M. Wu, D. Zhao, Z. Jiang, Z. You, and B. Zhong, J. Proteome Res., 2017, 16, 2495. 26. C. Guo, J. Zhang, J. S. Jordan, X. Wang, R. W. Henning, and J. L. Yarger, Biomacromolecules, 2018, 19, 906. 4. H. Mai, Y. Yang, I. Abuduresule, W. Li, X. Hu, and C. Wang, Sci. Rep., 2016, 6, 18939. 6. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Lojewski, and J. Lojewska, Polym. Degrad. Stabil., 2014, 105, 185. 23. L. Hedstrom, Chem. Rev., 2003, 34, 4501. 20. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Mizuno, Biochim. Biophys. Acta, 1999, 1432, 92. 14. Q. You, M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, ACS Sens., 2017, 2, 569. 13. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. J. Appl. Chem., 2006, 79, 869. 10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 2014, 10, 015003. 29. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 2004, 91, 2383. 11. T. Wongpinyochit, B. F. Johnston, and F. P. Seib, ACS Biomater. Sci. Eng., 2018, 4, 942. 17. M. Timms, R. Steel, and J. Vine, Drug Test. Anal., 2016, 8, 164. 2. J. Glausiusz, Nature, 2009, 462, 574. 22. Q. You, Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, J. Agric. Food Chem., 2017, 65, 7805. 5. E. Karpova, V. Vasiliev, V. Mamatyuk, N. Polosmak, and L. Kundo, J. Archaeol. Sci., 2016, 70, 15. 18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 2011, 12, 3344. LiJCaiFYeXLiangJLiJWuMZhaoDJiangZYouZZhongBJ. Proteome Res.20171624951:CAS:528:DC%2BC2sXovVGnsrg%3D10.1021/acs.jproteome.7b0007728569067 WangYWenJPengBHuBChenXShaoZBiomacromolecules20181919991:CAS:528:DC%2BC1cXitFClu7o%3D10.1021/acs.biomac.7b0169129401377 HaSGraczH STonelliA EHudsonS MBiomacromolecules2005625631:CAS:528:DC%2BD2MXlvF2is7c%3D10.1021/bm050294m16153093 SiddiquiIHusainQColloid. Surf. B20191737331:CAS:528:DC%2BC1cXitVaqtrrO10.1016/j.colsurfb.2018.10.021 WongpinyochitTJohnstonB FSeibF PACS Biomater. Sci. Eng.201849421:CAS:528:DC%2BC1cXit1yku70%3D10.1021/acsbiomaterials.7b0102133418776 YouRXuYLiuYLiXLiMBiomed. Mater.20141001500310.1088/1748-6041/10/1/01500325532470 GuoCZhangJJordanJ SWangXHenningR WYargerJ LBiomacromolecules2018199061:CAS:528:DC%2BC1cXisVGkt7o%3D10.1021/acs.biomac.7b0168729425447 SterflingerKPinzariFEnviron. Microbiol.2012145591:CAS:528:DC%2BC38XlvVGltr4%3D10.1111/j.1462-2920.2011.02584.x22004478 AraiTFreddiGInnocentiRTsukadaMJ. Appl. Polym. Sci.20049123831:CAS:528:DC%2BD2cXktVyjsQ%3D%3D10.1002/app.13393 PatrickWHansSAngelikaPJ. Agric. Food Chem.20095783991:CAS:528:DC%2BD1MXhtVGjtb3K10.1021/jf901398219754170 KarpovaEVasilievVMamatyukVPolosmakNKundoLJ. Archaeol. Sci.201670151:CAS:528:DC%2BC28XmtFamu7Y%3D10.1016/j.jas.2016.04.001 TanakaKKajiyamaNIshikuraKWagaSKikuchiAOhtomoKTakagiTMizunoSBiochim. Biophys. Acta19991432921:CAS:528:DyaK1MXks1KksLY%3D10.1016/S0167-4838(99)00088-610366732 YouQLiuMLiuYZhengHHuZZhouYWangBACS Sens.201725691:CAS:528:DC%2BC2sXktVGhtLo%3D10.1021/acssensors.7b0008628723195 GuJXuCLiMChenBShangYZhengHZhouYHuZPengZWangBAnal. Sci.2019351751:CAS:528:DC%2BC1MXptlCnu70%3D10.2116/analsci.18P31430270257 YouQLiQZhengHHuZZhouYWangBJ. Agric. Food Chem.20176578051:CAS:528:DC%2BC2sXhtlSitL%2FO10.1021/acs.jafc.7b0278928796495 MaiHYangYAbuduresuleILiWHuXWangCSci. Rep.20166189391:CAS:528:DC%2BC28XhslOmsr0%3D10.1038/srep18939268204354730899 OsmanM E-SEl-ShaphyA A E-NMeligyD AAyidM MInt. J. Conserv. Sci.20145295 HedstromLChem. Rev.2003344501 LuQZhangBLiMZuoBKaplanD LHuangYZhuHBiomacromolecules20111210801:CAS:528:DC%2BC3MXisVent78%3D10.1021/bm101422j213613683404841 LingSQiZKnightD PShaoZChenXBiomacromolecules20111233441:CAS:528:DC%2BC3MXpslajt70%3D10.1021/bm200603221790142 TimmsMSteelRVineJDrug Test. Anal.201681641:CAS:528:DC%2BC2MXhtlGrs7fM10.1002/dta.183526290355 KoperskaM APawcenisDBagniukJZaitzM MMissoriMŁojewskiTŁojewskaJPolym. Degrad. Stabil.20141051851:CAS:528:DC%2BC2cXpslCktro%3D10.1016/j.polymdegradstab.2014.04.008 InoueSTanakaKArisakaFKimuraSOhtomoKMizunoSJ. Biol. Chem.2000275405171:CAS:528:DC%2BD3MXhsFeqtw%3D%3D10.1074/jbc.M00689720010986287 TsumurayaTSatoTHiramaMFujiiIAnal. Chem.20189073181:CAS:528:DC%2BC1cXpslWqt7k%3D10.1021/acs.analchem.8b0051929770692 NumataKCebePKaplanD LBiomaterials20103129261:CAS:528:DC%2BC3cXht1yisb4%3D10.1016/j.biomaterials.2009.12.02620044136 BarlowD JEdwardsM SThorntonJ MNature19863227471:CAS:528:DyaL28XlsFWju7c%3D10.1038/322747a02427953 SashinaE SBochekA MNovoselovN PKirichenkoD ARuss. J. Appl. Chem.2006798691:CAS:528:DC%2BD28XotlSjsrg%3D10.1134/S1070427206060012 FangGSapruSBeheraSYaoJShaoZKunduS CChenXJ. Mater. Chem. B2016443371:CAS:528:DC%2BC28XotVWmurk%3D10.1039/C6TB01049K32263416 GlausiuszJNature20094625741:CAS:528:DC%2BD1MXhsFWjtL7E10.1038/462574a T Wongpinyochit (35110012_CR11) 2018; 4 H Mai (35110012_CR4) 2016; 6 K Tanaka (35110012_CR20) 1999; 1432 L Hedstrom (35110012_CR23) 2003; 34 K Numata (35110012_CR12) 2010; 31 S Ha (35110012_CR25) 2005; 6 K Sterflinger (35110012_CR8) 2012; 14 Q You (35110012_CR14) 2017; 2 J Li (35110012_CR1) 2017; 16 C Guo (35110012_CR26) 2018; 19 J Gu (35110012_CR16) 2019; 35 R You (35110012_CR10) 2014; 10 G Fang (35110012_CR19) 2016; 4 J Glausiusz (35110012_CR2) 2009; 462 M A Koperska (35110012_CR6) 2014; 105 I Siddiqui (35110012_CR24) 2019; 173 T Arai (35110012_CR29) 2004; 91 W Patrick (35110012_CR3) 2009; 57 M Timms (35110012_CR17) 2016; 8 S Ling (35110012_CR18) 2011; 12 E Karpova (35110012_CR5) 2016; 70 Y Wang (35110012_CR27) 2018; 19 M E-S Osman (35110012_CR7) 2014; 5 Q Lu (35110012_CR9) 2011; 12 D J Barlow (35110012_CR28) 1986; 322 S Inoue (35110012_CR21) 2000; 275 E S Sashina (35110012_CR13) 2006; 79 Q You (35110012_CR22) 2017; 65 T Tsumuraya (35110012_CR15) 2018; 90 |
References_xml | – reference: 14. Q. You, M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, ACS Sens., 2017, 2, 569. – reference: 5. E. Karpova, V. Vasiliev, V. Mamatyuk, N. Polosmak, and L. Kundo, J. Archaeol. Sci., 2016, 70, 15. – reference: 9. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 2011, 12, 1080. – reference: 7. M. E.-S. Osman, A. A. E.-N. El-Shaphy, D. A. Meligy, and M. M. Ayid, Int. J. Conserv. Sci., 2014, 5, 295. – reference: 22. Q. You, Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, J. Agric. Food Chem., 2017, 65, 7805. – reference: 28. D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature, 1986, 322, 747. – reference: 29. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 2004, 91, 2383. – reference: 21. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 2000, 275, 40517. – reference: 11. T. Wongpinyochit, B. F. Johnston, and F. P. Seib, ACS Biomater. Sci. Eng., 2018, 4, 942. – reference: 12. K. Numata, P. Cebe, and D. L. Kaplan, Biomaterials, 2010, 31, 2926. – reference: 17. M. Timms, R. Steel, and J. Vine, Drug Test. Anal., 2016, 8, 164. – reference: 20. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Mizuno, Biochim. Biophys. Acta, 1999, 1432, 92. – reference: 23. L. Hedstrom, Chem. Rev., 2003, 34, 4501. – reference: 8. K. Sterflinger and F. Pinzari, Environ. Microbiol., 2012, 14, 559. – reference: 2. J. Glausiusz, Nature, 2009, 462, 574. – reference: 19. G. Fang, S. Sapru, S. Behera, J. Yao, Z. Shao, S. C. Kundu, and X. Chen, J. Mater. Chem. B, 2016, 4, 4337. – reference: 26. C. Guo, J. Zhang, J. S. Jordan, X. Wang, R. W. Henning, and J. L. Yarger, Biomacromolecules, 2018, 19, 906. – reference: 18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 2011, 12, 3344. – reference: 27. Y. Wang, J. Wen, B. Peng, B. Hu, X. Chen, and Z. Shao, Biomacromolecules, 2018, 19, 1999. – reference: 15. T. Tsumuraya, T. Sato, M. Hirama, and I. Fujii, Anal. Chem., 2018, 90, 7318. – reference: 13. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. J. Appl. Chem., 2006, 79, 869. – reference: 24. I. Siddiqui and Q. Husain, Colloid. Surf. B, 2019, 173, 733. – reference: 10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 2014, 10, 015003. – reference: 4. H. Mai, Y. Yang, I. Abuduresule, W. Li, X. Hu, and C. Wang, Sci. Rep., 2016, 6, 18939. – reference: 25. S. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 2005, 6, 2563. – reference: 1. J. Li, F. Cai, X. Ye, J. Liang, J. Li, M. Wu, D. Zhao, Z. Jiang, Z. You, and B. Zhong, J. Proteome Res., 2017, 16, 2495. – reference: 3. W. Patrick, S. Hans, and P. Angelika, J. Agric. Food Chem., 2009, 57, 8399. – reference: 16. J. Gu, C. Xu, M. Li, B. Chen, Y. Shang, H. Zheng, Y. Zhou, Z. Hu, Z. Peng, and B. Wang, Anal. Sci., 2019, 35, 175. – reference: 6. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Lojewski, and J. Lojewska, Polym. Degrad. Stabil., 2014, 105, 185. – reference: KoperskaM APawcenisDBagniukJZaitzM MMissoriMŁojewskiTŁojewskaJPolym. Degrad. Stabil.20141051851:CAS:528:DC%2BC2cXpslCktro%3D10.1016/j.polymdegradstab.2014.04.008 – reference: LiJCaiFYeXLiangJLiJWuMZhaoDJiangZYouZZhongBJ. Proteome Res.20171624951:CAS:528:DC%2BC2sXovVGnsrg%3D10.1021/acs.jproteome.7b0007728569067 – reference: PatrickWHansSAngelikaPJ. Agric. Food Chem.20095783991:CAS:528:DC%2BD1MXhtVGjtb3K10.1021/jf901398219754170 – reference: InoueSTanakaKArisakaFKimuraSOhtomoKMizunoSJ. Biol. Chem.2000275405171:CAS:528:DC%2BD3MXhsFeqtw%3D%3D10.1074/jbc.M00689720010986287 – reference: WongpinyochitTJohnstonB FSeibF PACS Biomater. Sci. Eng.201849421:CAS:528:DC%2BC1cXit1yku70%3D10.1021/acsbiomaterials.7b0102133418776 – reference: GuoCZhangJJordanJ SWangXHenningR WYargerJ LBiomacromolecules2018199061:CAS:528:DC%2BC1cXisVGkt7o%3D10.1021/acs.biomac.7b0168729425447 – reference: WangYWenJPengBHuBChenXShaoZBiomacromolecules20181919991:CAS:528:DC%2BC1cXitFClu7o%3D10.1021/acs.biomac.7b0169129401377 – reference: AraiTFreddiGInnocentiRTsukadaMJ. Appl. Polym. Sci.20049123831:CAS:528:DC%2BD2cXktVyjsQ%3D%3D10.1002/app.13393 – reference: SterflingerKPinzariFEnviron. Microbiol.2012145591:CAS:528:DC%2BC38XlvVGltr4%3D10.1111/j.1462-2920.2011.02584.x22004478 – reference: GlausiuszJNature20094625741:CAS:528:DC%2BD1MXhsFWjtL7E10.1038/462574a – reference: LingSQiZKnightD PShaoZChenXBiomacromolecules20111233441:CAS:528:DC%2BC3MXpslajt70%3D10.1021/bm200603221790142 – reference: SashinaE SBochekA MNovoselovN PKirichenkoD ARuss. J. Appl. Chem.2006798691:CAS:528:DC%2BD28XotlSjsrg%3D10.1134/S1070427206060012 – reference: YouQLiQZhengHHuZZhouYWangBJ. Agric. Food Chem.20176578051:CAS:528:DC%2BC2sXhtlSitL%2FO10.1021/acs.jafc.7b0278928796495 – reference: BarlowD JEdwardsM SThorntonJ MNature19863227471:CAS:528:DyaL28XlsFWju7c%3D10.1038/322747a02427953 – reference: SiddiquiIHusainQColloid. Surf. B20191737331:CAS:528:DC%2BC1cXitVaqtrrO10.1016/j.colsurfb.2018.10.021 – reference: NumataKCebePKaplanD LBiomaterials20103129261:CAS:528:DC%2BC3cXht1yisb4%3D10.1016/j.biomaterials.2009.12.02620044136 – reference: TanakaKKajiyamaNIshikuraKWagaSKikuchiAOhtomoKTakagiTMizunoSBiochim. Biophys. Acta19991432921:CAS:528:DyaK1MXks1KksLY%3D10.1016/S0167-4838(99)00088-610366732 – reference: KarpovaEVasilievVMamatyukVPolosmakNKundoLJ. Archaeol. Sci.201670151:CAS:528:DC%2BC28XmtFamu7Y%3D10.1016/j.jas.2016.04.001 – reference: YouRXuYLiuYLiXLiMBiomed. Mater.20141001500310.1088/1748-6041/10/1/01500325532470 – reference: TsumurayaTSatoTHiramaMFujiiIAnal. Chem.20189073181:CAS:528:DC%2BC1cXpslWqt7k%3D10.1021/acs.analchem.8b0051929770692 – reference: HedstromLChem. Rev.2003344501 – reference: YouQLiuMLiuYZhengHHuZZhouYWangBACS Sens.201725691:CAS:528:DC%2BC2sXktVGhtLo%3D10.1021/acssensors.7b0008628723195 – reference: MaiHYangYAbuduresuleILiWHuXWangCSci. Rep.20166189391:CAS:528:DC%2BC28XhslOmsr0%3D10.1038/srep18939268204354730899 – reference: LuQZhangBLiMZuoBKaplanD LHuangYZhuHBiomacromolecules20111210801:CAS:528:DC%2BC3MXisVent78%3D10.1021/bm101422j213613683404841 – reference: FangGSapruSBeheraSYaoJShaoZKunduS CChenXJ. Mater. Chem. B2016443371:CAS:528:DC%2BC28XotVWmurk%3D10.1039/C6TB01049K32263416 – reference: OsmanM E-SEl-ShaphyA A E-NMeligyD AAyidM MInt. J. Conserv. Sci.20145295 – reference: TimmsMSteelRVineJDrug Test. Anal.201681641:CAS:528:DC%2BC2MXhtlGrs7fM10.1002/dta.183526290355 – reference: GuJXuCLiMChenBShangYZhengHZhouYHuZPengZWangBAnal. Sci.2019351751:CAS:528:DC%2BC1MXptlCnu70%3D10.2116/analsci.18P31430270257 – reference: HaSGraczH STonelliA EHudsonS MBiomacromolecules2005625631:CAS:528:DC%2BD2MXlvF2is7c%3D10.1021/bm050294m16153093 – volume: 4 start-page: 942 year: 2018 ident: 35110012_CR11 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b01021 – volume: 35 start-page: 175 year: 2019 ident: 35110012_CR16 publication-title: Anal. Sci. doi: 10.2116/analsci.18P314 – volume: 19 start-page: 1999 year: 2018 ident: 35110012_CR27 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01691 – volume: 275 start-page: 40517 year: 2000 ident: 35110012_CR21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006897200 – volume: 173 start-page: 733 year: 2019 ident: 35110012_CR24 publication-title: Colloid. Surf. B doi: 10.1016/j.colsurfb.2018.10.021 – volume: 1432 start-page: 92 year: 1999 ident: 35110012_CR20 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(99)00088-6 – volume: 5 start-page: 295 year: 2014 ident: 35110012_CR7 publication-title: Int. J. Conserv. Sci. – volume: 91 start-page: 2383 year: 2004 ident: 35110012_CR29 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.13393 – volume: 65 start-page: 7805 year: 2017 ident: 35110012_CR22 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02789 – volume: 16 start-page: 2495 year: 2017 ident: 35110012_CR1 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00077 – volume: 8 start-page: 164 year: 2016 ident: 35110012_CR17 publication-title: Drug Test. Anal. doi: 10.1002/dta.1835 – volume: 12 start-page: 3344 year: 2011 ident: 35110012_CR18 publication-title: Biomacromolecules doi: 10.1021/bm2006032 – volume: 322 start-page: 747 year: 1986 ident: 35110012_CR28 publication-title: Nature doi: 10.1038/322747a0 – volume: 6 start-page: 2563 year: 2005 ident: 35110012_CR25 publication-title: Biomacromolecules doi: 10.1021/bm050294m – volume: 19 start-page: 906 year: 2018 ident: 35110012_CR26 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01687 – volume: 31 start-page: 2926 year: 2010 ident: 35110012_CR12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.026 – volume: 10 start-page: 015003 year: 2014 ident: 35110012_CR10 publication-title: Biomed. Mater. doi: 10.1088/1748-6041/10/1/015003 – volume: 462 start-page: 574 year: 2009 ident: 35110012_CR2 publication-title: Nature doi: 10.1038/462574a – volume: 79 start-page: 869 year: 2006 ident: 35110012_CR13 publication-title: Russ. J. Appl. Chem. doi: 10.1134/S1070427206060012 – volume: 6 start-page: 18939 year: 2016 ident: 35110012_CR4 publication-title: Sci. Rep. doi: 10.1038/srep18939 – volume: 105 start-page: 185 year: 2014 ident: 35110012_CR6 publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2014.04.008 – volume: 14 start-page: 559 year: 2012 ident: 35110012_CR8 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02584.x – volume: 57 start-page: 8399 year: 2009 ident: 35110012_CR3 publication-title: J. Agric. Food Chem. doi: 10.1021/jf9013982 – volume: 70 start-page: 15 year: 2016 ident: 35110012_CR5 publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2016.04.001 – volume: 12 start-page: 1080 year: 2011 ident: 35110012_CR9 publication-title: Biomacromolecules doi: 10.1021/bm101422j – volume: 2 start-page: 569 year: 2017 ident: 35110012_CR14 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00086 – volume: 90 start-page: 7318 year: 2018 ident: 35110012_CR15 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00519 – volume: 4 start-page: 4337 year: 2016 ident: 35110012_CR19 publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01049K – volume: 34 start-page: 4501 year: 2003 ident: 35110012_CR23 publication-title: Chem. Rev. |
SSID | ssj0012822 |
Score | 2.2895768 |
Snippet | The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present... |
SourceID | proquest pubmed crossref springer jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1243 |
SubjectTerms | Alkaline proteinase Amino Acid Sequence Analytical Chemistry Animals Antibodies Archaeology Bombyx mori Chemistry Chymotrypsin Degradation Diagnostic systems Enzyme-Linked Immunosorbent Assay Enzymes Epitopes Fibroins - chemistry Fibroins - immunology Fibroins - metabolism Hydrolysis immunoassay Immunology Immunoreactivity Pepsin Peptide Hydrolases - metabolism Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein structure Proteinase Proteolysis Secondary structure Silk fibroin Trypsin |
Title | Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes |
URI | https://www.jstage.jst.go.jp/article/analsci/35/11/35_19P222/_article/-char/en https://link.springer.com/article/10.2116/analsci.19P222 https://www.ncbi.nlm.nih.gov/pubmed/31353338 https://www.proquest.com/docview/2315517771 https://www.proquest.com/docview/2266332649 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Analytical Sciences, 2019/11/10, Vol.35(11), pp.1243-1249 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Cvoifls9JYKgIF23TbLdvgjH2qXqeefHLqxPJU0TqS6tnO3D3V_vpEnaW6yivoQlzYY088t0Jpn5BaEnasoZC-XcjySjPo2nxM-Jin0Gmi8UAZdhqPOd3x3N0jV9s2GbIdy2yy5p8ok4G80r-R-pQh3IVWfJ_oNk-06hAn6DfKEECUP5VzJ-pZkezKVIjujQhES-1lkfg1qTjRTOMvxUbr89X4KTXJeVJjqu9RahtkCT6uzUpYP07Mp8e9oMiZNiCDhcpEkXIPCxPWn7zef0eG38_AFynw9MUlTalkOzxNbxcuu-nHbjIYj9LvhtiMvoiEfHd8vsDiOo-BkxbEwTafQroSDC0O46WgVs-Eoc0IJz6hSMDzKm58FrNQTHIEhRToL4fWiym3cJtY-Os-X68DBbJZvVRXQpBE9Cq8K3H4aDJh1F29Ex2rEaXk_d_4vd3nfslstfwXT_Ise8kl9O1DtDZXUdXbMeBj4wcLmBLsjqJrqycBf73UKrc7DBDjYYYIN3YIN72OBaYQ0bbGGDHWxwU2MLm9tovUxWi9S3l2v4Aozaxg9kMGOMQKkYF7QQPOA5U4ILPounlChCpIzge1CIXESBKhhVtCAqAAMmpyEnd9BeVVfyHsJyPtehVVwVlOmbW_JCEkUFaHuwHQlTHvLd1GXCMs_rC1C2GXigeqozO9WZmWoPPe3bfzecK79t-dJIom9n12LfjjDwcbuy-0P_XOc0ggrx0L6TYGYX9o8MXB7wI6IoCjz0uH8MQtJnabySdQttwLAl4PrQ2EN3jeT7MRB9lwwhcw89c1AYOh9_kft_HscDdHVYgftorzlp5UMwhpv8UQfnnw7ut78 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+Behavior+and+Immunological+Detection+of+Silk+Fibroin+Exposure+to+Enzymes&rft.jtitle=Analytical+sciences&rft.au=CHEN%2C+Ruru&rft.au=ZHOU%2C+Lian&rft.au=YANG%2C+Hui&rft.au=ZHENG%2C+Hailing&rft.date=2019-11-10&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=35&rft.issue=11&rft.spage=1243&rft_id=info:doi/10.2116%2Fanalsci.19P222&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon |