Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes

The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF fr...

Full description

Saved in:
Bibliographic Details
Published inAnalytical Sciences Vol. 35; no. 11; pp. 1243 - 1249
Main Authors CHEN, Ruru, ZHOU, Lian, YANG, Hui, ZHENG, Hailing, ZHOU, Yang, HU, Zhiwen, WANG, Bing
Format Journal Article
LanguageEnglish
Published Singapore The Japan Society for Analytical Chemistry 10.11.2019
Springer Nature Singapore
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.
AbstractList The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.
The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori ( B. mori ) and Antheraea pernyi ( A. pernyi ) through exposure to alkaline proteinase, α -chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β -sheet and the reduction of α -helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi , respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α -chymotrypsin possesses the most cleavage sites among these enzymes, the α -chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.
The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present study, the immunological detection techniques combined with traditional characterization methods, jointly studied the degradation process of SF from Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) through exposure to alkaline proteinase, α-chymotrypsin, pepsin, and trypsin. Spectroscopic analysis revealed that different enzymes showed similar hydrolysis effects on the secondary structure, but the changes of B. mori SF and A. pernyi SF were mainly reflected in the decrease of β-sheet and the reduction of α-helical structure, respectively. In further research of immunology, two diagnostic antibodies were prepared corresponding to SF of B. mori and A. pernyi, respectively. The enzyme-linked immunosorbent assay (ELISA) and western blot indicated the enzyme-treated SF proteins still exhibited higher immunoreactivity because the epitopes on the surface of SF molecules are retained. Although α-chymotrypsin possesses the most cleavage sites among these enzymes, the α-chymotrypsin-treated SF did not exhibit significant changes in secondary structures and high antibody binding capacity. The results deepen our understanding of the SF degradation process during enzymatic hydrolysis, and show far-reaching guiding significance in trace detection of SF.
Author WANG, Bing
CHEN, Ruru
YANG, Hui
ZHENG, Hailing
ZHOU, Yang
ZHOU, Lian
HU, Zhiwen
Author_xml – sequence: 1
  fullname: CHEN, Ruru
  organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
– sequence: 2
  fullname: ZHOU, Lian
  organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
– sequence: 3
  fullname: YANG, Hui
  organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
– sequence: 4
  fullname: ZHENG, Hailing
  organization: Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
– sequence: 5
  fullname: ZHOU, Yang
  organization: Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
– sequence: 6
  fullname: HU, Zhiwen
  organization: Institute of Textile Conservation, Zhejiang Sci-Tech University
– sequence: 7
  fullname: WANG, Bing
  organization: Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31353338$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQRi1URLeFK0cUiQuXbDMeJ9k9QrstlSqBRDlbE2ey9ZLYi50gyq9vutkuUqVeZg5-bzya70QcOe9YiPeQzSVAcUaO2mjsHJbfpZSvxAxQLVIpVXEkZtkSsrRAlR2Lkxg3WQZyIeUbcYyAOSIuZuL2gteBauqtd8kXvqM_1oeEXJ1cd93gfOvX1lCbXHDPZgf5Jvlh21_Jpa2Cty5Z_d36OAROep-s3L_7juNb8boZ1-J3-34qfl6ubs-_pjffrq7PP9-kpgDZp8BQ5DmOtcnJqNoQUJU3hgwVy0xhg8hclhnWpjIlNHWuGlVjA0ouKyUJT8Wnae42-N8Dx153NhpuW3Lsh6ilLApEWajliH58hm78EB6PpyVCnkNZljBSH_bUUHVc622wHYV7_XSvEVATYIKPMXCjje13x-sD2VZDph9j0ftY9BTLqM2faU-TXxTOJiGOoFtz-L_ui8ZqMjaxpzUfPqDQW9PyAcdcA-zqzju8mzsKmh0-AAHCud8
CitedBy_id crossref_primary_10_1021_acsomega_3c02254
crossref_primary_10_1111_arcm_12766
crossref_primary_10_1007_s44211_023_00283_y
crossref_primary_10_1016_j_cis_2025_103413
crossref_primary_10_1093_burnst_tkab011
crossref_primary_10_1186_s40494_024_01418_8
crossref_primary_10_1186_s40494_023_01064_6
crossref_primary_10_1039_D2NJ00016D
crossref_primary_10_1016_j_actbio_2022_09_021
crossref_primary_10_1208_s12249_023_02716_3
crossref_primary_10_3390_ijms241713153
Cites_doi 10.1021/acsbiomaterials.7b01021
10.2116/analsci.18P314
10.1021/acs.biomac.7b01691
10.1074/jbc.M006897200
10.1016/j.colsurfb.2018.10.021
10.1016/S0167-4838(99)00088-6
10.1002/app.13393
10.1021/acs.jafc.7b02789
10.1021/acs.jproteome.7b00077
10.1002/dta.1835
10.1021/bm2006032
10.1038/322747a0
10.1021/bm050294m
10.1021/acs.biomac.7b01687
10.1016/j.biomaterials.2009.12.026
10.1088/1748-6041/10/1/015003
10.1038/462574a
10.1134/S1070427206060012
10.1038/srep18939
10.1016/j.polymdegradstab.2014.04.008
10.1111/j.1462-2920.2011.02584.x
10.1021/jf9013982
10.1016/j.jas.2016.04.001
10.1021/bm101422j
10.1021/acssensors.7b00086
10.1021/acs.analchem.8b00519
10.1039/C6TB01049K
ContentType Journal Article
Copyright 2019 by The Japan Society for Analytical Chemistry
The Japan Society for Analytical Chemistry 2019
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 by The Japan Society for Analytical Chemistry
– notice: The Japan Society for Analytical Chemistry 2019
– notice: Copyright Japan Science and Technology Agency 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
DOI 10.2116/analsci.19P222
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-2246
EndPage 1249
ExternalDocumentID 31353338
10_2116_analsci_19P222
article_analsci_35_11_35_19P222_article_char_en
Genre Journal Article
GroupedDBID ---
23M
2WC
406
5GY
6J9
7.U
AATNV
AAYFA
ACGFO
ACIWK
ACPRK
ADBBV
ADOXG
AENEX
AESKC
AFRAH
AIAKS
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAWUL
CS3
DIK
E3Z
EBS
EJD
F5P
GX1
HH5
IWAJR
JSF
JSH
JZLTJ
KQ8
LLZTM
M~E
NPVJJ
OK1
P2P
RDB
RJT
RNS
RSV
RZJ
RZV
SOJ
TN5
TR2
UPT
XSB
ZMTXR
~02
0R~
3O-
53G
AACDK
AAJBT
AASML
ABAKF
ABJNI
ABTKH
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AFBBN
AGMZJ
AGQEE
AI.
AIGIU
DPUIP
EBLON
FIGPU
ROL
SJYHP
TKC
VH1
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
ABRTQ
FR3
H8G
JG9
L7M
P64
7X8
ID FETCH-LOGICAL-c612t-1e16553e16f5ac4dca1ab5fcaca69043f33ee7703dcbc71fd54f4d3f1429b42a3
ISSN 0910-6340
1348-2246
IngestDate Thu Jul 10 19:30:40 EDT 2025
Wed Aug 27 14:44:10 EDT 2025
Thu Apr 03 06:56:29 EDT 2025
Tue Jul 01 01:11:38 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 21 02:42:24 EST 2025
Thu Aug 17 20:29:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords enzymes
Silk fibroin
degradation
immunoassay
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c612t-1e16553e16f5ac4dca1ab5fcaca69043f33ee7703dcbc71fd54f4d3f1429b42a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/analsci/35/11/35_19P222/_article/-char/en
PMID 31353338
PQID 2315517771
PQPubID 1966371
PageCount 7
ParticipantIDs proquest_miscellaneous_2266332649
proquest_journals_2315517771
pubmed_primary_31353338
crossref_citationtrail_10_2116_analsci_19P222
crossref_primary_10_2116_analsci_19P222
springer_journals_10_2116_analsci_19P222
jstage_primary_article_analsci_35_11_35_19P222_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Nov-10
PublicationDateYYYYMMDD 2019-11-10
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov-10
  day: 10
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationTitle Analytical Sciences
PublicationTitleAbbrev ANAL. SCI
PublicationTitleAlternate Anal Sci
PublicationYear 2019
Publisher The Japan Society for Analytical Chemistry
Springer Nature Singapore
Nature Publishing Group
Publisher_xml – name: The Japan Society for Analytical Chemistry
– name: Springer Nature Singapore
– name: Nature Publishing Group
References 27. Y. Wang, J. Wen, B. Peng, B. Hu, X. Chen, and Z. Shao, Biomacromolecules, 2018, 19, 1999.
12. K. Numata, P. Cebe, and D. L. Kaplan, Biomaterials, 2010, 31, 2926.
25. S. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 2005, 6, 2563.
3. W. Patrick, S. Hans, and P. Angelika, J. Agric. Food Chem., 2009, 57, 8399.
9. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 2011, 12, 1080.
24. I. Siddiqui and Q. Husain, Colloid. Surf. B, 2019, 173, 733.
7. M. E.-S. Osman, A. A. E.-N. El-Shaphy, D. A. Meligy, and M. M. Ayid, Int. J. Conserv. Sci., 2014, 5, 295.
15. T. Tsumuraya, T. Sato, M. Hirama, and I. Fujii, Anal. Chem., 2018, 90, 7318.
16. J. Gu, C. Xu, M. Li, B. Chen, Y. Shang, H. Zheng, Y. Zhou, Z. Hu, Z. Peng, and B. Wang, Anal. Sci., 2019, 35, 175.
21. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 2000, 275, 40517.
8. K. Sterflinger and F. Pinzari, Environ. Microbiol., 2012, 14, 559.
19. G. Fang, S. Sapru, S. Behera, J. Yao, Z. Shao, S. C. Kundu, and X. Chen, J. Mater. Chem. B, 2016, 4, 4337.
28. D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature, 1986, 322, 747.
1. J. Li, F. Cai, X. Ye, J. Liang, J. Li, M. Wu, D. Zhao, Z. Jiang, Z. You, and B. Zhong, J. Proteome Res., 2017, 16, 2495.
26. C. Guo, J. Zhang, J. S. Jordan, X. Wang, R. W. Henning, and J. L. Yarger, Biomacromolecules, 2018, 19, 906.
4. H. Mai, Y. Yang, I. Abuduresule, W. Li, X. Hu, and C. Wang, Sci. Rep., 2016, 6, 18939.
6. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Lojewski, and J. Lojewska, Polym. Degrad. Stabil., 2014, 105, 185.
23. L. Hedstrom, Chem. Rev., 2003, 34, 4501.
20. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Mizuno, Biochim. Biophys. Acta, 1999, 1432, 92.
14. Q. You, M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, ACS Sens., 2017, 2, 569.
13. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. J. Appl. Chem., 2006, 79, 869.
10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 2014, 10, 015003.
29. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 2004, 91, 2383.
11. T. Wongpinyochit, B. F. Johnston, and F. P. Seib, ACS Biomater. Sci. Eng., 2018, 4, 942.
17. M. Timms, R. Steel, and J. Vine, Drug Test. Anal., 2016, 8, 164.
2. J. Glausiusz, Nature, 2009, 462, 574.
22. Q. You, Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, J. Agric. Food Chem., 2017, 65, 7805.
5. E. Karpova, V. Vasiliev, V. Mamatyuk, N. Polosmak, and L. Kundo, J. Archaeol. Sci., 2016, 70, 15.
18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 2011, 12, 3344.
LiJCaiFYeXLiangJLiJWuMZhaoDJiangZYouZZhongBJ. Proteome Res.20171624951:CAS:528:DC%2BC2sXovVGnsrg%3D10.1021/acs.jproteome.7b0007728569067
WangYWenJPengBHuBChenXShaoZBiomacromolecules20181919991:CAS:528:DC%2BC1cXitFClu7o%3D10.1021/acs.biomac.7b0169129401377
HaSGraczH STonelliA EHudsonS MBiomacromolecules2005625631:CAS:528:DC%2BD2MXlvF2is7c%3D10.1021/bm050294m16153093
SiddiquiIHusainQColloid. Surf. B20191737331:CAS:528:DC%2BC1cXitVaqtrrO10.1016/j.colsurfb.2018.10.021
WongpinyochitTJohnstonB FSeibF PACS Biomater. Sci. Eng.201849421:CAS:528:DC%2BC1cXit1yku70%3D10.1021/acsbiomaterials.7b0102133418776
YouRXuYLiuYLiXLiMBiomed. Mater.20141001500310.1088/1748-6041/10/1/01500325532470
GuoCZhangJJordanJ SWangXHenningR WYargerJ LBiomacromolecules2018199061:CAS:528:DC%2BC1cXisVGkt7o%3D10.1021/acs.biomac.7b0168729425447
SterflingerKPinzariFEnviron. Microbiol.2012145591:CAS:528:DC%2BC38XlvVGltr4%3D10.1111/j.1462-2920.2011.02584.x22004478
AraiTFreddiGInnocentiRTsukadaMJ. Appl. Polym. Sci.20049123831:CAS:528:DC%2BD2cXktVyjsQ%3D%3D10.1002/app.13393
PatrickWHansSAngelikaPJ. Agric. Food Chem.20095783991:CAS:528:DC%2BD1MXhtVGjtb3K10.1021/jf901398219754170
KarpovaEVasilievVMamatyukVPolosmakNKundoLJ. Archaeol. Sci.201670151:CAS:528:DC%2BC28XmtFamu7Y%3D10.1016/j.jas.2016.04.001
TanakaKKajiyamaNIshikuraKWagaSKikuchiAOhtomoKTakagiTMizunoSBiochim. Biophys. Acta19991432921:CAS:528:DyaK1MXks1KksLY%3D10.1016/S0167-4838(99)00088-610366732
YouQLiuMLiuYZhengHHuZZhouYWangBACS Sens.201725691:CAS:528:DC%2BC2sXktVGhtLo%3D10.1021/acssensors.7b0008628723195
GuJXuCLiMChenBShangYZhengHZhouYHuZPengZWangBAnal. Sci.2019351751:CAS:528:DC%2BC1MXptlCnu70%3D10.2116/analsci.18P31430270257
YouQLiQZhengHHuZZhouYWangBJ. Agric. Food Chem.20176578051:CAS:528:DC%2BC2sXhtlSitL%2FO10.1021/acs.jafc.7b0278928796495
MaiHYangYAbuduresuleILiWHuXWangCSci. Rep.20166189391:CAS:528:DC%2BC28XhslOmsr0%3D10.1038/srep18939268204354730899
OsmanM E-SEl-ShaphyA A E-NMeligyD AAyidM MInt. J. Conserv. Sci.20145295
HedstromLChem. Rev.2003344501
LuQZhangBLiMZuoBKaplanD LHuangYZhuHBiomacromolecules20111210801:CAS:528:DC%2BC3MXisVent78%3D10.1021/bm101422j213613683404841
LingSQiZKnightD PShaoZChenXBiomacromolecules20111233441:CAS:528:DC%2BC3MXpslajt70%3D10.1021/bm200603221790142
TimmsMSteelRVineJDrug Test. Anal.201681641:CAS:528:DC%2BC2MXhtlGrs7fM10.1002/dta.183526290355
KoperskaM APawcenisDBagniukJZaitzM MMissoriMŁojewskiTŁojewskaJPolym. Degrad. Stabil.20141051851:CAS:528:DC%2BC2cXpslCktro%3D10.1016/j.polymdegradstab.2014.04.008
InoueSTanakaKArisakaFKimuraSOhtomoKMizunoSJ. Biol. Chem.2000275405171:CAS:528:DC%2BD3MXhsFeqtw%3D%3D10.1074/jbc.M00689720010986287
TsumurayaTSatoTHiramaMFujiiIAnal. Chem.20189073181:CAS:528:DC%2BC1cXpslWqt7k%3D10.1021/acs.analchem.8b0051929770692
NumataKCebePKaplanD LBiomaterials20103129261:CAS:528:DC%2BC3cXht1yisb4%3D10.1016/j.biomaterials.2009.12.02620044136
BarlowD JEdwardsM SThorntonJ MNature19863227471:CAS:528:DyaL28XlsFWju7c%3D10.1038/322747a02427953
SashinaE SBochekA MNovoselovN PKirichenkoD ARuss. J. Appl. Chem.2006798691:CAS:528:DC%2BD28XotlSjsrg%3D10.1134/S1070427206060012
FangGSapruSBeheraSYaoJShaoZKunduS CChenXJ. Mater. Chem. B2016443371:CAS:528:DC%2BC28XotVWmurk%3D10.1039/C6TB01049K32263416
GlausiuszJNature20094625741:CAS:528:DC%2BD1MXhsFWjtL7E10.1038/462574a
T Wongpinyochit (35110012_CR11) 2018; 4
H Mai (35110012_CR4) 2016; 6
K Tanaka (35110012_CR20) 1999; 1432
L Hedstrom (35110012_CR23) 2003; 34
K Numata (35110012_CR12) 2010; 31
S Ha (35110012_CR25) 2005; 6
K Sterflinger (35110012_CR8) 2012; 14
Q You (35110012_CR14) 2017; 2
J Li (35110012_CR1) 2017; 16
C Guo (35110012_CR26) 2018; 19
J Gu (35110012_CR16) 2019; 35
R You (35110012_CR10) 2014; 10
G Fang (35110012_CR19) 2016; 4
J Glausiusz (35110012_CR2) 2009; 462
M A Koperska (35110012_CR6) 2014; 105
I Siddiqui (35110012_CR24) 2019; 173
T Arai (35110012_CR29) 2004; 91
W Patrick (35110012_CR3) 2009; 57
M Timms (35110012_CR17) 2016; 8
S Ling (35110012_CR18) 2011; 12
E Karpova (35110012_CR5) 2016; 70
Y Wang (35110012_CR27) 2018; 19
M E-S Osman (35110012_CR7) 2014; 5
Q Lu (35110012_CR9) 2011; 12
D J Barlow (35110012_CR28) 1986; 322
S Inoue (35110012_CR21) 2000; 275
E S Sashina (35110012_CR13) 2006; 79
Q You (35110012_CR22) 2017; 65
T Tsumuraya (35110012_CR15) 2018; 90
References_xml – reference: 14. Q. You, M. Liu, Y. Liu, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, ACS Sens., 2017, 2, 569.
– reference: 5. E. Karpova, V. Vasiliev, V. Mamatyuk, N. Polosmak, and L. Kundo, J. Archaeol. Sci., 2016, 70, 15.
– reference: 9. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 2011, 12, 1080.
– reference: 7. M. E.-S. Osman, A. A. E.-N. El-Shaphy, D. A. Meligy, and M. M. Ayid, Int. J. Conserv. Sci., 2014, 5, 295.
– reference: 22. Q. You, Q. Li, H. Zheng, Z. Hu, Y. Zhou, and B. Wang, J. Agric. Food Chem., 2017, 65, 7805.
– reference: 28. D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature, 1986, 322, 747.
– reference: 29. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 2004, 91, 2383.
– reference: 21. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 2000, 275, 40517.
– reference: 11. T. Wongpinyochit, B. F. Johnston, and F. P. Seib, ACS Biomater. Sci. Eng., 2018, 4, 942.
– reference: 12. K. Numata, P. Cebe, and D. L. Kaplan, Biomaterials, 2010, 31, 2926.
– reference: 17. M. Timms, R. Steel, and J. Vine, Drug Test. Anal., 2016, 8, 164.
– reference: 20. K. Tanaka, N. Kajiyama, K. Ishikura, S. Waga, A. Kikuchi, K. Ohtomo, T. Takagi, and S. Mizuno, Biochim. Biophys. Acta, 1999, 1432, 92.
– reference: 23. L. Hedstrom, Chem. Rev., 2003, 34, 4501.
– reference: 8. K. Sterflinger and F. Pinzari, Environ. Microbiol., 2012, 14, 559.
– reference: 2. J. Glausiusz, Nature, 2009, 462, 574.
– reference: 19. G. Fang, S. Sapru, S. Behera, J. Yao, Z. Shao, S. C. Kundu, and X. Chen, J. Mater. Chem. B, 2016, 4, 4337.
– reference: 26. C. Guo, J. Zhang, J. S. Jordan, X. Wang, R. W. Henning, and J. L. Yarger, Biomacromolecules, 2018, 19, 906.
– reference: 18. S. Ling, Z. Qi, D. P. Knight, Z. Shao, and X. Chen, Biomacromolecules, 2011, 12, 3344.
– reference: 27. Y. Wang, J. Wen, B. Peng, B. Hu, X. Chen, and Z. Shao, Biomacromolecules, 2018, 19, 1999.
– reference: 15. T. Tsumuraya, T. Sato, M. Hirama, and I. Fujii, Anal. Chem., 2018, 90, 7318.
– reference: 13. E. S. Sashina, A. M. Bochek, N. P. Novoselov, and D. A. Kirichenko, Russ. J. Appl. Chem., 2006, 79, 869.
– reference: 24. I. Siddiqui and Q. Husain, Colloid. Surf. B, 2019, 173, 733.
– reference: 10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 2014, 10, 015003.
– reference: 4. H. Mai, Y. Yang, I. Abuduresule, W. Li, X. Hu, and C. Wang, Sci. Rep., 2016, 6, 18939.
– reference: 25. S. Ha, H. S. Gracz, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 2005, 6, 2563.
– reference: 1. J. Li, F. Cai, X. Ye, J. Liang, J. Li, M. Wu, D. Zhao, Z. Jiang, Z. You, and B. Zhong, J. Proteome Res., 2017, 16, 2495.
– reference: 3. W. Patrick, S. Hans, and P. Angelika, J. Agric. Food Chem., 2009, 57, 8399.
– reference: 16. J. Gu, C. Xu, M. Li, B. Chen, Y. Shang, H. Zheng, Y. Zhou, Z. Hu, Z. Peng, and B. Wang, Anal. Sci., 2019, 35, 175.
– reference: 6. M. A. Koperska, D. Pawcenis, J. Bagniuk, M. M. Zaitz, M. Missori, T. Lojewski, and J. Lojewska, Polym. Degrad. Stabil., 2014, 105, 185.
– reference: KoperskaM APawcenisDBagniukJZaitzM MMissoriMŁojewskiTŁojewskaJPolym. Degrad. Stabil.20141051851:CAS:528:DC%2BC2cXpslCktro%3D10.1016/j.polymdegradstab.2014.04.008
– reference: LiJCaiFYeXLiangJLiJWuMZhaoDJiangZYouZZhongBJ. Proteome Res.20171624951:CAS:528:DC%2BC2sXovVGnsrg%3D10.1021/acs.jproteome.7b0007728569067
– reference: PatrickWHansSAngelikaPJ. Agric. Food Chem.20095783991:CAS:528:DC%2BD1MXhtVGjtb3K10.1021/jf901398219754170
– reference: InoueSTanakaKArisakaFKimuraSOhtomoKMizunoSJ. Biol. Chem.2000275405171:CAS:528:DC%2BD3MXhsFeqtw%3D%3D10.1074/jbc.M00689720010986287
– reference: WongpinyochitTJohnstonB FSeibF PACS Biomater. Sci. Eng.201849421:CAS:528:DC%2BC1cXit1yku70%3D10.1021/acsbiomaterials.7b0102133418776
– reference: GuoCZhangJJordanJ SWangXHenningR WYargerJ LBiomacromolecules2018199061:CAS:528:DC%2BC1cXisVGkt7o%3D10.1021/acs.biomac.7b0168729425447
– reference: WangYWenJPengBHuBChenXShaoZBiomacromolecules20181919991:CAS:528:DC%2BC1cXitFClu7o%3D10.1021/acs.biomac.7b0169129401377
– reference: AraiTFreddiGInnocentiRTsukadaMJ. Appl. Polym. Sci.20049123831:CAS:528:DC%2BD2cXktVyjsQ%3D%3D10.1002/app.13393
– reference: SterflingerKPinzariFEnviron. Microbiol.2012145591:CAS:528:DC%2BC38XlvVGltr4%3D10.1111/j.1462-2920.2011.02584.x22004478
– reference: GlausiuszJNature20094625741:CAS:528:DC%2BD1MXhsFWjtL7E10.1038/462574a
– reference: LingSQiZKnightD PShaoZChenXBiomacromolecules20111233441:CAS:528:DC%2BC3MXpslajt70%3D10.1021/bm200603221790142
– reference: SashinaE SBochekA MNovoselovN PKirichenkoD ARuss. J. Appl. Chem.2006798691:CAS:528:DC%2BD28XotlSjsrg%3D10.1134/S1070427206060012
– reference: YouQLiQZhengHHuZZhouYWangBJ. Agric. Food Chem.20176578051:CAS:528:DC%2BC2sXhtlSitL%2FO10.1021/acs.jafc.7b0278928796495
– reference: BarlowD JEdwardsM SThorntonJ MNature19863227471:CAS:528:DyaL28XlsFWju7c%3D10.1038/322747a02427953
– reference: SiddiquiIHusainQColloid. Surf. B20191737331:CAS:528:DC%2BC1cXitVaqtrrO10.1016/j.colsurfb.2018.10.021
– reference: NumataKCebePKaplanD LBiomaterials20103129261:CAS:528:DC%2BC3cXht1yisb4%3D10.1016/j.biomaterials.2009.12.02620044136
– reference: TanakaKKajiyamaNIshikuraKWagaSKikuchiAOhtomoKTakagiTMizunoSBiochim. Biophys. Acta19991432921:CAS:528:DyaK1MXks1KksLY%3D10.1016/S0167-4838(99)00088-610366732
– reference: KarpovaEVasilievVMamatyukVPolosmakNKundoLJ. Archaeol. Sci.201670151:CAS:528:DC%2BC28XmtFamu7Y%3D10.1016/j.jas.2016.04.001
– reference: YouRXuYLiuYLiXLiMBiomed. Mater.20141001500310.1088/1748-6041/10/1/01500325532470
– reference: TsumurayaTSatoTHiramaMFujiiIAnal. Chem.20189073181:CAS:528:DC%2BC1cXpslWqt7k%3D10.1021/acs.analchem.8b0051929770692
– reference: HedstromLChem. Rev.2003344501
– reference: YouQLiuMLiuYZhengHHuZZhouYWangBACS Sens.201725691:CAS:528:DC%2BC2sXktVGhtLo%3D10.1021/acssensors.7b0008628723195
– reference: MaiHYangYAbuduresuleILiWHuXWangCSci. Rep.20166189391:CAS:528:DC%2BC28XhslOmsr0%3D10.1038/srep18939268204354730899
– reference: LuQZhangBLiMZuoBKaplanD LHuangYZhuHBiomacromolecules20111210801:CAS:528:DC%2BC3MXisVent78%3D10.1021/bm101422j213613683404841
– reference: FangGSapruSBeheraSYaoJShaoZKunduS CChenXJ. Mater. Chem. B2016443371:CAS:528:DC%2BC28XotVWmurk%3D10.1039/C6TB01049K32263416
– reference: OsmanM E-SEl-ShaphyA A E-NMeligyD AAyidM MInt. J. Conserv. Sci.20145295
– reference: TimmsMSteelRVineJDrug Test. Anal.201681641:CAS:528:DC%2BC2MXhtlGrs7fM10.1002/dta.183526290355
– reference: GuJXuCLiMChenBShangYZhengHZhouYHuZPengZWangBAnal. Sci.2019351751:CAS:528:DC%2BC1MXptlCnu70%3D10.2116/analsci.18P31430270257
– reference: HaSGraczH STonelliA EHudsonS MBiomacromolecules2005625631:CAS:528:DC%2BD2MXlvF2is7c%3D10.1021/bm050294m16153093
– volume: 4
  start-page: 942
  year: 2018
  ident: 35110012_CR11
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b01021
– volume: 35
  start-page: 175
  year: 2019
  ident: 35110012_CR16
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.18P314
– volume: 19
  start-page: 1999
  year: 2018
  ident: 35110012_CR27
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01691
– volume: 275
  start-page: 40517
  year: 2000
  ident: 35110012_CR21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006897200
– volume: 173
  start-page: 733
  year: 2019
  ident: 35110012_CR24
  publication-title: Colloid. Surf. B
  doi: 10.1016/j.colsurfb.2018.10.021
– volume: 1432
  start-page: 92
  year: 1999
  ident: 35110012_CR20
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(99)00088-6
– volume: 5
  start-page: 295
  year: 2014
  ident: 35110012_CR7
  publication-title: Int. J. Conserv. Sci.
– volume: 91
  start-page: 2383
  year: 2004
  ident: 35110012_CR29
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.13393
– volume: 65
  start-page: 7805
  year: 2017
  ident: 35110012_CR22
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b02789
– volume: 16
  start-page: 2495
  year: 2017
  ident: 35110012_CR1
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00077
– volume: 8
  start-page: 164
  year: 2016
  ident: 35110012_CR17
  publication-title: Drug Test. Anal.
  doi: 10.1002/dta.1835
– volume: 12
  start-page: 3344
  year: 2011
  ident: 35110012_CR18
  publication-title: Biomacromolecules
  doi: 10.1021/bm2006032
– volume: 322
  start-page: 747
  year: 1986
  ident: 35110012_CR28
  publication-title: Nature
  doi: 10.1038/322747a0
– volume: 6
  start-page: 2563
  year: 2005
  ident: 35110012_CR25
  publication-title: Biomacromolecules
  doi: 10.1021/bm050294m
– volume: 19
  start-page: 906
  year: 2018
  ident: 35110012_CR26
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01687
– volume: 31
  start-page: 2926
  year: 2010
  ident: 35110012_CR12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.026
– volume: 10
  start-page: 015003
  year: 2014
  ident: 35110012_CR10
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/10/1/015003
– volume: 462
  start-page: 574
  year: 2009
  ident: 35110012_CR2
  publication-title: Nature
  doi: 10.1038/462574a
– volume: 79
  start-page: 869
  year: 2006
  ident: 35110012_CR13
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S1070427206060012
– volume: 6
  start-page: 18939
  year: 2016
  ident: 35110012_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/srep18939
– volume: 105
  start-page: 185
  year: 2014
  ident: 35110012_CR6
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2014.04.008
– volume: 14
  start-page: 559
  year: 2012
  ident: 35110012_CR8
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02584.x
– volume: 57
  start-page: 8399
  year: 2009
  ident: 35110012_CR3
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9013982
– volume: 70
  start-page: 15
  year: 2016
  ident: 35110012_CR5
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2016.04.001
– volume: 12
  start-page: 1080
  year: 2011
  ident: 35110012_CR9
  publication-title: Biomacromolecules
  doi: 10.1021/bm101422j
– volume: 2
  start-page: 569
  year: 2017
  ident: 35110012_CR14
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00086
– volume: 90
  start-page: 7318
  year: 2018
  ident: 35110012_CR15
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00519
– volume: 4
  start-page: 4337
  year: 2016
  ident: 35110012_CR19
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01049K
– volume: 34
  start-page: 4501
  year: 2003
  ident: 35110012_CR23
  publication-title: Chem. Rev.
SSID ssj0012822
Score 2.2895768
Snippet The degradation behavior of silk fibroin (SF) is a significant and intriguing subject in the area of archaeological ancient silk research. In the present...
SourceID proquest
pubmed
crossref
springer
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1243
SubjectTerms Alkaline proteinase
Amino Acid Sequence
Analytical Chemistry
Animals
Antibodies
Archaeology
Bombyx mori
Chemistry
Chymotrypsin
Degradation
Diagnostic systems
Enzyme-Linked Immunosorbent Assay
Enzymes
Epitopes
Fibroins - chemistry
Fibroins - immunology
Fibroins - metabolism
Hydrolysis
immunoassay
Immunology
Immunoreactivity
Pepsin
Peptide Hydrolases - metabolism
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein structure
Proteinase
Proteolysis
Secondary structure
Silk fibroin
Trypsin
Title Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes
URI https://www.jstage.jst.go.jp/article/analsci/35/11/35_19P222/_article/-char/en
https://link.springer.com/article/10.2116/analsci.19P222
https://www.ncbi.nlm.nih.gov/pubmed/31353338
https://www.proquest.com/docview/2315517771
https://www.proquest.com/docview/2266332649
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Analytical Sciences, 2019/11/10, Vol.35(11), pp.1243-1249
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Cvoifls9JYKgIF23TbLdvgjH2qXqeefHLqxPJU0TqS6tnO3D3V_vpEnaW6yivoQlzYY088t0Jpn5BaEnasoZC-XcjySjPo2nxM-Jin0Gmi8UAZdhqPOd3x3N0jV9s2GbIdy2yy5p8ok4G80r-R-pQh3IVWfJ_oNk-06hAn6DfKEECUP5VzJ-pZkezKVIjujQhES-1lkfg1qTjRTOMvxUbr89X4KTXJeVJjqu9RahtkCT6uzUpYP07Mp8e9oMiZNiCDhcpEkXIPCxPWn7zef0eG38_AFynw9MUlTalkOzxNbxcuu-nHbjIYj9LvhtiMvoiEfHd8vsDiOo-BkxbEwTafQroSDC0O46WgVs-Eoc0IJz6hSMDzKm58FrNQTHIEhRToL4fWiym3cJtY-Os-X68DBbJZvVRXQpBE9Cq8K3H4aDJh1F29Ex2rEaXk_d_4vd3nfslstfwXT_Ise8kl9O1DtDZXUdXbMeBj4wcLmBLsjqJrqycBf73UKrc7DBDjYYYIN3YIN72OBaYQ0bbGGDHWxwU2MLm9tovUxWi9S3l2v4Aozaxg9kMGOMQKkYF7QQPOA5U4ILPounlChCpIzge1CIXESBKhhVtCAqAAMmpyEnd9BeVVfyHsJyPtehVVwVlOmbW_JCEkUFaHuwHQlTHvLd1GXCMs_rC1C2GXigeqozO9WZmWoPPe3bfzecK79t-dJIom9n12LfjjDwcbuy-0P_XOc0ggrx0L6TYGYX9o8MXB7wI6IoCjz0uH8MQtJnabySdQttwLAl4PrQ2EN3jeT7MRB9lwwhcw89c1AYOh9_kft_HscDdHVYgftorzlp5UMwhpv8UQfnnw7ut78
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+Behavior+and+Immunological+Detection+of+Silk+Fibroin+Exposure+to+Enzymes&rft.jtitle=Analytical+sciences&rft.au=CHEN%2C+Ruru&rft.au=ZHOU%2C+Lian&rft.au=YANG%2C+Hui&rft.au=ZHENG%2C+Hailing&rft.date=2019-11-10&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=35&rft.issue=11&rft.spage=1243&rft_id=info:doi/10.2116%2Fanalsci.19P222&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon