Phosphorus Transport Pathways to Streams in Tile-Drained Agricultural Watersheds

Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 36; no. 2; pp. 408 - 415
Main Authors Gentry, L.E, David, M.B, Royer, T.V, Mitchell, C.A, Starks, K.M
Format Journal Article
LanguageEnglish
Published Madison American Society of Agronomy, Crop Science Society of America, Soil Science Society 01.03.2007
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L-1, and seven water year by watershed combinations exceeded 0.2 mg L-1. Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L-1) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.
AbstractList Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L-1, and seven water year by watershed combinations exceeded 0.2 mg L-1. Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L-1) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.
ABSTRACT Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile‐drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east‐central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow‐weighted mean TP concentrations were >0.1 mg L −1 , and seven water year by watershed combinations exceeded 0.2 mg L −1 Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L −1 ) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east‐central Illinois.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were 0.1 mg Lsup -1, and seven water year by watershed combinations exceeded 0.2 mg Lsup -1. Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg Lsup -1) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in eastcentral Illinois. [PUBLICATION ABSTRACT]
Phosphorus (P) transport pathways to streams in tile-drained agricultural watersheds were analyzed. For all 16 water year by watershed combinations examined, annual flow-weighted mean total P (TP) concentrations were >0.1 mg L super(-1), and seven water yeast by watershed combinations exceeded 0.2 mg L super(-1). Concentrations of dissolved reactive P (DRP) and particulate P (PP) increased with stream discharge; particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to stream. Across watersheds, the greatest DRP concentrations were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils.
ABSTRACT Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile‐drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east‐central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow‐weighted mean TP concentrations were >0.1 mg L−1, and seven water year by watershed combinations exceeded 0.2 mg L−1 Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L−1) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east‐central Illinois.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were 0.1 mg L sigma up -1 less than or equal to and seven water year by watershed combinations exceeded 0.2 mg L sigma up -1 greater than or equal to Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L sigma up -1] were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in eastcentral Illinois. [PUBLICATION ABSTRACT]
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile- drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L super(-1), and seven water year by watershed combinations exceeded 0.2 mg L super(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L super(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L^sup -1^, and seven water year by watershed combinations exceeded 0.2 mg L^sup -1^. Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L^sup -1^) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in eastcentral Illinois. [PUBLICATION ABSTRACT]
Author David, M.B
Starks, K.M
Mitchell, C.A
Royer, T.V
Gentry, L.E
Author_xml – sequence: 1
  fullname: Gentry, L.E
– sequence: 2
  fullname: David, M.B
– sequence: 3
  fullname: Royer, T.V
– sequence: 4
  fullname: Mitchell, C.A
– sequence: 5
  fullname: Starks, K.M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17255628$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9r2zAYQMVoWdNst503s8NOdfd9-mXpWLquayk0oyk7CtmWFwfHSiWbkv9-CjEMdlgOkj7E0zvonZOT3veOkA8IlxQZ_7p2LxRAXgJo9YbMULAip2k7ITMAnmZOxRk5j3ENgBQK-ZacYUGFkFTNyGKx8nG78mGM2TLYPm59GLKFHVavdhezwWdPQ3B2E7O2z5Zt5_Jvwba9q7Or36Gtxm4Yg-2yX3ZwIa5cHd-R08Z20b2fzjl5_n6zvP6RPzze3l1fPeSVRKpyxiyClLwRtkDGJNa0srUQmqu6LEpGUVal1UIzpbDgjnLnZFPVUDosraRsTr4cvNvgX0YXB7NpY-W6zvbOj9EwKbgsAI6CFFErFPI4CFpriseNyFUKk0LMyed_wLUfQ5--xaAuWKGo3kMXB6gKPsbgGrMN7caGnUEw-8JmKmz2hRP-cXKO5cbVf-EpaQL0AXhNtXb_lZn7m590v9LFJP90eNtYb2wKHM3zEwVkAIqjUpL9AWgyu3U
CODEN JEVQAA
CitedBy_id crossref_primary_10_1016_j_agwat_2017_03_006
crossref_primary_10_2134_jeq2007_0344
crossref_primary_10_2136_vzj2012_0091
crossref_primary_10_3390_w12102808
crossref_primary_10_1002_jeq2_20514
crossref_primary_10_2175_106143017X15054988926424
crossref_primary_10_1007_s10533_019_00585_2
crossref_primary_10_1016_j_ecoleng_2011_06_042
crossref_primary_10_1002_jeq2_20073
crossref_primary_10_1016_j_scitotenv_2023_163418
crossref_primary_10_1134_S1995425521010030
crossref_primary_10_1007_s00267_011_9739_8
crossref_primary_10_1111_1752_1688_12341
crossref_primary_10_1002_hyp_13454
crossref_primary_10_1016_j_jglr_2020_02_004
crossref_primary_10_1016_j_scitotenv_2020_142047
crossref_primary_10_2134_jeq2014_05_0219
crossref_primary_10_2134_jeq2017_01_0015
crossref_primary_10_1016_j_agwat_2020_106501
crossref_primary_10_2134_jeq2014_04_0163
crossref_primary_10_1007_s10661_020_08517_6
crossref_primary_10_2134_jeq2010_0115
crossref_primary_10_1111_j_1475_2743_2011_00385_x
crossref_primary_10_1016_j_scitotenv_2022_156613
crossref_primary_10_5194_hess_28_2785_2024
crossref_primary_10_5194_soil_10_49_2024
crossref_primary_10_1093_ajae_aaw027
crossref_primary_10_1016_j_scitotenv_2022_154534
crossref_primary_10_2134_jeq2012_0073
crossref_primary_10_2134_jeq2014_01_0036
crossref_primary_10_1029_2018WR024009
crossref_primary_10_1002_jeq2_20105
crossref_primary_10_1016_j_chemosphere_2021_131843
crossref_primary_10_2134_jeq2019_02_0068
crossref_primary_10_1007_s10113_014_0733_6
crossref_primary_10_1007_s12665_014_3144_6
crossref_primary_10_1016_j_jenvman_2019_02_064
crossref_primary_10_2134_jeq2019_02_0060
crossref_primary_10_1002_hyp_10871
crossref_primary_10_1525_cse_2017_sc_512407
crossref_primary_10_2134_jeq2018_11_0418
crossref_primary_10_3390_su10061775
crossref_primary_10_1016_j_agwat_2011_03_002
crossref_primary_10_1016_j_jhydrol_2022_128932
crossref_primary_10_1016_j_ecohyd_2019_03_003
crossref_primary_10_2134_jeq2007_0366
crossref_primary_10_1186_s12302_018_0133_5
crossref_primary_10_1016_j_jhydrol_2009_01_028
crossref_primary_10_1016_j_gloplacha_2018_02_007
crossref_primary_10_1021_acs_est_8b05152
crossref_primary_10_1016_j_envsoft_2008_12_006
crossref_primary_10_1016_j_chemosphere_2020_128147
crossref_primary_10_1007_s10021_018_0255_z
crossref_primary_10_1016_j_agwat_2008_10_004
crossref_primary_10_2134_jeq2015_07_0380
crossref_primary_10_4137_ASWR_S4471
crossref_primary_10_1002_hyp_13870
crossref_primary_10_1007_s12665_021_09744_x
crossref_primary_10_3390_w12051236
crossref_primary_10_1016_j_jglr_2014_02_004
crossref_primary_10_1016_j_watres_2021_117976
crossref_primary_10_1016_j_agee_2021_107787
crossref_primary_10_1007_s11270_020_04738_0
crossref_primary_10_3390_biology1030794
crossref_primary_10_3390_w13030308
crossref_primary_10_2134_jeq2014_04_0188
crossref_primary_10_1016_j_agwat_2011_10_020
crossref_primary_10_1002_bbb_342
crossref_primary_10_1007_s13157_019_01205_3
crossref_primary_10_1029_2020WR028134
crossref_primary_10_1007_s13280_010_0016_5
crossref_primary_10_1002_jeq2_20400
crossref_primary_10_2134_jeq2018_08_0307
crossref_primary_10_1071_MF18422
crossref_primary_10_1002_saj2_20452
crossref_primary_10_3390_agronomy10040561
crossref_primary_10_1002_hyp_7257
crossref_primary_10_1016_j_jclepro_2022_132606
crossref_primary_10_1111_j_1475_2743_2012_00440_x
crossref_primary_10_2134_jeq2015_02_0080
crossref_primary_10_1002_jeq2_20120
crossref_primary_10_1016_j_jglr_2015_12_015
crossref_primary_10_1016_j_scitotenv_2022_160979
crossref_primary_10_1007_s10533_008_9273_9
crossref_primary_10_1089_ees_2018_0254
crossref_primary_10_2134_jeq2011_0125
crossref_primary_10_1002_hyp_14455
crossref_primary_10_1080_09064710_2014_983962
crossref_primary_10_1016_j_jglr_2015_12_014
crossref_primary_10_1007_s10533_021_00803_w
crossref_primary_10_1016_j_jhydrol_2015_11_043
crossref_primary_10_2134_jeq2010_0386
crossref_primary_10_2134_jeq2014_06_0246
crossref_primary_10_2134_jeq2014_04_0176
crossref_primary_10_1007_s10533_014_0055_2
crossref_primary_10_2134_jeq2015_12_0593
crossref_primary_10_1111_j_1365_2427_2011_02685_x
crossref_primary_10_2134_jeq2015_01_0008
crossref_primary_10_3390_w2030411
crossref_primary_10_1016_j_scitotenv_2018_12_009
crossref_primary_10_1002_jeq2_20316
crossref_primary_10_1016_j_scitotenv_2019_01_038
crossref_primary_10_1016_j_jenvman_2012_10_028
crossref_primary_10_1016_j_ecoleng_2018_08_015
crossref_primary_10_1016_j_swaqe_2014_11_002
crossref_primary_10_1016_j_advwatres_2015_10_012
crossref_primary_10_5194_hess_14_2259_2010
crossref_primary_10_1016_j_apgeochem_2017_01_011
crossref_primary_10_1016_j_jhydrol_2015_09_060
crossref_primary_10_2134_jeq2009_0313
crossref_primary_10_1016_j_agwat_2016_08_030
crossref_primary_10_1016_j_jhydrol_2020_125730
crossref_primary_10_1016_j_watres_2022_118845
crossref_primary_10_4236_as_2012_34056
crossref_primary_10_1016_j_agwat_2014_12_010
crossref_primary_10_1016_j_ejrh_2017_04_006
crossref_primary_10_2134_jeq2016_05_0201
crossref_primary_10_2134_jeq2017_06_0230
crossref_primary_10_2134_jeq2015_12_0613
crossref_primary_10_1016_j_agwat_2015_12_017
crossref_primary_10_1016_j_pce_2009_02_002
crossref_primary_10_2134_jeq2006_0422
crossref_primary_10_2134_jeq2016_04_0158
crossref_primary_10_1016_j_jglr_2016_10_016
crossref_primary_10_2134_jeq2018_07_0265
crossref_primary_10_2134_jeq2016_01_0038
crossref_primary_10_1021_acs_est_0c03495
crossref_primary_10_1002_hyp_9384
crossref_primary_10_1016_j_jhydrol_2024_131185
crossref_primary_10_5194_hess_20_1851_2016
crossref_primary_10_1002_lob_10436
crossref_primary_10_1111_sum_12298
crossref_primary_10_2134_jeq2013_12_0499
crossref_primary_10_3390_w11122638
crossref_primary_10_1016_j_ejrh_2018_02_001
crossref_primary_10_1007_s11270_017_3410_9
crossref_primary_10_1007_s10533_022_00927_7
crossref_primary_10_1016_j_algal_2012_03_003
crossref_primary_10_1016_j_scitotenv_2015_06_079
crossref_primary_10_1111_1752_1688_13054
crossref_primary_10_2134_jeq2014_04_0149
crossref_primary_10_1080_03650340_2016_1155116
crossref_primary_10_1002_saj2_20089
crossref_primary_10_1007_s11270_016_2987_8
crossref_primary_10_1080_00103624_2019_1581796
crossref_primary_10_2134_jeq2008_0094
crossref_primary_10_1016_j_ecoleng_2015_11_050
crossref_primary_10_3390_app10020634
crossref_primary_10_3390_w12020328
crossref_primary_10_3390_w13202883
crossref_primary_10_1016_j_watres_2011_11_052
crossref_primary_10_1002_hyp_7740
crossref_primary_10_1016_j_scitotenv_2019_01_059
crossref_primary_10_1111_jawr_12204
crossref_primary_10_1016_j_jhydrol_2011_01_038
crossref_primary_10_1007_s00027_014_0364_5
crossref_primary_10_1002_jeq2_20290
crossref_primary_10_1016_j_agee_2018_04_005
crossref_primary_10_1007_s13280_014_0612_x
crossref_primary_10_1080_10402381_2020_1744775
crossref_primary_10_1016_j_still_2024_106074
crossref_primary_10_1016_j_scitotenv_2019_07_290
crossref_primary_10_1007_s00267_009_9332_6
crossref_primary_10_1016_j_scitotenv_2021_149501
crossref_primary_10_1002_jeq2_20449
crossref_primary_10_1038_s41598_021_99877_7
crossref_primary_10_1088_1748_9326_abce81
crossref_primary_10_1016_j_jenvman_2017_01_059
crossref_primary_10_1016_j_jhydrol_2019_124397
crossref_primary_10_3390_su13126565
crossref_primary_10_2175_106143014X13975035525942
crossref_primary_10_2134_jeq2006_0521
crossref_primary_10_1086_729307
crossref_primary_10_1002_jeq2_20044
crossref_primary_10_1016_j_agwat_2017_04_015
crossref_primary_10_1080_02705060_2008_9664189
crossref_primary_10_2134_jeq2015_06_0302
crossref_primary_10_1016_j_jhydrol_2014_08_016
crossref_primary_10_3318_BIOE_2012_05
crossref_primary_10_1016_j_jenvman_2016_12_042
crossref_primary_10_1016_j_jhydrol_2018_09_051
crossref_primary_10_2139_ssrn_3978598
crossref_primary_10_3390_w10050544
crossref_primary_10_2134_jeq2017_07_0271
crossref_primary_10_1007_s10661_020_8168_7
crossref_primary_10_1016_j_jhydrol_2012_08_052
crossref_primary_10_1007_BF03321447
crossref_primary_10_1016_j_limno_2019_125744
crossref_primary_10_2134_jeq2018_01_0009
Cites_doi 10.2134/jeq1998.00472425002700020006x
10.1016/S0048-9697(00)00734-8
10.2134/jeq2004.1954
10.2134/jeq1998.00472425002700030033x
10.2134/jeq2001.3051822x
10.1016/j.watres.2004.11.027
10.2136/sssaj1996.03615995006000010037x
10.2134/jpa1993.0492
10.2134/jeq1994.00472425002300030006x
10.1016/S0043-1354(97)00473-9
10.1016/S0378-3774(99)00018-9
10.2134/jeq2002.9600
10.2136/sssaj1973.03615995003700030032x
10.1016/S0048-9697(00)00393-4
10.2134/jeq1998.00472425002700040028x
10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
10.1016/0043-1354(92)90129-R
10.13031/2013.13601
10.1007/s00027-003-0661-x
10.13031/2013.20488
10.2134/jeq1997.00472425002600040015x
10.2134/jeq2000.00472425002900010030x
10.1023/A:1014419206761
10.2134/jeq2004.2111
10.2134/jeq1998.00472425002700030006x
10.2134/jeq2000.00472425002900010001x
10.1021/es052573n
10.1002/hyp.3360090202
10.2134/jeq1998.00472425002700020003x
ContentType Journal Article
Copyright ASA, CSSA, SSSA
Copyright American Society of Agronomy Mar/Apr 2007
Copyright_xml – notice: ASA, CSSA, SSSA
– notice: Copyright American Society of Agronomy Mar/Apr 2007
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7ST
7T7
7TG
7X2
7X7
7XB
88E
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KL.
L6V
M0K
M0S
M1P
M2O
M2P
M7S
MBDVC
P64
PATMY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
S0X
SOI
7QH
7TV
7U6
7UA
F1W
H96
H97
L.G
KR7
DOI 10.2134/jeq2006.0098
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Agricultural Science Collection
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
eLibrary
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
ProQuest Science Journals
ProQuest Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
Environment Abstracts
Aqualine
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Civil Engineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Technology Collection
Technology Research Database
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Civil Engineering Abstracts
DatabaseTitleList
CrossRef
Technology Research Database
Environment Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1537-2537
EndPage 415
ExternalDocumentID 1370709791
10_2134_jeq2006_0098
17255628
JEQ2JEQ20060098
US201300841886
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Illinois
USA, Colorado, Fork L
USA, Illinois
GeographicLocations_xml – name: Illinois
– name: USA, Illinois
– name: USA, Colorado, Fork L
GroupedDBID ---
.4S
.DC
.~0
0R~
186
18M
1OB
1OC
29K
2WC
33P
3V.
42X
53G
5GY
6KN
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
8WZ
A6W
AAHHS
AAJWC
AANLZ
ABCQX
ABCUV
ABDNZ
ABJCF
ABJNI
ABTAH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACPRK
ACXQS
ACYGS
ADBBV
ADFRT
ADKYN
ADYHW
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFFPM
AFKRA
AFRAH
AHMBA
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DCZOG
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FA8
FBQ
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
H~9
L6V
L7B
LATKE
LEEKS
M0K
M1P
M2O
M2P
M2Q
M7S
MEWTI
MV1
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QF4
QM1
QM4
QN7
RAK
ROL
RWL
RXW
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
TR2
TWZ
UKHRP
UKR
VH1
VJK
WH7
WOQ
WXSBR
XJT
Y6R
ZCA
ZY4
~02
~KM
AAHBH
AHBTC
AITYG
ALIPV
DDYGU
H13
HGLYW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7ST
7T7
7TG
7XB
8FD
8FK
C1K
FR3
K9.
KL.
MBDVC
P64
PQEST
PQUKI
Q9U
SOI
7QH
7TV
7U6
7UA
F1W
H96
H97
L.G
KR7
ID FETCH-LOGICAL-c6128-33a10664f5a713361d2cad55948db7b3216cba959388174e24ee6fcd0be1ba623
IEDL.DBID 8FG
ISSN 0047-2425
IngestDate Fri Oct 25 02:20:06 EDT 2024
Fri Oct 25 02:40:49 EDT 2024
Fri Oct 25 06:06:28 EDT 2024
Fri Oct 25 00:06:57 EDT 2024
Thu Oct 10 21:08:23 EDT 2024
Fri Aug 23 03:18:00 EDT 2024
Tue Oct 15 23:34:09 EDT 2024
Sat Aug 24 01:09:33 EDT 2024
Wed Dec 27 19:21:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6128-33a10664f5a713361d2cad55948db7b3216cba959388174e24ee6fcd0be1ba623
Notes http://dx.doi.org/10.2134/jeq2006.0098
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17255628
PQID 197378295
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_36546700
proquest_miscellaneous_21198156
proquest_miscellaneous_20999210
proquest_miscellaneous_14813415
proquest_journals_197378295
crossref_primary_10_2134_jeq2006_0098
pubmed_primary_17255628
wiley_primary_10_2134_jeq2006_0098_JEQ2JEQ20060098
fao_agris_US201300841886
PublicationCentury 2000
PublicationDate March 2007
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: March 2007
PublicationDecade 2000
PublicationPlace Madison
PublicationPlace_xml – name: Madison
– name: United States
PublicationTitle Journal of environmental quality
PublicationTitleAlternate J Environ Qual
PublicationYear 2007
Publisher American Society of Agronomy, Crop Science Society of America, Soil Science Society
American Society of Agronomy
Publisher_xml – name: American Society of Agronomy, Crop Science Society of America, Soil Science Society
– name: American Society of Agronomy
References 1998; 27
2004; 66
1995; 9
2001; 266
2000; 29
2002; 31
1997; 26
1973; 37
2000; 20
1998
1994; 23
2006
1999; 41
2003
1999
1993; 6
2004; 33
2006; 40
1990
1999; 39
2006; 49
2000; 251–252
2003; 46
1996; 60
2001; 59
1992; 26
2005; 39
1998; 32
2001; 30
1998; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Illinois State Climatologist Data (e_1_2_7_20_1) 2006
e_1_2_7_19_1
e_1_2_7_18_1
Goolsby D.A. (e_1_2_7_15_1) 1999
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
American Public Health Association (e_1_2_7_2_1) 1998
Litke D.W. (e_1_2_7_22_1) 1999
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Dils R.M. (e_1_2_7_12_1) 1999; 39
National Climate Data Center–National Oceanic and Atmospheric Administration (e_1_2_7_25_1) 2006
Sharpley A. (e_1_2_7_33_1) 2000; 20
SAS Institute (e_1_2_7_28_1) 1990
University of Illinois Extension Service (e_1_2_7_38_1) 2003
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
USEPA (e_1_2_7_39_1) 1998
e_1_2_7_23_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
USGS (e_1_2_7_37_1) 2006
References_xml – volume: 46
  start-page: 657
  year: 2003
  end-page: 674
  article-title: Water, sediment, nutrient, and pesticide measurements in an agricultural watershed in Illinois during storm events
  publication-title: Trans. ASAE
– volume: 27
  start-page: 515
  year: 1998
  end-page: 522
  article-title: Preferential transport of phosphorus in drained grassland
  publication-title: J. Environ. Qual.
– volume: 60
  start-page: 246
  year: 1996
  end-page: 251
  article-title: Sediment and chemical load reduction by grass and riparian filters
  publication-title: Soil Sci. Soc. Am. J.
– volume: 37
  start-page: 424
  year: 1973
  end-page: 427
  article-title: Phosphorus losses from four agricultural watersheds on Missouri Valley loess
  publication-title: Soil Sci. Soc. Am. J.
– volume: 39
  start-page: 55
  year: 1999
  end-page: 61
  article-title: The controversial role of tile drainage in phosphorus export from agricultural land
  publication-title: Water Res.
– volume: 23
  start-page: 437
  year: 1994
  end-page: 451
  article-title: Managing agricultural phosphorus for the protection of surface waters: Issues and opinions
  publication-title: J. Environ. Qual.
– volume: 266
  start-page: 95
  year: 2001
  end-page: 102
  article-title: Particulate phosphorus transport by subsurface drainage from agricultural land in the UK: Environmental significance at the catchment and national scale
  publication-title: Sci. Total Environ.
– volume: 33
  start-page: 1954
  year: 2004
  end-page: 1972
  article-title: Phosphorus runoff from agricultural land and direct fertilizer effects: A review
  publication-title: J. Environ. Qual.
– volume: 27
  start-page: 917
  year: 1998
  end-page: 922
  article-title: Kinetics and modeling of dissolved phosphorus export from a tile‐drained agricultural watershed
  publication-title: J. Environ. Qual.
– volume: 39
  start-page: 751
  year: 2005
  end-page: 762
  article-title: Phosphorus‐discharge hysteresis during storm events along a river catchment: The Swale, UK
  publication-title: Water Res.
– volume: 26
  start-page: 1038
  year: 1997
  end-page: 1048
  article-title: Nitrogen balance in and export from an agricultural watershed
  publication-title: J. Environ. Qual.
– volume: 29
  start-page: 232
  year: 2000
  end-page: 240
  article-title: Nitrogen fertilizer and herbicide transport from tile‐drained fields
  publication-title: J. Environ. Qual.
– volume: 31
  start-page: 96
  year: 2002
  end-page: 108
  article-title: Phosphorus budgets and riverine phosphorus export in northwestern Ohio watersheds
  publication-title: J. Environ. Qual.
– volume: 26
  start-page: 1347
  year: 1992
  end-page: 1358
  article-title: The export of particulate matter, particulate phosphorus, and dissolved phosphorus from two agricultural river basins: Implications on estimating non‐point phosphorus load
  publication-title: Water Res.
– year: 1990
– volume: 30
  start-page: 1822
  year: 2001
  end-page: 1828
  article-title: Management practices effects on phosphorus losses in runoff in corn production systems
  publication-title: J. Environ. Qual.
– volume: 20
  start-page: 1
  year: 2000
  end-page: 9
  article-title: Practical and innovative measure for the control of agricultural phosphorus losses to water: An overview
  publication-title: J. Environ. Qual.
– volume: 8
  start-page: 559
  year: 1998
  end-page: 568
  article-title: Nonpoint pollution of surface waters with phosphorus and nitrogen
  publication-title: Ecol. Appl.
– year: 1998
– volume: 32
  start-page: 2279
  year: 1998
  end-page: 2290
  article-title: Hysteresis of the solute concentration/discharge relationship in rivers during storms
  publication-title: Water Res.
– volume: 27
  start-page: 258
  year: 1998
  end-page: 261
  article-title: Agricultural phosphorus and water quality: A U.S. Environmental Protection Agency perspective
  publication-title: J. Environ. Qual.
– volume: 66
  start-page: 117
  year: 2004
  end-page: 122
  article-title: Nutrient transfer from soil to surface water: Differences between nitrate and phosphate
  publication-title: Aquat. Sci.
– volume: 41
  start-page: 77
  year: 1999
  end-page: 89
  article-title: Sources of phosphorus exported from an agricultural watershed in Pennsylvania
  publication-title: Agric. Water Manage.
– volume: 33
  start-page: 2111
  year: 2004
  end-page: 2121
  article-title: Particulate phosphorus transport within stream flow of an agricultural catchment
  publication-title: J. Environ. Qual.
– volume: 251–252
  start-page: 523
  year: 2000
  end-page: 538
  article-title: Characterizing phosphorus loss in surface and subsurface hydrologic pathways
  publication-title: Sci. Total Environ.
– volume: 40
  start-page: 4126
  year: 2006
  end-page: 4131
  article-title: Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: Implications for reducing nutrient loading to the Mississippi River
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 689
  year: 2006
  end-page: 701
  article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds. (3)
  publication-title: Trans. ASABE
– year: 2006
– volume: 27
  start-page: 721
  year: 1998
  end-page: 728
  article-title: Forms and concentrations of phosphorus in drainage water of twenty‐seven tile‐drained soils
  publication-title: J. Environ. Qual.
– volume: 27
  start-page: 277
  year: 1998
  end-page: 293
  article-title: Phosphorus loss in agricultural drainage: Historical perspective and current research
  publication-title: J. Environ. Qual.
– volume: 59
  start-page: 269
  year: 2001
  end-page: 284
  article-title: Processes controlling soil phosphorus release to runoff and implications for agricultural management
  publication-title: Nutr. Cycling Agroecosyst.
– volume: 9
  start-page: 119
  year: 1995
  end-page: 142
  article-title: Dynamics of phosphorus compounds in a lowland river system: Importance of retention and non‐point sources
  publication-title: Hydrol. Processes
– start-page: 101
  year: 2003
  end-page: 105
– volume: 6
  start-page: 492
  year: 1993
  end-page: 500
  article-title: Phosphorus movement in the landscape
  publication-title: J. Prod. Agric.
– year: 1999
– volume-title: SAS/STAT User's Guide, Version 6
  year: 1990
  ident: e_1_2_7_28_1
  contributor:
    fullname: SAS Institute
– ident: e_1_2_7_34_1
  doi: 10.2134/jeq1998.00472425002700020006x
– ident: e_1_2_7_9_1
  doi: 10.1016/S0048-9697(00)00734-8
– ident: e_1_2_7_17_1
  doi: 10.2134/jeq2004.1954
– ident: e_1_2_7_4_1
  doi: 10.2134/jeq1998.00472425002700030033x
– ident: e_1_2_7_7_1
  doi: 10.2134/jeq2001.3051822x
– ident: e_1_2_7_6_1
  doi: 10.1016/j.watres.2004.11.027
– ident: e_1_2_7_10_1
  doi: 10.2136/sssaj1996.03615995006000010037x
– ident: e_1_2_7_31_1
  doi: 10.2134/jpa1993.0492
– ident: e_1_2_7_30_1
  doi: 10.2134/jeq1994.00472425002300030006x
– ident: e_1_2_7_19_1
  doi: 10.1016/S0043-1354(97)00473-9
– ident: e_1_2_7_32_1
  doi: 10.1016/S0378-3774(99)00018-9
– ident: e_1_2_7_3_1
  doi: 10.2134/jeq2002.9600
– ident: e_1_2_7_29_1
  doi: 10.2136/sssaj1973.03615995003700030032x
– start-page: 101
  volume-title: Illinois Agronomy Handbook
  year: 2003
  ident: e_1_2_7_38_1
  contributor:
    fullname: University of Illinois Extension Service
– ident: e_1_2_7_18_1
  doi: 10.1016/S0048-9697(00)00393-4
– ident: e_1_2_7_40_1
  doi: 10.2134/jeq1998.00472425002700040028x
– ident: e_1_2_7_8_1
  doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
– ident: e_1_2_7_21_1
  doi: 10.1016/0043-1354(92)90129-R
– volume-title: Daily precipitation and temperature for Illinois sites [Online]
  year: 2006
  ident: e_1_2_7_25_1
  contributor:
    fullname: National Climate Data Center–National Oceanic and Atmospheric Administration
– ident: e_1_2_7_5_1
  doi: 10.13031/2013.13601
– volume: 39
  start-page: 55
  year: 1999
  ident: e_1_2_7_12_1
  article-title: The controversial role of tile drainage in phosphorus export from agricultural land
  publication-title: Water Res.
  contributor:
    fullname: Dils R.M.
– ident: e_1_2_7_13_1
  doi: 10.1007/s00027-003-0661-x
– ident: e_1_2_7_16_1
  doi: 10.13031/2013.20488
– ident: e_1_2_7_11_1
  doi: 10.2134/jeq1997.00472425002600040015x
– volume-title: Topic 3: Report of the integrated assessment on hypoxia in the Gulf of Mexico
  year: 1999
  ident: e_1_2_7_15_1
  contributor:
    fullname: Goolsby D.A.
– volume-title: Review of phosphorus control measures in the United States and their effects on water quality
  year: 1999
  ident: e_1_2_7_22_1
  contributor:
    fullname: Litke D.W.
– volume-title: Daily precipitation and temperature data for Illinois sites [Online]
  year: 2006
  ident: e_1_2_7_20_1
  contributor:
    fullname: Illinois State Climatologist Data
– ident: e_1_2_7_14_1
  doi: 10.2134/jeq2000.00472425002900010030x
– ident: e_1_2_7_23_1
  doi: 10.1023/A:1014419206761
– ident: e_1_2_7_24_1
  doi: 10.2134/jeq2004.2111
– volume-title: Standard methods for the examination of water and wastewater
  year: 1998
  ident: e_1_2_7_2_1
  contributor:
    fullname: American Public Health Association
– volume-title: National water quality inventory: 1998
  year: 1998
  ident: e_1_2_7_39_1
  contributor:
    fullname: USEPA
– ident: e_1_2_7_35_1
  doi: 10.2134/jeq1998.00472425002700030006x
– volume: 20
  start-page: 1
  year: 2000
  ident: e_1_2_7_33_1
  article-title: Practical and innovative measure for the control of agricultural phosphorus losses to water: An overview
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900010001x
  contributor:
    fullname: Sharpley A.
– ident: e_1_2_7_27_1
  doi: 10.1021/es052573n
– ident: e_1_2_7_36_1
  doi: 10.1002/hyp.3360090202
– ident: e_1_2_7_26_1
  doi: 10.2134/jeq1998.00472425002700020003x
– volume-title: Daily stream flow data [Online]
  year: 2006
  ident: e_1_2_7_37_1
  contributor:
    fullname: USGS
SSID ssj0012076
Score 2.381153
Snippet Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations...
ABSTRACT Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal...
Phosphorus (P) transport pathways to streams in tile-drained agricultural watersheds were analyzed. For all 16 water year by watershed combinations examined,...
SourceID proquest
crossref
pubmed
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 408
SubjectTerms Agricultural runoff
Agricultural watersheds
Agriculture - methods
Clean Water Act-US
Corn
Discharge
fertilizer application
Freshwater
Frozen ground
frozen soils
Load
Nonpoint source pollution
overland flow
particulates
phosphorus
Phosphorus - analysis
phosphorus fertilizers
pollution load
Precipitation
Rain
Rivers
Rivers - chemistry
Snow
Soil erosion
Soils
Stream discharge
Streams
Studies
Surface runoff
Tile drainage
Tiles
Water Movements
Water Pollutants, Chemical - analysis
water pollution
Water quality
Water Supply
Water treatment plants
Watersheds
Title Phosphorus Transport Pathways to Streams in Tile-Drained Agricultural Watersheds
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2006.0098
https://www.ncbi.nlm.nih.gov/pubmed/17255628
https://www.proquest.com/docview/197378295
https://search.proquest.com/docview/14813415
https://search.proquest.com/docview/20999210
https://search.proquest.com/docview/21198156
https://search.proquest.com/docview/36546700
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED7R7QUeEAzGyljJAzxGix0ndp7Q2FqmSUwFVtG3yI6dFSSSrmmF9u93l7itJkEfEinKydGdz_Gd7-47gA9MZUwrHoc6SU0oysiGuA0nodVGsYKKGTnVO3-9Ti8n4mqaTH1uTuPTKtf_xPZHbeuCzshPWSZj3M2y5NP8LqSmURRc9R00erDPuJTke6nRl00QgUdtb7moBSNA3ezy3gnC7PS3u_NxiEw92pF6pa7_ZWw-tl3bzWf0Ap57qzE466b5JTxx1QE8O7tdeOQMdwCHw23JGpL6Ndu8gvF4VjfzWb1YNcEGyjwYo-X3V983wbIOKDKt_zTBryq4wa-HF9Q2wtlgOz4O-FMTDufM2eY1TEbDm_PL0PdRCAu0X1QYxxodv1SUiSaXNGWWF9omBNRijTQxZ2lhNCEUK4UOiuPCubQsbGQcMxrto0PYq-rKHUGQKSmtFaVj0oksSrXOWKyNZmlphJOsDx_XssznHVxGjm4GyTz3Ms9J5n04QkHnGvlo8skPTvHTSAmmVNqH47X0c7-emnwz-314v3mLC4GiG7py9QpJhCJwuh0UVCWcoYu7g4KxjOBz_k8RU_GXjHCMN51ibNmUhObGkTXeaspO_vOr4TdOF-Hh4PPbnUwfw9PuSJlS397B3nKxcidoCy3NAHpyKvGuztmg1f4B7H8eXo-_PwB9xQcA
link.rule.ids 315,783,787,12068,12235,12777,21400,27936,27937,31731,31732,33278,33279,33385,33386,33756,33757,43322,43591,43612,43817,74073,74342,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYeAAeEAy2lQ2WB3i0FjuO4zyhaWspY5uKaMXeLDt2KEgkXdMK8d_vLnFbTYI-5CHKydGdP-7Od_c7Qt4zlTOjeEJNKi0VZewoqOGUOmMVK7CYkWO98_WNHE7E5W16G3JzmpBWuToT24Pa1QXekZ-yPEtAm-Xpx9kdxaZRGFwNHTR2yGORgKrGQvHBp3UQgcdtb7m4BSOAtdnlvSOE2ekvfxfiELl6oJF2SlP_y9h8aLu2ymfwgjwPVmN01k3zS_LIV3vk2dmPeUDO8Htkv78pWQPSsGebV2Q0mtbNbFrPl020hjKPRmD5_TF_m2hRRxiZNr-b6GcVjeHv9ALbRngXbcaHAb8bxOGcete8JpNBf3w-pKGPAi1AKIomiQHHT4oyNeiSSuZ4YVyKQC3OZjbhTBbWIEKxUuCgeC68l2XhYuuZNWAf7ZPdqq78IYlylWXOidKzzIs8lsbkLDHWMFla4TPWIx9WstSzDi5Dg5uBMtdB5hpl3iOHIGhtgI9GT75xjJ_GSjClZI8craSvw35q9Hr2e-Rk_RU2AkY3TOXrJZAIheB0WyiwSjgHF3cLBWM5wuf8nyLB4q8shjEOuoWxYTNDNDcOrPF2pWzlX1_2v3J8EA8H3t9sZfqEPBmOr6_01eebL0fkaXe9jGlwx2R3MV_6t2AXLey7dvXfA03xBpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELbYkBB7QGOwrdtgfoDHqLGT2M4TmlirMWAqYhV9s-zYWYdE0jWtEP-eu8RtNQn6kIcoJ0d3OefufHffEfKOqZwZxZPIZMJGaRm7CMxwFjljFSuwmZFjv_PXG3E1Tq8n2SRACjWhrHL1T2x_1K4u8Iy8z3KZgDXLs34ZqiJGl8MPs4cIB0hhojVM09ghTyUEKajycrKOvRiP2zlzcQtMAHra1cAjnFn_p38IOYlcPbJOO6Wp_-V4PvZjW0M03CcvggdJL7pP_pI88dUB2bu4mwcUDX9ADgeb9jUgDfu3eUVGo2ndzKb1fNnQNaw5HYEX-Nv8aeiippilNr8ael_RW3h7dIkjJLyjm_VhwR8GMTmn3jWvyXg4uP14FYWZClEBvoyKksRAECjSMjMYngrmeGFchqAtzkqbcCYKaxCtWCkIVjxPvRdl4WLrmTXgKx2S3aqu_DGhuZLSubT0TPo0j4UxOUuMNUyUNvWS9cj7lSz1rIPO0BByoMx1kLlGmffIMQhaG-Cj0ePvHHOpsUqZUqJHTlfS12FvNXqtCT1yvn4KmwIzHaby9RJIUoVAdVsosGM4h3B3CwVjOULp_J8iwUYwGcMaR51ibNiUiOzGgTXeaspW_vX14BvHC7Fx4P5kK9Pn5Bkovv7y6ebzKXnenTRjRdwZ2V3Ml_4NuEgL-7ZV_r_mvwrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+Transport+Pathways+to+Streams+in+Tile%E2%80%90Drained+Agricultural+Watersheds&rft.jtitle=Journal+of+environmental+quality&rft.au=Gentry%2C+L.+E.&rft.au=David%2C+M.+B.&rft.au=Royer%2C+T.+V.&rft.au=Mitchell%2C+C.+A.&rft.date=2007-03-01&rft.issn=0047-2425&rft.eissn=1537-2537&rft.volume=36&rft.issue=2&rft.spage=408&rft.epage=415&rft_id=info:doi/10.2134%2Fjeq2006.0098&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_jeq2006_0098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2425&client=summon