Improving power in small-sample longitudinal studies when using generalized estimating equations

Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small‐sample studies, little attention has been given to power in such settings. Therefore,...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 35; no. 21; pp. 3733 - 3744
Main Authors Westgate, Philip M., Burchett, Woodrow W.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 20.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6967

Cover

Loading…
Abstract Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small‐sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small‐sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small-sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small-sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example.
Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small‐sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small‐sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example. Copyright © 2016 John Wiley & Sons, Ltd.
Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small-sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small-sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example. Copyright © 2016 John Wiley & Sons, Ltd.Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small-sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small-sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example. Copyright © 2016 John Wiley & Sons, Ltd.
Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been done to improve the validity of GEE for the analysis of data arising from small-sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small-sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example.
Author Westgate, Philip M.
Burchett, Woodrow W.
AuthorAffiliation 1 Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, U.S.A
2 Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, U.S.A
AuthorAffiliation_xml – name: 1 Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, U.S.A
– name: 2 Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, U.S.A
Author_xml – sequence: 1
  givenname: Philip M.
  surname: Westgate
  fullname: Westgate, Philip M.
  email: Correspondence to: Philip M. Westgate, Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, U.S.A, philip.westgate@uky.edu
  organization: Department of Biostatistics, College of Public Health, University of Kentucky, KY, 40536, Lexington, U.S.A
– sequence: 2
  givenname: Woodrow W.
  surname: Burchett
  fullname: Burchett, Woodrow W.
  organization: Department of Statistics, College of Arts and Sciences, University of Kentucky, KY, 40536, Lexington, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27090375$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URLcFiU-AInHhkq3_xHZyQUILbLdqiypAHI03md26OHZqJ92WT49D24VWcLLl-c3zmzd7aMd5Bwi9JHhKMKYH0bRTUQn5BE0IrmSOKS930ARTKXMhCd9FezFeYEwIp_IZ2qUSV5hJPkHfF20X_JVx66zzGwiZcVlstbV51G1nIbPerU0_NMZpm8XxAjHbnIPLhjh2rcFB0Nb8hCaD2JtW9-MzXA7p4l18jp6utI3w4u7cR18_fvgyO8yPP80Xs3fHeS0IlXmTxmCCVEIUklal1JSuOMZci0JURVkXhDdNQUqxFARWNSyLWhNCKhDAlgwY20dvb3W7YdlCU4Prky3VheQo3CivjXpYceZcrf2VKirBGSmTwJs7geAvhzSKak2swVrtwA9RkRLLUpYp2YS-foRe-CGkgEYqZSwxwzhRr_52tLVyH_6fH-vgYwyw2iIEq3GvKu1VjXtN6PQRWpv-d8BpFmP_1ZDfNmyMhZv_CqvPi5OHvIk9XG95HX6oVJVcfTudq9mRmJ3NT96rM_YL5pHDrA
CODEN SMEDDA
CitedBy_id crossref_primary_10_3390_jcm10061159
crossref_primary_10_1016_j_jpeds_2020_02_037
crossref_primary_10_1177_0962280220958735
crossref_primary_10_1177_0962280220986193
crossref_primary_10_1111_insr_12447
crossref_primary_10_1186_s12874_024_02368_2
crossref_primary_10_1002_sim_7917
crossref_primary_10_1080_03610918_2018_1484476
crossref_primary_10_1002_sim_7199
crossref_primary_10_1111_jan_13194
crossref_primary_10_3389_fnhum_2023_1286238
crossref_primary_10_1016_j_jbusres_2021_03_007
crossref_primary_10_1002_sim_9744
crossref_primary_10_1080_10543406_2020_1814795
crossref_primary_10_1002_sim_8670
Cites_doi 10.1093/biomet/86.2.459
10.1080/00949655.2015.1089873
10.1093/biomet/73.1.13
10.1212/01.wnl.0000167607.63000.38
10.1093/biomet/88.3.901
10.1198/016214501753382309
10.1080/01688639508405155
10.2307/2531733
10.1093/biomet/90.1.29
10.1111/j.0006-341X.2001.01198.x
10.1111/j.1541-0420.2007.00764.x
10.1002/sim.1142
10.1002/sim.2502
10.1002/sim.3622
10.2307/2532890
10.1002/sim.3489
10.1017/S1041610213000367
10.1002/sim.4150
10.2307/2533336
10.1198/000313007X245122
10.1002/sim.5709
10.1080/10543406.2013.813521
10.1111/j.0006-341X.2001.00126.x
10.1080/13854046.2012.690451
10.1093/biomet/82.2.407
10.1002/sim.6106
10.1002/bimj.201200237
10.1002/bimj.200390021
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Sep 20, 2016
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Sep 20, 2016
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.6967
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3744
ExternalDocumentID PMC4965318
4148297751
27090375
10_1002_sim_6967
SIM6967
ark_67375_WNG_CJ6CQGMD_Q
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: National Institutes of Health
  funderid: UL1TR000117
– fundername: National Center for Research Resources and the National Center for Advancing Translational Sciences
– fundername: National Institute on Aging
  funderid: R01 AG019241
– fundername: NCATS NIH HHS
  grantid: UL1 TR001998
– fundername: NIA NIH HHS
  grantid: R01 AG019241
– fundername: NCATS NIH HHS
  grantid: UL1 TR000117
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c6127-d002361966472987a22f5005a646948c415dd4186b61efceb4ca1119e6e3b3e33
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 17:56:42 EDT 2025
Fri Jul 11 16:03:31 EDT 2025
Sun Jul 13 04:13:43 EDT 2025
Mon Jul 21 06:01:55 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 03:28:09 EDT 2025
Wed Jan 22 16:46:21 EST 2025
Wed Oct 30 09:51:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords empirical covariance matrix
efficiency
degrees of freedom
correlation selection
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6127-d002361966472987a22f5005a646948c415dd4186b61efceb4ca1119e6e3b3e33
Notes National Institutes of Health - No. UL1TR000117
ArticleID:SIM6967
istex:376CA02E89C7CA44979D27882214F3264B54E445
National Institute on Aging - No. R01 AG019241
Supporting Info ItemSupporting Info Item
National Center for Research Resources and the National Center for Advancing Translational Sciences
ark:/67375/WNG-CJ6CQGMD-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2991-268X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4965318
PMID 27090375
PQID 1811570300
PQPubID 48361
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4965318
proquest_miscellaneous_1807878258
proquest_journals_1811570300
pubmed_primary_27090375
crossref_primary_10_1002_sim_6967
crossref_citationtrail_10_1002_sim_6967
wiley_primary_10_1002_sim_6967_SIM6967
istex_primary_ark_67375_WNG_CJ6CQGMD_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 September 2016
PublicationDateYYYYMMDD 2016-09-20
PublicationDate_xml – month: 09
  year: 2016
  text: 20 September 2016
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Pan W. On the robust variance estimator in generalised estimating equations. Biometrika 2001; 88:901-906.
Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics 2001; 57:126-134.
Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
Hin L-Y, Wang Y-G. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 2009; 28:642-658.
Caban-Holt A, Abner E, Kryscio RJ, Crowley JJ, Schmitt FA. Age-expanded normative data for the Ruff 2&7 Selective Attention Test: evaluating cognition in older males. The Clinical Neuropsychologist 2012; 26:751-768.
Hin L-Y, Carey VJ, Wang Y-G. Criteria for working-correlation-structure selection in GEE. The American Statistician 2007; 61:360-364.
Pan W, Wall MM. Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations. Statistics in Medicine 2002; 21:1429-1441.
Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
McCaffrey DF, Bell RM. Improved hypothesis testing for coefficients in generalized estimating equations with small samples of clusters. Statistics in Medicine 2006; 25:4081-4098.
Fan C, Zhang D, Zhang CH. A comparison of bias-corrected covariance estimators for generalized estimating equations. Journal of Biopharmaceutical Statistics 2013; 23:1172-1187.
Fay MP, Graubard BI. Small-sample adjustments for wald-type tests using sandwich estimators. Biometrics 2001; 57:1198-1206.
Wang M, Long Q. Modified robust variance estimator for generalized estimating equations with improved small-sample performance. Statistics in Medicine 2011; 30:1278-1291.
Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
Westgate PM. That use an unstructured correlation matrix. Statistics in Medicine 2013; 32:2850-2858.
Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association 2001; 96:1387-1396.
Westgate PM. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices. Journal of Statistical Computation and Simulation 2016; 86:1891-1900.
Morel JG, Bokossa MC, Neerchal NK. Small sample correction for the variance of GEE estimators. Biometrical Journal 2003; 45:395-409.
Lu B, Preisser JS, Qaqish BF, Suchindran C, Bangdiwala SI, Wolfson M. A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics 2007; 63:935-941.
Boekamp JR, Strauss ME, Adams N. Estimating premorbid intelligence in African-American and white elderly veterans using the American version of the national adult reading test. Journal of Clinical and Experimental Neuropsychology 1995; 17:645-653.
Westgate PM. Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data. Statistics in Medicine 2014; 33:2222-2237.
Westgate PM. On small-sample inference in group randomized trials with binary outcomes and cluster-level covariates. Biometrical Journal 2013; 55:789-806.
Chandler MJ, Lacritz LH, Hynan LS, Barnard HD, Allen G, Deschner M, Weiner MF, Cullum CM. A total score for the CERAD neuropsychological battery. Neurology 2005; 65:102-106.
Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine 2009; 28:2338-2355.
Fitzmaurice GM. A caveat concerning independence estimating equations with multivariate binary data. Biometrics 1995; 51:309-317.
Wang Y-G, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41.
Mancl LA, Leroux BG. Efficiency of regression estimates for clustered data. Biometrics 1996; 52:500-511.
Sutradhar BC, Das K. On the efficiency of regression estimators in generalised linear models for longitudinal data. Biometrika 1999; 86:459-465.
Mathews M, Abner E, Caban-Holt A, Kryscio R, Schmitt F. CERAD practice effects and attrition bias in a dementia prevention trial. International Psychogeriatrics 2013; 25:1115-1123.
1995; 51
2013; 25
1986; 73
1995; 17
2013; 23
2011; 30
1996; 52
2005; 65
1999; 86
2001; 88
2009; 28
1995; 82
2003; 90
2013; 55
2013; 32
2006; 25
2002; 21
2016; 86
1988; 44
2007; 61
2007; 63
2012; 26
2001; 57
2001; 96
2014; 33
2003; 45
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: Westgate PM. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices. Journal of Statistical Computation and Simulation 2016; 86:1891-1900.
– reference: Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine 2009; 28:2338-2355.
– reference: Sutradhar BC, Das K. On the efficiency of regression estimators in generalised linear models for longitudinal data. Biometrika 1999; 86:459-465.
– reference: Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics 1988; 44:1033-1048.
– reference: Boekamp JR, Strauss ME, Adams N. Estimating premorbid intelligence in African-American and white elderly veterans using the American version of the national adult reading test. Journal of Clinical and Experimental Neuropsychology 1995; 17:645-653.
– reference: Hin L-Y, Carey VJ, Wang Y-G. Criteria for working-correlation-structure selection in GEE. The American Statistician 2007; 61:360-364.
– reference: Mancl LA, DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics 2001; 57:126-134.
– reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 1995; 82:407-410.
– reference: Chandler MJ, Lacritz LH, Hynan LS, Barnard HD, Allen G, Deschner M, Weiner MF, Cullum CM. A total score for the CERAD neuropsychological battery. Neurology 2005; 65:102-106.
– reference: Fitzmaurice GM. A caveat concerning independence estimating equations with multivariate binary data. Biometrics 1995; 51:309-317.
– reference: Caban-Holt A, Abner E, Kryscio RJ, Crowley JJ, Schmitt FA. Age-expanded normative data for the Ruff 2&7 Selective Attention Test: evaluating cognition in older males. The Clinical Neuropsychologist 2012; 26:751-768.
– reference: Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association 2001; 96:1387-1396.
– reference: Wang M, Long Q. Modified robust variance estimator for generalized estimating equations with improved small-sample performance. Statistics in Medicine 2011; 30:1278-1291.
– reference: Mathews M, Abner E, Caban-Holt A, Kryscio R, Schmitt F. CERAD practice effects and attrition bias in a dementia prevention trial. International Psychogeriatrics 2013; 25:1115-1123.
– reference: Mancl LA, Leroux BG. Efficiency of regression estimates for clustered data. Biometrics 1996; 52:500-511.
– reference: Lu B, Preisser JS, Qaqish BF, Suchindran C, Bangdiwala SI, Wolfson M. A comparison of two bias-corrected covariance estimators for generalized estimating equations. Biometrics 2007; 63:935-941.
– reference: Westgate PM. On small-sample inference in group randomized trials with binary outcomes and cluster-level covariates. Biometrical Journal 2013; 55:789-806.
– reference: Fay MP, Graubard BI. Small-sample adjustments for wald-type tests using sandwich estimators. Biometrics 2001; 57:1198-1206.
– reference: Morel JG, Bokossa MC, Neerchal NK. Small sample correction for the variance of GEE estimators. Biometrical Journal 2003; 45:395-409.
– reference: Wang Y-G, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 2003; 90:29-41.
– reference: Westgate PM. That use an unstructured correlation matrix. Statistics in Medicine 2013; 32:2850-2858.
– reference: Westgate PM. Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data. Statistics in Medicine 2014; 33:2222-2237.
– reference: Hin L-Y, Wang Y-G. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 2009; 28:642-658.
– reference: Pan W, Wall MM. Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations. Statistics in Medicine 2002; 21:1429-1441.
– reference: McCaffrey DF, Bell RM. Improved hypothesis testing for coefficients in generalized estimating equations with small samples of clusters. Statistics in Medicine 2006; 25:4081-4098.
– reference: Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
– reference: Fan C, Zhang D, Zhang CH. A comparison of bias-corrected covariance estimators for generalized estimating equations. Journal of Biopharmaceutical Statistics 2013; 23:1172-1187.
– reference: Pan W. On the robust variance estimator in generalised estimating equations. Biometrika 2001; 88:901-906.
– volume: 28
  start-page: 642
  year: 2009
  end-page: 658
  article-title: Working‐correlation‐structure identification in generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 86
  start-page: 459
  year: 1999
  end-page: 465
  article-title: On the efficiency of regression estimators in generalised linear models for longitudinal data
  publication-title: Biometrika
– volume: 61
  start-page: 360
  year: 2007
  end-page: 364
  article-title: Criteria for working‐correlation‐structure selection in GEE
  publication-title: The American Statistician
– volume: 45
  start-page: 395
  year: 2003
  end-page: 409
  article-title: Small sample correction for the variance of GEE estimators
  publication-title: Biometrical Journal
– volume: 28
  start-page: 2338
  year: 2009
  end-page: 2355
  article-title: A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
  publication-title: Statistics in Medicine
– volume: 52
  start-page: 500
  year: 1996
  end-page: 511
  article-title: Efficiency of regression estimates for clustered data
  publication-title: Biometrics
– volume: 25
  start-page: 1115
  year: 2013
  end-page: 1123
  article-title: CERAD practice effects and attrition bias in a dementia prevention trial
  publication-title: International Psychogeriatrics
– volume: 55
  start-page: 789
  year: 2013
  end-page: 806
  article-title: On small‐sample inference in group randomized trials with binary outcomes and cluster‐level covariates
  publication-title: Biometrical Journal
– volume: 44
  start-page: 1033
  year: 1988
  end-page: 1048
  article-title: Correlated binary regression with covariates specific to each binary observation
  publication-title: Biometrics
– volume: 26
  start-page: 751
  year: 2012
  end-page: 768
  article-title: Age‐expanded normative data for the Ruff 2&7 Selective Attention Test: evaluating cognition in older males
  publication-title: The Clinical Neuropsychologist
– volume: 82
  start-page: 407
  year: 1995
  end-page: 410
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
– volume: 63
  start-page: 935
  year: 2007
  end-page: 941
  article-title: A comparison of two bias‐corrected covariance estimators for generalized estimating equations
  publication-title: Biometrics
– volume: 65
  start-page: 102
  year: 2005
  end-page: 106
  article-title: A total score for the CERAD neuropsychological battery
  publication-title: Neurology
– volume: 88
  start-page: 901
  year: 2001
  end-page: 906
  article-title: On the robust variance estimator in generalised estimating equations
  publication-title: Biometrika
– volume: 86
  start-page: 1891
  year: 2016
  end-page: 1900
  article-title: A covariance correction that accounts for correlation estimation to improve finite‐sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices
  publication-title: Journal of Statistical Computation and Simulation
– volume: 32
  start-page: 2850
  year: 2013
  end-page: 2858
  article-title: That use an unstructured correlation matrix
  publication-title: Statistics in Medicine
– volume: 17
  start-page: 645
  year: 1995
  end-page: 653
  article-title: Estimating premorbid intelligence in African‐American and white elderly veterans using the American version of the national adult reading test
  publication-title: Journal of Clinical and Experimental Neuropsychology
– volume: 33
  start-page: 2222
  year: 2014
  end-page: 2237
  article-title: Improving the correlation structure selection approach for generalized estimating equations and balanced longitudinal data
  publication-title: Statistics in Medicine
– volume: 30
  start-page: 1278
  year: 2011
  end-page: 1291
  article-title: Modified robust variance estimator for generalized estimating equations with improved small‐sample performance
  publication-title: Statistics in Medicine
– volume: 51
  start-page: 309
  year: 1995
  end-page: 317
  article-title: A caveat concerning independence estimating equations with multivariate binary data
  publication-title: Biometrics
– volume: 90
  start-page: 29
  year: 2003
  end-page: 41
  article-title: Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance
  publication-title: Biometrika
– volume: 57
  start-page: 126
  year: 2001
  end-page: 134
  article-title: A covariance estimator for GEE with improved small‐sample properties
  publication-title: Biometrics
– volume: 57
  start-page: 1198
  year: 2001
  end-page: 1206
  article-title: Small‐sample adjustments for wald‐type tests using sandwich estimators
  publication-title: Biometrics
– volume: 25
  start-page: 4081
  year: 2006
  end-page: 4098
  article-title: Improved hypothesis testing for coefficients in generalized estimating equations with small samples of clusters
  publication-title: Statistics in Medicine
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 96
  start-page: 1387
  year: 2001
  end-page: 1396
  article-title: A note on the efficiency of sandwich covariance matrix estimation
  publication-title: Journal of the American Statistical Association
– volume: 21
  start-page: 1429
  year: 2002
  end-page: 1441
  article-title: Small‐sample adjustments in using the sandwich variance estimator in generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 1172
  year: 2013
  end-page: 1187
  article-title: A comparison of bias‐corrected covariance estimators for generalized estimating equations
  publication-title: Journal of Biopharmaceutical Statistics
– ident: e_1_2_8_20_1
  doi: 10.1093/biomet/86.2.459
– ident: e_1_2_8_12_1
  doi: 10.1080/00949655.2015.1089873
– ident: e_1_2_8_2_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_8_27_1
  doi: 10.1212/01.wnl.0000167607.63000.38
– ident: e_1_2_8_3_1
  doi: 10.1093/biomet/88.3.901
– ident: e_1_2_8_4_1
  doi: 10.1198/016214501753382309
– ident: e_1_2_8_29_1
  doi: 10.1080/01688639508405155
– ident: e_1_2_8_25_1
  doi: 10.2307/2531733
– ident: e_1_2_8_16_1
  doi: 10.1093/biomet/90.1.29
– ident: e_1_2_8_6_1
  doi: 10.1111/j.0006-341X.2001.01198.x
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1541-0420.2007.00764.x
– ident: e_1_2_8_13_1
  doi: 10.1002/sim.1142
– ident: e_1_2_8_8_1
  doi: 10.1002/sim.2502
– ident: e_1_2_8_24_1
  doi: 10.1002/sim.3622
– ident: e_1_2_8_15_1
  doi: 10.2307/2532890
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.3489
– ident: e_1_2_8_28_1
  doi: 10.1017/S1041610213000367
– ident: e_1_2_8_9_1
  doi: 10.1002/sim.4150
– ident: e_1_2_8_14_1
  doi: 10.2307/2533336
– ident: e_1_2_8_23_1
  doi: 10.1198/000313007X245122
– ident: e_1_2_8_11_1
  doi: 10.1002/sim.5709
– ident: e_1_2_8_10_1
  doi: 10.1080/10543406.2013.813521
– ident: e_1_2_8_5_1
  doi: 10.1111/j.0006-341X.2001.00126.x
– ident: e_1_2_8_26_1
  doi: 10.1080/13854046.2012.690451
– ident: e_1_2_8_19_1
  doi: 10.1093/biomet/82.2.407
– ident: e_1_2_8_17_1
  doi: 10.1002/sim.6106
– ident: e_1_2_8_22_1
  doi: 10.1002/bimj.201200237
– ident: e_1_2_8_7_1
  doi: 10.1002/bimj.200390021
SSID ssj0011527
Score 2.2838483
Snippet Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the...
Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been done to improve the validity...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3733
SubjectTerms Biometry
Computer Simulation
correlation selection
Data analysis
degrees of freedom
efficiency
empirical covariance matrix
Estimating techniques
Humans
Longitudinal Studies
Models, Statistical
Sample size
Simulation
Statistical inference
Title Improving power in small-sample longitudinal studies when using generalized estimating equations
URI https://api.istex.fr/ark:/67375/WNG-CJ6CQGMD-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6967
https://www.ncbi.nlm.nih.gov/pubmed/27090375
https://www.proquest.com/docview/1811570300
https://www.proquest.com/docview/1807878258
https://pubmed.ncbi.nlm.nih.gov/PMC4965318
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPaEhoEhpQfgUGMhKCp3RJHDvpIypsY1InDZiYxINlx-5WrUu3pRVoT_wJ-xv3l3AXJ4HCkBBPlZJLU7t3zjf2-XMAL3kqcQi049DZqJ6tcqEZ2Ch0XKI8HgueadqcPNqV2_vpzoE4aLIqaS-M50N0E24UGfV4TQGuTbXxExpaTU76ciBpI3mMX0x66ENHjorbaq20QimzWLTc2SjZaC9cehLdpE79dp3M_DNb8lcVWz-GNu_Al7YBPvvkuL-Ym35x8Rvb8f9aeBfWGnXK3nh3ugc3XNmDW6Nm_b0Ht_0sH_Obl3qwSlrVo57vg-kmKNgp1V5jk5JVJ3o6vfp-WWmiELPpjMojLSyV4mKVT2FkX49cySj__pAdegj25MJZRvgPktN42J15IHn1APY3330abodNCYewQOmUhbYm1GOUE6V-kGc6ScYCA19LfC1P8wLlg7VpnEsjYzcunEkLjaPvwEnHDXecP4SVcla6x8BMUvDcGi1tqlPheI4jM8pLqUUi8ljaAF63f6cqGr45ldmYKk9mThT2p6L-DOBFZ3nqmR7X2LyqPaIz0OfHlAOXCfV5d0sNd-Rwb2v0Vu0FsN66jGrCv1Iom2JCm0UR3qs7jYFLqzG6dLMF2aA6Q30m8gAeeQ_rbpZkNH2WiQCyJd_rDAgKvnymnBzVcHDi_-M4jb-_dq2_NlB9fD-izyf_avgUVlEsSsqVSaJ1WJmfL9wzFGRz87wOvR86kjUT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVoJKiMtyCxQwEoKnbHOzkxVPaEu7Lc1KhVb0AclyYm-76jZbml2B-sQn8I18CTNxElgoEuIpUjKRY3tmcjwenwF4HkYCXaAeuUZ7VbTKuFlPe64JBcLjEQ9jRYeT06EYHEQ7h_xwCV41Z2EsP0QbcCPLqPw1GTgFpNd_soaW49Ou6In4CqxEiDNo5bXxruWO8pt6rbRHKWKfN8yzXrDevLnwL1qhYf1yGdD8M1_yVxxb_Yg2b8LHpgs2_-SkO59l3fziN3bH_-zjLbhRA1T22mrUbVgyRQeupvUWfAeu20Afs-eXOrBKcNWyPd-BrI1RsDMqv8bGBStP1WTy_eu3UhERMZtMqULSXFM1LlbaLEb2-dgUjFLwj9iR5cEeXxjNiAGEEDXeNp8sJ3l5Fw423-z3B25dxcHNET3Frq5I6tHQiai-l8QqCEYcbV8JXJlHSY4IQuvIT0QmfDPKTRblCh1wzwgTZqEJw3uwXEwL8wBYFuRhojMldKQibsIEnTPOvFA84IkvtAMvm_mUeU1xTpU2JtKSMwcSx1PSeDrwrJU8s7Qel8i8qFSiFVDnJ5QGF3P5Ybgl-zuiv7eVbsg9B9YanZG1ByglIief2M08D9tqH6Pt0oaMKsx0TjII0BCi8cSB-1bF2saCmCJoMXcgXlC-VoB4wRefFOPjih-cSgCgq8bvr3Trrx2U77dTuj78V8GncG2wn-7K3e3h20ewithRUOpM4K3B8ux8bh4jPptlTyo7_AFmeTky
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtNAEIZH0EpVJcQhnAwFFgnBlVOfdu1copT0AIkoUFGpF6u1d91GTZ1QJwL1ikfgGXkSZry2IVAkxFWkeCJnNzPrP7Oz3wA8CyOBS6DOXaO9Kltl3LSnPdeEAuVxzsNY0eHk4UjsHER7h_ywrqqkszCWD9Em3CgyqvWaAnym882f0NByfNYVPRFfhdVIoJAgQfSuRUf5TbtW2qIUsc8b8KwXbDafXHoUrdKsfrlMZ_5ZLvmrjK2eQ4MbcNSMwJafnHYX87SbXfwGd_y_Id6E67U8ZS-tP92CK6bowNqw3oDvwDWb5mP29FIH1kmsWtbzbUjbDAWbUfM1Ni5YeaYmk-9fv5WKMMRsMqX-SAtNvbhYaWsY2ecTUzAqwD9mx5aCPb4wmhH_g_Q0vm0-WSJ5eQcOBq8-9HfcuoeDm6F2il1dIeoxzAlT30tiFQQ5x8hXAv-XR0mG-kHryE9EKnyTZyaNMoXLb88IE6ahCcO7sFJMC3MfWBpkYaJTJXSkIm7CBJdm1JdC8YAnvtAOvGh-TpnVgHPqszGRFs0cSJxPSfPpwNPWcmahHpfYPK88ojVQ56dUBBdz-XG0Lft7or-_PdyS-w5sNC4j6_gvJeomn9hmnof3ai9j5NJ2jCrMdEE2KM9QoPHEgXvWw9qbBTHlz2LuQLzke60BUcGXrxTjk4oOTg0AcKHG71-51l8HKN_vDun1wb8aPoG1t1sD-WZ39PohrKNwFFQ3E3gbsDI_X5hHKM7m6eMqCn8AnUY34Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Power+in+Small-Sample+Longitudinal+Studies+when+using+Generalized+Estimating+Equations&rft.jtitle=Statistics+in+medicine&rft.au=Westgate%2C+Philip+M.&rft.au=Burchett%2C+Woodrow+W.&rft.date=2016-09-20&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=21&rft.spage=3733&rft.epage=3744&rft_id=info:doi/10.1002%2Fsim.6967&rft_id=info%3Apmid%2F27090375&rft.externalDocID=PMC4965318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon