Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fr...
Saved in:
Published in | Global change biology Vol. 20; no. 7; pp. 2356 - 2367 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.07.2014
Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural ¹³C labelling adding C₄‐sucrose or C₄‐maize straw to C₃‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists. |
---|---|
AbstractList | The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural super(13)C labelling adding C sub(4)-sucrose or C sub(4)-maize straw to C sub(3)-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of [beta]-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural ¹³C labelling adding C₄‐sucrose or C₄‐maize straw to C₃‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter ( SOM ). Moreover, N input modifies the priming effect ( PE ), that is, the effect of fresh organics on the microbial decomposition of SOM . We studied the interactive effects of C and N on SOM mineralization (by natural 13 C labelling adding C 4 ‐sucrose or C 4 ‐maize straw to C 3 ‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM . Sucrose addition with N significantly accelerated mineralization of native SOM , whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β ‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4‐sucrose or C4‐maize straw to C3‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists. The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of [beta]-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists. [PUBLICATION ABSTRACT] |
Author | Chen, Ruirui Blagodatsky, Sergey Kuzyakov, Yakov Lin, Xiangui Blagodatskaya, Evgenia Senbayram, Mehmet Myachina, Olga Dittert, Klaus |
Author_xml | – sequence: 1 fullname: Chen, Ruirui – sequence: 2 fullname: Senbayram, Mehmet – sequence: 3 fullname: Blagodatsky, Sergey – sequence: 4 fullname: Myachina, Olga – sequence: 5 fullname: Dittert, Klaus – sequence: 6 fullname: Lin, Xiangui – sequence: 7 fullname: Blagodatskaya, Evgenia – sequence: 8 fullname: Kuzyakov, Yakov |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28562690$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24273056$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltv1DAQhSNURC_wwB-ASKgSPKS1x5dkeaMrukWslodSeLQcZ7J1SeLF9gL773HYbZEqcfGLR5rvHHk85zDbG9yAWfaUkhOazunS1CcUeCkeZAeUSVEAr-TeWAteUELZfnYYwg0hhAGRj7J94FAyIuRBFi-d7fJprocmX-T6m7adrm1n4yZvMKLv7YB5vMZ85W2qlzm2LZr4Ou-t8a62ukuy1Bhbo0eIzppr63qM3prkYVy_csFG64bRx3mL4XH2sNVdwCe7-yi7On_7cXpRzD_M3k3fzAsjKYiCNpRoWYLhbc0rwIqCRgk1QyJFgzgpKZalrAhnIGhtRA2l5LIxxoAwpmRH2cut78q7r2sMUfU2GOw6PaBbB0WlZIKxSQn_RgUXtCKTSfU_KAHGKzG6vriH3ri1H9LMiWIgOZNkfOazHbWue2zU-NXab9TtlhJwvAN0MLprvR6MDb-5SkiQE5K4V1surSYEj-0dQokak6JSUtSvpCT29B5rbNTjmqJPIfib4rvtcPNnazWbnt0qiq3Chog_7hTaf1GyZIn8vJiphZjPzmefLtT7xD_f8q12Si99mvHqEgjlhFABEoD9BN9q5JA |
CitedBy_id | crossref_primary_10_1016_j_ejsobi_2020_103190 crossref_primary_10_1016_j_soilbio_2020_107720 crossref_primary_10_1002_agg2_20111 crossref_primary_10_1080_10256016_2024_2423797 crossref_primary_10_1016_j_scitotenv_2017_02_033 crossref_primary_10_1016_j_geoderma_2022_115821 crossref_primary_10_1111_ejss_13446 crossref_primary_10_1007_s10533_021_00811_w crossref_primary_10_1016_j_scitotenv_2021_149590 crossref_primary_10_3390_f14112209 crossref_primary_10_1016_j_scitotenv_2017_01_005 crossref_primary_10_1016_j_apsoil_2024_105495 crossref_primary_10_1016_j_apsoil_2015_05_006 crossref_primary_10_1016_j_catena_2024_108051 crossref_primary_10_1111_ejss_70017 crossref_primary_10_1038_s43247_024_01954_y crossref_primary_10_1111_ele_13083 crossref_primary_10_1088_1748_9326_ad3167 crossref_primary_10_1038_ismej_2017_178 crossref_primary_10_1002_agg2_20107 crossref_primary_10_1088_1748_9326_ac661a crossref_primary_10_1016_j_scitotenv_2022_159459 crossref_primary_10_1007_s11104_021_05239_7 crossref_primary_10_1021_acs_est_3c02620 crossref_primary_10_1016_j_pedsph_2023_06_003 crossref_primary_10_1016_j_eja_2021_126436 crossref_primary_10_1002_saj2_20604 crossref_primary_10_1016_j_apsoil_2021_104324 crossref_primary_10_1111_plb_12960 crossref_primary_10_1128_mBio_03252_20 crossref_primary_10_3390_f12020170 crossref_primary_10_3390_agronomy14030447 crossref_primary_10_1016_j_jia_2023_05_040 crossref_primary_10_1016_j_scitotenv_2023_169731 crossref_primary_10_1088_1748_9326_ab2c11 crossref_primary_10_1111_gcb_15987 crossref_primary_10_3389_ffgc_2020_00099 crossref_primary_10_3390_environments9040052 crossref_primary_10_1371_journal_pone_0236634 crossref_primary_10_1007_s00374_022_01665_6 crossref_primary_10_1002_ldr_3388 crossref_primary_10_1016_j_soilbio_2022_108589 crossref_primary_10_1016_j_foreco_2022_120074 crossref_primary_10_1016_j_gca_2023_04_005 crossref_primary_10_1007_s11368_015_1337_6 crossref_primary_10_1111_gcb_13752 crossref_primary_10_3390_s20123362 crossref_primary_10_7717_peerj_15276 crossref_primary_10_1021_acs_est_0c06014 crossref_primary_10_3390_agronomy14030490 crossref_primary_10_1016_j_scitotenv_2020_141305 crossref_primary_10_1016_j_apsoil_2017_08_005 crossref_primary_10_1016_j_scitotenv_2020_142884 crossref_primary_10_7717_peerj_9128 crossref_primary_10_1890_14_1770_1 crossref_primary_10_3390_agronomy13071783 crossref_primary_10_1016_j_envres_2023_115729 crossref_primary_10_1029_2020JG006201 crossref_primary_10_1016_j_scitotenv_2022_153925 crossref_primary_10_1016_j_ejsobi_2018_04_001 crossref_primary_10_1016_j_ejsobi_2018_10_002 crossref_primary_10_1016_j_pedsph_2024_02_007 crossref_primary_10_1016_j_soilbio_2018_06_010 crossref_primary_10_1016_j_soilbio_2022_108562 crossref_primary_10_1016_j_catena_2022_106351 crossref_primary_10_3390_soilsystems8010016 crossref_primary_10_1007_s11368_020_02797_8 crossref_primary_10_1111_gcb_13980 crossref_primary_10_3389_fmicb_2020_622926 crossref_primary_10_1007_s00374_021_01583_z crossref_primary_10_1111_gcb_15951 crossref_primary_10_1016_j_geoderma_2017_01_017 crossref_primary_10_1016_j_geoderma_2024_117107 crossref_primary_10_1016_j_agee_2020_107232 crossref_primary_10_1016_j_scitotenv_2024_175261 crossref_primary_10_1016_j_geoderma_2019_113880 crossref_primary_10_1007_s11104_018_3601_1 crossref_primary_10_1007_s11356_020_09720_1 crossref_primary_10_1016_j_scitotenv_2020_144842 crossref_primary_10_1016_j_catena_2019_04_033 crossref_primary_10_3390_f13101710 crossref_primary_10_1007_s00374_018_1321_6 crossref_primary_10_1007_s00374_019_01345_y crossref_primary_10_1016_j_apsoil_2024_105270 crossref_primary_10_1111_nph_16389 crossref_primary_10_1093_femsec_fix110 crossref_primary_10_1007_s11368_019_02423_2 crossref_primary_10_1016_j_funeco_2022_101191 crossref_primary_10_1016_j_soilbio_2016_02_012 crossref_primary_10_1016_j_rcrx_2019_100014 crossref_primary_10_2136_sssaj2018_11_0446 crossref_primary_10_1016_j_agee_2021_107577 crossref_primary_10_1016_j_soilbio_2022_108778 crossref_primary_10_1016_j_still_2024_106088 crossref_primary_10_1007_s00374_020_01468_7 crossref_primary_10_1016_j_geoderma_2020_114576 crossref_primary_10_3390_pr11010241 crossref_primary_10_1016_j_soilbio_2022_108775 crossref_primary_10_3390_su141912283 crossref_primary_10_1016_j_apsoil_2020_103572 crossref_primary_10_1016_j_soilbio_2018_07_025 crossref_primary_10_1111_sum_12823 crossref_primary_10_1016_j_geoderma_2024_116884 crossref_primary_10_1016_j_geoderma_2024_116883 crossref_primary_10_1111_1365_2435_13256 crossref_primary_10_3390_agronomy11102025 crossref_primary_10_1111_gcb_17502 crossref_primary_10_1007_s11104_017_3254_5 crossref_primary_10_1016_j_apsoil_2018_02_012 crossref_primary_10_1016_j_soilbio_2022_108767 crossref_primary_10_1016_j_apsoil_2025_105911 crossref_primary_10_1016_j_apsoil_2020_103568 crossref_primary_10_1021_acs_jafc_3c03209 crossref_primary_10_7717_peerj_7130 crossref_primary_10_1111_gcbb_12665 crossref_primary_10_1016_j_still_2018_08_008 crossref_primary_10_1016_j_scitotenv_2023_167970 crossref_primary_10_1016_j_soilbio_2016_11_014 crossref_primary_10_5194_soil_10_779_2024 crossref_primary_10_1007_s00203_020_01816_z crossref_primary_10_1016_j_apsoil_2018_02_008 crossref_primary_10_1016_j_apsoil_2018_02_001 crossref_primary_10_1016_j_soilbio_2022_108758 crossref_primary_10_1007_s42729_023_01135_4 crossref_primary_10_1002_ldr_3792 crossref_primary_10_1088_1755_1315_712_1_012012 crossref_primary_10_1002_ldr_4642 crossref_primary_10_1016_j_geoderma_2017_04_029 crossref_primary_10_36783_18069657rbcs20200088 crossref_primary_10_1111_gcb_16445 crossref_primary_10_1007_s11104_023_06258_2 crossref_primary_10_1029_2019JG005611 crossref_primary_10_1016_j_still_2021_105120 crossref_primary_10_1007_s11104_023_06127_y crossref_primary_10_1016_j_still_2021_105126 crossref_primary_10_1016_j_pedsph_2023_04_002 crossref_primary_10_1016_j_apsoil_2021_103884 crossref_primary_10_3390_atmos13101702 crossref_primary_10_1016_j_geoderma_2016_09_010 crossref_primary_10_1111_gcb_15342 crossref_primary_10_1111_gcb_15587 crossref_primary_10_3390_soilsystems8010034 crossref_primary_10_1002_mbo3_1044 crossref_primary_10_1029_2018JG004431 crossref_primary_10_1007_s12649_022_01687_z crossref_primary_10_1111_gcb_16627 crossref_primary_10_1007_s42729_024_01672_6 crossref_primary_10_1016_j_eti_2025_104109 crossref_primary_10_1016_j_ecolind_2022_109726 crossref_primary_10_1016_j_geoderma_2023_116393 crossref_primary_10_1016_j_apsoil_2020_103778 crossref_primary_10_1016_j_geoderma_2020_114535 crossref_primary_10_1016_j_fcr_2024_109285 crossref_primary_10_1007_s11104_016_2958_2 crossref_primary_10_1016_j_agee_2020_107081 crossref_primary_10_1007_s10533_016_0198_4 crossref_primary_10_1007_s11104_021_05241_z crossref_primary_10_5194_bg_21_3165_2024 crossref_primary_10_1016_j_soilbio_2016_10_019 crossref_primary_10_1038_s41396_021_00950_w crossref_primary_10_1016_j_soilbio_2016_10_014 crossref_primary_10_3389_ffgc_2021_773223 crossref_primary_10_1016_j_scitotenv_2023_168627 crossref_primary_10_1016_j_still_2024_106298 crossref_primary_10_1016_j_soilbio_2016_10_016 crossref_primary_10_1016_j_geoderma_2023_116384 crossref_primary_10_1007_s10021_022_00800_6 crossref_primary_10_3390_microorganisms10030540 crossref_primary_10_1007_s10533_022_00996_8 crossref_primary_10_3389_ffgc_2023_1136354 crossref_primary_10_1111_1365_2435_12377 crossref_primary_10_1016_j_scitotenv_2024_174338 crossref_primary_10_3389_fmicb_2019_02609 crossref_primary_10_1093_femsec_fiaa089 crossref_primary_10_3389_fpls_2024_1362149 crossref_primary_10_1016_j_apsoil_2024_105668 crossref_primary_10_1002_jeq2_20172 crossref_primary_10_1016_j_scitotenv_2024_174572 crossref_primary_10_3390_plants13010139 crossref_primary_10_1016_j_soilbio_2021_108518 crossref_primary_10_3389_fevo_2019_00059 crossref_primary_10_1007_s42729_024_02076_2 crossref_primary_10_1038_s41598_017_11190_4 crossref_primary_10_3390_microorganisms11051106 crossref_primary_10_1002_agj2_20582 crossref_primary_10_1016_j_still_2018_09_011 crossref_primary_10_1016_j_jhazmat_2024_134232 crossref_primary_10_1016_j_soilbio_2018_08_023 crossref_primary_10_1007_s00374_018_1314_5 crossref_primary_10_1016_j_scitotenv_2020_139708 crossref_primary_10_36783_18069657rbcs20220077 crossref_primary_10_1002_jsfa_11518 crossref_primary_10_17221_286_2019_PSE crossref_primary_10_1016_j_catena_2017_02_014 crossref_primary_10_1016_j_still_2019_05_027 crossref_primary_10_1007_s00253_021_11691_3 crossref_primary_10_3390_su11061732 crossref_primary_10_1007_s10705_022_10221_5 crossref_primary_10_1016_j_resconrec_2020_104901 crossref_primary_10_1016_j_scitotenv_2023_163424 crossref_primary_10_1016_j_eja_2018_01_010 crossref_primary_10_1016_j_geoderma_2022_116118 crossref_primary_10_1111_gcb_17115 crossref_primary_10_1007_s12155_016_9810_7 crossref_primary_10_3389_fenvs_2022_853655 crossref_primary_10_1007_s10533_023_01085_0 crossref_primary_10_1111_1365_2435_14625 crossref_primary_10_1016_j_jenvman_2022_117202 crossref_primary_10_1016_j_scitotenv_2022_153565 crossref_primary_10_1111_gcb_17349 crossref_primary_10_20961_stjssa_v20i2_67520 crossref_primary_10_1016_j_soilbio_2022_108802 crossref_primary_10_1016_j_soilbio_2021_108427 crossref_primary_10_1007_s00374_018_1274_9 crossref_primary_10_1007_s10705_020_10053_1 crossref_primary_10_1016_j_apsoil_2020_103848 crossref_primary_10_1016_j_apsoil_2020_103843 crossref_primary_10_1016_j_apsoil_2020_103842 crossref_primary_10_1016_j_soilbio_2024_109696 crossref_primary_10_12677_IJE_2022_112023 crossref_primary_10_1007_s11104_024_06788_3 crossref_primary_10_1016_j_agrformet_2023_109792 crossref_primary_10_1016_j_soilbio_2024_109455 crossref_primary_10_1002_jpln_202100193 crossref_primary_10_1007_s11104_019_04072_3 crossref_primary_10_1016_j_scitotenv_2024_172417 crossref_primary_10_1111_1365_2435_13303 crossref_primary_10_1016_j_geoderma_2023_116610 crossref_primary_10_1007_s12155_018_9903_6 crossref_primary_10_1002_ldr_4802 crossref_primary_10_2139_ssrn_3981269 crossref_primary_10_1016_j_soilbio_2025_109769 crossref_primary_10_1007_s11104_020_04566_5 crossref_primary_10_1016_j_scitotenv_2020_138645 crossref_primary_10_1007_s11104_018_3873_5 crossref_primary_10_1016_j_still_2016_06_008 crossref_primary_10_1038_srep33814 crossref_primary_10_1016_j_scitotenv_2022_154876 crossref_primary_10_1111_geb_13524 crossref_primary_10_1002_fes3_70009 crossref_primary_10_3390_su12020621 crossref_primary_10_1016_j_jhazmat_2022_128522 crossref_primary_10_1111_1365_2435_13550 crossref_primary_10_1002_jsfa_13968 crossref_primary_10_1016_j_geoderma_2022_116148 crossref_primary_10_1016_j_soilbio_2021_108447 crossref_primary_10_1073_pnas_2002780117 crossref_primary_10_1016_j_foreco_2019_117477 crossref_primary_10_1016_j_geoderma_2019_114122 crossref_primary_10_1016_j_jaridenv_2021_104696 crossref_primary_10_1016_j_apsoil_2020_103863 crossref_primary_10_1016_j_soilbio_2016_05_006 crossref_primary_10_4236_ojss_2017_77009 crossref_primary_10_1016_j_apsoil_2016_04_019 crossref_primary_10_1016_j_geoderma_2023_116603 crossref_primary_10_1002_ecy_3790 crossref_primary_10_1016_j_soilbio_2016_05_001 crossref_primary_10_1016_j_soilbio_2025_109770 crossref_primary_10_5194_bg_18_3147_2021 crossref_primary_10_1002_saj2_20050 crossref_primary_10_3389_ffgc_2023_1288259 crossref_primary_10_1016_j_geoderma_2023_116676 crossref_primary_10_1016_j_soilbio_2021_108458 crossref_primary_10_1016_j_scitotenv_2021_152163 crossref_primary_10_1007_s11368_023_03677_7 crossref_primary_10_1016_j_scitotenv_2023_166734 crossref_primary_10_3389_fenvs_2022_898249 crossref_primary_10_3390_agronomy12050998 crossref_primary_10_1016_j_soisec_2021_100007 crossref_primary_10_1016_j_apsoil_2021_104186 crossref_primary_10_1111_gcb_16463 crossref_primary_10_1016_j_geoderma_2020_114818 crossref_primary_10_1016_j_scitotenv_2022_156814 crossref_primary_10_1038_ismej_2017_43 crossref_primary_10_1002_jpln_202000416 crossref_primary_10_1007_s11104_023_06277_z crossref_primary_10_1016_j_agee_2024_109142 crossref_primary_10_1016_j_soilbio_2016_06_010 crossref_primary_10_3389_fmicb_2016_02001 crossref_primary_10_1007_s10705_023_10277_x crossref_primary_10_1007_s10457_023_00861_z crossref_primary_10_1016_j_soilbio_2023_109158 crossref_primary_10_1007_s11104_017_3210_4 crossref_primary_10_1016_j_geoderma_2020_114828 crossref_primary_10_1016_j_envres_2019_108591 crossref_primary_10_1111_gcb_16456 crossref_primary_10_1007_s00374_018_1317_2 crossref_primary_10_1111_gcbb_12340 crossref_primary_10_1007_s11104_019_04070_5 crossref_primary_10_1016_j_geoderma_2017_05_032 crossref_primary_10_1016_j_scitotenv_2024_172671 crossref_primary_10_1016_j_scitotenv_2024_170497 crossref_primary_10_1016_j_agee_2022_108006 crossref_primary_10_1016_j_agee_2022_108248 crossref_primary_10_1016_j_still_2021_104999 crossref_primary_10_1016_j_scitotenv_2016_12_021 crossref_primary_10_1007_s11104_024_06600_2 crossref_primary_10_1007_s11676_020_01148_0 crossref_primary_10_1016_j_agee_2024_109373 crossref_primary_10_1016_j_pedobi_2021_150769 crossref_primary_10_1029_2023JG007699 crossref_primary_10_1016_j_soilbio_2024_109689 crossref_primary_10_1111_ejss_12817 crossref_primary_10_1016_j_soilbio_2021_108473 crossref_primary_10_1016_j_soilbio_2023_109123 crossref_primary_10_1016_j_soilbio_2014_08_019 crossref_primary_10_1016_j_soilbio_2021_108236 crossref_primary_10_1111_gcb_14069 crossref_primary_10_1111_gcb_16004 crossref_primary_10_1111_ejss_12811 crossref_primary_10_2139_ssrn_4057268 crossref_primary_10_1007_s11104_022_05851_1 crossref_primary_10_1007_s00374_020_01513_5 crossref_primary_10_5194_soil_9_443_2023 crossref_primary_10_1016_j_agee_2023_108776 crossref_primary_10_1111_ele_13700 crossref_primary_10_1016_j_soilbio_2019_03_027 crossref_primary_10_1007_s11368_022_03354_1 crossref_primary_10_1128_AEM_02738_17 crossref_primary_10_1016_j_geoderma_2021_115197 crossref_primary_10_3390_plants10102000 crossref_primary_10_3389_feart_2019_00076 crossref_primary_10_1002_agj2_20624 crossref_primary_10_1007_s00374_021_01545_5 crossref_primary_10_1016_j_still_2019_04_024 crossref_primary_10_1111_ejss_12800 crossref_primary_10_1016_j_scitotenv_2023_166093 crossref_primary_10_1080_15324982_2023_2284889 crossref_primary_10_1016_j_catena_2024_107807 crossref_primary_10_2136_sssaj2018_07_0273 crossref_primary_10_1186_s43591_021_00004_0 crossref_primary_10_5194_bg_19_5419_2022 crossref_primary_10_1016_j_soilbio_2023_109106 crossref_primary_10_1016_j_soilbio_2021_108495 crossref_primary_10_1016_j_soilbio_2021_108498 crossref_primary_10_1080_15226514_2021_1959516 crossref_primary_10_1007_s11104_019_03981_7 crossref_primary_10_1016_j_apsoil_2016_05_004 crossref_primary_10_48077_scihor_25_10__2022_31_42 crossref_primary_10_1155_2024_9997751 crossref_primary_10_1016_j_soilbio_2017_01_017 crossref_primary_10_1016_j_apsoil_2022_104442 crossref_primary_10_1016_j_resenv_2024_100174 crossref_primary_10_1002_jpln_202100108 crossref_primary_10_3390_agronomy9100651 crossref_primary_10_1093_jipm_pmac018 crossref_primary_10_1016_j_rhisph_2019_100145 crossref_primary_10_1016_j_soilbio_2024_109612 crossref_primary_10_1016_j_soilbio_2021_108265 crossref_primary_10_1007_s10533_016_0201_0 crossref_primary_10_1016_j_apsoil_2017_11_009 crossref_primary_10_1016_j_soilbio_2016_07_011 crossref_primary_10_1016_j_catena_2020_104677 crossref_primary_10_3390_soilsystems5030044 crossref_primary_10_3390_microorganisms12081689 crossref_primary_10_1007_s10533_025_01222_x crossref_primary_10_1016_j_ejsobi_2024_103695 crossref_primary_10_2136_sssaj2019_02_0047 crossref_primary_10_1007_s11104_019_04331_3 crossref_primary_10_1016_j_agee_2020_106973 crossref_primary_10_1016_j_apsoil_2015_11_016 crossref_primary_10_1007_s00374_019_01383_6 crossref_primary_10_1016_j_scitotenv_2024_177258 crossref_primary_10_3390_nitrogen2040030 crossref_primary_10_3389_fmicb_2017_02293 crossref_primary_10_1111_1365_2745_13997 crossref_primary_10_1080_20964129_2022_2133638 crossref_primary_10_1007_s11676_018_0731_5 crossref_primary_10_1016_j_soilbio_2015_12_010 crossref_primary_10_1111_pce_15472 crossref_primary_10_1038_srep46286 crossref_primary_10_1007_s11104_021_05191_6 crossref_primary_10_1016_j_soilbio_2020_107928 crossref_primary_10_1016_j_geoderma_2021_115342 crossref_primary_10_1016_j_scitotenv_2017_03_208 crossref_primary_10_3390_polym15030660 crossref_primary_10_1016_j_soilbio_2018_10_015 crossref_primary_10_1029_2022JG006800 crossref_primary_10_1111_gcb_16062 crossref_primary_10_1016_j_scitotenv_2018_11_437 crossref_primary_10_1007_s11104_018_3755_x crossref_primary_10_1111_sum_12348 crossref_primary_10_1002_ldr_5270 crossref_primary_10_1007_s00374_016_1174_9 crossref_primary_10_1111_gcbb_70007 crossref_primary_10_1016_j_jenvman_2024_122777 crossref_primary_10_1016_j_apsoil_2023_104982 crossref_primary_10_1016_j_catena_2024_107839 crossref_primary_10_1016_j_eja_2016_12_012 crossref_primary_10_1016_j_soilbio_2020_107913 crossref_primary_10_1016_j_soilbio_2019_04_003 crossref_primary_10_1016_j_catena_2019_104213 crossref_primary_10_3389_fmicb_2014_00720 crossref_primary_10_1111_gcb_17147 crossref_primary_10_1016_j_soilbio_2020_107705 crossref_primary_10_1007_s10533_021_00880_x crossref_primary_10_1016_j_soilbio_2019_05_001 crossref_primary_10_1002_jpln_202300405 crossref_primary_10_1016_j_biortech_2022_127452 crossref_primary_10_1016_j_envint_2023_108393 crossref_primary_10_1016_j_apsoil_2023_104973 crossref_primary_10_1016_j_soilbio_2020_107942 crossref_primary_10_1002_jpln_201800551 crossref_primary_10_1016_j_catena_2024_107872 crossref_primary_10_1016_j_soilbio_2024_109603 crossref_primary_10_1016_j_chnaes_2018_05_006 crossref_primary_10_1016_j_envpol_2021_117741 crossref_primary_10_1007_s11368_023_03609_5 crossref_primary_10_1007_s10705_019_09973_4 crossref_primary_10_1016_j_soilbio_2019_05_017 crossref_primary_10_7717_peerj_13462 crossref_primary_10_1007_s11104_022_05357_w crossref_primary_10_1016_j_catena_2023_107321 crossref_primary_10_1039_C5EM00446B crossref_primary_10_1007_s42729_024_01997_2 crossref_primary_10_1016_j_ecolind_2023_111457 crossref_primary_10_1016_j_soilbio_2020_107849 crossref_primary_10_1016_j_scitotenv_2021_152882 crossref_primary_10_1080_10643389_2023_2266312 crossref_primary_10_1016_j_soilbio_2020_107840 crossref_primary_10_1016_j_jhazmat_2024_135078 crossref_primary_10_1080_10256016_2021_1970548 crossref_primary_10_1111_1365_2745_70028 crossref_primary_10_1016_j_geoderma_2019_113982 crossref_primary_10_1007_s00374_025_01907_3 crossref_primary_10_3389_ffgc_2019_00059 crossref_primary_10_1016_j_fcr_2022_108712 crossref_primary_10_1016_j_scitotenv_2019_134488 crossref_primary_10_1016_j_scitotenv_2024_170907 crossref_primary_10_1038_srep10102 crossref_primary_10_1016_j_geoderma_2021_115425 crossref_primary_10_1139_cjss_2019_0088 crossref_primary_10_1016_j_jclepro_2023_137783 crossref_primary_10_1016_j_soilbio_2017_11_001 crossref_primary_10_1016_j_still_2020_104727 crossref_primary_10_1021_acs_jafc_9b03323 crossref_primary_10_1111_ejss_13564 crossref_primary_10_3389_fmicb_2024_1381891 crossref_primary_10_1016_j_envres_2023_116501 crossref_primary_10_1016_j_geoderma_2022_115951 crossref_primary_10_1038_s41598_021_97698_2 crossref_primary_10_1016_j_geoderma_2021_115652 crossref_primary_10_1016_j_ejsobi_2016_07_003 crossref_primary_10_1111_gcb_16938 crossref_primary_10_1007_s10661_024_12988_2 crossref_primary_10_1016_j_apsoil_2016_07_021 crossref_primary_10_3390_agronomy12020456 crossref_primary_10_1016_j_catena_2020_104952 crossref_primary_10_1016_j_ecolind_2023_110055 crossref_primary_10_1111_gcb_14304 crossref_primary_10_1016_j_envres_2025_121423 crossref_primary_10_1016_j_geoderma_2021_115441 crossref_primary_10_1016_j_apsoil_2022_104732 crossref_primary_10_1080_02757540_2024_2396827 crossref_primary_10_3389_fmicb_2022_948875 crossref_primary_10_1016_j_jenvman_2024_121837 crossref_primary_10_1016_j_geoderma_2021_115440 crossref_primary_10_1016_j_soilbio_2023_108996 crossref_primary_10_1016_j_soilbio_2019_06_003 crossref_primary_10_3390_microorganisms13010173 crossref_primary_10_1002_jpln_202200357 crossref_primary_10_7717_peerj_17984 crossref_primary_10_1111_gcb_16718 crossref_primary_10_1016_j_scitotenv_2024_172082 crossref_primary_10_1016_j_geoderma_2022_115739 crossref_primary_10_1016_j_apsoil_2021_104216 crossref_primary_10_1016_j_ejsobi_2021_103332 crossref_primary_10_1111_sum_12790 crossref_primary_10_1111_gcb_16951 crossref_primary_10_1007_s10533_023_01016_z crossref_primary_10_1016_j_scitotenv_2023_168350 crossref_primary_10_1016_j_scitotenv_2023_166170 crossref_primary_10_1038_s41467_024_45277_0 crossref_primary_10_1016_j_scitotenv_2023_168353 crossref_primary_10_1111_gcb_14962 crossref_primary_10_1128_msystems_00162_20 crossref_primary_10_1007_s42729_021_00664_0 crossref_primary_10_1016_j_eja_2022_126619 crossref_primary_10_1016_j_scitotenv_2018_10_237 crossref_primary_10_1002_saj2_20745 crossref_primary_10_1371_journal_pone_0216730 crossref_primary_10_2134_agronj2019_03_0224 crossref_primary_10_1016_j_soilbio_2017_10_004 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1016_j_agee_2022_107927 crossref_primary_10_1016_j_fcr_2024_109569 crossref_primary_10_1016_j_catena_2022_106484 crossref_primary_10_1016_j_fcr_2018_09_011 crossref_primary_10_1111_1365_2435_14251 crossref_primary_10_1007_s00374_020_01489_2 crossref_primary_10_1016_j_scitotenv_2023_166175 crossref_primary_10_1007_s10705_019_10037_w crossref_primary_10_3390_agronomy14122996 crossref_primary_10_1002_ldr_3492 crossref_primary_10_1016_j_scitotenv_2017_03_154 crossref_primary_10_1016_j_microb_2024_100085 crossref_primary_10_1007_s11104_021_05260_w crossref_primary_10_1002_saj2_20759 crossref_primary_10_1007_s11104_019_04120_y crossref_primary_10_1016_j_soilbio_2022_108683 crossref_primary_10_1016_j_still_2023_105864 crossref_primary_10_1007_s42729_024_01680_6 crossref_primary_10_1016_j_geoderma_2018_03_020 crossref_primary_10_1007_s11104_019_04240_5 crossref_primary_10_1002_ldr_3481 crossref_primary_10_1002_ecy_3094 crossref_primary_10_1002_ldr_3240 crossref_primary_10_1002_ldr_4570 crossref_primary_10_1016_j_rhisph_2023_100809 crossref_primary_10_1016_j_catena_2024_107907 crossref_primary_10_1111_nph_18458 crossref_primary_10_1016_j_scitotenv_2023_168577 crossref_primary_10_1016_j_pedobi_2023_150896 crossref_primary_10_1029_2021GL096133 crossref_primary_10_1016_j_still_2023_105657 crossref_primary_10_1016_j_pedobi_2020_150686 crossref_primary_10_1016_j_soilbio_2022_108671 crossref_primary_10_3390_f13081263 crossref_primary_10_1007_s00343_021_1261_0 crossref_primary_10_1016_j_jhazmat_2023_130762 crossref_primary_10_1016_j_catena_2022_106226 crossref_primary_10_1007_s11104_018_3757_8 crossref_primary_10_1111_1365_2435_14038 crossref_primary_10_1016_j_geoderma_2019_113996 crossref_primary_10_1002_saj2_20530 crossref_primary_10_1111_ejss_12497 crossref_primary_10_3390_agronomy13122972 crossref_primary_10_1016_j_agee_2021_107643 crossref_primary_10_1016_j_soilbio_2022_108669 crossref_primary_10_1002_ldr_4318 crossref_primary_10_1016_j_soilbio_2023_108961 crossref_primary_10_1002_ldr_4792 crossref_primary_10_1016_j_scitotenv_2020_141442 crossref_primary_10_3390_microorganisms8111773 crossref_primary_10_1111_1365_2745_13276 crossref_primary_10_1080_00380768_2020_1870095 crossref_primary_10_1111_ejss_12248 crossref_primary_10_1016_S1002_0160_21_60064_4 crossref_primary_10_1007_s42729_022_00892_y crossref_primary_10_1016_j_envres_2023_115482 crossref_primary_10_1016_j_still_2018_01_013 crossref_primary_10_1016_j_scitotenv_2022_157541 crossref_primary_10_1016_j_jenvman_2021_112894 crossref_primary_10_4081_ija_2016_757 crossref_primary_10_5194_gmd_8_1789_2015 crossref_primary_10_1007_s00374_023_01702_y crossref_primary_10_1016_j_apsoil_2023_105234 crossref_primary_10_1016_j_apsoil_2024_105531 crossref_primary_10_1038_s41396_023_01523_9 crossref_primary_10_1016_j_still_2022_105560 crossref_primary_10_1016_j_still_2022_105562 crossref_primary_10_1007_s10533_021_00754_2 crossref_primary_10_1016_j_soilbio_2022_108881 crossref_primary_10_3390_agronomy12020293 crossref_primary_10_1016_j_scitotenv_2022_158400 crossref_primary_10_1016_j_ejsobi_2020_103216 crossref_primary_10_1111_gcbb_12784 crossref_primary_10_1002_ecs2_2165 crossref_primary_10_1016_j_apsoil_2019_103425 crossref_primary_10_1016_j_apsoil_2019_04_015 crossref_primary_10_1016_j_scitotenv_2024_174655 crossref_primary_10_3390_f14071305 crossref_primary_10_1038_s41467_019_11472_7 crossref_primary_10_1111_gcb_13296 crossref_primary_10_1007_s10750_021_04574_1 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_1016_j_catena_2022_106806 crossref_primary_10_1007_s00374_022_01684_3 crossref_primary_10_1016_j_geoderma_2023_116444 crossref_primary_10_1111_gcb_17405 crossref_primary_10_3390_f10050435 crossref_primary_10_1016_j_scitotenv_2023_166742 crossref_primary_10_3389_fagro_2022_833338 crossref_primary_10_1007_s00374_019_01357_8 crossref_primary_10_1111_gcbb_12520 crossref_primary_10_1007_s42729_024_02160_7 crossref_primary_10_1016_j_soilbio_2017_05_026 crossref_primary_10_1016_j_geoderma_2018_10_030 crossref_primary_10_1016_j_soilbio_2017_05_021 crossref_primary_10_1016_j_still_2024_106163 crossref_primary_10_1016_j_jenvman_2017_11_077 crossref_primary_10_1071_SR20063 crossref_primary_10_1016_j_soilbio_2022_108619 crossref_primary_10_1016_j_jenvman_2019_06_054 crossref_primary_10_1016_j_soilbio_2025_109789 crossref_primary_10_1002_ldr_3651 crossref_primary_10_1038_s41598_018_26375_8 crossref_primary_10_1016_j_soilbio_2022_108852 crossref_primary_10_1016_j_soilbio_2022_108850 crossref_primary_10_1007_s00253_021_11663_7 crossref_primary_10_1071_SR21149 crossref_primary_10_1016_j_agee_2018_06_020 crossref_primary_10_1016_j_biortech_2023_129109 crossref_primary_10_1038_s41467_018_05667_7 crossref_primary_10_1016_j_scitotenv_2021_147428 crossref_primary_10_1007_s11104_024_06670_2 crossref_primary_10_1371_journal_pone_0161251 crossref_primary_10_1111_ejss_13517 crossref_primary_10_1111_1365_2435_13338 crossref_primary_10_1016_j_scitotenv_2021_151911 crossref_primary_10_3390_agriculture13061187 crossref_primary_10_1016_j_agee_2020_107194 crossref_primary_10_1016_j_spc_2023_11_019 crossref_primary_10_1007_s11104_021_04872_6 crossref_primary_10_1016_j_geoderma_2024_116778 crossref_primary_10_1016_j_soilbio_2020_108118 crossref_primary_10_1016_j_soilbio_2022_108839 crossref_primary_10_1016_j_geoderma_2020_114877 crossref_primary_10_1016_j_still_2021_105219 crossref_primary_10_1016_j_jes_2025_01_015 crossref_primary_10_1007_s00374_022_01682_5 crossref_primary_10_1002_agj2_20460 crossref_primary_10_1007_s11104_021_05288_y crossref_primary_10_1007_s11368_022_03396_5 crossref_primary_10_1007_s11356_023_26696_w crossref_primary_10_1016_j_agee_2021_107489 crossref_primary_10_1016_j_agee_2020_107184 crossref_primary_10_1016_j_soilbio_2017_12_009 crossref_primary_10_1016_j_soilbio_2022_108827 crossref_primary_10_1016_j_soilbio_2020_108103 crossref_primary_10_1007_s00374_019_01359_6 crossref_primary_10_1016_j_agrformet_2015_06_017 crossref_primary_10_1111_gcb_16750 crossref_primary_10_3389_fpls_2016_01252 crossref_primary_10_1038_s43016_022_00584_x crossref_primary_10_3390_agriculture13040860 crossref_primary_10_1016_j_apsoil_2022_104395 crossref_primary_10_3390_app15031006 crossref_primary_10_1080_00380768_2023_2199777 crossref_primary_10_1016_j_soilbio_2018_01_003 crossref_primary_10_1016_j_geoderma_2018_08_021 crossref_primary_10_1016_j_still_2024_106242 crossref_primary_10_1038_s41467_024_54446_0 crossref_primary_10_1007_s11427_022_2245_y crossref_primary_10_1016_j_soilbio_2021_108530 crossref_primary_10_1007_s11104_017_3431_6 crossref_primary_10_3390_plants11212893 crossref_primary_10_1002_saj2_20142 crossref_primary_10_4236_jacen_2016_52006 crossref_primary_10_3390_agronomy13112791 crossref_primary_10_3390_plants11192605 crossref_primary_10_1016_j_scitotenv_2020_140808 crossref_primary_10_5194_bg_13_4481_2016 crossref_primary_10_1016_j_foreco_2020_117920 crossref_primary_10_1016_j_scitotenv_2021_149924 crossref_primary_10_7717_peerj_4024 crossref_primary_10_3390_f14061207 crossref_primary_10_1016_j_geoderma_2019_02_006 crossref_primary_10_1016_j_geoderma_2024_116802 crossref_primary_10_1016_j_soilbio_2024_109330 crossref_primary_10_1111_gcb_16372 crossref_primary_10_1007_s11538_023_01160_5 crossref_primary_10_1111_1462_2920_13890 crossref_primary_10_1016_j_agee_2023_108602 crossref_primary_10_1016_j_jenvman_2024_122488 crossref_primary_10_1080_00380768_2020_1753481 crossref_primary_10_1016_j_ejsobi_2023_103490 crossref_primary_10_1016_j_geoderma_2025_117186 crossref_primary_10_1007_s11104_024_07170_z crossref_primary_10_1002_ecy_1482 crossref_primary_10_1007_s10533_019_00600_6 crossref_primary_10_1007_s10705_020_10076_8 crossref_primary_10_1016_j_soilbio_2021_108312 crossref_primary_10_1016_j_jenvman_2019_03_058 crossref_primary_10_1016_j_soilbio_2023_109285 crossref_primary_10_3390_microbiolres14040117 crossref_primary_10_1111_1365_2435_13428 crossref_primary_10_1086_717127 crossref_primary_10_1007_s11104_021_05168_5 crossref_primary_10_1007_s11104_024_06887_1 crossref_primary_10_3390_agronomy12030625 crossref_primary_10_1016_j_still_2024_106278 crossref_primary_10_1007_s11104_023_06134_z crossref_primary_10_1016_j_still_2017_08_005 crossref_primary_10_3390_f15061057 crossref_primary_10_3389_fevo_2022_857185 crossref_primary_10_1016_j_geoderma_2023_116729 crossref_primary_10_12677_IJE_2021_102034 crossref_primary_10_1016_j_jhazmat_2022_129941 crossref_primary_10_1007_s00374_020_01503_7 crossref_primary_10_1007_s00374_019_01416_0 crossref_primary_10_1016_j_soilbio_2014_10_008 crossref_primary_10_3389_fpls_2023_1335843 crossref_primary_10_1016_j_fcr_2023_108873 crossref_primary_10_1016_j_scitotenv_2020_144146 crossref_primary_10_1016_j_soilbio_2023_109265 crossref_primary_10_1016_j_soilbio_2023_109021 crossref_primary_10_1016_j_geoderma_2018_07_018 crossref_primary_10_1007_s10750_018_3672_2 crossref_primary_10_1002_ldr_3808 crossref_primary_10_1007_s11368_019_02407_2 crossref_primary_10_1016_j_heliyon_2020_e05889 crossref_primary_10_1007_s00374_023_01768_8 crossref_primary_10_1007_s11104_016_2991_1 crossref_primary_10_1016_j_soilbio_2016_12_004 crossref_primary_10_1016_j_geoderma_2018_07_008 crossref_primary_10_1007_s00572_020_00959_7 crossref_primary_10_1016_j_soilbio_2023_109272 crossref_primary_10_1111_gcb_14154 crossref_primary_10_1016_j_jenvman_2025_124744 crossref_primary_10_32604_phyton_2022_021412 crossref_primary_10_1007_s11355_019_00392_9 crossref_primary_10_3389_fmicb_2016_01045 crossref_primary_10_1016_j_agee_2024_109011 crossref_primary_10_1016_j_scitotenv_2025_178387 crossref_primary_10_1016_j_soilbio_2023_109008 crossref_primary_10_1016_j_geoderma_2022_116216 crossref_primary_10_1016_j_biortech_2021_125907 crossref_primary_10_1016_j_soilbio_2023_109242 crossref_primary_10_1016_j_geoderma_2024_116816 crossref_primary_10_12677_IJE_2021_102026 crossref_primary_10_1051_cagri_2018017 crossref_primary_10_1007_s00374_017_1194_0 crossref_primary_10_1016_j_soilbio_2023_109254 crossref_primary_10_1016_j_chemosphere_2022_135612 crossref_primary_10_1016_j_soilbio_2018_01_024 crossref_primary_10_1016_j_jenvman_2020_111437 crossref_primary_10_1016_j_soilbio_2015_05_025 crossref_primary_10_1029_2020GB006877 crossref_primary_10_1186_s13717_024_00565_x crossref_primary_10_1007_s11356_022_25085_z crossref_primary_10_1016_j_catena_2021_105901 crossref_primary_10_1016_j_ejsobi_2018_05_006 crossref_primary_10_1016_j_scitotenv_2023_168397 crossref_primary_10_1002_ecs2_1879 crossref_primary_10_1016_j_soilbio_2024_109509 crossref_primary_10_1007_s00374_022_01658_5 crossref_primary_10_1002_saj2_20548 crossref_primary_10_1038_s41598_019_55174_y crossref_primary_10_1016_j_soilbio_2021_108375 crossref_primary_10_2134_agronj2016_03_0153 crossref_primary_10_1007_s00374_017_1250_9 crossref_primary_10_1007_s10533_017_0391_0 crossref_primary_10_1016_j_soilbio_2017_09_030 crossref_primary_10_1007_s00442_015_3290_x crossref_primary_10_1111_gcb_17076 crossref_primary_10_1007_s11104_017_3522_4 crossref_primary_10_1016_j_soisec_2022_100041 crossref_primary_10_1007_s11368_020_02825_7 crossref_primary_10_1016_j_jenvman_2021_114155 crossref_primary_10_1016_j_geoderma_2021_115498 crossref_primary_10_1016_S2095_3119_21_63752_8 crossref_primary_10_1007_s00374_015_1006_3 crossref_primary_10_1016_j_scitotenv_2020_143488 crossref_primary_10_1016_j_scitotenv_2018_09_038 crossref_primary_10_1016_j_soilbio_2017_10_041 crossref_primary_10_1016_j_still_2024_106418 crossref_primary_10_1016_j_jece_2022_107816 crossref_primary_10_1038_s43247_025_02015_8 crossref_primary_10_1016_j_scitotenv_2018_09_271 crossref_primary_10_1007_s11104_024_06819_z crossref_primary_10_1016_j_agee_2024_109456 crossref_primary_10_1016_j_apsoil_2016_10_002 crossref_primary_10_1016_j_scitotenv_2024_176273 crossref_primary_10_1016_j_envpol_2018_10_054 crossref_primary_10_1016_j_scitotenv_2018_12_302 crossref_primary_10_1111_gcb_15918 crossref_primary_10_1029_2023JG007534 crossref_primary_10_5194_soil_10_151_2024 crossref_primary_10_1016_j_catena_2024_107956 crossref_primary_10_1016_j_soilbio_2019_107641 crossref_primary_10_1016_j_soilbio_2014_11_027 crossref_primary_10_1007_s42729_024_02111_2 crossref_primary_10_1016_j_scitotenv_2023_168362 crossref_primary_10_1016_j_rhisph_2021_100317 crossref_primary_10_1016_j_scitotenv_2024_170741 crossref_primary_10_1007_s10533_022_00936_6 crossref_primary_10_1016_j_heliyon_2024_e36693 crossref_primary_10_1038_s41467_019_13119_z crossref_primary_10_1016_j_agee_2024_109200 crossref_primary_10_3390_f10090808 crossref_primary_10_1016_j_geoderma_2019_01_032 crossref_primary_10_1016_j_soilbio_2021_108166 crossref_primary_10_1007_s10342_020_01346_9 crossref_primary_10_1016_j_ejsobi_2016_02_007 crossref_primary_10_1016_j_pedsph_2023_09_013 crossref_primary_10_1007_s00374_020_01471_y crossref_primary_10_1016_j_jenvman_2024_120460 crossref_primary_10_1002_saj2_20586 crossref_primary_10_1016_j_soilbio_2020_107800 crossref_primary_10_1016_j_still_2020_104772 crossref_primary_10_1016_j_scitotenv_2022_158274 crossref_primary_10_1080_03650340_2017_1303574 crossref_primary_10_1016_j_soilbio_2018_02_002 crossref_primary_10_1016_j_geoderma_2023_116714 crossref_primary_10_1016_j_scitotenv_2021_150030 crossref_primary_10_1111_gcb_12816 crossref_primary_10_1038_srep19865 crossref_primary_10_1016_j_soilbio_2018_04_026 crossref_primary_10_3390_w16081086 crossref_primary_10_1016_j_soilbio_2018_04_027 crossref_primary_10_1111_gcb_17027 crossref_primary_10_1038_s41598_020_78648_w crossref_primary_10_1007_s00374_019_01351_0 crossref_primary_10_3389_fenvs_2021_709391 crossref_primary_10_3390_ijerph19159610 crossref_primary_10_1111_1365_2745_13202 crossref_primary_10_1007_s11368_024_03947_y crossref_primary_10_1016_j_apsoil_2021_104249 crossref_primary_10_3389_feart_2019_00127 crossref_primary_10_3390_agronomy12112781 crossref_primary_10_1016_j_geoderma_2024_117079 crossref_primary_10_1016_j_still_2018_04_011 crossref_primary_10_1016_j_soilbio_2018_03_003 crossref_primary_10_1016_j_soilbio_2018_03_004 crossref_primary_10_1016_j_apsoil_2023_104844 crossref_primary_10_1016_j_geoderma_2016_06_023 crossref_primary_10_1007_s10533_019_00577_2 crossref_primary_10_1016_j_apsoil_2023_104846 crossref_primary_10_1016_j_soilbio_2019_107617 crossref_primary_10_1111_geb_13281 crossref_primary_10_3390_plants13223188 crossref_primary_10_1007_s11104_024_06510_3 crossref_primary_10_1016_j_apsoil_2021_104259 crossref_primary_10_1016_j_soilbio_2019_107614 crossref_primary_10_1007_s40333_021_0001_9 |
Cites_doi | 10.1016/0038-0717(78)90099-8 10.1016/j.apsoil.2010.09.006 10.1016/j.biombioe.2012.06.014 10.1111/j.1365-2486.2009.02006.x 10.1016/j.soilbio.2004.08.026 10.1016/j.apsoil.2009.03.003 10.1016/j.soilbio.2010.04.005 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 10.1016/j.mimet.2004.04.001 10.1007/s00374-008-0334-y 10.1016/j.pedobi.2005.06.003 10.1007/BF00011441 10.1016/j.apsoil.2008.10.001 10.2323/jgam.47.201 10.1038/nature10386 10.1016/j.soilbio.2004.07.037 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 10.1007/BF00046394 10.1016/j.soilbio.2011.04.004 10.1111/gcb.12140 10.1016/0038-0717(94)90211-9 10.1111/j.1365-2486.2009.01844.x 10.1016/j.apsoil.2011.02.004 10.1038/ngeo844 10.1016/0038-0717(92)90037-X 10.1016/j.foreco.2004.03.018 10.1128/AEM.02865-08 10.1890/05-1839 10.1007/s10021-011-9440-z 10.1016/j.soilbio.2004.08.006 10.1016/0038-0717(93)90147-4 10.1126/science.1136674 10.1029/2001GB001850 10.1023/A:1016541114786 10.1086/282697 10.1002/jpln.200622044 10.1111/j.1365-2486.2006.01240.x 10.1007/978-1-4757-0611-6_3 10.1016/j.soilbio.2006.01.022 10.1016/j.soilbio.2010.09.028 10.1111/j.1469-185X.1988.tb00725.x 10.1016/S0038-0717(03)00123-8 10.2134/jeq2003.2300 10.1002/rcm.1184 10.5194/bgd-9-6899-2012 10.1890/06-1847.1 10.1139/a96-017 10.1023/B:CLIM.0000038226.60317.35 10.1023/A:1009859006242 10.1007/3-540-27675-0_2 10.1016/j.agee.2006.07.011 10.1093/treephys/19.4-5.313 10.1016/0167-7012(95)00074-7 10.1007/s003740000219 10.1007/s10533-010-9482-x 10.1016/j.soilbio.2011.10.004 10.1016/j.soilbio.2009.10.004 10.1890/02-0251 10.1097/00010694-197901000-00004 10.1016/j.soilbio.2010.04.009 10.1111/j.1365-2389.2008.01103.x 10.2134/agronmonogr48.c7 10.1016/j.soilbio.2009.01.021 10.1016/S0038-0717(00)00084-5 10.1016/j.soilbio.2008.06.005 10.1016/j.apsoil.2007.05.002 10.2136/sssaj2004.0301 10.1007/s10123-002-0062-3 10.1016/j.soilbio.2010.09.017 10.1111/j.1365-2389.2008.01114.x 10.1016/j.apsoil.2013.09.007 10.1016/0016-7037(61)90023-0 10.1007/s002489900085 |
ContentType | Journal Article |
Copyright | 2013 John Wiley & Sons Ltd 2015 INIST-CNRS 2013 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7ST 7T7 7U6 8FD FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1111/gcb.12475 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Sustainability Science Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Technology Research Database AGRICOLA MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 2367 |
ExternalDocumentID | 3325304931 24273056 28562690 10_1111_gcb_12475 GCB12475 ark_67375_WNG_N5LGFGVH_K US201400152622 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41371253 – fundername: Knowledge Innovation Program of CAS funderid: KZCX2‐EW‐409 – fundername: National Basic Research Program funderid: 2014CB954002 – fundername: CAS Strategic Priority Research Program funderid: XDA05020800 – fundername: Russian Foundation for Basic Research funderid: 12‐04‐01170‐a |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7ST 7T7 7U6 8FD FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c6125-1d10a672c4fb482e812ae62b3e065dee971e7768043251bc5b27646dccc25cc73 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:29:34 EDT 2025 Thu Jul 10 18:23:44 EDT 2025 Fri Jul 11 03:46:17 EDT 2025 Fri Jul 25 10:42:57 EDT 2025 Mon Jul 21 06:04:04 EDT 2025 Wed Apr 02 07:08:32 EDT 2025 Tue Jul 01 03:52:51 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Wed Jan 22 16:19:54 EST 2025 Wed Oct 30 09:48:07 EDT 2024 Wed Dec 27 19:27:49 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | C cycle microbial growth kinetics soil organic matter turnover r and K strategy priming mechanisms extracellular enzyme activity soil microbial biomass |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2013 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6125-1d10a672c4fb482e812ae62b3e065dee971e7768043251bc5b27646dccc25cc73 |
Notes | http://dx.doi.org/10.1111/gcb.12475 National Basic Research Program - No. 2014CB954002 ark:/67375/WNG-N5LGFGVH-K ArticleID:GCB12475 National Natural Science Foundation of China - No. 41371253 CAS Strategic Priority Research Program - No. XDA05020800 Knowledge Innovation Program of CAS - No. KZCX2-EW-409 Russian Foundation for Basic Research - No. 12-04-01170-a istex:AC56060E96B97E0B5AE4F22E4A82082F39A3A5D6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/33072 |
PMID | 24273056 |
PQID | 1532643607 |
PQPubID | 30327 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1663533972 proquest_miscellaneous_1545180998 proquest_miscellaneous_1540234852 proquest_journals_1532643607 pubmed_primary_24273056 pascalfrancis_primary_28562690 crossref_primary_10_1111_gcb_12475 crossref_citationtrail_10_1111_gcb_12475 wiley_primary_10_1111_gcb_12475_GCB12475 istex_primary_ark_67375_WNG_N5LGFGVH_K fao_agris_US201400152622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Sharma S, Rangger A, Insam H (1998) Effects of decomposing maize litter on community level physiological profiles of soil bacteria. Microbial Ecology, 35, 301-310. Sámi L, Pusztahelyi T, Emri T, Varecza Z et al. (2001) Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin. The Journal of General and Applied Microbiology, 47, 201-211. Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. Journal of Microbiological Method, 24, 219-230. Wutzler T, Blagodatsky SA, Blagodatskaya E, Kuzyakov Y (2012) Soil microbial biomass and its activity estimated by kinetic respiration analysis- Statistical guidelines. Soil Biology & Biochemistry, 45, 102-112. Liljeroth E, Kuikman P, Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161, 233-240. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone labelledfluorogenic substrates in a micro-plate system. Journal of Microbiol Methods, 58, 233-241. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review, 5, 1-25. Galloway JN, Townsend AR, Erisman JW et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. Rinnan R, Bääth E (2009) Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environment Microbiology, 75, 3611-3620. Bol R, Moering J, Kuzyakov Y, Amelung W (2003) Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different content. Rapid Communications in Mass Spectrometry, 17, 2585-2590. Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biology & Biochemistry, 40, 2434-2440. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364. Lindén A, Heinonsalo J, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2012) Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil. Geophysical Research Abstracts, 14, EGU2012-EGU4444. Grant B, Smith WN, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change, 65, 315-332. Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of American Journal, 69, 1730-1736. Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production- a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry, 35, 837-843. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174. Chen R, Blagodatskaya E, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Kuzyakov Y (2012) Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45, 221-229. Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454. Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment, 119, 217-233. Nannipieri P, Pedrazzini F, Arcara PG, Piovanelli C (1979) Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth. Soil Science, 127, 35-40. Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralisation to the availability of labile carbon. Global Change Biology, 19, 1562-1571. Anderson JPE, Domsch KH (1978) A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215-221. Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology & Biochemistry, 42, 1275-1283. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498. Keeling CD (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica & Cosmochimica Acta, 24, 277-298. Li CS (2000) Modeling trace gas emission from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276. Pérez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. International Microbiology, 5, 53-63. Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2012) Stoichiometry constrains microbial response to root exudation - insights from a model and a field experiment in a temperate forest. Biogeosciences Discuss, 9, 6899-6945. Dorodnikov M, Blagodastkaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009) Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 15, 1603-1614. Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105. Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011) Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719. Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41, 118-127. Fontaine S, Henault C, Aamor A et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365. Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. Tischer A, Blagodatskaya E, Hamer U (2014) Low soil P-status and land-use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador. Applied Soil Ecology, 74, 1-11. Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Advances in Microbial Ecology, 9, 99-147. Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology & Biochemistry, 38, 2219-2232. Pataki DE, Ehleringer JR, Flanagan LB et al. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17, 1022. Schmidt MW, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology & Biochemistry, 42, 92-100. Blagodatskaya EV, Kuzyakov Y (2008) Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131. Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner VJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. Mary B, Fresneau C, Morel JL, Mariotti A (1993) C-cycling and N-cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemisrty, 25, 1005-1014. Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant and Soil, 183, 263-268. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171. Blagodatskaya EV, Blagodatsky S, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal Soil Science, 60, 186-197. Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology & Biochemistry, 41, 969-977. Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology & Biochemistry, 43, 159-166. Dilly O, Munch JC, Pfeiffer EM (2007) Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany. Journal of Plant Nutrition and Soil Science, 170, 197-204. Sanaullah M, Blagodatskaya E, Chabb 2004; 65 1993; 25 2011; 478 2010; 16 2009; 41 2009; 42 2006; 76 2006; 38 1996; 183 2003; 17 1994; 26 2002; 60 2011; 14 1997; 5 2012; 14 2001; 47 2007; 37 2005; 69 2005; Vol 181 2013; 19 2000; 58 1986; 9 1999; 19 2007; 170 2005; 37 2010; 3 1996; 24 2010; Vol 10 2009; 15 2004; 85 1979; 127 1970; 104 2006; 12 1978; 10 2009; 60 2002; 5 2003; 35 1995 2005 2002 2005; 49 2008; 320 2003; 32 2010; 42 2011; 102 2007; 119 2010; 46 2009; 75 2000; 32 2004; 196 2004; 58 1994; 161 2008; 45 2000; 81 2011; 43 1992; 24 1988; 63 2011; 48 2014; 74 2008; 40 2012; 45 2007; 88 1961; 24 2012; 9 1998; 35 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 Lindén A (e_1_2_6_47_1) 2012; 14 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Li CS (e_1_2_6_44_1) 2000; 58 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Six J (e_1_2_6_75_1) 2002 Panikov NS (e_1_2_6_57_1) 2010 Panikov NS (e_1_2_6_56_1) 1995 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Berg B (e_1_2_6_4_1) 1997; 5 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Fog K (1988) The effect of added N on the rate of decomposition of organic matter. Biological Reviews, 63, 433-462. – reference: de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12, 2077-2091. – reference: Ginting D, Kessavalou A, Eghball B, Doran JW (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 32, 23-32. – reference: Wutzler T, Blagodatsky SA, Blagodatskaya E, Kuzyakov Y (2012) Soil microbial biomass and its activity estimated by kinetic respiration analysis- Statistical guidelines. Soil Biology & Biochemistry, 45, 102-112. – reference: Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Advances in Microbial Ecology, 9, 99-147. – reference: Sinsabaugh RL, Shah JF (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry, 102, 31-43. – reference: Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralisation to the availability of labile carbon. Global Change Biology, 19, 1562-1571. – reference: Pérez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. International Microbiology, 5, 53-63. – reference: Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24. – reference: Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology & Biochemistry, 43, 159-166. – reference: Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition. Applied Soil Ecology, 48, 38-44. – reference: Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011) Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719. – reference: Rinnan R, Bääth E (2009) Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environment Microbiology, 75, 3611-3620. – reference: Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498. – reference: Dilly O, Munch JC, Pfeiffer EM (2007) Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany. Journal of Plant Nutrition and Soil Science, 170, 197-204. – reference: Pianka E (1970) On r- and K-selection. American Naturalist, 104, 592-597. – reference: Nannipieri P, Pedrazzini F, Arcara PG, Piovanelli C (1979) Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth. Soil Science, 127, 35-40. – reference: Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology & Biochemistry, 41, 969-977. – reference: Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment, 119, 217-233. – reference: Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biology & Biochemistry, 40, 2434-2440. – reference: Pataki DE, Ehleringer JR, Flanagan LB et al. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17, 1022. – reference: Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant and Soil, 183, 263-268. – reference: Grant B, Smith WN, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change, 65, 315-332. – reference: Craine JM, Morrow C, Fierer NO (2007) Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105-2113. – reference: Sámi L, Pusztahelyi T, Emri T, Varecza Z et al. (2001) Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin. The Journal of General and Applied Microbiology, 47, 201-211. – reference: Sharma S, Rangger A, Insam H (1998) Effects of decomposing maize litter on community level physiological profiles of soil bacteria. Microbial Ecology, 35, 301-310. – reference: Köster JR, Cárdenas L, Senbayram M et al. (2011) Rapid shift from denitrification tonitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology & Biochemistry, 43, 1671-1677. – reference: Panikov NS (1995) Microbial Growth Kinetics. Chapman and Hall, Glasgow, London. – reference: Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review, 5, 1-25. – reference: Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production- a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311. – reference: Mary B, Fresneau C, Morel JL, Mariotti A (1993) C-cycling and N-cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemisrty, 25, 1005-1014. – reference: Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology & Biochemistry, 38, 2219-2232. – reference: Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171. – reference: Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364. – reference: Blagodatskaya EV, Blagodatsky S, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal Soil Science, 60, 186-197. – reference: Mary B, Mariotti A, Morel JL (1992) Use of C-13 variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biology & Biochemistry, 24, 1065-1072. – reference: Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365. – reference: Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454. – reference: Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of American Journal, 69, 1730-1736. – reference: Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone labelledfluorogenic substrates in a micro-plate system. Journal of Microbiol Methods, 58, 233-241. – reference: Petersen BM, Berntsen J, Hansen S, Jensen LS (2005) CN-SIM a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biology & Biochemistry, 37, 359-374. – reference: Lal R (2009) Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60, 1-12. – reference: Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49, 637-644. – reference: Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. Journal of Microbiological Method, 24, 219-230. – reference: Lindén A, Heinonsalo J, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2012) Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil. Geophysical Research Abstracts, 14, EGU2012-EGU4444. – reference: Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41, 118-127. – reference: Dorodnikov M, Blagodastkaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009) Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 15, 1603-1614. – reference: Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biology & Biochemistry, 42, 1372-1384. – reference: Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology & Biochemistry, 42, 92-100. – reference: Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner VJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. – reference: Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105. – reference: Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2012) Stoichiometry constrains microbial response to root exudation - insights from a model and a field experiment in a temperate forest. Biogeosciences Discuss, 9, 6899-6945. – reference: Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174. – reference: Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido ML, Cruz-Mondragon C, Dendooven L (2005) The impacts of inorganic nitrogen application on mineralization of C-14-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biology & Biochemistry, 37, 681-691. – reference: Blagodatsky SA, Heinemeyer O, Richter J (2000) Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils, 32, 73-81. – reference: Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology & Biochemistry, 42, 1275-1283. – reference: Li CS (2000) Modeling trace gas emission from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276. – reference: Bol R, Moering J, Kuzyakov Y, Amelung W (2003) Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different content. Rapid Communications in Mass Spectrometry, 17, 2585-2590. – reference: Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. – reference: Tischer A, Blagodatskaya E, Hamer U (2014) Low soil P-status and land-use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador. Applied Soil Ecology, 74, 1-11. – reference: Cheng W (1999) Rhizosphere feedback in elevated CO2. Tree Physiology, 19, 313-320. – reference: Blagodatskaya EV, Kuzyakov Y (2008) Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131. – reference: Liljeroth E, Kuikman P, Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161, 233-240. – reference: Anderson JPE, Domsch KH (1978) A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215-221. – reference: Fontaine S, Henault C, Aamor A et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96. – reference: Blagodatskaya EV, Blagodatsky SA, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichmentexperiments. Global Change Biology, 16, 836-848. – reference: Keeling CD (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica & Cosmochimica Acta, 24, 277-298. – reference: Chen R, Blagodatskaya E, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Kuzyakov Y (2012) Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45, 221-229. – reference: Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry, 35, 837-843. – reference: Schmidt MW, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. – reference: Galloway JN, Townsend AR, Erisman JW et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. – reference: Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, 46, 436-442. – reference: Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179-1192. – volume: 161 start-page: 233 year: 1994 end-page: 240 article-title: Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels publication-title: Plant and Soil – volume: 60 start-page: 1 year: 2002 end-page: 24 article-title: Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss publication-title: Biogeochemistry – volume: 88 start-page: 2105 year: 2007 end-page: 2113 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 320 start-page: 889 year: 2008 end-page: 892 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 81 start-page: 2359 year: 2000 end-page: 2365 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology – volume: 65 start-page: 315 year: 2004 end-page: 332 article-title: Estimated N O and CO emissions as influenced by agricultural practices in Canada publication-title: Climatic Change – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 41 start-page: 969 year: 2009 end-page: 977 article-title: Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress publication-title: Soil Biology & Biochemistry – volume: 75 start-page: 3611 year: 2009 end-page: 3620 article-title: Differential utilization of carbon substrates by bacteria and fungi in tundra soil publication-title: Applied and Environment Microbiology – volume: 35 start-page: 301 year: 1998 end-page: 310 article-title: Effects of decomposing maize litter on community level physiological profiles of soil bacteria publication-title: Microbial Ecology – volume: 43 start-page: 86 year: 2011 end-page: 96 article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect publication-title: Soil Biology & Biochemistry – volume: 40 start-page: 2434 year: 2008 end-page: 2440 article-title: Atmospheric CO enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant‐ and soil C‐sources publication-title: Soil Biology & Biochemistry – volume: 41 start-page: 118 year: 2009 end-page: 127 article-title: Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil publication-title: Applied Soil Ecology – volume: 19 start-page: 1562 year: 2013 end-page: 1571 article-title: Soil‐specific response functions of organic matter mineralisation to the availability of labile carbon publication-title: Global Change Biology – volume: 46 start-page: 436 year: 2010 end-page: 442 article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input? publication-title: Applied Soil Ecology – volume: 76 start-page: 151 year: 2006 end-page: 174 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecological Monographs – volume: 15 start-page: 1603 year: 2009 end-page: 1614 article-title: Stimulation of microbial extracellular enzyme activities by elevated CO depends on soil aggregate size publication-title: Global Change Biology – volume: 58 start-page: 233 year: 2004 end-page: 241 article-title: A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4‐methylumbelliferone labelledfluorogenic substrates in a micro‐plate system publication-title: Journal of Microbiol Methods – volume: 42 start-page: 1275 year: 2010 end-page: 1283 article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition publication-title: Soil Biology & Biochemistry – volume: 24 start-page: 277 year: 1961 end-page: 298 article-title: The concentration and isotopic abundance of carbon dioxide in rural and marine air publication-title: Geochimica & Cosmochimica Acta – volume: 170 start-page: 197 year: 2007 end-page: 204 article-title: Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany publication-title: Journal of Plant Nutrition and Soil Science – volume: 42 start-page: 92 year: 2010 end-page: 100 article-title: The response of organic matter mineralisation to nutrient and substrate additions in sub‐arctic soils publication-title: Soil Biology & Biochemistry – volume: 14 start-page: EGU2012 year: 2012 end-page: EGU4444 article-title: Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil publication-title: Geophysical Research Abstracts – volume: 43 start-page: 1671 year: 2011 end-page: 1677 article-title: Rapid shift from denitrification tonitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers publication-title: Soil Biology & Biochemistry – volume: 196 start-page: 159 year: 2004 end-page: 171 article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests publication-title: Forest Ecology and Management – volume: 48 start-page: 38 year: 2011 end-page: 44 article-title: Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition publication-title: Applied Soil Ecology – volume: Vol 10 start-page: 121 year: 2010 end-page: 191 – volume: 32 start-page: 1485 year: 2000 end-page: 1498 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology & Biochemistry – volume: 16 start-page: 836 year: 2010 end-page: 848 article-title: Elevated atmospheric CO increases microbial growth rates in soil: results of three CO enrichmentexperiments publication-title: Global Change Biology – volume: 63 start-page: 433 year: 1988 end-page: 462 article-title: The effect of added N on the rate of decomposition of organic matter publication-title: Biological Reviews – volume: 37 start-page: 681 year: 2005 end-page: 691 article-title: The impacts of inorganic nitrogen application on mineralization of C‐14‐labelled maize and glucose, and on priming effect in saline alkaline soil publication-title: Soil Biology & Biochemistry – volume: 32 start-page: 23 year: 2003 end-page: 32 article-title: Greenhouse gas emissions and soil indicators four years after manure and compost applications publication-title: Journal of Environmental Quality – volume: 24 start-page: 219 year: 1996 end-page: 230 article-title: A kinetic method for estimating the biomass of microbial functional groups in soil publication-title: Journal of Microbiological Method – volume: 45 start-page: 221 year: 2012 end-page: 229 article-title: Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities publication-title: Biomass and Bioenergy – start-page: 936 year: 2002 end-page: 942 – volume: 45 start-page: 102 year: 2012 end-page: 112 article-title: Soil microbial biomass and its activity estimated by kinetic respiration analysis‐ Statistical guidelines publication-title: Soil Biology & Biochemistry – volume: 9 start-page: 99 year: 1986 end-page: 147 article-title: r‐ and K‐selection and microbial ecology publication-title: Advances in Microbial Ecology – volume: 37 start-page: 445 year: 2005 end-page: 454 article-title: Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions publication-title: Soil Biology & Biochemistry – volume: 74 start-page: 1 year: 2014 end-page: 11 article-title: Low soil P‐status and land‐use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador publication-title: Applied Soil Ecology – volume: 104 start-page: 592 year: 1970 end-page: 597 article-title: On r‐ and K‐selection publication-title: American Naturalist – volume: 37 start-page: 359 year: 2005 end-page: 374 article-title: CN‐SIM a model for the turnover of soil organic matter. I. Long‐term carbon and radiocarbon development publication-title: Soil Biology & Biochemistry – volume: 47 start-page: 201 year: 2001 end-page: 211 article-title: Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin publication-title: The Journal of General and Applied Microbiology – volume: 42 start-page: 1372 year: 2010 end-page: 1384 article-title: C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies publication-title: Soil Biology & Biochemistry – volume: 5 start-page: 1 year: 1997 end-page: 25 article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems publication-title: Environmental Review – start-page: 119 year: 2005 end-page: 143 – volume: 12 start-page: 2077 year: 2006 end-page: 2091 article-title: Interactions between plant growth and soil nutrient cycling under elevated CO : a meta‐analysis publication-title: Global Change Biology – volume: 60 start-page: 186 year: 2009 end-page: 197 article-title: Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil publication-title: European Journal Soil Science – volume: 102 start-page: 31 year: 2011 end-page: 43 article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse publication-title: Biogeochemistry – volume: 17 start-page: 2585 year: 2003 end-page: 2590 article-title: Quantification of priming and CO respiration sources following slurry‐C incorporation into two grassland soils with different content publication-title: Rapid Communications in Mass Spectrometry – volume: 9 start-page: 6899 year: 2012 end-page: 6945 article-title: Stoichiometry constrains microbial response to root exudation – insights from a model and a field experiment in a temperate forest publication-title: Biogeosciences Discuss – volume: 58 start-page: 259 year: 2000 end-page: 276 article-title: Modeling trace gas emission from agricultural ecosystems publication-title: Nutrient Cycling in Agroecosystems – volume: Vol 181 start-page: 15 year: 2005 end-page: 41 – volume: 35 start-page: 837 year: 2003 end-page: 843 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biology & Biochemistry – volume: 69 start-page: 1730 year: 2005 end-page: 1736 article-title: Role of mineral‐nitrogen in residue decomposition and stable soil organic matter formation publication-title: Soil Science Society of American Journal – volume: 183 start-page: 263 year: 1996 end-page: 268 article-title: Measurement of rhizosphere respiration and organic matter decomposition using natural C publication-title: Plant and Soil – volume: 3 start-page: 315 year: 2010 end-page: 322 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nature Geoscience – volume: 25 start-page: 1005 year: 1993 end-page: 1014 article-title: C‐cycling and N‐cycling during decomposition of root mucilage, roots and glucose in soil publication-title: Soil Biology and Biochemisrty – volume: 17 start-page: 1022 year: 2003 article-title: The application and interpretation of Keeling plots in terrestrial carbon cycle research publication-title: Global Biogeochemical Cycles – volume: 43 start-page: 159 year: 2011 end-page: 166 article-title: Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization publication-title: Soil Biology & Biochemistry – volume: 85 start-page: 1179 year: 2004 end-page: 1192 article-title: Carbon sequestration in ecosystems: the role of stoichiometry publication-title: Ecology – volume: 5 start-page: 53 year: 2002 end-page: 63 article-title: Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview publication-title: International Microbiology – volume: 32 start-page: 73 year: 2000 end-page: 81 article-title: Estimating the active and total soil microbial biomass by kinetic respiration analysis publication-title: Biology and Fertility of Soils – volume: 19 start-page: 313 year: 1999 end-page: 320 article-title: Rhizosphere feedback in elevated CO publication-title: Tree Physiology – volume: 60 start-page: 1 year: 2009 end-page: 12 article-title: Challenges and opportunities in soil organic matter research publication-title: European Journal of Soil Science – volume: 26 start-page: 1305 year: 1994 end-page: 1311 article-title: Resource allocation to extracellular enzyme production‐ a model for nitrogen and phosphorus control of litter decomposition publication-title: Soil Biology & Biochemistry – volume: 45 start-page: 115 year: 2008 end-page: 131 article-title: Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review publication-title: Biology and Fertility of Soils – volume: 119 start-page: 217 year: 2007 end-page: 233 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agriculture, Ecosystems & Environment – volume: 49 start-page: 637 year: 2005 end-page: 644 article-title: Enzyme activities as a component of soil biodiversity: a review publication-title: Pedobiologia – volume: 10 start-page: 215 year: 1978 end-page: 221 article-title: A physiological method for the quantative measurement of microbial biomass in soils publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 710 year: 2011 end-page: 719 article-title: Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient publication-title: Ecosystems – volume: 42 start-page: 183 year: 2009 end-page: 190 article-title: Soil priming by sugar and leaf‐litter substrates: a link to microbial groups publication-title: Applied Soil Ecology – year: 1995 – volume: 88 start-page: 1354 year: 2007 end-page: 1364 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 24 start-page: 1065 year: 1992 end-page: 1072 article-title: Use of C‐13 variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil publication-title: Soil Biology & Biochemistry – volume: 38 start-page: 2219 year: 2006 end-page: 2232 article-title: Microbial community utilization of added carbon substrates in response to long‐term carbon input manipulation publication-title: Soil Biology & Biochemistry – volume: 127 start-page: 35 year: 1979 end-page: 40 article-title: Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth publication-title: Soil Science – volume: 37 start-page: 95 year: 2007 end-page: 105 article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies publication-title: Applied Soil Ecology – ident: e_1_2_6_2_1 doi: 10.1016/0038-0717(78)90099-8 – ident: e_1_2_6_35_1 doi: 10.1016/j.apsoil.2010.09.006 – ident: e_1_2_6_17_1 doi: 10.1016/j.biombioe.2012.06.014 – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-2486.2009.02006.x – ident: e_1_2_6_21_1 doi: 10.1016/j.soilbio.2004.08.026 – ident: e_1_2_6_55_1 doi: 10.1016/j.apsoil.2009.03.003 – ident: e_1_2_6_11_1 doi: 10.1016/j.soilbio.2010.04.005 – ident: e_1_2_6_15_1 doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 – ident: e_1_2_6_66_1 doi: 10.1016/j.mimet.2004.04.001 – ident: e_1_2_6_5_1 doi: 10.1007/s00374-008-0334-y – ident: e_1_2_6_14_1 doi: 10.1016/j.pedobi.2005.06.003 – ident: e_1_2_6_18_1 doi: 10.1007/BF00011441 – ident: e_1_2_6_16_1 doi: 10.1016/j.apsoil.2008.10.001 – ident: e_1_2_6_68_1 doi: 10.2323/jgam.47.201 – ident: e_1_2_6_70_1 doi: 10.1038/nature10386 – ident: e_1_2_6_36_1 doi: 10.1016/j.soilbio.2004.07.037 – ident: e_1_2_6_52_1 doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 – ident: e_1_2_6_46_1 doi: 10.1007/BF00046394 – ident: e_1_2_6_41_1 doi: 10.1016/j.soilbio.2011.04.004 – ident: e_1_2_6_60_1 doi: 10.1111/gcb.12140 – ident: e_1_2_6_72_1 doi: 10.1016/0038-0717(94)90211-9 – ident: e_1_2_6_24_1 doi: 10.1111/j.1365-2486.2009.01844.x – ident: e_1_2_6_69_1 doi: 10.1016/j.apsoil.2011.02.004 – start-page: 936 volume-title: Encyclopedia of Soil Science year: 2002 ident: e_1_2_6_75_1 – ident: e_1_2_6_39_1 doi: 10.1038/ngeo844 – ident: e_1_2_6_49_1 doi: 10.1016/0038-0717(92)90037-X – ident: e_1_2_6_30_1 doi: 10.1016/j.foreco.2004.03.018 – volume-title: Microbial Growth Kinetics year: 1995 ident: e_1_2_6_56_1 – ident: e_1_2_6_67_1 doi: 10.1128/AEM.02865-08 – ident: e_1_2_6_26_1 doi: 10.1890/05-1839 – ident: e_1_2_6_51_1 doi: 10.1007/s10021-011-9440-z – ident: e_1_2_6_63_1 doi: 10.1016/j.soilbio.2004.08.006 – ident: e_1_2_6_50_1 doi: 10.1016/0038-0717(93)90147-4 – ident: e_1_2_6_31_1 doi: 10.1126/science.1136674 – ident: e_1_2_6_59_1 doi: 10.1029/2001GB001850 – ident: e_1_2_6_74_1 doi: 10.1023/A:1016541114786 – ident: e_1_2_6_64_1 doi: 10.1086/282697 – ident: e_1_2_6_23_1 doi: 10.1002/jpln.200622044 – ident: e_1_2_6_33_1 doi: 10.1111/j.1365-2486.2006.01240.x – ident: e_1_2_6_3_1 doi: 10.1007/978-1-4757-0611-6_3 – ident: e_1_2_6_13_1 doi: 10.1016/j.soilbio.2006.01.022 – ident: e_1_2_6_9_1 doi: 10.1016/j.soilbio.2010.09.028 – ident: e_1_2_6_27_1 doi: 10.1111/j.1469-185X.1988.tb00725.x – volume: 14 start-page: EGU2012 year: 2012 ident: e_1_2_6_47_1 article-title: Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil publication-title: Geophysical Research Abstracts – ident: e_1_2_6_28_1 doi: 10.1016/S0038-0717(03)00123-8 – ident: e_1_2_6_32_1 doi: 10.2134/jeq2003.2300 – start-page: 121 volume-title: Handbook of Environmental Engineering year: 2010 ident: e_1_2_6_57_1 – ident: e_1_2_6_12_1 doi: 10.1002/rcm.1184 – ident: e_1_2_6_25_1 doi: 10.5194/bgd-9-6899-2012 – ident: e_1_2_6_22_1 doi: 10.1890/06-1847.1 – volume: 5 start-page: 1 year: 1997 ident: e_1_2_6_4_1 article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems publication-title: Environmental Review doi: 10.1139/a96-017 – ident: e_1_2_6_34_1 doi: 10.1023/B:CLIM.0000038226.60317.35 – volume: 58 start-page: 259 year: 2000 ident: e_1_2_6_44_1 article-title: Modeling trace gas emission from agricultural ecosystems publication-title: Nutrient Cycling in Agroecosystems doi: 10.1023/A:1009859006242 – ident: e_1_2_6_65_1 doi: 10.1007/3-540-27675-0_2 – ident: e_1_2_6_48_1 doi: 10.1016/j.agee.2006.07.011 – ident: e_1_2_6_19_1 doi: 10.1093/treephys/19.4-5.313 – ident: e_1_2_6_58_1 doi: 10.1016/0167-7012(95)00074-7 – ident: e_1_2_6_10_1 doi: 10.1007/s003740000219 – ident: e_1_2_6_73_1 doi: 10.1007/s10533-010-9482-x – ident: e_1_2_6_78_1 doi: 10.1016/j.soilbio.2011.10.004 – ident: e_1_2_6_37_1 doi: 10.1016/j.soilbio.2009.10.004 – ident: e_1_2_6_38_1 doi: 10.1890/02-0251 – ident: e_1_2_6_54_1 doi: 10.1097/00010694-197901000-00004 – ident: e_1_2_6_77_1 doi: 10.1016/j.soilbio.2010.04.009 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-2389.2008.01103.x – ident: e_1_2_6_20_1 doi: 10.2134/agronmonogr48.c7 – ident: e_1_2_6_45_1 doi: 10.1016/j.soilbio.2009.01.021 – ident: e_1_2_6_42_1 doi: 10.1016/S0038-0717(00)00084-5 – ident: e_1_2_6_61_1 doi: 10.1016/j.soilbio.2008.06.005 – ident: e_1_2_6_6_1 doi: 10.1016/j.apsoil.2007.05.002 – ident: e_1_2_6_53_1 doi: 10.2136/sssaj2004.0301 – ident: e_1_2_6_62_1 doi: 10.1007/s10123-002-0062-3 – ident: e_1_2_6_29_1 doi: 10.1016/j.soilbio.2010.09.017 – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2389.2008.01114.x – ident: e_1_2_6_76_1 doi: 10.1016/j.apsoil.2013.09.007 – ident: e_1_2_6_40_1 doi: 10.1016/0016-7037(61)90023-0 – ident: e_1_2_6_71_1 doi: 10.1007/s002489900085 |
SSID | ssj0003206 |
Score | 2.6390345 |
Snippet | The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2356 |
SubjectTerms | Anthropogenic factors beta-glucosidase C cycle Carbon - metabolism Cellulose cellulose 1,4-beta-cellobiosidase Corn straw Decomposition ecosystems extracellular enzyme activity Growth kinetics leucine microbial growth microbial growth kinetics Mineralization nitrogen Nitrogen - metabolism Organic matter priming mechanisms proteolysis r and K strategy soil Soil - chemistry soil microbial biomass Soil Microbiology Soil organic matter soil organic matter turnover straw Sucrose Sucrose - metabolism Tillage xylanases Zea mays - chemistry |
Title | Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories |
URI | https://api.istex.fr/ark:/67375/WNG-N5LGFGVH-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12475 https://www.ncbi.nlm.nih.gov/pubmed/24273056 https://www.proquest.com/docview/1532643607 https://www.proquest.com/docview/1540234852 https://www.proquest.com/docview/1545180998 https://www.proquest.com/docview/1663533972 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtMQmJFz4KY4ExGYQmXjIltmOn8ATV2gpYHxiFPSBZjuN00bp26gdi_PXcOWlK0ZgQb616dpPr-fxzcx-EvIyEY5l1cZhjhowooiI0hUzCyIqUG2mU9E90jweyPxTvT5PTLfJmlQtT1Ydo_nDDleH9NS5wk81_W-Qjmx3C5qQwwRxjtRCIPq1LR3Hm-2rGPBHgamJeVxXCKJ5m5MZedKswUyBUVO4PjJA0c1BSUXW3uA4_N2nWb0fde-Tb6kaqKJTzw-UiO7Q__6jx-J93ep_crTGVvq3s6gHZcpMWuV01rrxqkZ2jdX4ciNUOYt4iwTFA-HTmxegB7YxLIGL_7iFZnEzLMe1QM8npgJrvphxXRcKvaF4H5TgKPEovfauxEa1iTV7Ti9JXi4IvGtAL39DCzwHYWtozLB-AXQZgDgyPr2PQqE_QLN38ERl2jz53-mHd9CG0CFthnMeRkYpZUWQiZQ4AxDjJMu4AlnLn2ip2Cs5IWEowiTObZExJIXNrLUusVXyHbE-mE7dLKJdggCoFCrBw6IuVyQoe89wBVuaSmzwgr1Y_v7Z1RXRszDHWq5MRaF57zQfkRSN6WZUBuU5oF2xImxG4Zz08YXh4BdpikrGAHHjDagab2TmG1KlEfx309CD52Ov2vvT1h4Dsb1heM4ClQKqyHQVkb2WKunY3cw3bFoAtl5EKyPPmY3AU-PTHTNx0iTIC-EykCbtRJsGCbu30BhlkVA4YC_M8rpbC-iIF0DAgNWjWG_TfdaV7nXf-xZN_F31K7qBOq2DpPbK9mC3dM0DCRbbv1_4vIalZVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMBP2xCCFz4KY4ExDEITL6kSO3FSxAtUawtr88A2thdkOY5TonXt1A_E-Os5O2lK0ZgQb616dpvr-fy75HwH8NoLNE2V9t3MnJAJci93Zc5D11NBzCSXEbdPdAcJ750En87Csw14tzwLU9aHqG-4mZVh_bVZ4OaG9G-rfKjSJu5OUbgJt0xHbxtQfV4Vj2LUdtb0WRigs_FZVVfI5PHUQ9d2o81cTpBRjXp_mBxJOUM15WV_i-sAdJ1n7YbUuQ9fl5dS5qGcNxfztKl-_lHl8X-v9QHcq0iVvC9N6yFs6HEDbpe9K68asH2wOiKHYpWPmDXAGSCHT6ZWjOyT9qhAKLbvHsH8aFKMSJvIcUYSIr_LYlTWCb8iWZWXowkiKbm03caGpEw3eUsuClswCr8oIRe2p4WdA8m1UN9MBQHTaADnMBnyVRoasWc0Cz17DCedg-N2z636PrjK8JbrZ74neURVkKdBTDUyiNScpkwjL2VatyJfRxgmmWqCoZ-qMKURD3imlKKhUhHbhq3xZKx3gDCONhjFCAIK4z4_kmnOfJZpJMuMM5k58Gb5_wtVFUU3vTlGYhkcoeaF1bwDr2rRy7ISyHVCO2hEQg7RQ4uTI2riVwQuyil1YN9aVj1YTs9NVl0UitOkK5Kw3-10v_TEoQN7a6ZXD6AxwipveQ7sLm1RVB5nJnDnQrZl3IsceFl_jL7CPACSYz1ZGJkAES2IQ3qjTGhqurXiG2QMpjIkWZznSbkWVj8yQCBGqkbNWov-u65Et_3Bvnj676Iv4E7veNAX_Y_J4TO4a_Rb5k7vwtZ8utDPkRDn6Z51BL8AivddcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetbQjECz8KY4ExDEITL6kS27FTeIJubWFbhBgde0CyHMcp0bp26g_E-Os5O2lK0ZgQb616cZvr-fxxe_4eQi8DZkiqTehn9oQMy4PcVzmP_ECzmCquBHf_6B4lvNdnH06j0zX0ZnEWptSHqH9wszPD5Ws7wS-y_LdJPtBpExYnEa2jGwxGtCG992mpHUWJa6wZ0ohBrglpJStky3jqS1cWo_VcjQFRrXd_2BJJNQUv5WV7i6v4cxVn3XrUuYu-Lu6kLEM5a85naVP__EPk8T9v9R66U3EqflsG1n20ZkYNdLPsXHnZQJv7ywNyYFZliGkDeUdA4eOJM8O7uD0sAIndswdodjwuhriN1SjDCVbfVTEsVcIvcVZV5RgMQIovXK-xAS6LTV7j88LJRcEbJfjcdbRwYwC3Fvqb1Q-wbQZgDFsfXxWhYXdCszDTh6jf2f_c7vlV1wdfW9rywywMFBdEszxlMTFAIMpwklIDtJQZ0xKhEbBJslqCUZjqKCWCM55prUmktaCbaGM0HpkthCmHCBQxYICGXV8oVJrTkGYGuDLjVGUeerX4-qWuJNFtZ46hXGyNwPPSed5DL2rTi1IH5CqjLYghqQaQn2X_mNjdK-AW4YR4aNcFVn2xmpzZmjoRyS9JVybRYbfTPenJAw_trERefQGJAVV5K_DQ9iIUZZVvphLWLSBbygPhoef1y5Ap7N8_amTGc2vDANBYHJFrbSKr6NaKr7GxkEqBY2GcR-VUWH5IBjgMTA2edQH9d1_Jbvude_D4302foVsf9zry8H1y8ATdtu4tC6e30cZsMjdPAQ9n6Y5LA78ASBBcKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+C+and+N+availability+determine+the+priming+effect%3A+microbial+N+mining+and+stoichiometric+decomposition+theories&rft.jtitle=Global+change+biology&rft.au=Chen%2C+Ruirui&rft.au=Senbayram%2C+Mehmet&rft.au=Blagodatsky%2C+Sergey&rft.au=Myachina%2C+Olga&rft.date=2014-07-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=20&rft.issue=7&rft.spage=2356&rft.epage=2367&rft_id=info:doi/10.1111%2Fgcb.12475&rft.externalDBID=10.1111%252Fgcb.12475&rft.externalDocID=GCB12475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |