Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture
Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) i...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 64; no. 3; pp. 688 - 695 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2012
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0004-3591 2326-5191 1529-0131 1529-0131 2326-5205 |
DOI | 10.1002/art.33410 |
Cover
Loading…
Abstract | Objective
To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.
Methods
We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves.
Results
The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA.
Conclusion
We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. |
---|---|
AbstractList | To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.
We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves.
The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA.
We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.OBJECTIVETo develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves.METHODSWe studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves.The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA.RESULTSThe prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA.We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated.CONCLUSIONWe have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves. Results The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA. Conclusion We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. [PUBLICATION ABSTRACT] Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods. We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semi-quantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves. Results. The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA. Conclusion. We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves. Results The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA. Conclusion We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods We studied 203 knees with (n = 68) or without (n = 135) radiographic tibiofemoral OA in 105 subjects (90 men and 15 women with a mean age of 54 years) in whom 2 sets of knee radiographs were obtained 4 years apart. We determined medial and lateral compartment tibial trabecular bone texture using an automated region selection method. Three texture parameters were calculated: roughness, degree of anisotropy, and direction of anisotropy based on a signature dissimilarity measure method. We evaluated tibiofemoral OA progression using a radiographic semiquantitative outcome: an increase in the medial joint space narrowing (JSN) grade. We examined the predictive ability of trabecular bone texture in knees with and those without preexisting radiographic OA, with adjustment for age, sex, and body mass index, using logistic regression (generalized estimating equations) and receiver operating characteristic curves. Results The prediction of increased medial JSN in knees with or without preexisting radiographic OA was the most accurate for medial trabecular bone texture; the area under the curve (AUC) was 0.77 and 0.75, respectively. For lateral trabecular bone texture, the AUC was 0.71 in knees with preexisting OA and 0.72 in knees without preexisting OA. Conclusion We have developed a system, based on analyzing tibial trabecular bone texture, which yields good prediction of loss of tibiofemoral joint space. The predictive ability of the system needs to be further validated. |
Author | Podsiadlo, P. Lohmander, L. S. Kurzynski, M. Stachowiak, G. W. Englund, M. Woloszynski, T. |
Author_xml | – sequence: 1 givenname: T. surname: Woloszynski fullname: Woloszynski, T. email: tom@mech.uwa.edu.au organization: University of Western Australia, Crawley, Perth, Western Australia, Australia – sequence: 2 givenname: P. surname: Podsiadlo fullname: Podsiadlo, P. organization: University of Western Australia, Crawley, Perth, Western Australia, Australia – sequence: 3 givenname: G. W. surname: Stachowiak fullname: Stachowiak, G. W. organization: University of Western Australia, Crawley, Perth, Western Australia, Australia – sequence: 4 givenname: M. surname: Kurzynski fullname: Kurzynski, M. organization: Wroclaw University of Technology, Wroclaw, Poland – sequence: 5 givenname: L. S. surname: Lohmander fullname: Lohmander, L. S. organization: Lund University, Lund, Sweden, and University of Southern Denmark, Odense, Denmark – sequence: 6 givenname: M. surname: Englund fullname: Englund, M. organization: Lund University, Lund, Sweden, and Boston University, Boston, Massachusetts |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25643846$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21989629$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/2591400$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/f14eef1e-19d0-4fea-a8a5-cae238893101$$DView record from Swedish Publication Index |
BookMark | eNqNkt1r1EAUxQep2O3qg_-ABKSoD9vORyYfj6XaqixaZUHpy3BnctOddjaJMwlt_3tnu9kKxYoPIUz4nXPnnpw9stO0DRLyktEDRik_BN8fCJEy-oRMmOTljDLBdsiEUprOhCzZLtkL4TIeuZDiGdnlrCzKjJcTos88Vtb0tm2Stk463154DGE8eqhs_ADd0prkqkFM2tBjG-ctve1tSIZgm4ukt9qCS3oPGs3gwCc6XjDp8aYfPD4nT2twAV-M7ylZnHxYHH-czb-efjo-ms9MxjidIfCcQ6WLKq9SzXkGHDXjAmqZY8E0MxrzWtRaC1lQLTSgZFjKEnVh8lJMCWxswzV2g1adtyvwt6oFq7rW9-BU3AzBm6VygwqoIuWsgfXuQdUsRawZKlZWVKU1goICpDKAXBRFKVgMdUrmj85wQxcfPXr_p92bjV2M_deAoVcrGww6Bw22Q1AllznLsvjPpuTtP0kmRVpQKYsioq8foJft4JuYfKRYHudmdJ3Wq5Ea9Aqr-022zYjA_ghAMOBqD42x4Q8ns1QUaRa5ww1nfBuCx1oZ299lGutgnWJUrTuqYmfUXUej4t0Dxdb0b-zofm0d3j4OqqPvi61itlHY2NSbewX4K5XlIpfqx5dT9fPz-3N28u1MnYvfgpYHkQ |
CODEN | ARHEAW |
CitedBy_id | crossref_primary_10_1016_j_berh_2018_05_001 crossref_primary_10_1002_ima_23063 crossref_primary_10_1097_RHU_0000000000000341 crossref_primary_10_1016_j_bsbt_2016_11_004 crossref_primary_10_1016_j_joca_2013_10_017 crossref_primary_10_1016_j_joca_2020_03_006 crossref_primary_10_1016_j_joca_2018_02_905 crossref_primary_10_1016_j_aanat_2015_07_006 crossref_primary_10_1186_s13075_022_02743_8 crossref_primary_10_1016_j_rdc_2013_02_001 crossref_primary_10_1093_rheumatology_kew504 crossref_primary_10_1177_0954411912456650 crossref_primary_10_1016_j_ocarto_2022_100319 crossref_primary_10_1002_art_37970 crossref_primary_10_1038_s41598_022_12083_x crossref_primary_10_3390_life13010237 crossref_primary_10_1016_j_joca_2019_02_796 crossref_primary_10_1186_s12864_015_2213_x crossref_primary_10_1002_art_40349 crossref_primary_10_1016_j_joca_2016_10_005 crossref_primary_10_1016_j_joca_2017_09_008 crossref_primary_10_1016_j_joca_2019_12_013 crossref_primary_10_1186_s13075_023_03025_7 crossref_primary_10_1007_s10439_015_1452_y crossref_primary_10_1016_j_joca_2016_05_003 crossref_primary_10_1038_s41598_021_81786_4 crossref_primary_10_1016_j_joca_2017_09_004 crossref_primary_10_1016_j_heliyon_2023_e15461 crossref_primary_10_1007_s00330_017_4826_8 crossref_primary_10_1007_s00256_021_03847_z crossref_primary_10_1016_j_joca_2020_01_010 crossref_primary_10_1155_2014_946574 crossref_primary_10_3390_biomedicines12030666 crossref_primary_10_3390_app11030891 crossref_primary_10_1016_j_joca_2015_12_002 crossref_primary_10_1002_art_37987 crossref_primary_10_1016_j_joca_2014_05_014 crossref_primary_10_1177_0363546518764675 crossref_primary_10_3390_jcm11102845 crossref_primary_10_1016_j_rcl_2017_04_012 crossref_primary_10_1038_bonekey_2014_110 crossref_primary_10_1186_s12891_015_0664_5 crossref_primary_10_1016_j_rehab_2015_12_003 crossref_primary_10_1016_j_joca_2014_06_021 crossref_primary_10_1186_s13075_021_02594_9 crossref_primary_10_1016_j_semarthrit_2013_07_012 crossref_primary_10_1016_j_joca_2016_12_011 crossref_primary_10_1038_s41598_023_48016_5 crossref_primary_10_1007_s40544_017_0173_7 crossref_primary_10_1016_j_joca_2013_05_003 crossref_primary_10_1016_j_clinbiomech_2016_06_003 |
Cites_doi | 10.1002/art.25012 10.1016/j.berh.2009.08.004 10.1016/j.joca.2003.10.009 10.1016/j.joca.2007.07.010 10.1073/pnas.0403456101 10.1097/00003086-198612000-00005 10.1118/1.2211727 10.1359/jbmr.2000.15.4.691 10.1002/art.27467 10.1007/s00223-002-2080-8 10.1359/jbmr.060311 10.1016/j.joca.2004.10.009 10.1302/0301-620X.85B6.12595 10.1136/ard.2008.099531 10.1007/s00330-004-2312-6 10.1038/ng1614 10.1038/nm1538 10.1093/rheumatology/40.6.631 10.1016/j.joca.2005.01.007 10.1097/00002142-199906000-00002 10.1007/s00256-002-0603-z 10.1016/j.bone.2006.03.017 10.1016/j.joca.2009.04.010 10.1016/j.joca.2010.01.002 10.1016/j.bone.2007.11.018 10.1002/art.11088 10.1109/T-C.1969.222678 10.1136/ard.60.2.91 10.1118/1.3373522 10.1136/ard.16.4.494 10.1097/00002281-199805000-00017 10.1118/1.2905025 10.1016/j.csda.2008.09.023 10.1023/A:1026543900054 10.1002/art.22301 10.1136/ard.2009.121681 10.1016/j.joca.2008.02.018 10.1118/1.597263 10.1016/j.joca.2003.09.007 10.1016/j.media.2006.11.001 10.1002/(SICI)1097-0029(19970515)37:4<343::AID-JEMT9>3.0.CO;2-L 10.1016/8756-3282(95)00137-3 10.1186/ar1726 10.1016/j.joca.2007.01.003 10.1007/BF00299000 10.1155/2010/107036 10.1016/j.joca.2007.07.007 |
ContentType | Journal Article |
Copyright | Copyright © 2012 by the American College of Rheumatology 2015 INIST-CNRS Copyright © 2012 by the American College of Rheumatology. |
Copyright_xml | – notice: Copyright © 2012 by the American College of Rheumatology – notice: 2015 INIST-CNRS – notice: Copyright © 2012 by the American College of Rheumatology. |
CorporateAuthor | Institutionen för kliniska vetenskaper, Lund Lunds universitet Profile areas and other strong research environments Lund University Sektion III Department of Clinical Sciences, Lund Strategiska forskningsområden (SFO) EpiHealth: Epidemiology for Health Faculty of Medicine Strategic research areas (SRA) Section III Medicinska fakulteten Profilområden och andra starka forskningsmiljöer Orthopaedics (Lund) Ortopedi, Lund |
CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Strategiska forskningsområden (SFO) – name: Sektion III – name: EpiHealth: Epidemiology for Health – name: Institutionen för kliniska vetenskaper, Lund – name: Strategic research areas (SRA) – name: Orthopaedics (Lund) – name: Lunds universitet – name: Department of Clinical Sciences, Lund – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Section III – name: Profile areas and other strong research environments – name: Ortopedi, Lund |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 ADTPV AOWAS D95 |
DOI | 10.1002/art.33410 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Toxicology Abstracts Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1529-0131 2326-5205 |
EndPage | 695 |
ExternalDocumentID | oai_portal_research_lu_se_publications_f14eef1e_19d0_4fea_a8a5_cae238893101 oai_lup_lub_lu_se_f14eef1e_19d0_4fea_a8a5_cae238893101 3277928341 21989629 25643846 10_1002_art_33410 ART33410 ark_67375_WNG_XJDZ1FQP_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Greta and Johan Kock Foundation – fundername: King Gustaf V's 80‐Year Foundation – fundername: Lund University Faculty of Medicine – fundername: Swedish Research Council – fundername: School of Mechanical and Chemical Engineering at the University of Western Australia |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 10A 1CY 1KJ 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3O- 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5RE 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEVG AAHHS AAKAS AANLZ AAQQT AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACMXC ACPOU ACSCC ACXBN ACXQS ADBTR ADEOM ADIZJ ADMGS ADOZA ADZCM ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J5H JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M65 MEWTI MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NNB OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q11 QB0 QRW RGB RIWAO RJQFR ROL RWI RX1 RXW RYL SAMSI SJN SUPJJ SV3 TAE TEORI TWZ UB1 V2E V8K V9Y VH1 W8V WH7 WIB WIH WIJ WIK WIN WJL WOW WQJ WRC WUP WXI WXSBR X6Y X7M XG1 XPP XV2 YFH YOC ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAFWJ AAYXX AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 0R~ 3SF 52U 52V 5VS 7QL 7QP 7T5 7TM 7U7 AAESR AASGY ABLJU ABPVW ACGFS ACGOF ACIWK ACPRK ADBBV ADKYN ADXAS ADZMN AENEX AEYWJ AFRAH AHMBA ALAGY ALVPJ AZVAB BFHJK BHBCM BMXJE C1K DIK FUBAC H94 K9. KBYEO NF~ O66 O9- PQQKQ WBKPD WHWMO WOHZO WVDHM 7X8 ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c6120-ea272adb8d7d4b226a2eb123af57e81b1cbe7f3fbb3580b3bae51e959eb8c793 |
IEDL.DBID | DR2 |
ISSN | 0004-3591 2326-5191 1529-0131 |
IngestDate | Thu Aug 21 06:44:29 EDT 2025 Thu Jul 03 05:07:22 EDT 2025 Fri Sep 05 14:30:23 EDT 2025 Fri Sep 05 12:14:50 EDT 2025 Mon Jun 30 10:22:43 EDT 2025 Thu Apr 03 07:07:47 EDT 2025 Mon Jul 21 09:16:24 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Tue Jul 01 01:05:18 EDT 2025 Wed Jan 22 16:36:10 EST 2025 Wed Oct 30 09:57:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Knee Knee osteoarthritis Prognosis Radiodiagnosis Diseases of the osteoarticular system Rheumatology Exploration Texture Radiography Tibia Arthropathy Evolution Degenerative disease Spongious bone Predictive factor Osteoarthritis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2012 by the American College of Rheumatology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6120-ea272adb8d7d4b226a2eb123af57e81b1cbe7f3fbb3580b3bae51e959eb8c793 |
Notes | King Gustaf V's 80-Year Foundation ArticleID:ART33410 Lund University Faculty of Medicine ark:/67375/WNG-XJDZ1FQP-Z School of Mechanical and Chemical Engineering at the University of Western Australia Swedish Research Council istex:F970B12D07D473D091485B102026B2F3F65143EF Greta and Johan Kock Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 21989629 |
PQID | 1517101609 |
PQPubID | 946334 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_f14eef1e_19d0_4fea_a8a5_cae238893101 swepub_primary_oai_lup_lub_lu_se_f14eef1e_19d0_4fea_a8a5_cae238893101 proquest_miscellaneous_925716635 proquest_miscellaneous_1534805588 proquest_journals_1517101609 pubmed_primary_21989629 pascalfrancis_primary_25643846 crossref_citationtrail_10_1002_art_33410 crossref_primary_10_1002_art_33410 wiley_primary_10_1002_art_33410_ART33410 istex_primary_ark_67375_WNG_XJDZ1FQP_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken , NJ – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis & Rheumatism |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Podsiadlo P, Wolski M, Stachowiak GW. Automated selection of trabecular bone regions in knee radiographs. Med Phys 2008; 35: 1870-83. Ding M, Odgaard A, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 2003; 85: 906-12. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage 2005; 13: 39-47. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southham L, et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci U S A 2004; 101: 9757-62. Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging 1999; 10: 180-92. Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 2004; 12: 86-96. Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 2001; 60: 91-7. Valdes AM, Loughlin J, Van Oene M, Chapman K, Surdulescu GL, Doherty M, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum 2007; 56: 137-46. Shamir L, Ling SM, Scott W, Hochberg M, Ferrucci L, Goldberg IG. Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis Cartilage 2009; 17: 1307-12. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Tibial cancellous bone changes in patients with knee osteoarthritis: a short-term longitudinal study using Fractal Signature Analysis. Osteoarthritis Cartilage 2005; 13: 463-70. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995; 17: 27-35. Jennane R, Harba G, Lemineur G, Bretteil S, Estrade A, Benhamou CL. Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med Image Anal 2007; 11: 91-8. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008; 42: 775-87. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int 1995; 57: 69-73. Kraus VB, Feng S, Wang SC, White S, Ainslie M, Brett A, et al. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum 2009; 60: 3711-22. Tat SK, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatology 2010; 24: 51-70. Coats AM, Zioupos P, Aspden RM. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing end electron probe microanalysis. Calcif Tissue Int 2003; 73: 66-71. Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol 2005; 32: 1156-8. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005; 37: 945-52. Sammon JW. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969; C18: 401-9. Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage 1995; 3 Suppl A: 3-70. Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P. Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 2000; 15: 691-9. Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21: 934-45. Chung HW, Chu CC, Underweiser M, Wehrli FW. On the fractal nature of trabecular structure. Med Phys 1994; 21: 1535-40. Nevitt MC, Zhang Y, Javaid MK, Neogi T, Curtis JR, Niu J, et al. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis 2010; 69: 163-8. Woloszynski T, Podsiadlo P, Stachowiak GW, Kurzynski M. A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med Phys 2010; 37: 2030-42. Buckland-Wright JC. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage 2004; 12 Suppl A: S10-9. Rubner Y, Tomasi C, Guibas LJ. The earth mover's distance as a metric for image retrieval. Int J Comput Vis 2000; 40: 99-121. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 213: 34-40. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signalling in bone results in osteopenia. Bone 2006; 39: 754-66. Wolski M, Podsiadlo P, Stachowiak GW, Lohmander LS, Englund M. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthritis Cartilage 2010; 18: 684-90. Apostol L, Boudousq V, Basset O, Odet C, Yot S, Tabary J, et al. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Med Phys 2006; 33: 3546-56. Dore D, Quinn S, Ding C, Winzenberg T, Cicuttini F, Jones G. Subchondral bone and cartilage damage: a prospective study in older adults. Arthritis Rheum 2010; 62: 1967-73. Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 2003; 48: 2178-87. Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE, et al. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 2004; 14: 1568-73. Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 1997; 37: 343-57. Shamir L, Rahimi S, Orlov N, Ferrucci L, Goldberg IG. Progression analysis and stage discovery in continuous physiological processes using image computing. EURASIP J Bioinform Syst Biol 2010; 2010: 107036. Englund M, Guermazi A, Roemer FW, Yang M, Zhang Y, Nevitt MC, et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann Rheum Dis 2010; 69: 1796-802. Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 2008; 16: 1150-9. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodelling. Nat Med 2007; 13: 156-63. Englund M, Roos EM, Roos HP, Lohmander LS. Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology (Oxford) 2001; 40: 631-9. Ding C, Cicuttini F, Jones G. Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthritis Cartilage 2007; 15: 479-86. Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 1998; 10: 256-62. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957; 16: 494-502. Wang Y, Wluka A, Cicuttini FM. The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther 2005; 7: R687-93. Lo GH, Niu J, McLennan CE, Kiel DP, McLean RR, Guermazi A, et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthritis Cartilage 2008; 16: 261-7. Adler W, Lausen B. Bootstrap estimated true and false positive rates and ROC curve. Comput Stat Data Anal 2009; 53: 718-29. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, et al. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 2003; 32: 128-32. Podsiadlo P, Dahl L, Englund M, Lohmander LS, Stachowiak GW. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthritis Cartilage 2008; 16: 323-9. 2004; 101 1986; 213 2010; 37 2010; 2010 1995; 17 2010; 18 2006; 33 2009; 60 1995; 57 2006; 39 2008; 16 2008; 35 2007; 11 2003; 73 1957; 16 1995; 3 2007; 56 2001; 40 2007; 13 2003; 32 2010; 62 2007; 15 1994; 21 2001; 60 1969; C18 2010; 69 2009; 53 2010; 24 2000; 15 2006; 21 2004; 14 1997; 37 2004; 12 2000; 40 2003; 48 2005; 7 1999; 10 2005; 32 2008; 42 2005; 37 1998; 10 2003; 85 2005; 13 2009; 17 e_1_2_6_30_2 e_1_2_6_19_2 Altman RD (e_1_2_6_21_2) 1995; 3 e_1_2_6_13_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 Burr DB (e_1_2_6_34_2) 2005; 32 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Ding M, Odgaard A, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 2003; 85: 906-12. – reference: Shamir L, Ling SM, Scott W, Hochberg M, Ferrucci L, Goldberg IG. Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis Cartilage 2009; 17: 1307-12. – reference: Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage 1995; 3 Suppl A: 3-70. – reference: Buckland-Wright JC. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage 2004; 12 Suppl A: S10-9. – reference: Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 1997; 37: 343-57. – reference: Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21: 934-45. – reference: Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008; 42: 775-87. – reference: Ding C, Cicuttini F, Jones G. Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthritis Cartilage 2007; 15: 479-86. – reference: Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol 2005; 32: 1156-8. – reference: Wang Y, Wluka A, Cicuttini FM. The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther 2005; 7: R687-93. – reference: Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 2001; 60: 91-7. – reference: Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P. Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 2000; 15: 691-9. – reference: Rubner Y, Tomasi C, Guibas LJ. The earth mover's distance as a metric for image retrieval. Int J Comput Vis 2000; 40: 99-121. – reference: Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum 2003; 48: 2178-87. – reference: Woloszynski T, Podsiadlo P, Stachowiak GW, Kurzynski M. A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med Phys 2010; 37: 2030-42. – reference: Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y, et al. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 2003; 32: 128-32. – reference: Valdes AM, Loughlin J, Van Oene M, Chapman K, Surdulescu GL, Doherty M, et al. Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum 2007; 56: 137-46. – reference: Nevitt MC, Zhang Y, Javaid MK, Neogi T, Curtis JR, Niu J, et al. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis 2010; 69: 163-8. – reference: Adler W, Lausen B. Bootstrap estimated true and false positive rates and ROC curve. Comput Stat Data Anal 2009; 53: 718-29. – reference: Wolski M, Podsiadlo P, Stachowiak GW, Lohmander LS, Englund M. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthritis Cartilage 2010; 18: 684-90. – reference: Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 1998; 10: 256-62. – reference: Kraus VB, Feng S, Wang SC, White S, Ainslie M, Brett A, et al. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum 2009; 60: 3711-22. – reference: Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signalling in bone results in osteopenia. Bone 2006; 39: 754-66. – reference: Lo GH, Niu J, McLennan CE, Kiel DP, McLean RR, Guermazi A, et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthritis Cartilage 2008; 16: 261-7. – reference: Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE, et al. Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 2004; 14: 1568-73. – reference: Jennane R, Harba G, Lemineur G, Bretteil S, Estrade A, Benhamou CL. Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med Image Anal 2007; 11: 91-8. – reference: Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int 1995; 57: 69-73. – reference: Dore D, Quinn S, Ding C, Winzenberg T, Cicuttini F, Jones G. Subchondral bone and cartilage damage: a prospective study in older adults. Arthritis Rheum 2010; 62: 1967-73. – reference: Podsiadlo P, Dahl L, Englund M, Lohmander LS, Stachowiak GW. Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthritis Cartilage 2008; 16: 323-9. – reference: Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957; 16: 494-502. – reference: Chung HW, Chu CC, Underweiser M, Wehrli FW. On the fractal nature of trabecular structure. Med Phys 1994; 21: 1535-40. – reference: Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005; 37: 945-52. – reference: Englund M, Guermazi A, Roemer FW, Yang M, Zhang Y, Nevitt MC, et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann Rheum Dis 2010; 69: 1796-802. – reference: Apostol L, Boudousq V, Basset O, Odet C, Yot S, Tabary J, et al. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Med Phys 2006; 33: 3546-56. – reference: Tat SK, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatology 2010; 24: 51-70. – reference: Englund M, Roos EM, Roos HP, Lohmander LS. Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology (Oxford) 2001; 40: 631-9. – reference: Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 2008; 16: 1150-9. – reference: Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 2004; 12: 86-96. – reference: Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995; 17: 27-35. – reference: Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 213: 34-40. – reference: Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southham L, et al. Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci U S A 2004; 101: 9757-62. – reference: Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodelling. Nat Med 2007; 13: 156-63. – reference: Sammon JW. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969; C18: 401-9. – reference: Shamir L, Rahimi S, Orlov N, Ferrucci L, Goldberg IG. Progression analysis and stage discovery in continuous physiological processes using image computing. EURASIP J Bioinform Syst Biol 2010; 2010: 107036. – reference: Podsiadlo P, Wolski M, Stachowiak GW. Automated selection of trabecular bone regions in knee radiographs. Med Phys 2008; 35: 1870-83. – reference: Coats AM, Zioupos P, Aspden RM. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing end electron probe microanalysis. Calcif Tissue Int 2003; 73: 66-71. – reference: Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging 1999; 10: 180-92. – reference: Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Tibial cancellous bone changes in patients with knee osteoarthritis: a short-term longitudinal study using Fractal Signature Analysis. Osteoarthritis Cartilage 2005; 13: 463-70. – reference: Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage 2005; 13: 39-47. – volume: 32 start-page: 1156 year: 2005 end-page: 8 article-title: Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis publication-title: J Rheumatol – volume: 12 start-page: S10 issue: Suppl A year: 2004 end-page: 9 article-title: Subchondral bone changes in hand and knee osteoarthritis detected by radiography publication-title: Osteoarthritis Cartilage – volume: 37 start-page: 945 year: 2005 end-page: 52 article-title: Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation publication-title: Nat Genet – volume: 15 start-page: 691 year: 2000 end-page: 9 article-title: Fractal dimension of trabecular bone projection texture is related to three‐dimensional microarchitecture publication-title: J Bone Miner Res – volume: 85 start-page: 906 year: 2003 end-page: 12 article-title: Changes in the three‐dimensional microstructure of human tibial cancellous bone in early osteoarthritis publication-title: J Bone Joint Surg Br – volume: 213 start-page: 34 year: 1986 end-page: 40 article-title: Role of subchondral bone in the initiation and progression of cartilage damage publication-title: Clin Orthop Relat Res – volume: 69 start-page: 1796 year: 2010 end-page: 802 article-title: Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study publication-title: Ann Rheum Dis – volume: 101 start-page: 9757 year: 2004 end-page: 62 article-title: Functional variants within the secreted frizzled‐related protein 3 gene are associated with hip osteoarthritis in females publication-title: Proc Natl Acad Sci U S A – volume: 16 start-page: 261 year: 2008 end-page: 7 article-title: Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study publication-title: Osteoarthritis Cartilage – volume: 53 start-page: 718 year: 2009 end-page: 29 article-title: Bootstrap estimated true and false positive rates and ROC curve publication-title: Comput Stat Data Anal – volume: 24 start-page: 51 year: 2010 end-page: 70 article-title: Targeting subchondral bone for treating osteoarthritis: what is the evidence? publication-title: Best Pract Res Clin Rheumatology – volume: 17 start-page: 27 year: 1995 end-page: 35 article-title: Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis publication-title: Bone – volume: 12 start-page: 86 year: 2004 end-page: 96 article-title: Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee publication-title: Osteoarthritis Cartilage – volume: 69 start-page: 163 year: 2010 end-page: 8 article-title: High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study publication-title: Ann Rheum Dis – volume: 14 start-page: 1568 year: 2004 end-page: 73 article-title: Fixed‐flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis publication-title: Eur Radiol – volume: 60 start-page: 3711 year: 2009 end-page: 22 article-title: Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression publication-title: Arthritis Rheum – volume: 21 start-page: 1535 year: 1994 end-page: 40 article-title: On the fractal nature of trabecular structure publication-title: Med Phys – volume: 32 start-page: 128 year: 2003 end-page: 32 article-title: Comparison of fixed‐flexion positioning with fluoroscopic semi‐flexed positioning for quantifying radiographic joint‐space width in the knee: test‐retest reproducibility publication-title: Skeletal Radiol – volume: 16 start-page: 494 year: 1957 end-page: 502 article-title: Radiological assessment of osteoarthrosis publication-title: Ann Rheum Dis – volume: 11 start-page: 91 year: 2007 end-page: 8 article-title: Estimation of the 3D self‐similarity parameter of trabecular bone from its 2D projection publication-title: Med Image Anal – volume: C18 start-page: 401 year: 1969 end-page: 9 article-title: A nonlinear mapping for data structure analysis publication-title: IEEE Trans Comput – volume: 33 start-page: 3546 year: 2006 end-page: 56 article-title: Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro‐architecture publication-title: Med Phys – volume: 10 start-page: 256 year: 1998 end-page: 62 article-title: The importance of subchondral bone in osteoarthrosis publication-title: Curr Opin Rheumatol – volume: 7 start-page: R687 year: 2005 end-page: 93 article-title: The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study publication-title: Arthritis Res Ther – volume: 40 start-page: 99 year: 2000 end-page: 121 article-title: The earth mover's distance as a metric for image retrieval publication-title: Int J Comput Vis – volume: 13 start-page: 156 year: 2007 end-page: 63 article-title: Dickkopf‐1 is a master regulator of joint remodelling publication-title: Nat Med – volume: 73 start-page: 66 year: 2003 end-page: 71 article-title: Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing end electron probe microanalysis publication-title: Calcif Tissue Int – volume: 42 start-page: 775 year: 2008 end-page: 87 article-title: Correlations between grey‐level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture publication-title: Bone – volume: 3 start-page: 3 issue: Suppl A year: 1995 end-page: 70 article-title: Atlas of individual radiographic features in osteoarthritis publication-title: Osteoarthritis Cartilage – volume: 39 start-page: 754 year: 2006 end-page: 66 article-title: Dkk1‐mediated inhibition of Wnt signalling in bone results in osteopenia publication-title: Bone – volume: 37 start-page: 343 year: 1997 end-page: 57 article-title: The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence publication-title: Microsc Res Tech – volume: 35 start-page: 1870 year: 2008 end-page: 83 article-title: Automated selection of trabecular bone regions in knee radiographs publication-title: Med Phys – volume: 13 start-page: 39 year: 2005 end-page: 47 article-title: Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study publication-title: Osteoarthritis Cartilage – volume: 56 start-page: 137 year: 2007 end-page: 46 article-title: Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee publication-title: Arthritis Rheum – volume: 37 start-page: 2030 year: 2010 end-page: 42 article-title: A signature dissimilarity measure for trabecular bone texture in knee radiographs publication-title: Med Phys – volume: 18 start-page: 684 year: 2010 end-page: 90 article-title: Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method publication-title: Osteoarthritis Cartilage – volume: 16 start-page: 1150 year: 2008 end-page: 9 article-title: Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T publication-title: Osteoarthritis Cartilage – volume: 48 start-page: 2178 year: 2003 end-page: 87 article-title: Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen‐year followup of meniscectomy with matched controls publication-title: Arthritis Rheum – volume: 60 start-page: 91 year: 2001 end-page: 7 article-title: Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care publication-title: Ann Rheum Dis – volume: 62 start-page: 1967 year: 2010 end-page: 73 article-title: Subchondral bone and cartilage damage: a prospective study in older adults publication-title: Arthritis Rheum – volume: 16 start-page: 323 year: 2008 end-page: 9 article-title: Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods publication-title: Osteoarthritis Cartilage – volume: 13 start-page: 463 year: 2005 end-page: 70 article-title: Tibial cancellous bone changes in patients with knee osteoarthritis: a short‐term longitudinal study using Fractal Signature Analysis publication-title: Osteoarthritis Cartilage – volume: 17 start-page: 1307 year: 2009 end-page: 12 article-title: Early detection of radiographic knee osteoarthritis using computer‐aided analysis publication-title: Osteoarthritis Cartilage – volume: 57 start-page: 69 year: 1995 end-page: 73 article-title: Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis publication-title: Calcif Tissue Int – volume: 15 start-page: 479 year: 2007 end-page: 86 article-title: Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis publication-title: Osteoarthritis Cartilage – volume: 40 start-page: 631 year: 2001 end-page: 9 article-title: Patient‐relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection publication-title: Rheumatology (Oxford) – volume: 10 start-page: 180 year: 1999 end-page: 92 article-title: Importance of subchondral bone to articular cartilage in health and disease publication-title: Top Magn Reson Imaging – volume: 2010 start-page: 107036 year: 2010 article-title: Progression analysis and stage discovery in continuous physiological processes using image computing publication-title: EURASIP J Bioinform Syst Biol – volume: 21 start-page: 934 year: 2006 end-page: 45 article-title: Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass publication-title: J Bone Miner Res – ident: e_1_2_6_14_2 doi: 10.1002/art.25012 – ident: e_1_2_6_29_2 doi: 10.1016/j.berh.2009.08.004 – ident: e_1_2_6_49_2 doi: 10.1016/j.joca.2003.10.009 – ident: e_1_2_6_22_2 doi: 10.1016/j.joca.2007.07.010 – ident: e_1_2_6_40_2 doi: 10.1073/pnas.0403456101 – ident: e_1_2_6_3_2 doi: 10.1097/00003086-198612000-00005 – ident: e_1_2_6_11_2 doi: 10.1118/1.2211727 – ident: e_1_2_6_8_2 doi: 10.1359/jbmr.2000.15.4.691 – ident: e_1_2_6_46_2 doi: 10.1002/art.27467 – ident: e_1_2_6_30_2 doi: 10.1007/s00223-002-2080-8 – ident: e_1_2_6_37_2 doi: 10.1359/jbmr.060311 – ident: e_1_2_6_44_2 doi: 10.1016/j.joca.2004.10.009 – ident: e_1_2_6_45_2 doi: 10.1302/0301-620X.85B6.12595 – ident: e_1_2_6_41_2 doi: 10.1136/ard.2008.099531 – ident: e_1_2_6_20_2 doi: 10.1007/s00330-004-2312-6 – ident: e_1_2_6_35_2 doi: 10.1038/ng1614 – volume: 32 start-page: 1156 year: 2005 ident: e_1_2_6_34_2 article-title: Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis publication-title: J Rheumatol – ident: e_1_2_6_38_2 doi: 10.1038/nm1538 – ident: e_1_2_6_17_2 doi: 10.1093/rheumatology/40.6.631 – ident: e_1_2_6_26_2 doi: 10.1016/j.joca.2005.01.007 – ident: e_1_2_6_33_2 doi: 10.1097/00002142-199906000-00002 – ident: e_1_2_6_19_2 doi: 10.1007/s00256-002-0603-z – ident: e_1_2_6_36_2 doi: 10.1016/j.bone.2006.03.017 – ident: e_1_2_6_13_2 doi: 10.1016/j.joca.2009.04.010 – ident: e_1_2_6_27_2 doi: 10.1016/j.joca.2010.01.002 – ident: e_1_2_6_10_2 doi: 10.1016/j.bone.2007.11.018 – ident: e_1_2_6_18_2 doi: 10.1002/art.11088 – ident: e_1_2_6_25_2 doi: 10.1109/T-C.1969.222678 – ident: e_1_2_6_2_2 doi: 10.1136/ard.60.2.91 – ident: e_1_2_6_16_2 doi: 10.1118/1.3373522 – ident: e_1_2_6_12_2 doi: 10.1136/ard.16.4.494 – ident: e_1_2_6_31_2 doi: 10.1097/00002281-199805000-00017 – ident: e_1_2_6_23_2 doi: 10.1118/1.2905025 – ident: e_1_2_6_28_2 doi: 10.1016/j.csda.2008.09.023 – ident: e_1_2_6_24_2 doi: 10.1023/A:1026543900054 – ident: e_1_2_6_39_2 doi: 10.1002/art.22301 – ident: e_1_2_6_43_2 doi: 10.1136/ard.2009.121681 – ident: e_1_2_6_48_2 doi: 10.1016/j.joca.2008.02.018 – ident: e_1_2_6_15_2 doi: 10.1118/1.597263 – ident: e_1_2_6_4_2 doi: 10.1016/j.joca.2003.09.007 – ident: e_1_2_6_9_2 doi: 10.1016/j.media.2006.11.001 – ident: e_1_2_6_32_2 doi: 10.1002/(SICI)1097-0029(19970515)37:4<343::AID-JEMT9>3.0.CO;2-L – ident: e_1_2_6_5_2 doi: 10.1016/8756-3282(95)00137-3 – volume: 3 start-page: 3 year: 1995 ident: e_1_2_6_21_2 article-title: Atlas of individual radiographic features in osteoarthritis publication-title: Osteoarthritis Cartilage – ident: e_1_2_6_47_2 doi: 10.1186/ar1726 – ident: e_1_2_6_7_2 doi: 10.1016/j.joca.2007.01.003 – ident: e_1_2_6_6_2 doi: 10.1007/BF00299000 – ident: e_1_2_6_50_2 doi: 10.1155/2010/107036 – ident: e_1_2_6_42_2 doi: 10.1016/j.joca.2007.07.007 |
SSID | ssj0002353 ssj0000970605 |
Score | 2.283866 |
Snippet | Objective
To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.
Methods
We studied... To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. We studied 203 knees with (n... Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods We studied... To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture.OBJECTIVETo develop a system... Objective To develop a system for predicting the progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone texture. Methods. We studied... |
SourceID | swepub proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 688 |
SubjectTerms | Arthrography - methods Biological and medical sciences Clinical Medicine Disease Progression Diseases of the osteoarticular system Female Humans Klinisk medicin Knee Knee Joint - diagnostic imaging Knee Joint - pathology Logistic Models Male Medical and Health Sciences Medical sciences Medicin och hälsovetenskap Middle Aged Miscellaneous. Osteoarticular involvement in other diseases Osteoarthritis Osteoarthritis, Knee - diagnosis Osteoarthritis, Knee - diagnostic imaging Osteoporosis Predictive Value of Tests ROC Curve Tibia - diagnostic imaging Tibia - pathology |
Title | Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture |
URI | https://api.istex.fr/ark:/67375/WNG-XJDZ1FQP-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.33410 https://www.ncbi.nlm.nih.gov/pubmed/21989629 https://www.proquest.com/docview/1517101609 https://www.proquest.com/docview/1534805588 https://www.proquest.com/docview/925716635 https://lup.lub.lu.se/record/2591400 oai:portal.research.lu.se:publications/f14eef1e-19d0-4fea-a8a5-cae238893101 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFA9jgviLzu9184gisl96a9rk2uJP4nbOycaUicchhCRN3LjRO3pXEP9632t6PU9uMPyhkNKXpEleXj5JXj4h5I1zhpnIupAJnYUchEIFUD_MeGFToZMkVXjA-fRscPyNn4zEaIu8W56F8fwQ3YIb9ozGXmMHV3p-sCINhZrtJ2CDcb7OkgHy5h9-XVFHxUnLQIkr_yJnS1ahKD7oYq6NRXewWn-hb6SaQ_U4f6_FJuDZsYquA9pmRBo-ID-WZfGOKJN-vdB98_sfmsf_LOwOud8iVfreq9ZDsmXLR-TuabsX_5jo8wrD2LB06mjj6OVJPvC1UsWVZ8O-MnRSWkvxNMkUcrhsaJQoOtz_pP7ECl1USvtbeqmelpaiO0pd2SfkYnh08eE4bG9sCA0gpSi0Kk5jVeisSAuuAdmpGMaCOFFOpBYAMjPapi5xWuPuq060soLZXORWZwYsxVOyXUIuzwnFDUqVFwPtCsNVznJemEhpeNGR4cwFZH_ZdNK0bOZ4qca19DzMsYQCyabKAvK6E515Co9NQm-b9u8kVDVBn7dUyO9nH-Xo5HDMhl_O5TggvTUF6SIAdoR_5oOA7C01Rrb2YC4BV6UNmV8ekFfdZ-jJuD2jSjutUSbhWSRElgWE3iCTg4VlCBID8swr4yp_9H4bxJDBkdfO7gsyiF_XM3g0PHJupWPcWsesZHkRSe6skipTQhplAcIBhIV_Dch4Qzp-UihbJqrLNr3ZX0vMt0x8v1H3mxtEwnyuCby4veguuQd4NvYugntke1HV9iVgxoXugXH49LnXmIg__wlt9Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelhW0v-_7w1nXaGKMvTi1bim3Yy1ibZV0TupGxEChCkqW1pCTBSWDsr9-d5TjLaKHswSDjk2RJp9NP0uknQt46Z5iJrAuZ0FnIQShUAPXDjBc2FTpJUoUHnHv9dvc7Px6K4RZ5vzoL4_khmgU37BmVvcYOjgvSB2vWUKjaVgJGGCbsOxyABk69Dr-tyaPipOagxLV_kbMVr1AUHzRRN0ajHazYX-gdqeZQQc7fbHEV9Gx4RTchbTUmde6Rs1VpvCvKuLVc6Jb5_Q_R4_8W9z65W4NV-sFr1wOyZScPya1evR3_iOjTEsPYtnTqaOXr5Xk-8LVUxYUnxL4wdDyxluKBkinkcF4xKVH0uf9J_aEVuiiV9hf1Uj2dWIoeKcvSPiaDztHgYzesL20IDYClKLQqTmNV6KxIC64B3KkYhoM4UU6kFjAyM9qmLnFa4wasTrSygtlc5FZnBozFE7I9gVyeEYp7lCov2toVhquc5bwwkdLwoiPDmQvI_qrtpKkJzfFejUvpqZhjCQWSVZUF5E0jOvMsHlcJvasUoJFQ5Rjd3lIhf_Q_yeHx4Yh1vp7KUUD2NjSkiQDwEf6ZtwOyu1IZWZuEuQRolVZ8fnlAXjefoTPjDo2a2OkSZRKeRUJkWUDoNTI5GFmGODEgT702rvNHB7h2DBkcefVsviCJ-OVyBo-GR86tdIxb65iVLC8iyZ1VUmVKSKMsoDhAsfCvARldkY6fF8qajOq8Tm_21yrzDRPfr_T9-gaRMKWrAs9vLvqK3O4Oeify5HP_ywtyB-Bt7D0Gd8n2olzalwAhF3qvshR_AP46cRs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC2Uv-_7w1nXaGKMvTi1bim32NNZmXbeGbHQshIGQZGktKU5wEhj763eyHGcZKZQ9GGR8kizpdPpJOv0E8NpaTXVkbEi5ykKGQqFEqB9mrDApV0mSSnfA-azfPfnGTod8uAVvl2dhPD9Eu-DmekZtr10Hnxb2cEUaijXbSdAG43x9h3URSThE9HXFHRUnDQWlW_rnOV3SCkXxYRt1bTDacfX6yzlHyhnWj_UXW2xCni2t6DqirYek3h34sSyM90QZdxZz1dG__-F5_M_S3oXbDVQl77xu3YMtU96H3bNmM_4BqEHlwq5lycSS2tPLs3y410oWl54O-1KTcWkMccdJJpjDRc2jRJzH_U_ij6yQeSWVv6aXqElpiPNHWVTmIZz3js_fn4TNlQ2hRqgUhUbGaSwLlRVpwRRCOxnjYBAn0vLUIEKmWpnUJlYpt_2qEiUNpybnuVGZRlPxCLZLzOUJELdDKfOiq2yhmcxpzgodSYUvKtKM2gAOlk0ndENn7m7VuBKeiDkWWCBRV1kAr1rRqefw2CT0pm7_VkJWY-f0lnLxvf9BDE-PRrT3ZSBGAeyvKUgbAcEj_jPrBrC31BjRGISZQGCV1mx-eQAv28_Yld3-jCzNZOFkEpZFnGdZAOQamRxNLHUoMYDHXhlX-Tv3t26MGRx77Wy_OArxq8UUH4WPmBlhKTPGUiNoXkSCWSOFzCQXWhrEcIhh8V8DGG1Ix88KRUNFddGkN_1rjfmGiR_U6n59gwic0NWBpzcXfQG7g6Oe-Pyx_-kZ3EJsG3t3wT3YnlcL8xzx41zt13biD2Hkb8o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+progression+of+radiographic+knee+osteoarthritis+using+tibial+trabecular+bone+texture&rft.jtitle=Arthritis+and+rheumatism&rft.au=Woloszynski%2C+T&rft.au=Podsiadlo%2C+P&rft.au=Stachowiak%2C+G+W&rft.au=Kurzynski%2C+M&rft.date=2012-03-01&rft.issn=1529-0131&rft.eissn=1529-0131&rft.volume=64&rft.issue=3&rft.spage=688&rft_id=info:doi/10.1002%2Fart.33410&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon |