Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fr...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 20; no. 7; pp. 2356 - 2367
Main Authors Chen, Ruirui, Senbayram, Mehmet, Blagodatsky, Sergey, Myachina, Olga, Dittert, Klaus, Lin, Xiangui, Blagodatskaya, Evgenia, Kuzyakov, Yakov
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Science 01.07.2014
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural ¹³C labelling adding C₄‐sucrose or C₄‐maize straw to C₃‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.
AbstractList The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural super(13)C labelling adding C sub(4)-sucrose or C sub(4)-maize straw to C sub(3)-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of [beta]-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural ¹³C labelling adding C₄‐sucrose or C₄‐maize straw to C₃‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter ( SOM ). Moreover, N input modifies the priming effect ( PE ), that is, the effect of fresh organics on the microbial decomposition of SOM . We studied the interactive effects of C and N on SOM mineralization (by natural 13 C labelling adding C 4 ‐sucrose or C 4 ‐maize straw to C 3 ‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM . Sucrose addition with N significantly accelerated mineralization of native SOM , whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β ‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4‐sucrose or C4‐maize straw to C3‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of [beta]-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists. [PUBLICATION ABSTRACT]
Author Chen, Ruirui
Blagodatsky, Sergey
Kuzyakov, Yakov
Lin, Xiangui
Blagodatskaya, Evgenia
Senbayram, Mehmet
Myachina, Olga
Dittert, Klaus
Author_xml – sequence: 1
  fullname: Chen, Ruirui
– sequence: 2
  fullname: Senbayram, Mehmet
– sequence: 3
  fullname: Blagodatsky, Sergey
– sequence: 4
  fullname: Myachina, Olga
– sequence: 5
  fullname: Dittert, Klaus
– sequence: 6
  fullname: Lin, Xiangui
– sequence: 7
  fullname: Blagodatskaya, Evgenia
– sequence: 8
  fullname: Kuzyakov, Yakov
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28562690$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24273056$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQhSNURC_wwB-ASKgSPKS1x5dkeaMrukWslodSeLQcZ7J1SeLF9gL773HYbZEqcfGLR5rvHHk85zDbG9yAWfaUkhOazunS1CcUeCkeZAeUSVEAr-TeWAteUELZfnYYwg0hhAGRj7J94FAyIuRBFi-d7fJprocmX-T6m7adrm1n4yZvMKLv7YB5vMZ85W2qlzm2LZr4Ou-t8a62ukuy1Bhbo0eIzppr63qM3prkYVy_csFG64bRx3mL4XH2sNVdwCe7-yi7On_7cXpRzD_M3k3fzAsjKYiCNpRoWYLhbc0rwIqCRgk1QyJFgzgpKZalrAhnIGhtRA2l5LIxxoAwpmRH2cut78q7r2sMUfU2GOw6PaBbB0WlZIKxSQn_RgUXtCKTSfU_KAHGKzG6vriH3ri1H9LMiWIgOZNkfOazHbWue2zU-NXab9TtlhJwvAN0MLprvR6MDb-5SkiQE5K4V1surSYEj-0dQokak6JSUtSvpCT29B5rbNTjmqJPIfib4rvtcPNnazWbnt0qiq3Chog_7hTaf1GyZIn8vJiphZjPzmefLtT7xD_f8q12Si99mvHqEgjlhFABEoD9BN9q5JA
CitedBy_id crossref_primary_10_1016_j_ejsobi_2020_103190
crossref_primary_10_1016_j_soilbio_2020_107720
crossref_primary_10_1002_agg2_20111
crossref_primary_10_1080_10256016_2024_2423797
crossref_primary_10_1016_j_scitotenv_2017_02_033
crossref_primary_10_1016_j_geoderma_2022_115821
crossref_primary_10_1111_ejss_13446
crossref_primary_10_1007_s10533_021_00811_w
crossref_primary_10_1016_j_scitotenv_2021_149590
crossref_primary_10_3390_f14112209
crossref_primary_10_1016_j_scitotenv_2017_01_005
crossref_primary_10_1016_j_apsoil_2024_105495
crossref_primary_10_1016_j_apsoil_2015_05_006
crossref_primary_10_1016_j_catena_2024_108051
crossref_primary_10_1111_ejss_70017
crossref_primary_10_1038_s43247_024_01954_y
crossref_primary_10_1111_ele_13083
crossref_primary_10_1088_1748_9326_ad3167
crossref_primary_10_1038_ismej_2017_178
crossref_primary_10_1002_agg2_20107
crossref_primary_10_1088_1748_9326_ac661a
crossref_primary_10_1016_j_scitotenv_2022_159459
crossref_primary_10_1007_s11104_021_05239_7
crossref_primary_10_1021_acs_est_3c02620
crossref_primary_10_1016_j_pedsph_2023_06_003
crossref_primary_10_1016_j_eja_2021_126436
crossref_primary_10_1002_saj2_20604
crossref_primary_10_1016_j_apsoil_2021_104324
crossref_primary_10_1111_plb_12960
crossref_primary_10_1128_mBio_03252_20
crossref_primary_10_3390_f12020170
crossref_primary_10_3390_agronomy14030447
crossref_primary_10_1016_j_jia_2023_05_040
crossref_primary_10_1016_j_scitotenv_2023_169731
crossref_primary_10_1088_1748_9326_ab2c11
crossref_primary_10_1111_gcb_15987
crossref_primary_10_3389_ffgc_2020_00099
crossref_primary_10_3390_environments9040052
crossref_primary_10_1371_journal_pone_0236634
crossref_primary_10_1007_s00374_022_01665_6
crossref_primary_10_1002_ldr_3388
crossref_primary_10_1016_j_soilbio_2022_108589
crossref_primary_10_1016_j_foreco_2022_120074
crossref_primary_10_1016_j_gca_2023_04_005
crossref_primary_10_1007_s11368_015_1337_6
crossref_primary_10_1111_gcb_13752
crossref_primary_10_3390_s20123362
crossref_primary_10_7717_peerj_15276
crossref_primary_10_1021_acs_est_0c06014
crossref_primary_10_3390_agronomy14030490
crossref_primary_10_1016_j_scitotenv_2020_141305
crossref_primary_10_1016_j_apsoil_2017_08_005
crossref_primary_10_1016_j_scitotenv_2020_142884
crossref_primary_10_7717_peerj_9128
crossref_primary_10_1890_14_1770_1
crossref_primary_10_3390_agronomy13071783
crossref_primary_10_1016_j_envres_2023_115729
crossref_primary_10_1029_2020JG006201
crossref_primary_10_1016_j_scitotenv_2022_153925
crossref_primary_10_1016_j_ejsobi_2018_04_001
crossref_primary_10_1016_j_ejsobi_2018_10_002
crossref_primary_10_1016_j_pedsph_2024_02_007
crossref_primary_10_1016_j_soilbio_2018_06_010
crossref_primary_10_1016_j_soilbio_2022_108562
crossref_primary_10_1016_j_catena_2022_106351
crossref_primary_10_3390_soilsystems8010016
crossref_primary_10_1007_s11368_020_02797_8
crossref_primary_10_1111_gcb_13980
crossref_primary_10_3389_fmicb_2020_622926
crossref_primary_10_1007_s00374_021_01583_z
crossref_primary_10_1111_gcb_15951
crossref_primary_10_1016_j_geoderma_2017_01_017
crossref_primary_10_1016_j_geoderma_2024_117107
crossref_primary_10_1016_j_agee_2020_107232
crossref_primary_10_1016_j_scitotenv_2024_175261
crossref_primary_10_1016_j_geoderma_2019_113880
crossref_primary_10_1007_s11104_018_3601_1
crossref_primary_10_1007_s11356_020_09720_1
crossref_primary_10_1016_j_scitotenv_2020_144842
crossref_primary_10_1016_j_catena_2019_04_033
crossref_primary_10_3390_f13101710
crossref_primary_10_1007_s00374_018_1321_6
crossref_primary_10_1007_s00374_019_01345_y
crossref_primary_10_1016_j_apsoil_2024_105270
crossref_primary_10_1111_nph_16389
crossref_primary_10_1093_femsec_fix110
crossref_primary_10_1007_s11368_019_02423_2
crossref_primary_10_1016_j_funeco_2022_101191
crossref_primary_10_1016_j_soilbio_2016_02_012
crossref_primary_10_1016_j_rcrx_2019_100014
crossref_primary_10_2136_sssaj2018_11_0446
crossref_primary_10_1016_j_agee_2021_107577
crossref_primary_10_1016_j_soilbio_2022_108778
crossref_primary_10_1016_j_still_2024_106088
crossref_primary_10_1007_s00374_020_01468_7
crossref_primary_10_1016_j_geoderma_2020_114576
crossref_primary_10_3390_pr11010241
crossref_primary_10_1016_j_soilbio_2022_108775
crossref_primary_10_3390_su141912283
crossref_primary_10_1016_j_apsoil_2020_103572
crossref_primary_10_1016_j_soilbio_2018_07_025
crossref_primary_10_1111_sum_12823
crossref_primary_10_1016_j_geoderma_2024_116884
crossref_primary_10_1016_j_geoderma_2024_116883
crossref_primary_10_1111_1365_2435_13256
crossref_primary_10_3390_agronomy11102025
crossref_primary_10_1111_gcb_17502
crossref_primary_10_1007_s11104_017_3254_5
crossref_primary_10_1016_j_apsoil_2018_02_012
crossref_primary_10_1016_j_soilbio_2022_108767
crossref_primary_10_1016_j_apsoil_2025_105911
crossref_primary_10_1016_j_apsoil_2020_103568
crossref_primary_10_1021_acs_jafc_3c03209
crossref_primary_10_7717_peerj_7130
crossref_primary_10_1111_gcbb_12665
crossref_primary_10_1016_j_still_2018_08_008
crossref_primary_10_1016_j_scitotenv_2023_167970
crossref_primary_10_1016_j_soilbio_2016_11_014
crossref_primary_10_5194_soil_10_779_2024
crossref_primary_10_1007_s00203_020_01816_z
crossref_primary_10_1016_j_apsoil_2018_02_008
crossref_primary_10_1016_j_apsoil_2018_02_001
crossref_primary_10_1016_j_soilbio_2022_108758
crossref_primary_10_1007_s42729_023_01135_4
crossref_primary_10_1002_ldr_3792
crossref_primary_10_1088_1755_1315_712_1_012012
crossref_primary_10_1002_ldr_4642
crossref_primary_10_1016_j_geoderma_2017_04_029
crossref_primary_10_36783_18069657rbcs20200088
crossref_primary_10_1111_gcb_16445
crossref_primary_10_1007_s11104_023_06258_2
crossref_primary_10_1029_2019JG005611
crossref_primary_10_1016_j_still_2021_105120
crossref_primary_10_1007_s11104_023_06127_y
crossref_primary_10_1016_j_still_2021_105126
crossref_primary_10_1016_j_pedsph_2023_04_002
crossref_primary_10_1016_j_apsoil_2021_103884
crossref_primary_10_3390_atmos13101702
crossref_primary_10_1016_j_geoderma_2016_09_010
crossref_primary_10_1111_gcb_15342
crossref_primary_10_1111_gcb_15587
crossref_primary_10_3390_soilsystems8010034
crossref_primary_10_1002_mbo3_1044
crossref_primary_10_1029_2018JG004431
crossref_primary_10_1007_s12649_022_01687_z
crossref_primary_10_1111_gcb_16627
crossref_primary_10_1007_s42729_024_01672_6
crossref_primary_10_1016_j_eti_2025_104109
crossref_primary_10_1016_j_ecolind_2022_109726
crossref_primary_10_1016_j_geoderma_2023_116393
crossref_primary_10_1016_j_apsoil_2020_103778
crossref_primary_10_1016_j_geoderma_2020_114535
crossref_primary_10_1016_j_fcr_2024_109285
crossref_primary_10_1007_s11104_016_2958_2
crossref_primary_10_1016_j_agee_2020_107081
crossref_primary_10_1007_s10533_016_0198_4
crossref_primary_10_1007_s11104_021_05241_z
crossref_primary_10_5194_bg_21_3165_2024
crossref_primary_10_1016_j_soilbio_2016_10_019
crossref_primary_10_1038_s41396_021_00950_w
crossref_primary_10_1016_j_soilbio_2016_10_014
crossref_primary_10_3389_ffgc_2021_773223
crossref_primary_10_1016_j_scitotenv_2023_168627
crossref_primary_10_1016_j_still_2024_106298
crossref_primary_10_1016_j_soilbio_2016_10_016
crossref_primary_10_1016_j_geoderma_2023_116384
crossref_primary_10_1007_s10021_022_00800_6
crossref_primary_10_3390_microorganisms10030540
crossref_primary_10_1007_s10533_022_00996_8
crossref_primary_10_3389_ffgc_2023_1136354
crossref_primary_10_1111_1365_2435_12377
crossref_primary_10_1016_j_scitotenv_2024_174338
crossref_primary_10_3389_fmicb_2019_02609
crossref_primary_10_1093_femsec_fiaa089
crossref_primary_10_3389_fpls_2024_1362149
crossref_primary_10_1016_j_apsoil_2024_105668
crossref_primary_10_1002_jeq2_20172
crossref_primary_10_1016_j_scitotenv_2024_174572
crossref_primary_10_3390_plants13010139
crossref_primary_10_1016_j_soilbio_2021_108518
crossref_primary_10_3389_fevo_2019_00059
crossref_primary_10_1007_s42729_024_02076_2
crossref_primary_10_1038_s41598_017_11190_4
crossref_primary_10_3390_microorganisms11051106
crossref_primary_10_1002_agj2_20582
crossref_primary_10_1016_j_still_2018_09_011
crossref_primary_10_1016_j_jhazmat_2024_134232
crossref_primary_10_1016_j_soilbio_2018_08_023
crossref_primary_10_1007_s00374_018_1314_5
crossref_primary_10_1016_j_scitotenv_2020_139708
crossref_primary_10_36783_18069657rbcs20220077
crossref_primary_10_1002_jsfa_11518
crossref_primary_10_17221_286_2019_PSE
crossref_primary_10_1016_j_catena_2017_02_014
crossref_primary_10_1016_j_still_2019_05_027
crossref_primary_10_1007_s00253_021_11691_3
crossref_primary_10_3390_su11061732
crossref_primary_10_1007_s10705_022_10221_5
crossref_primary_10_1016_j_resconrec_2020_104901
crossref_primary_10_1016_j_scitotenv_2023_163424
crossref_primary_10_1016_j_eja_2018_01_010
crossref_primary_10_1016_j_geoderma_2022_116118
crossref_primary_10_1111_gcb_17115
crossref_primary_10_1007_s12155_016_9810_7
crossref_primary_10_3389_fenvs_2022_853655
crossref_primary_10_1007_s10533_023_01085_0
crossref_primary_10_1111_1365_2435_14625
crossref_primary_10_1016_j_jenvman_2022_117202
crossref_primary_10_1016_j_scitotenv_2022_153565
crossref_primary_10_1111_gcb_17349
crossref_primary_10_20961_stjssa_v20i2_67520
crossref_primary_10_1016_j_soilbio_2022_108802
crossref_primary_10_1016_j_soilbio_2021_108427
crossref_primary_10_1007_s00374_018_1274_9
crossref_primary_10_1007_s10705_020_10053_1
crossref_primary_10_1016_j_apsoil_2020_103848
crossref_primary_10_1016_j_apsoil_2020_103843
crossref_primary_10_1016_j_apsoil_2020_103842
crossref_primary_10_1016_j_soilbio_2024_109696
crossref_primary_10_12677_IJE_2022_112023
crossref_primary_10_1007_s11104_024_06788_3
crossref_primary_10_1016_j_agrformet_2023_109792
crossref_primary_10_1016_j_soilbio_2024_109455
crossref_primary_10_1002_jpln_202100193
crossref_primary_10_1007_s11104_019_04072_3
crossref_primary_10_1016_j_scitotenv_2024_172417
crossref_primary_10_1111_1365_2435_13303
crossref_primary_10_1016_j_geoderma_2023_116610
crossref_primary_10_1007_s12155_018_9903_6
crossref_primary_10_1002_ldr_4802
crossref_primary_10_2139_ssrn_3981269
crossref_primary_10_1016_j_soilbio_2025_109769
crossref_primary_10_1007_s11104_020_04566_5
crossref_primary_10_1016_j_scitotenv_2020_138645
crossref_primary_10_1007_s11104_018_3873_5
crossref_primary_10_1016_j_still_2016_06_008
crossref_primary_10_1038_srep33814
crossref_primary_10_1016_j_scitotenv_2022_154876
crossref_primary_10_1111_geb_13524
crossref_primary_10_1002_fes3_70009
crossref_primary_10_3390_su12020621
crossref_primary_10_1016_j_jhazmat_2022_128522
crossref_primary_10_1111_1365_2435_13550
crossref_primary_10_1002_jsfa_13968
crossref_primary_10_1016_j_geoderma_2022_116148
crossref_primary_10_1016_j_soilbio_2021_108447
crossref_primary_10_1073_pnas_2002780117
crossref_primary_10_1016_j_foreco_2019_117477
crossref_primary_10_1016_j_geoderma_2019_114122
crossref_primary_10_1016_j_jaridenv_2021_104696
crossref_primary_10_1016_j_apsoil_2020_103863
crossref_primary_10_1016_j_soilbio_2016_05_006
crossref_primary_10_4236_ojss_2017_77009
crossref_primary_10_1016_j_apsoil_2016_04_019
crossref_primary_10_1016_j_geoderma_2023_116603
crossref_primary_10_1002_ecy_3790
crossref_primary_10_1016_j_soilbio_2016_05_001
crossref_primary_10_1016_j_soilbio_2025_109770
crossref_primary_10_5194_bg_18_3147_2021
crossref_primary_10_1002_saj2_20050
crossref_primary_10_3389_ffgc_2023_1288259
crossref_primary_10_1016_j_geoderma_2023_116676
crossref_primary_10_1016_j_soilbio_2021_108458
crossref_primary_10_1016_j_scitotenv_2021_152163
crossref_primary_10_1007_s11368_023_03677_7
crossref_primary_10_1016_j_scitotenv_2023_166734
crossref_primary_10_3389_fenvs_2022_898249
crossref_primary_10_3390_agronomy12050998
crossref_primary_10_1016_j_soisec_2021_100007
crossref_primary_10_1016_j_apsoil_2021_104186
crossref_primary_10_1111_gcb_16463
crossref_primary_10_1016_j_geoderma_2020_114818
crossref_primary_10_1016_j_scitotenv_2022_156814
crossref_primary_10_1038_ismej_2017_43
crossref_primary_10_1002_jpln_202000416
crossref_primary_10_1007_s11104_023_06277_z
crossref_primary_10_1016_j_agee_2024_109142
crossref_primary_10_1016_j_soilbio_2016_06_010
crossref_primary_10_3389_fmicb_2016_02001
crossref_primary_10_1007_s10705_023_10277_x
crossref_primary_10_1007_s10457_023_00861_z
crossref_primary_10_1016_j_soilbio_2023_109158
crossref_primary_10_1007_s11104_017_3210_4
crossref_primary_10_1016_j_geoderma_2020_114828
crossref_primary_10_1016_j_envres_2019_108591
crossref_primary_10_1111_gcb_16456
crossref_primary_10_1007_s00374_018_1317_2
crossref_primary_10_1111_gcbb_12340
crossref_primary_10_1007_s11104_019_04070_5
crossref_primary_10_1016_j_geoderma_2017_05_032
crossref_primary_10_1016_j_scitotenv_2024_172671
crossref_primary_10_1016_j_scitotenv_2024_170497
crossref_primary_10_1016_j_agee_2022_108006
crossref_primary_10_1016_j_agee_2022_108248
crossref_primary_10_1016_j_still_2021_104999
crossref_primary_10_1016_j_scitotenv_2016_12_021
crossref_primary_10_1007_s11104_024_06600_2
crossref_primary_10_1007_s11676_020_01148_0
crossref_primary_10_1016_j_agee_2024_109373
crossref_primary_10_1016_j_pedobi_2021_150769
crossref_primary_10_1029_2023JG007699
crossref_primary_10_1016_j_soilbio_2024_109689
crossref_primary_10_1111_ejss_12817
crossref_primary_10_1016_j_soilbio_2021_108473
crossref_primary_10_1016_j_soilbio_2023_109123
crossref_primary_10_1016_j_soilbio_2014_08_019
crossref_primary_10_1016_j_soilbio_2021_108236
crossref_primary_10_1111_gcb_14069
crossref_primary_10_1111_gcb_16004
crossref_primary_10_1111_ejss_12811
crossref_primary_10_2139_ssrn_4057268
crossref_primary_10_1007_s11104_022_05851_1
crossref_primary_10_1007_s00374_020_01513_5
crossref_primary_10_5194_soil_9_443_2023
crossref_primary_10_1016_j_agee_2023_108776
crossref_primary_10_1111_ele_13700
crossref_primary_10_1016_j_soilbio_2019_03_027
crossref_primary_10_1007_s11368_022_03354_1
crossref_primary_10_1128_AEM_02738_17
crossref_primary_10_1016_j_geoderma_2021_115197
crossref_primary_10_3390_plants10102000
crossref_primary_10_3389_feart_2019_00076
crossref_primary_10_1002_agj2_20624
crossref_primary_10_1007_s00374_021_01545_5
crossref_primary_10_1016_j_still_2019_04_024
crossref_primary_10_1111_ejss_12800
crossref_primary_10_1016_j_scitotenv_2023_166093
crossref_primary_10_1080_15324982_2023_2284889
crossref_primary_10_1016_j_catena_2024_107807
crossref_primary_10_2136_sssaj2018_07_0273
crossref_primary_10_1186_s43591_021_00004_0
crossref_primary_10_5194_bg_19_5419_2022
crossref_primary_10_1016_j_soilbio_2023_109106
crossref_primary_10_1016_j_soilbio_2021_108495
crossref_primary_10_1016_j_soilbio_2021_108498
crossref_primary_10_1080_15226514_2021_1959516
crossref_primary_10_1007_s11104_019_03981_7
crossref_primary_10_1016_j_apsoil_2016_05_004
crossref_primary_10_48077_scihor_25_10__2022_31_42
crossref_primary_10_1155_2024_9997751
crossref_primary_10_1016_j_soilbio_2017_01_017
crossref_primary_10_1016_j_apsoil_2022_104442
crossref_primary_10_1016_j_resenv_2024_100174
crossref_primary_10_1002_jpln_202100108
crossref_primary_10_3390_agronomy9100651
crossref_primary_10_1093_jipm_pmac018
crossref_primary_10_1016_j_rhisph_2019_100145
crossref_primary_10_1016_j_soilbio_2024_109612
crossref_primary_10_1016_j_soilbio_2021_108265
crossref_primary_10_1007_s10533_016_0201_0
crossref_primary_10_1016_j_apsoil_2017_11_009
crossref_primary_10_1016_j_soilbio_2016_07_011
crossref_primary_10_1016_j_catena_2020_104677
crossref_primary_10_3390_soilsystems5030044
crossref_primary_10_3390_microorganisms12081689
crossref_primary_10_1007_s10533_025_01222_x
crossref_primary_10_1016_j_ejsobi_2024_103695
crossref_primary_10_2136_sssaj2019_02_0047
crossref_primary_10_1007_s11104_019_04331_3
crossref_primary_10_1016_j_agee_2020_106973
crossref_primary_10_1016_j_apsoil_2015_11_016
crossref_primary_10_1007_s00374_019_01383_6
crossref_primary_10_1016_j_scitotenv_2024_177258
crossref_primary_10_3390_nitrogen2040030
crossref_primary_10_3389_fmicb_2017_02293
crossref_primary_10_1111_1365_2745_13997
crossref_primary_10_1080_20964129_2022_2133638
crossref_primary_10_1007_s11676_018_0731_5
crossref_primary_10_1016_j_soilbio_2015_12_010
crossref_primary_10_1111_pce_15472
crossref_primary_10_1038_srep46286
crossref_primary_10_1007_s11104_021_05191_6
crossref_primary_10_1016_j_soilbio_2020_107928
crossref_primary_10_1016_j_geoderma_2021_115342
crossref_primary_10_1016_j_scitotenv_2017_03_208
crossref_primary_10_3390_polym15030660
crossref_primary_10_1016_j_soilbio_2018_10_015
crossref_primary_10_1029_2022JG006800
crossref_primary_10_1111_gcb_16062
crossref_primary_10_1016_j_scitotenv_2018_11_437
crossref_primary_10_1007_s11104_018_3755_x
crossref_primary_10_1111_sum_12348
crossref_primary_10_1002_ldr_5270
crossref_primary_10_1007_s00374_016_1174_9
crossref_primary_10_1111_gcbb_70007
crossref_primary_10_1016_j_jenvman_2024_122777
crossref_primary_10_1016_j_apsoil_2023_104982
crossref_primary_10_1016_j_catena_2024_107839
crossref_primary_10_1016_j_eja_2016_12_012
crossref_primary_10_1016_j_soilbio_2020_107913
crossref_primary_10_1016_j_soilbio_2019_04_003
crossref_primary_10_1016_j_catena_2019_104213
crossref_primary_10_3389_fmicb_2014_00720
crossref_primary_10_1111_gcb_17147
crossref_primary_10_1016_j_soilbio_2020_107705
crossref_primary_10_1007_s10533_021_00880_x
crossref_primary_10_1016_j_soilbio_2019_05_001
crossref_primary_10_1002_jpln_202300405
crossref_primary_10_1016_j_biortech_2022_127452
crossref_primary_10_1016_j_envint_2023_108393
crossref_primary_10_1016_j_apsoil_2023_104973
crossref_primary_10_1016_j_soilbio_2020_107942
crossref_primary_10_1002_jpln_201800551
crossref_primary_10_1016_j_catena_2024_107872
crossref_primary_10_1016_j_soilbio_2024_109603
crossref_primary_10_1016_j_chnaes_2018_05_006
crossref_primary_10_1016_j_envpol_2021_117741
crossref_primary_10_1007_s11368_023_03609_5
crossref_primary_10_1007_s10705_019_09973_4
crossref_primary_10_1016_j_soilbio_2019_05_017
crossref_primary_10_7717_peerj_13462
crossref_primary_10_1007_s11104_022_05357_w
crossref_primary_10_1016_j_catena_2023_107321
crossref_primary_10_1039_C5EM00446B
crossref_primary_10_1007_s42729_024_01997_2
crossref_primary_10_1016_j_ecolind_2023_111457
crossref_primary_10_1016_j_soilbio_2020_107849
crossref_primary_10_1016_j_scitotenv_2021_152882
crossref_primary_10_1080_10643389_2023_2266312
crossref_primary_10_1016_j_soilbio_2020_107840
crossref_primary_10_1016_j_jhazmat_2024_135078
crossref_primary_10_1080_10256016_2021_1970548
crossref_primary_10_1111_1365_2745_70028
crossref_primary_10_1016_j_geoderma_2019_113982
crossref_primary_10_1007_s00374_025_01907_3
crossref_primary_10_3389_ffgc_2019_00059
crossref_primary_10_1016_j_fcr_2022_108712
crossref_primary_10_1016_j_scitotenv_2019_134488
crossref_primary_10_1016_j_scitotenv_2024_170907
crossref_primary_10_1038_srep10102
crossref_primary_10_1016_j_geoderma_2021_115425
crossref_primary_10_1139_cjss_2019_0088
crossref_primary_10_1016_j_jclepro_2023_137783
crossref_primary_10_1016_j_soilbio_2017_11_001
crossref_primary_10_1016_j_still_2020_104727
crossref_primary_10_1021_acs_jafc_9b03323
crossref_primary_10_1111_ejss_13564
crossref_primary_10_3389_fmicb_2024_1381891
crossref_primary_10_1016_j_envres_2023_116501
crossref_primary_10_1016_j_geoderma_2022_115951
crossref_primary_10_1038_s41598_021_97698_2
crossref_primary_10_1016_j_geoderma_2021_115652
crossref_primary_10_1016_j_ejsobi_2016_07_003
crossref_primary_10_1111_gcb_16938
crossref_primary_10_1007_s10661_024_12988_2
crossref_primary_10_1016_j_apsoil_2016_07_021
crossref_primary_10_3390_agronomy12020456
crossref_primary_10_1016_j_catena_2020_104952
crossref_primary_10_1016_j_ecolind_2023_110055
crossref_primary_10_1111_gcb_14304
crossref_primary_10_1016_j_envres_2025_121423
crossref_primary_10_1016_j_geoderma_2021_115441
crossref_primary_10_1016_j_apsoil_2022_104732
crossref_primary_10_1080_02757540_2024_2396827
crossref_primary_10_3389_fmicb_2022_948875
crossref_primary_10_1016_j_jenvman_2024_121837
crossref_primary_10_1016_j_geoderma_2021_115440
crossref_primary_10_1016_j_soilbio_2023_108996
crossref_primary_10_1016_j_soilbio_2019_06_003
crossref_primary_10_3390_microorganisms13010173
crossref_primary_10_1002_jpln_202200357
crossref_primary_10_7717_peerj_17984
crossref_primary_10_1111_gcb_16718
crossref_primary_10_1016_j_scitotenv_2024_172082
crossref_primary_10_1016_j_geoderma_2022_115739
crossref_primary_10_1016_j_apsoil_2021_104216
crossref_primary_10_1016_j_ejsobi_2021_103332
crossref_primary_10_1111_sum_12790
crossref_primary_10_1111_gcb_16951
crossref_primary_10_1007_s10533_023_01016_z
crossref_primary_10_1016_j_scitotenv_2023_168350
crossref_primary_10_1016_j_scitotenv_2023_166170
crossref_primary_10_1038_s41467_024_45277_0
crossref_primary_10_1016_j_scitotenv_2023_168353
crossref_primary_10_1111_gcb_14962
crossref_primary_10_1128_msystems_00162_20
crossref_primary_10_1007_s42729_021_00664_0
crossref_primary_10_1016_j_eja_2022_126619
crossref_primary_10_1016_j_scitotenv_2018_10_237
crossref_primary_10_1002_saj2_20745
crossref_primary_10_1371_journal_pone_0216730
crossref_primary_10_2134_agronj2019_03_0224
crossref_primary_10_1016_j_soilbio_2017_10_004
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_1016_j_agee_2022_107927
crossref_primary_10_1016_j_fcr_2024_109569
crossref_primary_10_1016_j_catena_2022_106484
crossref_primary_10_1016_j_fcr_2018_09_011
crossref_primary_10_1111_1365_2435_14251
crossref_primary_10_1007_s00374_020_01489_2
crossref_primary_10_1016_j_scitotenv_2023_166175
crossref_primary_10_1007_s10705_019_10037_w
crossref_primary_10_3390_agronomy14122996
crossref_primary_10_1002_ldr_3492
crossref_primary_10_1016_j_scitotenv_2017_03_154
crossref_primary_10_1016_j_microb_2024_100085
crossref_primary_10_1007_s11104_021_05260_w
crossref_primary_10_1002_saj2_20759
crossref_primary_10_1007_s11104_019_04120_y
crossref_primary_10_1016_j_soilbio_2022_108683
crossref_primary_10_1016_j_still_2023_105864
crossref_primary_10_1007_s42729_024_01680_6
crossref_primary_10_1016_j_geoderma_2018_03_020
crossref_primary_10_1007_s11104_019_04240_5
crossref_primary_10_1002_ldr_3481
crossref_primary_10_1002_ecy_3094
crossref_primary_10_1002_ldr_3240
crossref_primary_10_1002_ldr_4570
crossref_primary_10_1016_j_rhisph_2023_100809
crossref_primary_10_1016_j_catena_2024_107907
crossref_primary_10_1111_nph_18458
crossref_primary_10_1016_j_scitotenv_2023_168577
crossref_primary_10_1016_j_pedobi_2023_150896
crossref_primary_10_1029_2021GL096133
crossref_primary_10_1016_j_still_2023_105657
crossref_primary_10_1016_j_pedobi_2020_150686
crossref_primary_10_1016_j_soilbio_2022_108671
crossref_primary_10_3390_f13081263
crossref_primary_10_1007_s00343_021_1261_0
crossref_primary_10_1016_j_jhazmat_2023_130762
crossref_primary_10_1016_j_catena_2022_106226
crossref_primary_10_1007_s11104_018_3757_8
crossref_primary_10_1111_1365_2435_14038
crossref_primary_10_1016_j_geoderma_2019_113996
crossref_primary_10_1002_saj2_20530
crossref_primary_10_1111_ejss_12497
crossref_primary_10_3390_agronomy13122972
crossref_primary_10_1016_j_agee_2021_107643
crossref_primary_10_1016_j_soilbio_2022_108669
crossref_primary_10_1002_ldr_4318
crossref_primary_10_1016_j_soilbio_2023_108961
crossref_primary_10_1002_ldr_4792
crossref_primary_10_1016_j_scitotenv_2020_141442
crossref_primary_10_3390_microorganisms8111773
crossref_primary_10_1111_1365_2745_13276
crossref_primary_10_1080_00380768_2020_1870095
crossref_primary_10_1111_ejss_12248
crossref_primary_10_1016_S1002_0160_21_60064_4
crossref_primary_10_1007_s42729_022_00892_y
crossref_primary_10_1016_j_envres_2023_115482
crossref_primary_10_1016_j_still_2018_01_013
crossref_primary_10_1016_j_scitotenv_2022_157541
crossref_primary_10_1016_j_jenvman_2021_112894
crossref_primary_10_4081_ija_2016_757
crossref_primary_10_5194_gmd_8_1789_2015
crossref_primary_10_1007_s00374_023_01702_y
crossref_primary_10_1016_j_apsoil_2023_105234
crossref_primary_10_1016_j_apsoil_2024_105531
crossref_primary_10_1038_s41396_023_01523_9
crossref_primary_10_1016_j_still_2022_105560
crossref_primary_10_1016_j_still_2022_105562
crossref_primary_10_1007_s10533_021_00754_2
crossref_primary_10_1016_j_soilbio_2022_108881
crossref_primary_10_3390_agronomy12020293
crossref_primary_10_1016_j_scitotenv_2022_158400
crossref_primary_10_1016_j_ejsobi_2020_103216
crossref_primary_10_1111_gcbb_12784
crossref_primary_10_1002_ecs2_2165
crossref_primary_10_1016_j_apsoil_2019_103425
crossref_primary_10_1016_j_apsoil_2019_04_015
crossref_primary_10_1016_j_scitotenv_2024_174655
crossref_primary_10_3390_f14071305
crossref_primary_10_1038_s41467_019_11472_7
crossref_primary_10_1111_gcb_13296
crossref_primary_10_1007_s10750_021_04574_1
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_1016_j_catena_2022_106806
crossref_primary_10_1007_s00374_022_01684_3
crossref_primary_10_1016_j_geoderma_2023_116444
crossref_primary_10_1111_gcb_17405
crossref_primary_10_3390_f10050435
crossref_primary_10_1016_j_scitotenv_2023_166742
crossref_primary_10_3389_fagro_2022_833338
crossref_primary_10_1007_s00374_019_01357_8
crossref_primary_10_1111_gcbb_12520
crossref_primary_10_1007_s42729_024_02160_7
crossref_primary_10_1016_j_soilbio_2017_05_026
crossref_primary_10_1016_j_geoderma_2018_10_030
crossref_primary_10_1016_j_soilbio_2017_05_021
crossref_primary_10_1016_j_still_2024_106163
crossref_primary_10_1016_j_jenvman_2017_11_077
crossref_primary_10_1071_SR20063
crossref_primary_10_1016_j_soilbio_2022_108619
crossref_primary_10_1016_j_jenvman_2019_06_054
crossref_primary_10_1016_j_soilbio_2025_109789
crossref_primary_10_1002_ldr_3651
crossref_primary_10_1038_s41598_018_26375_8
crossref_primary_10_1016_j_soilbio_2022_108852
crossref_primary_10_1016_j_soilbio_2022_108850
crossref_primary_10_1007_s00253_021_11663_7
crossref_primary_10_1071_SR21149
crossref_primary_10_1016_j_agee_2018_06_020
crossref_primary_10_1016_j_biortech_2023_129109
crossref_primary_10_1038_s41467_018_05667_7
crossref_primary_10_1016_j_scitotenv_2021_147428
crossref_primary_10_1007_s11104_024_06670_2
crossref_primary_10_1371_journal_pone_0161251
crossref_primary_10_1111_ejss_13517
crossref_primary_10_1111_1365_2435_13338
crossref_primary_10_1016_j_scitotenv_2021_151911
crossref_primary_10_3390_agriculture13061187
crossref_primary_10_1016_j_agee_2020_107194
crossref_primary_10_1016_j_spc_2023_11_019
crossref_primary_10_1007_s11104_021_04872_6
crossref_primary_10_1016_j_geoderma_2024_116778
crossref_primary_10_1016_j_soilbio_2020_108118
crossref_primary_10_1016_j_soilbio_2022_108839
crossref_primary_10_1016_j_geoderma_2020_114877
crossref_primary_10_1016_j_still_2021_105219
crossref_primary_10_1016_j_jes_2025_01_015
crossref_primary_10_1007_s00374_022_01682_5
crossref_primary_10_1002_agj2_20460
crossref_primary_10_1007_s11104_021_05288_y
crossref_primary_10_1007_s11368_022_03396_5
crossref_primary_10_1007_s11356_023_26696_w
crossref_primary_10_1016_j_agee_2021_107489
crossref_primary_10_1016_j_agee_2020_107184
crossref_primary_10_1016_j_soilbio_2017_12_009
crossref_primary_10_1016_j_soilbio_2022_108827
crossref_primary_10_1016_j_soilbio_2020_108103
crossref_primary_10_1007_s00374_019_01359_6
crossref_primary_10_1016_j_agrformet_2015_06_017
crossref_primary_10_1111_gcb_16750
crossref_primary_10_3389_fpls_2016_01252
crossref_primary_10_1038_s43016_022_00584_x
crossref_primary_10_3390_agriculture13040860
crossref_primary_10_1016_j_apsoil_2022_104395
crossref_primary_10_3390_app15031006
crossref_primary_10_1080_00380768_2023_2199777
crossref_primary_10_1016_j_soilbio_2018_01_003
crossref_primary_10_1016_j_geoderma_2018_08_021
crossref_primary_10_1016_j_still_2024_106242
crossref_primary_10_1038_s41467_024_54446_0
crossref_primary_10_1007_s11427_022_2245_y
crossref_primary_10_1016_j_soilbio_2021_108530
crossref_primary_10_1007_s11104_017_3431_6
crossref_primary_10_3390_plants11212893
crossref_primary_10_1002_saj2_20142
crossref_primary_10_4236_jacen_2016_52006
crossref_primary_10_3390_agronomy13112791
crossref_primary_10_3390_plants11192605
crossref_primary_10_1016_j_scitotenv_2020_140808
crossref_primary_10_5194_bg_13_4481_2016
crossref_primary_10_1016_j_foreco_2020_117920
crossref_primary_10_1016_j_scitotenv_2021_149924
crossref_primary_10_7717_peerj_4024
crossref_primary_10_3390_f14061207
crossref_primary_10_1016_j_geoderma_2019_02_006
crossref_primary_10_1016_j_geoderma_2024_116802
crossref_primary_10_1016_j_soilbio_2024_109330
crossref_primary_10_1111_gcb_16372
crossref_primary_10_1007_s11538_023_01160_5
crossref_primary_10_1111_1462_2920_13890
crossref_primary_10_1016_j_agee_2023_108602
crossref_primary_10_1016_j_jenvman_2024_122488
crossref_primary_10_1080_00380768_2020_1753481
crossref_primary_10_1016_j_ejsobi_2023_103490
crossref_primary_10_1016_j_geoderma_2025_117186
crossref_primary_10_1007_s11104_024_07170_z
crossref_primary_10_1002_ecy_1482
crossref_primary_10_1007_s10533_019_00600_6
crossref_primary_10_1007_s10705_020_10076_8
crossref_primary_10_1016_j_soilbio_2021_108312
crossref_primary_10_1016_j_jenvman_2019_03_058
crossref_primary_10_1016_j_soilbio_2023_109285
crossref_primary_10_3390_microbiolres14040117
crossref_primary_10_1111_1365_2435_13428
crossref_primary_10_1086_717127
crossref_primary_10_1007_s11104_021_05168_5
crossref_primary_10_1007_s11104_024_06887_1
crossref_primary_10_3390_agronomy12030625
crossref_primary_10_1016_j_still_2024_106278
crossref_primary_10_1007_s11104_023_06134_z
crossref_primary_10_1016_j_still_2017_08_005
crossref_primary_10_3390_f15061057
crossref_primary_10_3389_fevo_2022_857185
crossref_primary_10_1016_j_geoderma_2023_116729
crossref_primary_10_12677_IJE_2021_102034
crossref_primary_10_1016_j_jhazmat_2022_129941
crossref_primary_10_1007_s00374_020_01503_7
crossref_primary_10_1007_s00374_019_01416_0
crossref_primary_10_1016_j_soilbio_2014_10_008
crossref_primary_10_3389_fpls_2023_1335843
crossref_primary_10_1016_j_fcr_2023_108873
crossref_primary_10_1016_j_scitotenv_2020_144146
crossref_primary_10_1016_j_soilbio_2023_109265
crossref_primary_10_1016_j_soilbio_2023_109021
crossref_primary_10_1016_j_geoderma_2018_07_018
crossref_primary_10_1007_s10750_018_3672_2
crossref_primary_10_1002_ldr_3808
crossref_primary_10_1007_s11368_019_02407_2
crossref_primary_10_1016_j_heliyon_2020_e05889
crossref_primary_10_1007_s00374_023_01768_8
crossref_primary_10_1007_s11104_016_2991_1
crossref_primary_10_1016_j_soilbio_2016_12_004
crossref_primary_10_1016_j_geoderma_2018_07_008
crossref_primary_10_1007_s00572_020_00959_7
crossref_primary_10_1016_j_soilbio_2023_109272
crossref_primary_10_1111_gcb_14154
crossref_primary_10_1016_j_jenvman_2025_124744
crossref_primary_10_32604_phyton_2022_021412
crossref_primary_10_1007_s11355_019_00392_9
crossref_primary_10_3389_fmicb_2016_01045
crossref_primary_10_1016_j_agee_2024_109011
crossref_primary_10_1016_j_scitotenv_2025_178387
crossref_primary_10_1016_j_soilbio_2023_109008
crossref_primary_10_1016_j_geoderma_2022_116216
crossref_primary_10_1016_j_biortech_2021_125907
crossref_primary_10_1016_j_soilbio_2023_109242
crossref_primary_10_1016_j_geoderma_2024_116816
crossref_primary_10_12677_IJE_2021_102026
crossref_primary_10_1051_cagri_2018017
crossref_primary_10_1007_s00374_017_1194_0
crossref_primary_10_1016_j_soilbio_2023_109254
crossref_primary_10_1016_j_chemosphere_2022_135612
crossref_primary_10_1016_j_soilbio_2018_01_024
crossref_primary_10_1016_j_jenvman_2020_111437
crossref_primary_10_1016_j_soilbio_2015_05_025
crossref_primary_10_1029_2020GB006877
crossref_primary_10_1186_s13717_024_00565_x
crossref_primary_10_1007_s11356_022_25085_z
crossref_primary_10_1016_j_catena_2021_105901
crossref_primary_10_1016_j_ejsobi_2018_05_006
crossref_primary_10_1016_j_scitotenv_2023_168397
crossref_primary_10_1002_ecs2_1879
crossref_primary_10_1016_j_soilbio_2024_109509
crossref_primary_10_1007_s00374_022_01658_5
crossref_primary_10_1002_saj2_20548
crossref_primary_10_1038_s41598_019_55174_y
crossref_primary_10_1016_j_soilbio_2021_108375
crossref_primary_10_2134_agronj2016_03_0153
crossref_primary_10_1007_s00374_017_1250_9
crossref_primary_10_1007_s10533_017_0391_0
crossref_primary_10_1016_j_soilbio_2017_09_030
crossref_primary_10_1007_s00442_015_3290_x
crossref_primary_10_1111_gcb_17076
crossref_primary_10_1007_s11104_017_3522_4
crossref_primary_10_1016_j_soisec_2022_100041
crossref_primary_10_1007_s11368_020_02825_7
crossref_primary_10_1016_j_jenvman_2021_114155
crossref_primary_10_1016_j_geoderma_2021_115498
crossref_primary_10_1016_S2095_3119_21_63752_8
crossref_primary_10_1007_s00374_015_1006_3
crossref_primary_10_1016_j_scitotenv_2020_143488
crossref_primary_10_1016_j_scitotenv_2018_09_038
crossref_primary_10_1016_j_soilbio_2017_10_041
crossref_primary_10_1016_j_still_2024_106418
crossref_primary_10_1016_j_jece_2022_107816
crossref_primary_10_1038_s43247_025_02015_8
crossref_primary_10_1016_j_scitotenv_2018_09_271
crossref_primary_10_1007_s11104_024_06819_z
crossref_primary_10_1016_j_agee_2024_109456
crossref_primary_10_1016_j_apsoil_2016_10_002
crossref_primary_10_1016_j_scitotenv_2024_176273
crossref_primary_10_1016_j_envpol_2018_10_054
crossref_primary_10_1016_j_scitotenv_2018_12_302
crossref_primary_10_1111_gcb_15918
crossref_primary_10_1029_2023JG007534
crossref_primary_10_5194_soil_10_151_2024
crossref_primary_10_1016_j_catena_2024_107956
crossref_primary_10_1016_j_soilbio_2019_107641
crossref_primary_10_1016_j_soilbio_2014_11_027
crossref_primary_10_1007_s42729_024_02111_2
crossref_primary_10_1016_j_scitotenv_2023_168362
crossref_primary_10_1016_j_rhisph_2021_100317
crossref_primary_10_1016_j_scitotenv_2024_170741
crossref_primary_10_1007_s10533_022_00936_6
crossref_primary_10_1016_j_heliyon_2024_e36693
crossref_primary_10_1038_s41467_019_13119_z
crossref_primary_10_1016_j_agee_2024_109200
crossref_primary_10_3390_f10090808
crossref_primary_10_1016_j_geoderma_2019_01_032
crossref_primary_10_1016_j_soilbio_2021_108166
crossref_primary_10_1007_s10342_020_01346_9
crossref_primary_10_1016_j_ejsobi_2016_02_007
crossref_primary_10_1016_j_pedsph_2023_09_013
crossref_primary_10_1007_s00374_020_01471_y
crossref_primary_10_1016_j_jenvman_2024_120460
crossref_primary_10_1002_saj2_20586
crossref_primary_10_1016_j_soilbio_2020_107800
crossref_primary_10_1016_j_still_2020_104772
crossref_primary_10_1016_j_scitotenv_2022_158274
crossref_primary_10_1080_03650340_2017_1303574
crossref_primary_10_1016_j_soilbio_2018_02_002
crossref_primary_10_1016_j_geoderma_2023_116714
crossref_primary_10_1016_j_scitotenv_2021_150030
crossref_primary_10_1111_gcb_12816
crossref_primary_10_1038_srep19865
crossref_primary_10_1016_j_soilbio_2018_04_026
crossref_primary_10_3390_w16081086
crossref_primary_10_1016_j_soilbio_2018_04_027
crossref_primary_10_1111_gcb_17027
crossref_primary_10_1038_s41598_020_78648_w
crossref_primary_10_1007_s00374_019_01351_0
crossref_primary_10_3389_fenvs_2021_709391
crossref_primary_10_3390_ijerph19159610
crossref_primary_10_1111_1365_2745_13202
crossref_primary_10_1007_s11368_024_03947_y
crossref_primary_10_1016_j_apsoil_2021_104249
crossref_primary_10_3389_feart_2019_00127
crossref_primary_10_3390_agronomy12112781
crossref_primary_10_1016_j_geoderma_2024_117079
crossref_primary_10_1016_j_still_2018_04_011
crossref_primary_10_1016_j_soilbio_2018_03_003
crossref_primary_10_1016_j_soilbio_2018_03_004
crossref_primary_10_1016_j_apsoil_2023_104844
crossref_primary_10_1016_j_geoderma_2016_06_023
crossref_primary_10_1007_s10533_019_00577_2
crossref_primary_10_1016_j_apsoil_2023_104846
crossref_primary_10_1016_j_soilbio_2019_107617
crossref_primary_10_1111_geb_13281
crossref_primary_10_3390_plants13223188
crossref_primary_10_1007_s11104_024_06510_3
crossref_primary_10_1016_j_apsoil_2021_104259
crossref_primary_10_1016_j_soilbio_2019_107614
crossref_primary_10_1007_s40333_021_0001_9
Cites_doi 10.1016/0038-0717(78)90099-8
10.1016/j.apsoil.2010.09.006
10.1016/j.biombioe.2012.06.014
10.1111/j.1365-2486.2009.02006.x
10.1016/j.soilbio.2004.08.026
10.1016/j.apsoil.2009.03.003
10.1016/j.soilbio.2010.04.005
10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
10.1016/j.mimet.2004.04.001
10.1007/s00374-008-0334-y
10.1016/j.pedobi.2005.06.003
10.1007/BF00011441
10.1016/j.apsoil.2008.10.001
10.2323/jgam.47.201
10.1038/nature10386
10.1016/j.soilbio.2004.07.037
10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
10.1007/BF00046394
10.1016/j.soilbio.2011.04.004
10.1111/gcb.12140
10.1016/0038-0717(94)90211-9
10.1111/j.1365-2486.2009.01844.x
10.1016/j.apsoil.2011.02.004
10.1038/ngeo844
10.1016/0038-0717(92)90037-X
10.1016/j.foreco.2004.03.018
10.1128/AEM.02865-08
10.1890/05-1839
10.1007/s10021-011-9440-z
10.1016/j.soilbio.2004.08.006
10.1016/0038-0717(93)90147-4
10.1126/science.1136674
10.1029/2001GB001850
10.1023/A:1016541114786
10.1086/282697
10.1002/jpln.200622044
10.1111/j.1365-2486.2006.01240.x
10.1007/978-1-4757-0611-6_3
10.1016/j.soilbio.2006.01.022
10.1016/j.soilbio.2010.09.028
10.1111/j.1469-185X.1988.tb00725.x
10.1016/S0038-0717(03)00123-8
10.2134/jeq2003.2300
10.1002/rcm.1184
10.5194/bgd-9-6899-2012
10.1890/06-1847.1
10.1139/a96-017
10.1023/B:CLIM.0000038226.60317.35
10.1023/A:1009859006242
10.1007/3-540-27675-0_2
10.1016/j.agee.2006.07.011
10.1093/treephys/19.4-5.313
10.1016/0167-7012(95)00074-7
10.1007/s003740000219
10.1007/s10533-010-9482-x
10.1016/j.soilbio.2011.10.004
10.1016/j.soilbio.2009.10.004
10.1890/02-0251
10.1097/00010694-197901000-00004
10.1016/j.soilbio.2010.04.009
10.1111/j.1365-2389.2008.01103.x
10.2134/agronmonogr48.c7
10.1016/j.soilbio.2009.01.021
10.1016/S0038-0717(00)00084-5
10.1016/j.soilbio.2008.06.005
10.1016/j.apsoil.2007.05.002
10.2136/sssaj2004.0301
10.1007/s10123-002-0062-3
10.1016/j.soilbio.2010.09.017
10.1111/j.1365-2389.2008.01114.x
10.1016/j.apsoil.2013.09.007
10.1016/0016-7037(61)90023-0
10.1007/s002489900085
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2015 INIST-CNRS
2013 John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7ST
7T7
7U6
8FD
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1111/gcb.12475
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Sustainability Science Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Technology Research Database
AGRICOLA
MEDLINE - Academic
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2367
ExternalDocumentID 3325304931
24273056
28562690
10_1111_gcb_12475
GCB12475
ark_67375_WNG_N5LGFGVH_K
US201400152622
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41371253
– fundername: Knowledge Innovation Program of CAS
  funderid: KZCX2‐EW‐409
– fundername: National Basic Research Program
  funderid: 2014CB954002
– fundername: CAS Strategic Priority Research Program
  funderid: XDA05020800
– fundername: Russian Foundation for Basic Research
  funderid: 12‐04‐01170‐a
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7ST
7T7
7U6
8FD
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c6125-1d10a672c4fb482e812ae62b3e065dee971e7768043251bc5b27646dccc25cc73
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:29:34 EDT 2025
Thu Jul 10 18:23:44 EDT 2025
Fri Jul 11 03:46:17 EDT 2025
Fri Jul 25 10:42:57 EDT 2025
Mon Jul 21 06:04:04 EDT 2025
Wed Apr 02 07:08:32 EDT 2025
Tue Jul 01 03:52:51 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Wed Jan 22 16:19:54 EST 2025
Wed Oct 30 09:48:07 EDT 2024
Wed Dec 27 19:27:49 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords C cycle
microbial growth kinetics
soil organic matter turnover
r and K strategy
priming mechanisms
extracellular enzyme activity
soil microbial biomass
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6125-1d10a672c4fb482e812ae62b3e065dee971e7768043251bc5b27646dccc25cc73
Notes http://dx.doi.org/10.1111/gcb.12475
National Basic Research Program - No. 2014CB954002
ark:/67375/WNG-N5LGFGVH-K
ArticleID:GCB12475
National Natural Science Foundation of China - No. 41371253
CAS Strategic Priority Research Program - No. XDA05020800
Knowledge Innovation Program of CAS - No. KZCX2-EW-409
Russian Foundation for Basic Research - No. 12-04-01170-a
istex:AC56060E96B97E0B5AE4F22E4A82082F39A3A5D6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/33072
PMID 24273056
PQID 1532643607
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_1663533972
proquest_miscellaneous_1545180998
proquest_miscellaneous_1540234852
proquest_journals_1532643607
pubmed_primary_24273056
pascalfrancis_primary_28562690
crossref_primary_10_1111_gcb_12475
crossref_citationtrail_10_1111_gcb_12475
wiley_primary_10_1111_gcb_12475_GCB12475
istex_primary_ark_67375_WNG_N5LGFGVH_K
fao_agris_US201400152622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2014
Publisher Blackwell Science
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Sharma S, Rangger A, Insam H (1998) Effects of decomposing maize litter on community level physiological profiles of soil bacteria. Microbial Ecology, 35, 301-310.
Sámi L, Pusztahelyi T, Emri T, Varecza Z et al. (2001) Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin. The Journal of General and Applied Microbiology, 47, 201-211.
Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. Journal of Microbiological Method, 24, 219-230.
Wutzler T, Blagodatsky SA, Blagodatskaya E, Kuzyakov Y (2012) Soil microbial biomass and its activity estimated by kinetic respiration analysis- Statistical guidelines. Soil Biology & Biochemistry, 45, 102-112.
Liljeroth E, Kuikman P, Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161, 233-240.
Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone labelledfluorogenic substrates in a micro-plate system. Journal of Microbiol Methods, 58, 233-241.
Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review, 5, 1-25.
Galloway JN, Townsend AR, Erisman JW et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
Rinnan R, Bääth E (2009) Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environment Microbiology, 75, 3611-3620.
Bol R, Moering J, Kuzyakov Y, Amelung W (2003) Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different content. Rapid Communications in Mass Spectrometry, 17, 2585-2590.
Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biology & Biochemistry, 40, 2434-2440.
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
Lindén A, Heinonsalo J, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2012) Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil. Geophysical Research Abstracts, 14, EGU2012-EGU4444.
Grant B, Smith WN, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change, 65, 315-332.
Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of American Journal, 69, 1730-1736.
Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production- a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311.
Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry, 35, 837-843.
Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174.
Chen R, Blagodatskaya E, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Kuzyakov Y (2012) Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45, 221-229.
Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454.
Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment, 119, 217-233.
Nannipieri P, Pedrazzini F, Arcara PG, Piovanelli C (1979) Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth. Soil Science, 127, 35-40.
Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralisation to the availability of labile carbon. Global Change Biology, 19, 1562-1571.
Anderson JPE, Domsch KH (1978) A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215-221.
Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology & Biochemistry, 42, 1275-1283.
Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498.
Keeling CD (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica & Cosmochimica Acta, 24, 277-298.
Li CS (2000) Modeling trace gas emission from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276.
Pérez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. International Microbiology, 5, 53-63.
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2012) Stoichiometry constrains microbial response to root exudation - insights from a model and a field experiment in a temperate forest. Biogeosciences Discuss, 9, 6899-6945.
Dorodnikov M, Blagodastkaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009) Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 15, 1603-1614.
Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105.
Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011) Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719.
Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41, 118-127.
Fontaine S, Henault C, Aamor A et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96.
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
Tischer A, Blagodatskaya E, Hamer U (2014) Low soil P-status and land-use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador. Applied Soil Ecology, 74, 1-11.
Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Advances in Microbial Ecology, 9, 99-147.
Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology & Biochemistry, 38, 2219-2232.
Pataki DE, Ehleringer JR, Flanagan LB et al. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17, 1022.
Schmidt MW, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology & Biochemistry, 42, 92-100.
Blagodatskaya EV, Kuzyakov Y (2008) Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131.
Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner VJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190.
Mary B, Fresneau C, Morel JL, Mariotti A (1993) C-cycling and N-cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemisrty, 25, 1005-1014.
Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant and Soil, 183, 263-268.
Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171.
Blagodatskaya EV, Blagodatsky S, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal Soil Science, 60, 186-197.
Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology & Biochemistry, 41, 969-977.
Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology & Biochemistry, 43, 159-166.
Dilly O, Munch JC, Pfeiffer EM (2007) Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany. Journal of Plant Nutrition and Soil Science, 170, 197-204.
Sanaullah M, Blagodatskaya E, Chabb
2004; 65
1993; 25
2011; 478
2010; 16
2009; 41
2009; 42
2006; 76
2006; 38
1996; 183
2003; 17
1994; 26
2002; 60
2011; 14
1997; 5
2012; 14
2001; 47
2007; 37
2005; 69
2005; Vol 181
2013; 19
2000; 58
1986; 9
1999; 19
2007; 170
2005; 37
2010; 3
1996; 24
2010; Vol 10
2009; 15
2004; 85
1979; 127
1970; 104
2006; 12
1978; 10
2009; 60
2002; 5
2003; 35
1995
2005
2002
2005; 49
2008; 320
2003; 32
2010; 42
2011; 102
2007; 119
2010; 46
2009; 75
2000; 32
2004; 196
2004; 58
1994; 161
2008; 45
2000; 81
2011; 43
1992; 24
1988; 63
2011; 48
2014; 74
2008; 40
2012; 45
2007; 88
1961; 24
2012; 9
1998; 35
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
Lindén A (e_1_2_6_47_1) 2012; 14
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Li CS (e_1_2_6_44_1) 2000; 58
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Six J (e_1_2_6_75_1) 2002
Panikov NS (e_1_2_6_57_1) 2010
Panikov NS (e_1_2_6_56_1) 1995
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Berg B (e_1_2_6_4_1) 1997; 5
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Fog K (1988) The effect of added N on the rate of decomposition of organic matter. Biological Reviews, 63, 433-462.
– reference: de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biology, 12, 2077-2091.
– reference: Ginting D, Kessavalou A, Eghball B, Doran JW (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 32, 23-32.
– reference: Wutzler T, Blagodatsky SA, Blagodatskaya E, Kuzyakov Y (2012) Soil microbial biomass and its activity estimated by kinetic respiration analysis- Statistical guidelines. Soil Biology & Biochemistry, 45, 102-112.
– reference: Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Advances in Microbial Ecology, 9, 99-147.
– reference: Sinsabaugh RL, Shah JF (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry, 102, 31-43.
– reference: Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralisation to the availability of labile carbon. Global Change Biology, 19, 1562-1571.
– reference: Pérez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. International Microbiology, 5, 53-63.
– reference: Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
– reference: Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology & Biochemistry, 43, 159-166.
– reference: Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition. Applied Soil Ecology, 48, 38-44.
– reference: Milcu A, Heim A, Ellis RJ, Scheu S, Manning P (2011) Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient. Ecosystems, 14, 710-719.
– reference: Rinnan R, Bääth E (2009) Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environment Microbiology, 75, 3611-3620.
– reference: Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498.
– reference: Dilly O, Munch JC, Pfeiffer EM (2007) Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany. Journal of Plant Nutrition and Soil Science, 170, 197-204.
– reference: Pianka E (1970) On r- and K-selection. American Naturalist, 104, 592-597.
– reference: Nannipieri P, Pedrazzini F, Arcara PG, Piovanelli C (1979) Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth. Soil Science, 127, 35-40.
– reference: Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology & Biochemistry, 41, 969-977.
– reference: Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems & Environment, 119, 217-233.
– reference: Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biology & Biochemistry, 40, 2434-2440.
– reference: Pataki DE, Ehleringer JR, Flanagan LB et al. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17, 1022.
– reference: Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant and Soil, 183, 263-268.
– reference: Grant B, Smith WN, Desjardins R, Lemke R, Li C (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change, 65, 315-332.
– reference: Craine JM, Morrow C, Fierer NO (2007) Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105-2113.
– reference: Sámi L, Pusztahelyi T, Emri T, Varecza Z et al. (2001) Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin. The Journal of General and Applied Microbiology, 47, 201-211.
– reference: Sharma S, Rangger A, Insam H (1998) Effects of decomposing maize litter on community level physiological profiles of soil bacteria. Microbial Ecology, 35, 301-310.
– reference: Köster JR, Cárdenas L, Senbayram M et al. (2011) Rapid shift from denitrification tonitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers. Soil Biology & Biochemistry, 43, 1671-1677.
– reference: Panikov NS (1995) Microbial Growth Kinetics. Chapman and Hall, Glasgow, London.
– reference: Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review, 5, 1-25.
– reference: Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production- a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311.
– reference: Mary B, Fresneau C, Morel JL, Mariotti A (1993) C-cycling and N-cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemisrty, 25, 1005-1014.
– reference: Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology & Biochemistry, 38, 2219-2232.
– reference: Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171.
– reference: Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
– reference: Blagodatskaya EV, Blagodatsky S, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal Soil Science, 60, 186-197.
– reference: Mary B, Mariotti A, Morel JL (1992) Use of C-13 variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biology & Biochemistry, 24, 1065-1072.
– reference: Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
– reference: Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454.
– reference: Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of American Journal, 69, 1730-1736.
– reference: Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone labelledfluorogenic substrates in a micro-plate system. Journal of Microbiol Methods, 58, 233-241.
– reference: Petersen BM, Berntsen J, Hansen S, Jensen LS (2005) CN-SIM a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biology & Biochemistry, 37, 359-374.
– reference: Lal R (2009) Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60, 1-12.
– reference: Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49, 637-644.
– reference: Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. Journal of Microbiological Method, 24, 219-230.
– reference: Lindén A, Heinonsalo J, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2012) Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil. Geophysical Research Abstracts, 14, EGU2012-EGU4444.
– reference: Cayuela ML, Sinicco T, Mondini C (2009) Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil. Applied Soil Ecology, 41, 118-127.
– reference: Dorodnikov M, Blagodastkaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009) Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 15, 1603-1614.
– reference: Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biology & Biochemistry, 42, 1372-1384.
– reference: Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biology & Biochemistry, 42, 92-100.
– reference: Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner VJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190.
– reference: Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95-105.
– reference: Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2012) Stoichiometry constrains microbial response to root exudation - insights from a model and a field experiment in a temperate forest. Biogeosciences Discuss, 9, 6899-6945.
– reference: Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174.
– reference: Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido ML, Cruz-Mondragon C, Dendooven L (2005) The impacts of inorganic nitrogen application on mineralization of C-14-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biology & Biochemistry, 37, 681-691.
– reference: Blagodatsky SA, Heinemeyer O, Richter J (2000) Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils, 32, 73-81.
– reference: Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology & Biochemistry, 42, 1275-1283.
– reference: Li CS (2000) Modeling trace gas emission from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58, 259-276.
– reference: Bol R, Moering J, Kuzyakov Y, Amelung W (2003) Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different content. Rapid Communications in Mass Spectrometry, 17, 2585-2590.
– reference: Janssens IA, Dieleman W, Luyssaert S et al. (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
– reference: Tischer A, Blagodatskaya E, Hamer U (2014) Low soil P-status and land-use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador. Applied Soil Ecology, 74, 1-11.
– reference: Cheng W (1999) Rhizosphere feedback in elevated CO2. Tree Physiology, 19, 313-320.
– reference: Blagodatskaya EV, Kuzyakov Y (2008) Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, 45, 115-131.
– reference: Liljeroth E, Kuikman P, Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161, 233-240.
– reference: Anderson JPE, Domsch KH (1978) A physiological method for the quantative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 10, 215-221.
– reference: Fontaine S, Henault C, Aamor A et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, 43, 86-96.
– reference: Blagodatskaya EV, Blagodatsky SA, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichmentexperiments. Global Change Biology, 16, 836-848.
– reference: Keeling CD (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochimica & Cosmochimica Acta, 24, 277-298.
– reference: Chen R, Blagodatskaya E, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Kuzyakov Y (2012) Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass and Bioenergy, 45, 221-229.
– reference: Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry, 35, 837-843.
– reference: Schmidt MW, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
– reference: Galloway JN, Townsend AR, Erisman JW et al. (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
– reference: Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, 46, 436-442.
– reference: Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179-1192.
– volume: 161
  start-page: 233
  year: 1994
  end-page: 240
  article-title: Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels
  publication-title: Plant and Soil
– volume: 60
  start-page: 1
  year: 2002
  end-page: 24
  article-title: Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss
  publication-title: Biogeochemistry
– volume: 88
  start-page: 2105
  year: 2007
  end-page: 2113
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 81
  start-page: 2359
  year: 2000
  end-page: 2365
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
– volume: 65
  start-page: 315
  year: 2004
  end-page: 332
  article-title: Estimated N O and CO emissions as influenced by agricultural practices in Canada
  publication-title: Climatic Change
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 41
  start-page: 969
  year: 2009
  end-page: 977
  article-title: Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress
  publication-title: Soil Biology & Biochemistry
– volume: 75
  start-page: 3611
  year: 2009
  end-page: 3620
  article-title: Differential utilization of carbon substrates by bacteria and fungi in tundra soil
  publication-title: Applied and Environment Microbiology
– volume: 35
  start-page: 301
  year: 1998
  end-page: 310
  article-title: Effects of decomposing maize litter on community level physiological profiles of soil bacteria
  publication-title: Microbial Ecology
– volume: 43
  start-page: 86
  year: 2011
  end-page: 96
  article-title: Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect
  publication-title: Soil Biology & Biochemistry
– volume: 40
  start-page: 2434
  year: 2008
  end-page: 2440
  article-title: Atmospheric CO enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant‐ and soil C‐sources
  publication-title: Soil Biology & Biochemistry
– volume: 41
  start-page: 118
  year: 2009
  end-page: 127
  article-title: Mineralization dynamics andbiochemical properties during initial decomposition of plant and animal residues in soil
  publication-title: Applied Soil Ecology
– volume: 19
  start-page: 1562
  year: 2013
  end-page: 1571
  article-title: Soil‐specific response functions of organic matter mineralisation to the availability of labile carbon
  publication-title: Global Change Biology
– volume: 46
  start-page: 436
  year: 2010
  end-page: 442
  article-title: Is there a linear relationship between priming effect intensity and the amount of organic matter input?
  publication-title: Applied Soil Ecology
– volume: 76
  start-page: 151
  year: 2006
  end-page: 174
  article-title: A theoretical model of litter decay and microbial interaction
  publication-title: Ecological Monographs
– volume: 15
  start-page: 1603
  year: 2009
  end-page: 1614
  article-title: Stimulation of microbial extracellular enzyme activities by elevated CO depends on soil aggregate size
  publication-title: Global Change Biology
– volume: 58
  start-page: 233
  year: 2004
  end-page: 241
  article-title: A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4‐methylumbelliferone labelledfluorogenic substrates in a micro‐plate system
  publication-title: Journal of Microbiol Methods
– volume: 42
  start-page: 1275
  year: 2010
  end-page: 1283
  article-title: Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 24
  start-page: 277
  year: 1961
  end-page: 298
  article-title: The concentration and isotopic abundance of carbon dioxide in rural and marine air
  publication-title: Geochimica & Cosmochimica Acta
– volume: 170
  start-page: 197
  year: 2007
  end-page: 204
  article-title: Enzyme activities and litter decomposition in agricultural soils in northern, central, and southern Germany
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 42
  start-page: 92
  year: 2010
  end-page: 100
  article-title: The response of organic matter mineralisation to nutrient and substrate additions in sub‐arctic soils
  publication-title: Soil Biology & Biochemistry
– volume: 14
  start-page: EGU2012
  year: 2012
  end-page: EGU4444
  article-title: Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil
  publication-title: Geophysical Research Abstracts
– volume: 43
  start-page: 1671
  year: 2011
  end-page: 1677
  article-title: Rapid shift from denitrification tonitrification in soil after biogas residue application as indicated by nitrous oxide isotopomers
  publication-title: Soil Biology & Biochemistry
– volume: 196
  start-page: 159
  year: 2004
  end-page: 171
  article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests
  publication-title: Forest Ecology and Management
– volume: 48
  start-page: 38
  year: 2011
  end-page: 44
  article-title: Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depending on plant community composition
  publication-title: Applied Soil Ecology
– volume: Vol 10
  start-page: 121
  year: 2010
  end-page: 191
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology & Biochemistry
– volume: 16
  start-page: 836
  year: 2010
  end-page: 848
  article-title: Elevated atmospheric CO increases microbial growth rates in soil: results of three CO enrichmentexperiments
  publication-title: Global Change Biology
– volume: 63
  start-page: 433
  year: 1988
  end-page: 462
  article-title: The effect of added N on the rate of decomposition of organic matter
  publication-title: Biological Reviews
– volume: 37
  start-page: 681
  year: 2005
  end-page: 691
  article-title: The impacts of inorganic nitrogen application on mineralization of C‐14‐labelled maize and glucose, and on priming effect in saline alkaline soil
  publication-title: Soil Biology & Biochemistry
– volume: 32
  start-page: 23
  year: 2003
  end-page: 32
  article-title: Greenhouse gas emissions and soil indicators four years after manure and compost applications
  publication-title: Journal of Environmental Quality
– volume: 24
  start-page: 219
  year: 1996
  end-page: 230
  article-title: A kinetic method for estimating the biomass of microbial functional groups in soil
  publication-title: Journal of Microbiological Method
– volume: 45
  start-page: 221
  year: 2012
  end-page: 229
  article-title: Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities
  publication-title: Biomass and Bioenergy
– start-page: 936
  year: 2002
  end-page: 942
– volume: 45
  start-page: 102
  year: 2012
  end-page: 112
  article-title: Soil microbial biomass and its activity estimated by kinetic respiration analysis‐ Statistical guidelines
  publication-title: Soil Biology & Biochemistry
– volume: 9
  start-page: 99
  year: 1986
  end-page: 147
  article-title: r‐ and K‐selection and microbial ecology
  publication-title: Advances in Microbial Ecology
– volume: 37
  start-page: 445
  year: 2005
  end-page: 454
  article-title: Priming effects in different soil types induced by fructuose, alanine, oxalic acid and catechol additions
  publication-title: Soil Biology & Biochemistry
– volume: 74
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Low soil P‐status and land‐use change affect extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador
  publication-title: Applied Soil Ecology
– volume: 104
  start-page: 592
  year: 1970
  end-page: 597
  article-title: On r‐ and K‐selection
  publication-title: American Naturalist
– volume: 37
  start-page: 359
  year: 2005
  end-page: 374
  article-title: CN‐SIM a model for the turnover of soil organic matter. I. Long‐term carbon and radiocarbon development
  publication-title: Soil Biology & Biochemistry
– volume: 47
  start-page: 201
  year: 2001
  end-page: 211
  article-title: Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin
  publication-title: The Journal of General and Applied Microbiology
– volume: 42
  start-page: 1372
  year: 2010
  end-page: 1384
  article-title: C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies
  publication-title: Soil Biology & Biochemistry
– volume: 5
  start-page: 1
  year: 1997
  end-page: 25
  article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems
  publication-title: Environmental Review
– start-page: 119
  year: 2005
  end-page: 143
– volume: 12
  start-page: 2077
  year: 2006
  end-page: 2091
  article-title: Interactions between plant growth and soil nutrient cycling under elevated CO : a meta‐analysis
  publication-title: Global Change Biology
– volume: 60
  start-page: 186
  year: 2009
  end-page: 197
  article-title: Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil
  publication-title: European Journal Soil Science
– volume: 102
  start-page: 31
  year: 2011
  end-page: 43
  article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse
  publication-title: Biogeochemistry
– volume: 17
  start-page: 2585
  year: 2003
  end-page: 2590
  article-title: Quantification of priming and CO respiration sources following slurry‐C incorporation into two grassland soils with different content
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 9
  start-page: 6899
  year: 2012
  end-page: 6945
  article-title: Stoichiometry constrains microbial response to root exudation – insights from a model and a field experiment in a temperate forest
  publication-title: Biogeosciences Discuss
– volume: 58
  start-page: 259
  year: 2000
  end-page: 276
  article-title: Modeling trace gas emission from agricultural ecosystems
  publication-title: Nutrient Cycling in Agroecosystems
– volume: Vol 181
  start-page: 15
  year: 2005
  end-page: 41
– volume: 35
  start-page: 837
  year: 2003
  end-page: 843
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biology & Biochemistry
– volume: 69
  start-page: 1730
  year: 2005
  end-page: 1736
  article-title: Role of mineral‐nitrogen in residue decomposition and stable soil organic matter formation
  publication-title: Soil Science Society of American Journal
– volume: 183
  start-page: 263
  year: 1996
  end-page: 268
  article-title: Measurement of rhizosphere respiration and organic matter decomposition using natural C
  publication-title: Plant and Soil
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 25
  start-page: 1005
  year: 1993
  end-page: 1014
  article-title: C‐cycling and N‐cycling during decomposition of root mucilage, roots and glucose in soil
  publication-title: Soil Biology and Biochemisrty
– volume: 17
  start-page: 1022
  year: 2003
  article-title: The application and interpretation of Keeling plots in terrestrial carbon cycle research
  publication-title: Global Biogeochemical Cycles
– volume: 43
  start-page: 159
  year: 2011
  end-page: 166
  article-title: Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization
  publication-title: Soil Biology & Biochemistry
– volume: 85
  start-page: 1179
  year: 2004
  end-page: 1192
  article-title: Carbon sequestration in ecosystems: the role of stoichiometry
  publication-title: Ecology
– volume: 5
  start-page: 53
  year: 2002
  end-page: 63
  article-title: Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview
  publication-title: International Microbiology
– volume: 32
  start-page: 73
  year: 2000
  end-page: 81
  article-title: Estimating the active and total soil microbial biomass by kinetic respiration analysis
  publication-title: Biology and Fertility of Soils
– volume: 19
  start-page: 313
  year: 1999
  end-page: 320
  article-title: Rhizosphere feedback in elevated CO
  publication-title: Tree Physiology
– volume: 60
  start-page: 1
  year: 2009
  end-page: 12
  article-title: Challenges and opportunities in soil organic matter research
  publication-title: European Journal of Soil Science
– volume: 26
  start-page: 1305
  year: 1994
  end-page: 1311
  article-title: Resource allocation to extracellular enzyme production‐ a model for nitrogen and phosphorus control of litter decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  article-title: Mechanisms of real and apparent priming effect and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biology and Fertility of Soils
– volume: 119
  start-page: 217
  year: 2007
  end-page: 233
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agriculture, Ecosystems & Environment
– volume: 49
  start-page: 637
  year: 2005
  end-page: 644
  article-title: Enzyme activities as a component of soil biodiversity: a review
  publication-title: Pedobiologia
– volume: 10
  start-page: 215
  year: 1978
  end-page: 221
  article-title: A physiological method for the quantative measurement of microbial biomass in soils
  publication-title: Soil Biology & Biochemistry
– volume: 14
  start-page: 710
  year: 2011
  end-page: 719
  article-title: Identification of general patterns of nutrient and labile carbon control on soil carbon dynamics across a successional gradient
  publication-title: Ecosystems
– volume: 42
  start-page: 183
  year: 2009
  end-page: 190
  article-title: Soil priming by sugar and leaf‐litter substrates: a link to microbial groups
  publication-title: Applied Soil Ecology
– year: 1995
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
– volume: 24
  start-page: 1065
  year: 1992
  end-page: 1072
  article-title: Use of C‐13 variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil
  publication-title: Soil Biology & Biochemistry
– volume: 38
  start-page: 2219
  year: 2006
  end-page: 2232
  article-title: Microbial community utilization of added carbon substrates in response to long‐term carbon input manipulation
  publication-title: Soil Biology & Biochemistry
– volume: 127
  start-page: 35
  year: 1979
  end-page: 40
  article-title: Changes in Amino Acids, Enzyme Activities, and Biomasses During Soil Microbial Growth
  publication-title: Soil Science
– volume: 37
  start-page: 95
  year: 2007
  end-page: 105
  article-title: Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies
  publication-title: Applied Soil Ecology
– ident: e_1_2_6_2_1
  doi: 10.1016/0038-0717(78)90099-8
– ident: e_1_2_6_35_1
  doi: 10.1016/j.apsoil.2010.09.006
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biombioe.2012.06.014
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1365-2486.2009.02006.x
– ident: e_1_2_6_21_1
  doi: 10.1016/j.soilbio.2004.08.026
– ident: e_1_2_6_55_1
  doi: 10.1016/j.apsoil.2009.03.003
– ident: e_1_2_6_11_1
  doi: 10.1016/j.soilbio.2010.04.005
– ident: e_1_2_6_15_1
  doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
– ident: e_1_2_6_66_1
  doi: 10.1016/j.mimet.2004.04.001
– ident: e_1_2_6_5_1
  doi: 10.1007/s00374-008-0334-y
– ident: e_1_2_6_14_1
  doi: 10.1016/j.pedobi.2005.06.003
– ident: e_1_2_6_18_1
  doi: 10.1007/BF00011441
– ident: e_1_2_6_16_1
  doi: 10.1016/j.apsoil.2008.10.001
– ident: e_1_2_6_68_1
  doi: 10.2323/jgam.47.201
– ident: e_1_2_6_70_1
  doi: 10.1038/nature10386
– ident: e_1_2_6_36_1
  doi: 10.1016/j.soilbio.2004.07.037
– ident: e_1_2_6_52_1
  doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
– ident: e_1_2_6_46_1
  doi: 10.1007/BF00046394
– ident: e_1_2_6_41_1
  doi: 10.1016/j.soilbio.2011.04.004
– ident: e_1_2_6_60_1
  doi: 10.1111/gcb.12140
– ident: e_1_2_6_72_1
  doi: 10.1016/0038-0717(94)90211-9
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1365-2486.2009.01844.x
– ident: e_1_2_6_69_1
  doi: 10.1016/j.apsoil.2011.02.004
– start-page: 936
  volume-title: Encyclopedia of Soil Science
  year: 2002
  ident: e_1_2_6_75_1
– ident: e_1_2_6_39_1
  doi: 10.1038/ngeo844
– ident: e_1_2_6_49_1
  doi: 10.1016/0038-0717(92)90037-X
– ident: e_1_2_6_30_1
  doi: 10.1016/j.foreco.2004.03.018
– volume-title: Microbial Growth Kinetics
  year: 1995
  ident: e_1_2_6_56_1
– ident: e_1_2_6_67_1
  doi: 10.1128/AEM.02865-08
– ident: e_1_2_6_26_1
  doi: 10.1890/05-1839
– ident: e_1_2_6_51_1
  doi: 10.1007/s10021-011-9440-z
– ident: e_1_2_6_63_1
  doi: 10.1016/j.soilbio.2004.08.006
– ident: e_1_2_6_50_1
  doi: 10.1016/0038-0717(93)90147-4
– ident: e_1_2_6_31_1
  doi: 10.1126/science.1136674
– ident: e_1_2_6_59_1
  doi: 10.1029/2001GB001850
– ident: e_1_2_6_74_1
  doi: 10.1023/A:1016541114786
– ident: e_1_2_6_64_1
  doi: 10.1086/282697
– ident: e_1_2_6_23_1
  doi: 10.1002/jpln.200622044
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1365-2486.2006.01240.x
– ident: e_1_2_6_3_1
  doi: 10.1007/978-1-4757-0611-6_3
– ident: e_1_2_6_13_1
  doi: 10.1016/j.soilbio.2006.01.022
– ident: e_1_2_6_9_1
  doi: 10.1016/j.soilbio.2010.09.028
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1469-185X.1988.tb00725.x
– volume: 14
  start-page: EGU2012
  year: 2012
  ident: e_1_2_6_47_1
  article-title: Labile carbon regulates protease activity and nitrogen acquisition in boreal forest topsoil
  publication-title: Geophysical Research Abstracts
– ident: e_1_2_6_28_1
  doi: 10.1016/S0038-0717(03)00123-8
– ident: e_1_2_6_32_1
  doi: 10.2134/jeq2003.2300
– start-page: 121
  volume-title: Handbook of Environmental Engineering
  year: 2010
  ident: e_1_2_6_57_1
– ident: e_1_2_6_12_1
  doi: 10.1002/rcm.1184
– ident: e_1_2_6_25_1
  doi: 10.5194/bgd-9-6899-2012
– ident: e_1_2_6_22_1
  doi: 10.1890/06-1847.1
– volume: 5
  start-page: 1
  year: 1997
  ident: e_1_2_6_4_1
  article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems
  publication-title: Environmental Review
  doi: 10.1139/a96-017
– ident: e_1_2_6_34_1
  doi: 10.1023/B:CLIM.0000038226.60317.35
– volume: 58
  start-page: 259
  year: 2000
  ident: e_1_2_6_44_1
  article-title: Modeling trace gas emission from agricultural ecosystems
  publication-title: Nutrient Cycling in Agroecosystems
  doi: 10.1023/A:1009859006242
– ident: e_1_2_6_65_1
  doi: 10.1007/3-540-27675-0_2
– ident: e_1_2_6_48_1
  doi: 10.1016/j.agee.2006.07.011
– ident: e_1_2_6_19_1
  doi: 10.1093/treephys/19.4-5.313
– ident: e_1_2_6_58_1
  doi: 10.1016/0167-7012(95)00074-7
– ident: e_1_2_6_10_1
  doi: 10.1007/s003740000219
– ident: e_1_2_6_73_1
  doi: 10.1007/s10533-010-9482-x
– ident: e_1_2_6_78_1
  doi: 10.1016/j.soilbio.2011.10.004
– ident: e_1_2_6_37_1
  doi: 10.1016/j.soilbio.2009.10.004
– ident: e_1_2_6_38_1
  doi: 10.1890/02-0251
– ident: e_1_2_6_54_1
  doi: 10.1097/00010694-197901000-00004
– ident: e_1_2_6_77_1
  doi: 10.1016/j.soilbio.2010.04.009
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2389.2008.01103.x
– ident: e_1_2_6_20_1
  doi: 10.2134/agronmonogr48.c7
– ident: e_1_2_6_45_1
  doi: 10.1016/j.soilbio.2009.01.021
– ident: e_1_2_6_42_1
  doi: 10.1016/S0038-0717(00)00084-5
– ident: e_1_2_6_61_1
  doi: 10.1016/j.soilbio.2008.06.005
– ident: e_1_2_6_6_1
  doi: 10.1016/j.apsoil.2007.05.002
– ident: e_1_2_6_53_1
  doi: 10.2136/sssaj2004.0301
– ident: e_1_2_6_62_1
  doi: 10.1007/s10123-002-0062-3
– ident: e_1_2_6_29_1
  doi: 10.1016/j.soilbio.2010.09.017
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2389.2008.01114.x
– ident: e_1_2_6_76_1
  doi: 10.1016/j.apsoil.2013.09.007
– ident: e_1_2_6_40_1
  doi: 10.1016/0016-7037(61)90023-0
– ident: e_1_2_6_71_1
  doi: 10.1007/s002489900085
SSID ssj0003206
Score 2.6390345
Snippet The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2356
SubjectTerms Anthropogenic factors
beta-glucosidase
C cycle
Carbon - metabolism
Cellulose
cellulose 1,4-beta-cellobiosidase
Corn straw
Decomposition
ecosystems
extracellular enzyme activity
Growth kinetics
leucine
microbial growth
microbial growth kinetics
Mineralization
nitrogen
Nitrogen - metabolism
Organic matter
priming mechanisms
proteolysis
r and K strategy
soil
Soil - chemistry
soil microbial biomass
Soil Microbiology
Soil organic matter
soil organic matter turnover
straw
Sucrose
Sucrose - metabolism
Tillage
xylanases
Zea mays - chemistry
Title Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
URI https://api.istex.fr/ark:/67375/WNG-N5LGFGVH-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12475
https://www.ncbi.nlm.nih.gov/pubmed/24273056
https://www.proquest.com/docview/1532643607
https://www.proquest.com/docview/1540234852
https://www.proquest.com/docview/1545180998
https://www.proquest.com/docview/1663533972
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtMQmJFz4KY4ExGYQmXjIltmOn8ATV2gpYHxiFPSBZjuN00bp26gdi_PXcOWlK0ZgQb616dpPr-fxzcx-EvIyEY5l1cZhjhowooiI0hUzCyIqUG2mU9E90jweyPxTvT5PTLfJmlQtT1Ydo_nDDleH9NS5wk81_W-Qjmx3C5qQwwRxjtRCIPq1LR3Hm-2rGPBHgamJeVxXCKJ5m5MZedKswUyBUVO4PjJA0c1BSUXW3uA4_N2nWb0fde-Tb6kaqKJTzw-UiO7Q__6jx-J93ep_crTGVvq3s6gHZcpMWuV01rrxqkZ2jdX4ciNUOYt4iwTFA-HTmxegB7YxLIGL_7iFZnEzLMe1QM8npgJrvphxXRcKvaF4H5TgKPEovfauxEa1iTV7Ti9JXi4IvGtAL39DCzwHYWtozLB-AXQZgDgyPr2PQqE_QLN38ERl2jz53-mHd9CG0CFthnMeRkYpZUWQiZQ4AxDjJMu4AlnLn2ip2Cs5IWEowiTObZExJIXNrLUusVXyHbE-mE7dLKJdggCoFCrBw6IuVyQoe89wBVuaSmzwgr1Y_v7Z1RXRszDHWq5MRaF57zQfkRSN6WZUBuU5oF2xImxG4Zz08YXh4BdpikrGAHHjDagab2TmG1KlEfx309CD52Ov2vvT1h4Dsb1heM4ClQKqyHQVkb2WKunY3cw3bFoAtl5EKyPPmY3AU-PTHTNx0iTIC-EykCbtRJsGCbu30BhlkVA4YC_M8rpbC-iIF0DAgNWjWG_TfdaV7nXf-xZN_F31K7qBOq2DpPbK9mC3dM0DCRbbv1_4vIalZVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMBP2xCCFz4KY4ExDEITL6kSO3FSxAtUawtr88A2thdkOY5TonXt1A_E-Os5O2lK0ZgQb616dpvr-fy75HwH8NoLNE2V9t3MnJAJci93Zc5D11NBzCSXEbdPdAcJ750En87Csw14tzwLU9aHqG-4mZVh_bVZ4OaG9G-rfKjSJu5OUbgJt0xHbxtQfV4Vj2LUdtb0WRigs_FZVVfI5PHUQ9d2o81cTpBRjXp_mBxJOUM15WV_i-sAdJ1n7YbUuQ9fl5dS5qGcNxfztKl-_lHl8X-v9QHcq0iVvC9N6yFs6HEDbpe9K68asH2wOiKHYpWPmDXAGSCHT6ZWjOyT9qhAKLbvHsH8aFKMSJvIcUYSIr_LYlTWCb8iWZWXowkiKbm03caGpEw3eUsuClswCr8oIRe2p4WdA8m1UN9MBQHTaADnMBnyVRoasWc0Cz17DCedg-N2z636PrjK8JbrZ74neURVkKdBTDUyiNScpkwjL2VatyJfRxgmmWqCoZ-qMKURD3imlKKhUhHbhq3xZKx3gDCONhjFCAIK4z4_kmnOfJZpJMuMM5k58Gb5_wtVFUU3vTlGYhkcoeaF1bwDr2rRy7ISyHVCO2hEQg7RQ4uTI2riVwQuyil1YN9aVj1YTs9NVl0UitOkK5Kw3-10v_TEoQN7a6ZXD6AxwipveQ7sLm1RVB5nJnDnQrZl3IsceFl_jL7CPACSYz1ZGJkAES2IQ3qjTGhqurXiG2QMpjIkWZznSbkWVj8yQCBGqkbNWov-u65Et_3Bvnj676Iv4E7veNAX_Y_J4TO4a_Rb5k7vwtZ8utDPkRDn6Z51BL8AivddcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetbQjECz8KY4ExDEITL6kS27FTeIJubWFbhBgde0CyHMcp0bp26g_E-Os5O2lK0ZgQb616cZvr-fxxe_4eQi8DZkiqTehn9oQMy4PcVzmP_ECzmCquBHf_6B4lvNdnH06j0zX0ZnEWptSHqH9wszPD5Ws7wS-y_LdJPtBpExYnEa2jGwxGtCG992mpHUWJa6wZ0ohBrglpJStky3jqS1cWo_VcjQFRrXd_2BJJNQUv5WV7i6v4cxVn3XrUuYu-Lu6kLEM5a85naVP__EPk8T9v9R66U3EqflsG1n20ZkYNdLPsXHnZQJv7ywNyYFZliGkDeUdA4eOJM8O7uD0sAIndswdodjwuhriN1SjDCVbfVTEsVcIvcVZV5RgMQIovXK-xAS6LTV7j88LJRcEbJfjcdbRwYwC3Fvqb1Q-wbQZgDFsfXxWhYXdCszDTh6jf2f_c7vlV1wdfW9rywywMFBdEszxlMTFAIMpwklIDtJQZ0xKhEbBJslqCUZjqKCWCM55prUmktaCbaGM0HpkthCmHCBQxYICGXV8oVJrTkGYGuDLjVGUeerX4-qWuJNFtZ46hXGyNwPPSed5DL2rTi1IH5CqjLYghqQaQn2X_mNjdK-AW4YR4aNcFVn2xmpzZmjoRyS9JVybRYbfTPenJAw_trERefQGJAVV5K_DQ9iIUZZVvphLWLSBbygPhoef1y5Ap7N8_amTGc2vDANBYHJFrbSKr6NaKr7GxkEqBY2GcR-VUWH5IBjgMTA2edQH9d1_Jbvude_D4302foVsf9zry8H1y8ATdtu4tC6e30cZsMjdPAQ9n6Y5LA78ASBBcKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+C+and+N+availability+determine+the+priming+effect%3A+microbial+N+mining+and+stoichiometric+decomposition+theories&rft.jtitle=Global+change+biology&rft.au=Chen%2C+Ruirui&rft.au=Senbayram%2C+Mehmet&rft.au=Blagodatsky%2C+Sergey&rft.au=Myachina%2C+Olga&rft.date=2014-07-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=20&rft.issue=7&rft.spage=2356&rft.epage=2367&rft_id=info:doi/10.1111%2Fgcb.12475&rft.externalDBID=10.1111%252Fgcb.12475&rft.externalDocID=GCB12475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon