Earth-Abundant Nanomaterials for Oxygen Reduction
Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 55; no. 8; pp. 2650 - 2676 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
18.02.2016
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with non‐Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth‐abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth‐abundant materials for boosting ORR.
Pt free: Great efforts have been devoted to designing and optimizing earth‐abundant nanomaterials for use as catalysts for the oxygen reduction reaction (ORR). These new catalysts have improved intrinsic catalytic activity, stability, and selectivity as well as performances nearing that of the classical platinum‐based catalysts. This Review highlights the recent breakthroughs in engineering non‐Pt nanomaterials with advanced structures for enhanced ORR catalysis. |
---|---|
AbstractList | Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR. Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with non‐Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth‐abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth‐abundant materials for boosting ORR. Pt free: Great efforts have been devoted to designing and optimizing earth‐abundant nanomaterials for use as catalysts for the oxygen reduction reaction (ORR). These new catalysts have improved intrinsic catalytic activity, stability, and selectivity as well as performances nearing that of the classical platinum‐based catalysts. This Review highlights the recent breakthroughs in engineering non‐Pt nanomaterials with advanced structures for enhanced ORR catalysis. Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR. |
Author | Xia, Wei Guo, Shaojun Mahmood, Asif Zou, Ruqiang Liang, Zibin |
Author_xml | – sequence: 1 givenname: Wei surname: Xia fullname: Xia, Wei organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China – sequence: 2 givenname: Asif surname: Mahmood fullname: Mahmood, Asif organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China – sequence: 3 givenname: Zibin surname: Liang fullname: Liang, Zibin organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China – sequence: 4 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China – sequence: 5 givenname: Shaojun surname: Guo fullname: Guo, Shaojun email: guosj@pku.edu.cn organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26663778$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LHDEYh4NY_KpXj2Whl15mm4-ZfBwXu7WCrCi2BS8hk7yxsbMZm8yg-9-bZVWK0HpKIM_zy8v720fbsY-A0BHBU4Ix_WxigCnFpMG1ZHgL7ZGGkooJwbbLvWasErIhu2g_59vCS4n5DtqlnPPCyD1E5iYNv6pZO0Zn4jBZmNgvzQApmC5PfJ8m5w-rG4iTS3CjHUIf36N3vrzB4dN5gL5_nV8df6vOzk9Oj2dnleWE4spixjgD71viW8ods9wJ5bgD31rLBLS1V1QJ6ZTxyjjbGmxY23grFBBaswP0aZN7l_o_I-RBL0O20HUmQj9mTQRvFKVM8IJ-fIXe9mOKZTpNFJa0EQ3_P1WyqKCyXn_74Yka2yU4fZfC0qSVfl5ZAeoNYFOfcwKvbRjMejNDMqHTBOt1M3rdjH5ppmjTV9pz8j8FtRHuQwerN2g9W5zO_3arjRvyAA8vrkm_NRdMNPrn4kRfSPzlxwW50tfsEclkrjc |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1016_j_electacta_2023_143120 crossref_primary_10_1002_adma_201803339 crossref_primary_10_1021_acsomega_3c02544 crossref_primary_10_1016_j_jallcom_2021_160523 crossref_primary_10_1021_acs_jpclett_1c03753 crossref_primary_10_1016_j_materresbull_2022_111729 crossref_primary_10_1002_ange_202311113 crossref_primary_10_1039_D1CS00887K crossref_primary_10_1016_j_electacta_2017_09_143 crossref_primary_10_1016_j_jcis_2021_04_084 crossref_primary_10_1002_anie_202407628 crossref_primary_10_1002_celc_202001475 crossref_primary_10_3390_catal8020065 crossref_primary_10_1002_smll_202306396 crossref_primary_10_1016_j_cej_2023_143996 crossref_primary_10_1016_j_jece_2024_113417 crossref_primary_10_1002_celc_201901253 crossref_primary_10_1063_5_0157188 crossref_primary_10_1016_j_gee_2017_06_005 crossref_primary_10_1002_cssc_202002359 crossref_primary_10_1039_D2TA02766F crossref_primary_10_1016_j_electacta_2017_09_131 crossref_primary_10_1016_j_mcat_2018_01_036 crossref_primary_10_1021_jacs_6b09470 crossref_primary_10_1002_celc_201800796 crossref_primary_10_1002_ppsc_201600150 crossref_primary_10_1016_j_ijhydene_2017_05_236 crossref_primary_10_12677_MS_2020_109092 crossref_primary_10_1002_chem_202100736 crossref_primary_10_1039_C8NR09680E crossref_primary_10_1039_C8TA00689J crossref_primary_10_1002_chem_202102915 crossref_primary_10_1007_s12274_020_2868_8 crossref_primary_10_1021_acs_energyfuels_4c04109 crossref_primary_10_3389_fchem_2018_00351 crossref_primary_10_1016_j_electacta_2017_09_125 crossref_primary_10_1002_celc_202400060 crossref_primary_10_1016_j_mtchem_2022_100829 crossref_primary_10_1039_D0CE00325E crossref_primary_10_1002_anie_201800269 crossref_primary_10_1016_j_electacta_2019_134569 crossref_primary_10_3390_catal14010057 crossref_primary_10_1002_adfm_202106715 crossref_primary_10_1002_celc_201800331 crossref_primary_10_1016_j_cej_2018_12_105 crossref_primary_10_1016_j_jcat_2023_115148 crossref_primary_10_1002_smll_201603793 crossref_primary_10_1039_D1TA09278B crossref_primary_10_1002_cssc_202002103 crossref_primary_10_1149_1945_7111_ab9b9c crossref_primary_10_1016_j_nanoen_2017_01_026 crossref_primary_10_1021_acsaem_2c01548 crossref_primary_10_1016_j_apsusc_2017_08_222 crossref_primary_10_1016_j_jpowsour_2019_227229 crossref_primary_10_1002_advs_202001069 crossref_primary_10_1016_j_jcis_2019_12_120 crossref_primary_10_1016_j_ensm_2020_02_002 crossref_primary_10_1016_S1872_2067_21_63961_X crossref_primary_10_1021_acsami_6b13166 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1002_adfm_202000768 crossref_primary_10_1002_adma_201805717 crossref_primary_10_1002_cctc_202001912 crossref_primary_10_1246_cl_160573 crossref_primary_10_1002_adsu_201700085 crossref_primary_10_1039_C7TA10569J crossref_primary_10_1016_j_synthmet_2017_10_010 crossref_primary_10_1039_C9DT04570H crossref_primary_10_1007_s12274_019_2480_y crossref_primary_10_1016_j_jechem_2016_10_012 crossref_primary_10_1002_smll_202104339 crossref_primary_10_1039_C9CC08250F crossref_primary_10_1002_ange_201804958 crossref_primary_10_1016_j_jhazmat_2019_121881 crossref_primary_10_1002_tee_23343 crossref_primary_10_1016_j_nanoen_2020_105487 crossref_primary_10_1039_C8CC02646G crossref_primary_10_1002_smll_202310694 crossref_primary_10_1007_s12678_023_00836_9 crossref_primary_10_1016_j_mattod_2021_11_022 crossref_primary_10_1039_C9SE00861F crossref_primary_10_1002_smll_201704282 crossref_primary_10_1016_j_apsusc_2017_02_191 crossref_primary_10_1002_smll_202104349 crossref_primary_10_1002_celc_201801688 crossref_primary_10_1002_cnma_202100531 crossref_primary_10_1039_D2NJ00092J crossref_primary_10_1002_chem_201905598 crossref_primary_10_1039_D0TA06987F crossref_primary_10_1016_j_apsusc_2020_147818 crossref_primary_10_1002_celc_202100168 crossref_primary_10_1002_chem_201804610 crossref_primary_10_1002_smll_201906057 crossref_primary_10_1002_chem_201803764 crossref_primary_10_1016_j_carbon_2021_11_020 crossref_primary_10_1007_s12274_022_4492_2 crossref_primary_10_1016_j_ijhydene_2016_11_108 crossref_primary_10_1002_cssc_202002137 crossref_primary_10_1002_smsc_202100061 crossref_primary_10_1021_acsanm_9b00867 crossref_primary_10_1007_s12274_019_2512_7 crossref_primary_10_3390_catal12121528 crossref_primary_10_1016_j_jssc_2019_04_033 crossref_primary_10_3390_nano9081161 crossref_primary_10_1016_j_apcatb_2021_120586 crossref_primary_10_1039_D4NJ05417B crossref_primary_10_1002_cssc_201801480 crossref_primary_10_1021_acscatal_8b01715 crossref_primary_10_1016_j_carbon_2018_05_027 crossref_primary_10_1002_celc_202101246 crossref_primary_10_1016_j_apsusc_2018_12_204 crossref_primary_10_1016_j_jcis_2021_12_023 crossref_primary_10_1039_D1NR05125C crossref_primary_10_1002_chem_201805936 crossref_primary_10_1021_acsami_7b13872 crossref_primary_10_1021_acsami_9b12638 crossref_primary_10_1039_D0RA08575H crossref_primary_10_1021_acs_analchem_1c05566 crossref_primary_10_1016_j_molstruc_2023_135971 crossref_primary_10_1021_acsami_8b07863 crossref_primary_10_1016_j_cattod_2018_02_015 crossref_primary_10_1002_celc_201800141 crossref_primary_10_1016_j_nanoen_2019_04_076 crossref_primary_10_1002_slct_201701020 crossref_primary_10_1021_acs_jpcc_9b10173 crossref_primary_10_1039_C6CC06311J crossref_primary_10_1039_C9TA00302A crossref_primary_10_1039_C7RA06352K crossref_primary_10_1039_C7NR09620H crossref_primary_10_3390_batteries9080394 crossref_primary_10_1016_j_jcis_2020_07_055 crossref_primary_10_1016_j_nanoen_2018_08_005 crossref_primary_10_1016_j_jelechem_2018_06_006 crossref_primary_10_1021_acs_jpcc_4c01292 crossref_primary_10_1016_j_jelechem_2023_117798 crossref_primary_10_1002_ente_201900984 crossref_primary_10_1038_s41598_017_03609_9 crossref_primary_10_1021_acsanm_8b01430 crossref_primary_10_1039_C8CC00025E crossref_primary_10_1021_acsenergylett_7b00741 crossref_primary_10_1039_D0SE00671H crossref_primary_10_1039_D2NJ03091H crossref_primary_10_1038_am_2017_212 crossref_primary_10_1016_j_apcatb_2019_118559 crossref_primary_10_1016_j_cej_2021_129063 crossref_primary_10_1002_cssc_201600030 crossref_primary_10_1021_acssuschemeng_9b05238 crossref_primary_10_3390_en15114029 crossref_primary_10_1021_acs_jpcc_6b12868 crossref_primary_10_1002_adfm_201603937 crossref_primary_10_1038_s41467_020_16848_8 crossref_primary_10_1002_aenm_202400790 crossref_primary_10_1038_s41467_024_51280_2 crossref_primary_10_1002_admi_201701345 crossref_primary_10_1002_cssc_201601396 crossref_primary_10_1021_acs_jpcc_7b10201 crossref_primary_10_1016_j_jtice_2019_04_030 crossref_primary_10_1007_s10008_022_05209_8 crossref_primary_10_1002_admi_201901476 crossref_primary_10_1002_smll_202300200 crossref_primary_10_1002_chem_201604113 crossref_primary_10_1021_acsaem_2c00863 crossref_primary_10_1002_ange_201908021 crossref_primary_10_1016_j_ensm_2019_12_011 crossref_primary_10_1039_D1RA08618A crossref_primary_10_1021_acscatal_7b01649 crossref_primary_10_1021_acsnano_7b05832 crossref_primary_10_1515_ntrev_2021_0008 crossref_primary_10_1016_j_ijhydene_2021_02_056 crossref_primary_10_1039_D1EE03972E crossref_primary_10_1002_celc_202001625 crossref_primary_10_1016_j_jpowsour_2021_230960 crossref_primary_10_1016_j_mattod_2021_03_011 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1002_anie_202216950 crossref_primary_10_1016_j_electacta_2020_137225 crossref_primary_10_1002_adma_201801563 crossref_primary_10_1021_acsaem_1c00869 crossref_primary_10_1002_celc_201800183 crossref_primary_10_1016_j_pnsc_2024_05_014 crossref_primary_10_1021_acsenergylett_6b00602 crossref_primary_10_1002_adma_201705796 crossref_primary_10_1016_j_elecom_2021_107039 crossref_primary_10_1007_s10008_019_04403_5 crossref_primary_10_1016_S1872_2067_19_63507_2 crossref_primary_10_1002_asia_201800245 crossref_primary_10_1016_j_gee_2023_01_003 crossref_primary_10_1002_celc_201700106 crossref_primary_10_1002_celc_202200867 crossref_primary_10_1007_s12274_023_5987_1 crossref_primary_10_1016_j_cej_2023_147915 crossref_primary_10_1021_acsaem_3c02911 crossref_primary_10_1007_s42235_022_00173_5 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_acsami_9b07436 crossref_primary_10_1039_D0NJ03443F crossref_primary_10_1021_acs_chemrev_0c01328 crossref_primary_10_1149_1945_7111_acfc2a crossref_primary_10_1016_j_jechem_2021_04_029 crossref_primary_10_1002_cnma_201900139 crossref_primary_10_1021_acsnano_2c00641 crossref_primary_10_1002_aenm_202003410 crossref_primary_10_1021_acsmaterialsau_3c00088 crossref_primary_10_1039_D2CY00153E crossref_primary_10_1002_ange_201807854 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1002_sstr_202100144 crossref_primary_10_1021_jacs_1c11331 crossref_primary_10_1016_j_carbon_2018_10_040 crossref_primary_10_1016_j_carbon_2018_03_044 crossref_primary_10_1016_j_nanoen_2019_02_043 crossref_primary_10_1039_C6CY02450E crossref_primary_10_1016_j_cclet_2021_02_032 crossref_primary_10_1007_s12039_022_02041_5 crossref_primary_10_1002_ange_201910309 crossref_primary_10_1007_s40843_017_9041_0 crossref_primary_10_1039_D0TA00794C crossref_primary_10_1021_acsami_8b11726 crossref_primary_10_1002_aenm_201700363 crossref_primary_10_1016_j_cclet_2019_08_008 crossref_primary_10_1021_acsami_7b08437 crossref_primary_10_1021_acsami_9b18101 crossref_primary_10_1002_cctc_202400582 crossref_primary_10_1002_smll_201700740 crossref_primary_10_1039_D0SE00019A crossref_primary_10_1002_ange_201906289 crossref_primary_10_1021_acsaem_2c01987 crossref_primary_10_1002_slct_202200570 crossref_primary_10_26599_NR_2025_94907195 crossref_primary_10_1002_anie_201907915 crossref_primary_10_1021_acsami_7b19332 crossref_primary_10_1016_j_apcata_2023_119293 crossref_primary_10_1021_acscatal_6b01222 crossref_primary_10_1016_j_carbon_2018_04_061 crossref_primary_10_3390_catal14090570 crossref_primary_10_1021_acsnano_2c00420 crossref_primary_10_1002_aenm_201602355 crossref_primary_10_1002_cnl2_169 crossref_primary_10_1016_j_jallcom_2021_161059 crossref_primary_10_1007_s41918_022_00141_x crossref_primary_10_1016_j_nanoen_2019_104052 crossref_primary_10_1016_j_nanoen_2019_104051 crossref_primary_10_1002_aenm_201902535 crossref_primary_10_1002_anie_202300826 crossref_primary_10_1016_j_cej_2019_123294 crossref_primary_10_1039_D3EE04251K crossref_primary_10_3390_catal12030250 crossref_primary_10_1002_chem_201903822 crossref_primary_10_1002_celc_201701341 crossref_primary_10_1016_j_pmatsci_2020_100717 crossref_primary_10_1002_aenm_202002753 crossref_primary_10_1016_j_ensm_2020_05_014 crossref_primary_10_1002_adma_201706330 crossref_primary_10_1016_j_jece_2023_109572 crossref_primary_10_1039_C9CP03287H crossref_primary_10_1016_j_ijhydene_2024_02_058 crossref_primary_10_1021_acsami_1c10192 crossref_primary_10_1021_acs_inorgchem_2c00735 crossref_primary_10_1021_acs_langmuir_2c01594 crossref_primary_10_1039_D1TA05039G crossref_primary_10_1016_j_susmat_2024_e01153 crossref_primary_10_1021_acs_nanolett_0c00081 crossref_primary_10_1039_C7CY01957B crossref_primary_10_1016_j_coelec_2018_03_035 crossref_primary_10_1016_j_jpowsour_2017_06_046 crossref_primary_10_1149_2_1131810jes crossref_primary_10_1002_adma_201800406 crossref_primary_10_1002_eem2_12085 crossref_primary_10_1039_D2RA06806K crossref_primary_10_1039_C9TA12171D crossref_primary_10_1039_D4CS00929K crossref_primary_10_1016_j_envres_2022_112992 crossref_primary_10_1021_acs_chemrev_6b00437 crossref_primary_10_1021_acssuschemeng_8b00657 crossref_primary_10_4491_eer_2023_657 crossref_primary_10_1002_celc_201600799 crossref_primary_10_1039_C6EE03265F crossref_primary_10_1039_C6CC03073D crossref_primary_10_1002_aenm_201902521 crossref_primary_10_1007_s11581_023_04896_1 crossref_primary_10_1016_j_apsusc_2020_147689 crossref_primary_10_1039_C8CC06638H crossref_primary_10_1007_s11144_022_02331_6 crossref_primary_10_1016_j_cclet_2021_04_051 crossref_primary_10_1002_asia_201900727 crossref_primary_10_1002_slct_201702514 crossref_primary_10_1021_acsami_0c16081 crossref_primary_10_1039_D0TA12439G crossref_primary_10_1016_j_cej_2023_145464 crossref_primary_10_1039_D4SC02853H crossref_primary_10_59761_RCR5085 crossref_primary_10_1002_ange_201907322 crossref_primary_10_1016_j_ijhydene_2019_11_201 crossref_primary_10_1021_jacs_7b01530 crossref_primary_10_1002_ppsc_201800266 crossref_primary_10_1007_s12274_023_5994_2 crossref_primary_10_1016_j_cattod_2020_04_015 crossref_primary_10_1021_acscatal_8b02360 crossref_primary_10_1021_acsami_3c15627 crossref_primary_10_1002_smtd_201900575 crossref_primary_10_1002_adma_201902339 crossref_primary_10_1149_2_0481707jes crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1016_j_electacta_2017_04_002 crossref_primary_10_1039_C8CY01223G crossref_primary_10_1021_acsanm_0c00438 crossref_primary_10_1016_j_jcat_2019_12_011 crossref_primary_10_1021_acsami_6b13417 crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1002_admi_202002060 crossref_primary_10_1021_acs_jpcc_1c02193 crossref_primary_10_1039_C8CS00797G crossref_primary_10_1021_acssuschemeng_9b00026 crossref_primary_10_1039_C7MH00586E crossref_primary_10_1002_chem_201701389 crossref_primary_10_1002_er_5524 crossref_primary_10_1007_s40820_017_0144_6 crossref_primary_10_1002_batt_201900052 crossref_primary_10_1021_acsanm_9b02260 crossref_primary_10_1016_j_ccr_2022_214592 crossref_primary_10_1002_smll_201703843 crossref_primary_10_1021_acs_iecr_7b01941 crossref_primary_10_1016_j_jcis_2021_06_021 crossref_primary_10_1021_acs_jpcc_8b09430 crossref_primary_10_1002_aenm_201901227 crossref_primary_10_1016_j_arabjc_2022_104256 crossref_primary_10_1002_anie_202101562 crossref_primary_10_1016_j_electacta_2018_06_152 crossref_primary_10_1134_S0018143920030091 crossref_primary_10_1016_j_jallcom_2020_155791 crossref_primary_10_1039_D1NR02457D crossref_primary_10_1039_D0NJ02621B crossref_primary_10_1002_adfm_201707219 crossref_primary_10_1039_C9TA04949E crossref_primary_10_1002_celc_201700049 crossref_primary_10_1039_D3SE00570D crossref_primary_10_1016_j_mcat_2024_114123 crossref_primary_10_1021_acsami_6b02522 crossref_primary_10_1016_j_electacta_2019_04_171 crossref_primary_10_1007_s12678_016_0347_5 crossref_primary_10_1016_j_jelechem_2022_117041 crossref_primary_10_1021_acs_jpcc_9b05843 crossref_primary_10_1039_C8TA10574J crossref_primary_10_3390_molecules29143311 crossref_primary_10_1007_s12274_016_1249_9 crossref_primary_10_1021_acs_jpcc_9b01480 crossref_primary_10_1016_j_carbon_2017_05_078 crossref_primary_10_3390_catal11111408 crossref_primary_10_1002_adfm_202009070 crossref_primary_10_1016_j_jallcom_2017_05_221 crossref_primary_10_1088_1361_6528_ab2616 crossref_primary_10_1002_chem_201801764 crossref_primary_10_1016_j_ijhydene_2020_11_265 crossref_primary_10_1016_j_electacta_2019_134869 crossref_primary_10_1016_j_jcis_2018_03_092 crossref_primary_10_1002_chin_201614213 crossref_primary_10_1016_j_jpowsour_2016_10_038 crossref_primary_10_1039_D4SE01528B crossref_primary_10_1016_j_nanoen_2021_105840 crossref_primary_10_1021_acsaem_4c00001 crossref_primary_10_1002_adma_202004654 crossref_primary_10_1016_j_jcat_2020_11_024 crossref_primary_10_1016_j_elecom_2019_01_021 crossref_primary_10_1021_acs_chemmater_8b02117 crossref_primary_10_1021_acs_inorgchem_2c02755 crossref_primary_10_1016_j_ijhydene_2021_09_040 crossref_primary_10_1016_j_jwpe_2023_103850 crossref_primary_10_1039_D0TA09537K crossref_primary_10_1039_D0NJ02933E crossref_primary_10_1021_jacs_0c06329 crossref_primary_10_1016_j_apsusc_2021_150054 crossref_primary_10_33961_JECST_2017_8_3_169 crossref_primary_10_1016_S1872_2067_17_62982_6 crossref_primary_10_1002_aesr_202100030 crossref_primary_10_1002_adma_201806312 crossref_primary_10_1021_acsami_0c10155 crossref_primary_10_1039_D0SE00735H crossref_primary_10_1002_ejic_201901027 crossref_primary_10_1007_s41918_019_00030_w crossref_primary_10_1016_j_ijhydene_2019_12_030 crossref_primary_10_1016_j_jallcom_2022_168107 crossref_primary_10_1007_s40820_019_0277_x crossref_primary_10_1016_j_cej_2022_137542 crossref_primary_10_1021_acsanm_3c04202 crossref_primary_10_1002_aenm_201902115 crossref_primary_10_1039_C9QM00385A crossref_primary_10_1002_smll_201703642 crossref_primary_10_1016_j_energy_2018_06_114 crossref_primary_10_1016_j_cej_2020_126088 crossref_primary_10_1016_j_colsurfa_2024_133637 crossref_primary_10_1007_s12678_020_00582_2 crossref_primary_10_1039_C7TA08423D crossref_primary_10_3390_cryst14030203 crossref_primary_10_1021_acscatal_8b02167 crossref_primary_10_1002_chem_201704041 crossref_primary_10_1016_j_electacta_2022_140667 crossref_primary_10_1016_j_synthmet_2019_06_001 crossref_primary_10_1039_D0SC02343D crossref_primary_10_1002_adfm_202001575 crossref_primary_10_1021_acs_jpcc_9b05005 crossref_primary_10_1021_acsnano_3c01380 crossref_primary_10_1039_C6TA08016B crossref_primary_10_1007_s40843_017_9191_5 crossref_primary_10_1002_slct_202301645 crossref_primary_10_1039_C6TA10190A crossref_primary_10_1016_j_ijhydene_2020_06_156 crossref_primary_10_1016_j_asems_2022_100006 crossref_primary_10_1039_C8CY01371C crossref_primary_10_3390_catal10080929 crossref_primary_10_1021_acsnano_8b08692 crossref_primary_10_1039_C5CS00665A crossref_primary_10_1016_j_renene_2020_05_050 crossref_primary_10_1021_acsanm_0c02695 crossref_primary_10_1016_j_jallcom_2024_175024 crossref_primary_10_1002_smll_201603903 crossref_primary_10_1016_j_nanoen_2016_09_016 crossref_primary_10_3390_ijms232314768 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1002_chem_201604930 crossref_primary_10_1002_adfm_202209315 crossref_primary_10_1021_acsami_7b04997 crossref_primary_10_1149_1945_7111_ad9412 crossref_primary_10_1016_j_apsusc_2018_10_116 crossref_primary_10_1016_j_carbon_2017_07_051 crossref_primary_10_1002_cctc_202402062 crossref_primary_10_1016_j_apcatb_2019_118198 crossref_primary_10_1021_acs_chemrev_8b00400 crossref_primary_10_1039_D0SE00271B crossref_primary_10_1002_ange_202300826 crossref_primary_10_1016_j_ces_2018_01_026 crossref_primary_10_1039_C9NH00095J crossref_primary_10_1126_sciadv_ado4935 crossref_primary_10_1002_chem_202005112 crossref_primary_10_3390_catal8030101 crossref_primary_10_1016_j_talanta_2017_12_082 crossref_primary_10_1021_acscatal_0c01498 crossref_primary_10_1039_C8CC00846A crossref_primary_10_1039_C8TA06455E crossref_primary_10_1002_slct_201800251 crossref_primary_10_1021_acsami_4c12970 crossref_primary_10_1021_acsami_7b12160 crossref_primary_10_1002_chem_201902389 crossref_primary_10_1039_D1DT03897D crossref_primary_10_1002_elan_201700780 crossref_primary_10_1002_cctc_202001855 crossref_primary_10_1016_j_cplett_2022_140126 crossref_primary_10_1039_C9NJ02408E crossref_primary_10_1002_adma_202202714 crossref_primary_10_1039_C8TA08870E crossref_primary_10_1016_j_jelechem_2019_113191 crossref_primary_10_1016_j_pmatsci_2019_100574 crossref_primary_10_1016_j_apsusc_2020_147659 crossref_primary_10_1021_acsenergylett_8b00245 crossref_primary_10_1021_acs_langmuir_7b02930 crossref_primary_10_1021_acsami_0c03823 crossref_primary_10_1016_j_carbon_2016_12_094 crossref_primary_10_1021_acsanm_2c02453 crossref_primary_10_1016_j_jpowsour_2019_227659 crossref_primary_10_1016_j_ijhydene_2019_12_079 crossref_primary_10_1016_j_ijhydene_2018_04_074 crossref_primary_10_1016_j_jpowsour_2019_227650 crossref_primary_10_1080_00032719_2024_2345745 crossref_primary_10_3390_catal13121484 crossref_primary_10_1039_C6RA14339C crossref_primary_10_1021_acscatal_2c00164 crossref_primary_10_1021_acsnano_3c07963 crossref_primary_10_1016_j_carbon_2016_12_084 crossref_primary_10_1016_j_jcis_2016_12_064 crossref_primary_10_1016_j_jpowsour_2019_227660 crossref_primary_10_1021_acs_nanolett_2c00238 crossref_primary_10_1039_D0NA00717J crossref_primary_10_1007_s43207_022_00241_w crossref_primary_10_1002_adma_201905007 crossref_primary_10_1016_j_mcat_2023_113102 crossref_primary_10_1016_j_electacta_2023_143001 crossref_primary_10_1007_s00339_023_06464_w crossref_primary_10_3390_catal12060585 crossref_primary_10_1016_j_apcatb_2018_11_072 crossref_primary_10_1016_j_apcatb_2021_119888 crossref_primary_10_1002_adma_201703614 crossref_primary_10_1002_ange_201907915 crossref_primary_10_1002_admi_202100244 crossref_primary_10_1039_C9QM00565J crossref_primary_10_1016_j_electacta_2019_06_175 crossref_primary_10_1016_j_jmgm_2017_09_001 crossref_primary_10_1016_j_ensm_2018_04_020 crossref_primary_10_1016_j_catcom_2017_04_038 crossref_primary_10_1002_adma_201804784 crossref_primary_10_1039_D1QM00854D crossref_primary_10_1016_j_mtchem_2024_102213 crossref_primary_10_1021_acs_chemmater_7b01550 crossref_primary_10_1016_j_nanoen_2017_09_040 crossref_primary_10_1016_j_pnsc_2020_08_010 crossref_primary_10_1016_j_pnsc_2020_08_012 crossref_primary_10_1016_j_gee_2022_10_007 crossref_primary_10_1016_j_jcat_2019_08_018 crossref_primary_10_3390_catal7120379 crossref_primary_10_1021_acs_energyfuels_4c05356 crossref_primary_10_1002_smll_202106841 crossref_primary_10_1016_j_snb_2016_10_138 crossref_primary_10_1039_C7TA10118J crossref_primary_10_1360_SSC_2022_0056 crossref_primary_10_1039_C7CC08149A crossref_primary_10_1016_j_jcis_2019_05_048 crossref_primary_10_1016_j_jcis_2020_11_095 crossref_primary_10_2139_ssrn_4016038 crossref_primary_10_34133_2019_6813585 crossref_primary_10_1021_acsami_0c14112 crossref_primary_10_1039_C7TA07387A crossref_primary_10_1021_acs_analchem_8b00247 crossref_primary_10_1134_S1070363224120223 crossref_primary_10_1039_D1EE01675J crossref_primary_10_1016_j_jcis_2020_07_117 crossref_primary_10_1016_j_carbon_2017_10_003 crossref_primary_10_1039_C9TA05981D crossref_primary_10_1016_j_carbon_2017_10_004 crossref_primary_10_1039_D2EY00055E crossref_primary_10_1016_j_mtchem_2025_102531 crossref_primary_10_1149_2_0361805jes crossref_primary_10_1007_s40820_022_00857_x crossref_primary_10_1016_j_fuel_2021_122954 crossref_primary_10_1039_C8NR10242B crossref_primary_10_1016_j_ijhydene_2024_11_450 crossref_primary_10_1149_1945_7111_abf4ad crossref_primary_10_1002_cctc_202101472 crossref_primary_10_1039_D0RA00264J crossref_primary_10_1002_smtd_201800204 crossref_primary_10_1039_D0TA10811A crossref_primary_10_1039_C9CC09481D crossref_primary_10_1016_j_jpcs_2019_03_023 crossref_primary_10_3390_ma16083283 crossref_primary_10_1021_acsami_7b19498 crossref_primary_10_1002_ente_202101168 crossref_primary_10_1002_adma_201804799 crossref_primary_10_1021_acsanm_8b00275 crossref_primary_10_1021_acsaem_8b00594 crossref_primary_10_1021_acs_bioconjchem_0c00694 crossref_primary_10_1021_acsenergylett_8b01717 crossref_primary_10_1002_chem_201801442 crossref_primary_10_1039_C8CY00864G crossref_primary_10_1021_acsami_6b11927 crossref_primary_10_1002_chem_202001288 crossref_primary_10_1016_j_surfin_2023_103729 crossref_primary_10_1021_acsami_1c16121 crossref_primary_10_3389_fchem_2022_945261 crossref_primary_10_1002_cssc_201601056 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1002_cssc_201902443 crossref_primary_10_1016_j_jcis_2019_05_063 crossref_primary_10_1007_s12274_019_2537_y crossref_primary_10_1016_j_jechem_2016_07_005 crossref_primary_10_1049_mnl_2018_5100 crossref_primary_10_1016_S1872_2067_23_64538_3 crossref_primary_10_1007_s12274_020_3151_8 crossref_primary_10_1016_j_chempr_2023_01_003 crossref_primary_10_1002_celc_201700627 crossref_primary_10_1016_j_electacta_2018_09_107 crossref_primary_10_1016_j_jpcs_2021_109989 crossref_primary_10_1016_j_jelechem_2024_118398 crossref_primary_10_1002_adma_202203791 crossref_primary_10_1063_5_0130835 crossref_primary_10_1002_adfm_201807418 crossref_primary_10_1016_j_synthmet_2020_116487 crossref_primary_10_1002_ange_202407628 crossref_primary_10_1021_acs_chemmater_8b02275 crossref_primary_10_1039_C6RA22925E crossref_primary_10_1039_C9NR04837E crossref_primary_10_1021_acsanm_4c00516 crossref_primary_10_1016_j_jelechem_2022_116879 crossref_primary_10_1007_s12678_024_00869_8 crossref_primary_10_1021_acs_energyfuels_2c04369 crossref_primary_10_1016_j_matchemphys_2022_126884 crossref_primary_10_1002_anie_201804958 crossref_primary_10_1002_cssc_201700864 crossref_primary_10_1002_qua_27017 crossref_primary_10_1021_acscatal_9b02583 crossref_primary_10_1039_C7TA09254G crossref_primary_10_1039_D1QI00394A crossref_primary_10_1021_acs_inorgchem_9b02663 crossref_primary_10_1016_j_jcis_2025_03_011 crossref_primary_10_1016_j_diamond_2024_111848 crossref_primary_10_1039_C8TA12178H crossref_primary_10_1002_smll_202307384 crossref_primary_10_1016_j_jelechem_2020_114542 crossref_primary_10_1016_j_cej_2019_123924 crossref_primary_10_1039_C8TA11704G crossref_primary_10_1002_chem_201801694 crossref_primary_10_1002_slct_201800745 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1002_admi_202101998 crossref_primary_10_1007_s10853_021_06488_8 crossref_primary_10_1039_C8SE00445E crossref_primary_10_1002_adma_202110279 crossref_primary_10_1016_j_mseb_2024_117625 crossref_primary_10_1021_acsami_9b20711 crossref_primary_10_1016_j_apcatb_2017_09_014 crossref_primary_10_1039_D0NR03115A crossref_primary_10_1021_acscatal_9b02920 crossref_primary_10_1002_anie_202107053 crossref_primary_10_1002_ijch_202200058 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1039_C7TA06515A crossref_primary_10_1039_C9TA03300A crossref_primary_10_1039_D1GC01040A crossref_primary_10_1002_smtd_201800073 crossref_primary_10_1016_j_ijhydene_2022_03_250 crossref_primary_10_1016_j_micromeso_2018_10_020 crossref_primary_10_1016_j_xcrp_2022_100788 crossref_primary_10_31857_S0044460X24050123 crossref_primary_10_1016_j_ceramint_2019_01_143 crossref_primary_10_1021_acsenergylett_3c01173 crossref_primary_10_1021_acssuschemeng_1c05907 crossref_primary_10_1002_ange_201800269 crossref_primary_10_1016_j_jpowsour_2021_230868 crossref_primary_10_26599_NRE_2022_9120009 crossref_primary_10_3390_en14196385 crossref_primary_10_3390_catal12091023 crossref_primary_10_1021_jacs_8b09805 crossref_primary_10_1039_C9TB00301K crossref_primary_10_1039_D1EE00142F crossref_primary_10_1149_2_0461714jes crossref_primary_10_1016_j_apsusc_2018_08_231 crossref_primary_10_1002_smtd_201800068 crossref_primary_10_1002_aesr_202000067 crossref_primary_10_1016_j_jelechem_2017_05_051 crossref_primary_10_20517_energymater_2023_52 crossref_primary_10_1016_j_carbon_2020_12_070 crossref_primary_10_1039_C9RA07334E crossref_primary_10_1016_j_jallcom_2021_158940 crossref_primary_10_1039_C7TA04532H crossref_primary_10_1016_j_electacta_2020_137335 crossref_primary_10_1016_j_cis_2021_102562 crossref_primary_10_1002_admi_201900273 crossref_primary_10_1021_acsanm_9b01865 crossref_primary_10_1002_smll_201803500 crossref_primary_10_1016_j_ijhydene_2022_03_276 crossref_primary_10_1016_j_checat_2022_06_002 crossref_primary_10_1002_adfm_201900015 crossref_primary_10_1016_j_elecom_2018_06_001 crossref_primary_10_1002_celc_201801144 crossref_primary_10_1016_j_jpowsour_2023_233483 crossref_primary_10_3390_inorganics11100388 crossref_primary_10_1016_j_jsamd_2019_07_001 crossref_primary_10_1002_asia_202000310 crossref_primary_10_1002_tcr_202400166 crossref_primary_10_1016_j_catcom_2019_105800 crossref_primary_10_1021_acs_jpcc_9b00235 crossref_primary_10_3389_fchem_2019_00747 crossref_primary_10_3390_cryst13010074 crossref_primary_10_1016_j_jechem_2020_10_034 crossref_primary_10_3390_en13092322 crossref_primary_10_1021_acsenergylett_0c00184 crossref_primary_10_1016_j_jpowsour_2018_06_095 crossref_primary_10_1039_D0NR05475E crossref_primary_10_1016_j_ijhydene_2019_01_044 crossref_primary_10_1016_j_apcata_2024_119684 crossref_primary_10_1016_j_nanoen_2017_08_044 crossref_primary_10_1246_bcsj_20220094 crossref_primary_10_1016_j_jechem_2018_09_012 crossref_primary_10_1002_cey2_158 crossref_primary_10_1016_j_jelechem_2022_116023 crossref_primary_10_1039_D1SE01744F crossref_primary_10_3389_fchem_2022_983549 crossref_primary_10_1016_j_apcata_2019_117120 crossref_primary_10_1039_C6TA02078J crossref_primary_10_1021_acsami_7b09428 crossref_primary_10_1016_j_nanoen_2017_07_008 crossref_primary_10_1002_eom2_12067 crossref_primary_10_1002_slct_201900533 crossref_primary_10_1149_1945_7111_aba5da crossref_primary_10_1039_C6TA10496G crossref_primary_10_1021_acsaem_0c00215 crossref_primary_10_1007_s13399_019_00378_5 crossref_primary_10_1021_acsami_0c06506 crossref_primary_10_3390_nano10101947 crossref_primary_10_1016_j_pmatsci_2018_01_003 crossref_primary_10_1016_j_apsusc_2022_153907 crossref_primary_10_1016_j_seppur_2023_124155 crossref_primary_10_1039_D2CY00141A crossref_primary_10_1016_j_jechem_2018_09_003 crossref_primary_10_1021_acssuschemeng_7b03046 crossref_primary_10_1002_smll_202302795 crossref_primary_10_1016_j_mtcomm_2023_107190 crossref_primary_10_1039_C9SE01216H crossref_primary_10_1016_S1872_2067_19_63365_6 crossref_primary_10_1021_acscatal_7b02402 crossref_primary_10_1016_j_corsci_2022_110694 crossref_primary_10_1016_j_colsurfa_2022_129417 crossref_primary_10_1016_j_carbon_2019_11_046 crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_3390_molecules26061631 crossref_primary_10_1021_acsami_9b09737 crossref_primary_10_1016_j_cej_2021_132174 crossref_primary_10_1021_acssuschemeng_9b05567 crossref_primary_10_1016_j_carbon_2017_02_045 crossref_primary_10_1016_j_jpowsour_2019_04_103 crossref_primary_10_1039_C9NR02914A crossref_primary_10_1016_j_apsusc_2018_09_248 crossref_primary_10_1002_adfm_202423476 crossref_primary_10_1002_adma_201808281 crossref_primary_10_1007_s12274_021_3598_2 crossref_primary_10_1021_acsami_6b08101 crossref_primary_10_1039_D2CC02298B crossref_primary_10_1016_j_nanoen_2019_103917 crossref_primary_10_1016_j_jpowsour_2021_229665 crossref_primary_10_1007_s12274_021_3292_4 crossref_primary_10_1002_anie_201908021 crossref_primary_10_1016_j_jpowsour_2020_228897 crossref_primary_10_1021_acs_jpcc_6b02670 crossref_primary_10_1002_chem_201703020 crossref_primary_10_1021_acscatal_3c00080 crossref_primary_10_1002_cctc_202200517 crossref_primary_10_1016_j_jallcom_2021_161174 crossref_primary_10_1016_j_ijhydene_2021_12_072 crossref_primary_10_1039_C7TA08964C crossref_primary_10_3390_nano13172397 crossref_primary_10_1002_eem2_12173 crossref_primary_10_1016_j_apcatb_2020_118603 crossref_primary_10_1016_j_coco_2021_100994 crossref_primary_10_1039_D1TA01417J crossref_primary_10_1016_j_nanoen_2018_07_033 crossref_primary_10_1002_smll_202405008 crossref_primary_10_1002_adma_202400140 crossref_primary_10_1016_j_envres_2021_111054 crossref_primary_10_1016_j_electacta_2020_136792 crossref_primary_10_1016_j_jcis_2018_08_087 crossref_primary_10_1016_j_jcat_2018_11_039 crossref_primary_10_1021_acs_nanolett_6b05004 crossref_primary_10_1007_s12274_019_2496_3 crossref_primary_10_1016_j_cej_2017_08_072 crossref_primary_10_1021_acsaem_0c03092 crossref_primary_10_1039_D0TA02544E crossref_primary_10_1002_ange_201702473 crossref_primary_10_1016_j_scib_2017_10_001 crossref_primary_10_1007_s10853_019_03508_6 crossref_primary_10_1039_D2SE00319H crossref_primary_10_1039_C6CC09206C crossref_primary_10_1039_D0TA09544C crossref_primary_10_1039_D1DT00026H crossref_primary_10_1002_adfm_201804886 crossref_primary_10_1016_j_ijhydene_2019_05_032 crossref_primary_10_1002_cctc_201701926 crossref_primary_10_1002_smll_201600977 crossref_primary_10_1016_j_jcis_2019_03_079 crossref_primary_10_1039_D1SE01871J crossref_primary_10_1021_acscatal_0c02690 crossref_primary_10_1016_j_jcis_2016_11_101 crossref_primary_10_1039_D0NR09174J crossref_primary_10_1016_j_jcis_2020_06_057 crossref_primary_10_1016_j_ijhydene_2022_05_025 crossref_primary_10_1021_acscatal_7b01800 crossref_primary_10_1039_C7CP01817G crossref_primary_10_1016_j_electacta_2018_01_177 crossref_primary_10_1016_j_jpowsour_2020_228629 crossref_primary_10_1007_s10008_020_04543_z crossref_primary_10_1021_acsnano_1c09450 crossref_primary_10_1016_j_electacta_2017_06_160 crossref_primary_10_1021_acsaem_0c03075 crossref_primary_10_1021_acssuschemeng_9b04327 crossref_primary_10_1002_cctc_202300454 crossref_primary_10_1002_sus2_108 crossref_primary_10_1039_C8NJ01593G crossref_primary_10_1039_D1RA01350E crossref_primary_10_1002_smll_201700238 crossref_primary_10_1002_asia_201701457 crossref_primary_10_1016_j_jobe_2024_108770 crossref_primary_10_1007_s12274_016_1400_7 crossref_primary_10_1016_j_apcatb_2019_118224 crossref_primary_10_1021_acsami_0c11945 crossref_primary_10_1002_adfm_201803973 crossref_primary_10_1002_adma_202311460 crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1002_anie_201702473 crossref_primary_10_1021_acsaem_1c03424 crossref_primary_10_1002_ange_202216950 crossref_primary_10_3390_nano15030170 crossref_primary_10_1016_j_apsusc_2020_147367 crossref_primary_10_1039_D2NR01655A crossref_primary_10_1016_j_ccr_2021_213954 crossref_primary_10_1039_D0CS01482F crossref_primary_10_1016_j_jallcom_2024_177166 crossref_primary_10_1002_smll_202206071 crossref_primary_10_1039_C9TA01234F crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_1016_j_nanoen_2016_04_042 crossref_primary_10_1021_acs_jpcc_1c10916 crossref_primary_10_1002_adfm_202209273 crossref_primary_10_1016_j_nanoen_2016_04_041 crossref_primary_10_1039_C7TA04915C crossref_primary_10_1016_j_ceramint_2023_06_056 crossref_primary_10_1016_j_jcis_2023_12_047 crossref_primary_10_1149_2162_8777_ac83f0 crossref_primary_10_1016_j_cej_2017_08_024 crossref_primary_10_1088_1361_6528_ac43ea crossref_primary_10_1039_C9NR06080D crossref_primary_10_1016_j_mset_2020_12_001 crossref_primary_10_1002_ange_202101562 crossref_primary_10_1016_j_apsusc_2021_148981 crossref_primary_10_1016_j_cclet_2018_11_021 crossref_primary_10_1021_acs_inorgchem_1c03573 crossref_primary_10_1016_j_ces_2023_118906 crossref_primary_10_1039_D0TA10666F crossref_primary_10_1016_j_ensm_2019_09_024 crossref_primary_10_1002_smll_202304681 crossref_primary_10_1016_j_carbon_2019_02_006 crossref_primary_10_1039_C6EE01867J crossref_primary_10_1021_acsami_9b04451 crossref_primary_10_1002_adsu_202400373 crossref_primary_10_1007_s11705_018_1706_y crossref_primary_10_1021_acs_energyfuels_1c00785 crossref_primary_10_1021_acs_inorgchem_3c00290 crossref_primary_10_1021_acssuschemeng_9b06934 crossref_primary_10_1016_j_jmst_2022_09_004 crossref_primary_10_1016_j_cplett_2019_136813 crossref_primary_10_1016_j_jpowsour_2020_228684 crossref_primary_10_1002_smtd_201700167 crossref_primary_10_1016_j_ijhydene_2019_08_097 crossref_primary_10_1039_C9TA12516G crossref_primary_10_1016_j_jallcom_2019_06_087 crossref_primary_10_1039_D0TA00010H crossref_primary_10_1016_j_apcatb_2022_121619 crossref_primary_10_1016_j_ijhydene_2024_08_435 crossref_primary_10_1002_adma_201604563 crossref_primary_10_1016_j_cattod_2019_10_027 crossref_primary_10_1016_j_jallcom_2021_163361 crossref_primary_10_1016_j_jallcom_2022_164991 crossref_primary_10_1039_C6CP08925A crossref_primary_10_1002_ente_202201456 crossref_primary_10_1039_C8TA04599B crossref_primary_10_1039_C8CY01694A crossref_primary_10_1002_cssc_202100055 crossref_primary_10_1039_D1CP00525A crossref_primary_10_1002_adma_201602197 crossref_primary_10_1016_j_apsusc_2017_12_153 crossref_primary_10_1021_acs_jpcc_1c01333 crossref_primary_10_1016_S1872_2067_20_63536_7 crossref_primary_10_1039_D2NR05245H crossref_primary_10_1039_D2NJ04441B crossref_primary_10_1002_cctc_201601387 crossref_primary_10_3390_nano7110404 crossref_primary_10_1016_j_cclet_2018_10_039 crossref_primary_10_3390_catal14050325 crossref_primary_10_1016_j_envres_2023_115808 crossref_primary_10_1016_j_scib_2017_08_015 crossref_primary_10_1039_D4DT00152D crossref_primary_10_1016_j_mtnano_2021_100144 crossref_primary_10_1016_j_electacta_2020_135855 crossref_primary_10_1002_anie_201807854 crossref_primary_10_1016_j_scib_2017_08_011 crossref_primary_10_1002_adma_202412525 crossref_primary_10_1007_s11581_018_2775_0 crossref_primary_10_1021_acssuschemeng_7b03888 crossref_primary_10_1039_C9TA01807G crossref_primary_10_1002_advs_202409546 crossref_primary_10_1039_D1CC02667D crossref_primary_10_1002_smll_201804371 crossref_primary_10_1016_j_ijhydene_2019_05_085 crossref_primary_10_1016_j_jelechem_2024_118475 crossref_primary_10_1002_batt_201800082 crossref_primary_10_1002_cssc_202002756 crossref_primary_10_1515_ntrev_2020_0052 crossref_primary_10_1039_D3GC02856A crossref_primary_10_1016_j_ces_2021_116544 crossref_primary_10_1002_cctc_202000233 crossref_primary_10_1016_j_jelechem_2020_114556 crossref_primary_10_1016_j_jallcom_2024_174002 crossref_primary_10_1016_j_jelechem_2020_114316 crossref_primary_10_1016_j_ccr_2017_09_001 crossref_primary_10_1002_er_4746 crossref_primary_10_1021_acsomega_2c02395 crossref_primary_10_1016_j_ijhydene_2020_03_243 crossref_primary_10_1002_aoc_3738 crossref_primary_10_1002_adfm_201604356 crossref_primary_10_1021_acsnano_7b01908 crossref_primary_10_1186_s13705_019_0226_z crossref_primary_10_1002_anie_201907322 crossref_primary_10_1007_s12274_020_2626_y crossref_primary_10_1016_j_jallcom_2018_01_144 crossref_primary_10_1039_C9CS00159J crossref_primary_10_1002_anie_202311113 crossref_primary_10_1039_C7SE00346C crossref_primary_10_1007_s10934_022_01244_y crossref_primary_10_1002_cssc_201900451 crossref_primary_10_1021_acscatal_4c02871 crossref_primary_10_1021_acsami_8b03742 crossref_primary_10_1016_j_apcatb_2018_08_074 crossref_primary_10_1002_adma_201805126 crossref_primary_10_1039_C9TA06128B crossref_primary_10_1016_j_apcatb_2024_124698 crossref_primary_10_1016_j_jelechem_2022_116712 crossref_primary_10_1016_j_ijhydene_2021_11_220 crossref_primary_10_1039_C7CC08346G crossref_primary_10_1016_j_diamond_2023_110386 crossref_primary_10_1016_j_electacta_2023_143282 crossref_primary_10_1002_anie_201910309 crossref_primary_10_1039_D0TA05326K crossref_primary_10_1007_s12598_020_01440_2 crossref_primary_10_1039_C9QI00484J crossref_primary_10_1002_anie_201906289 crossref_primary_10_1016_j_jcis_2017_12_012 crossref_primary_10_1142_S1793292020501155 crossref_primary_10_1002_smll_202106355 crossref_primary_10_1002_advs_202003212 crossref_primary_10_1002_fuce_201900120 crossref_primary_10_1016_j_carbon_2018_06_007 crossref_primary_10_1016_j_carbon_2021_12_096 crossref_primary_10_1002_cnma_201800231 crossref_primary_10_1016_j_mset_2018_06_005 crossref_primary_10_1016_j_electacta_2019_02_079 crossref_primary_10_1016_j_jallcom_2021_160036 crossref_primary_10_1021_acssuschemeng_0c05158 crossref_primary_10_1039_C8SC05236K crossref_primary_10_1002_chem_201705232 crossref_primary_10_1007_s10853_017_0986_9 crossref_primary_10_1088_1361_6528_ac4f16 crossref_primary_10_1016_j_jcis_2019_02_084 crossref_primary_10_1016_j_cclet_2019_03_026 crossref_primary_10_1016_j_fuel_2021_121681 crossref_primary_10_1002_cctc_201800152 crossref_primary_10_1007_s40820_023_01067_9 crossref_primary_10_1002_sstr_202200201 crossref_primary_10_1007_s10853_021_06610_w crossref_primary_10_1016_j_carbon_2019_01_039 crossref_primary_10_1021_acssuschemeng_9b00307 crossref_primary_10_1016_j_scib_2019_10_016 crossref_primary_10_1021_acsami_7b04667 crossref_primary_10_1039_C9RA08068F crossref_primary_10_1021_acs_energyfuels_2c03434 crossref_primary_10_3390_polym15030521 crossref_primary_10_1016_j_mseb_2021_115341 crossref_primary_10_1016_j_ijhydene_2024_02_361 crossref_primary_10_1016_j_susmat_2020_e00221 crossref_primary_10_1016_j_electacta_2017_08_194 crossref_primary_10_1149_1945_7111_ad977a crossref_primary_10_1021_acs_iecr_3c01588 crossref_primary_10_1039_D3EY00235G crossref_primary_10_1002_celc_202300622 crossref_primary_10_1039_C9EE00315K crossref_primary_10_1039_C8TA06442C crossref_primary_10_1039_C9EE02974E crossref_primary_10_1002_celc_201801859 crossref_primary_10_1002_celc_201701085 crossref_primary_10_1039_D4TA04066J crossref_primary_10_1016_j_jcat_2020_05_034 crossref_primary_10_1039_D3NR01272G crossref_primary_10_1016_j_pmatsci_2018_12_002 crossref_primary_10_1002_ange_202107053 crossref_primary_10_1002_adfm_201901949 crossref_primary_10_1002_smll_201702002 crossref_primary_10_1021_acsanm_4c03408 crossref_primary_10_1021_acssuschemeng_6b01210 crossref_primary_10_1039_D0NR02763D crossref_primary_10_1002_adfm_201700795 |
Cites_doi | 10.1021/cs400374k 10.1039/c3ee43648a 10.1039/C4TA04189E 10.1016/j.cap.2012.08.008 10.1039/C5EE00762C 10.1002/anie.201402574 10.1039/C4CS00484A 10.1002/adma.201500262 10.1016/j.jelechem.2010.10.004 10.1002/anie.201306588 10.1021/cm062685t 10.1039/C3CS60215J 10.1126/science.1230444 10.1002/anie.201005314 10.1002/adma.201305254 10.1002/ange.201404333 10.1016/j.elecom.2013.01.023 10.1021/ja502646c 10.1002/adfm.201201244 10.1021/jp302396g 10.1002/anie.201302924 10.1002/ange.201104004 10.1039/C4CC06867J 10.1016/0378-7753(78)85014-9 10.1002/adma.201304147 10.1002/anie.201407629 10.1126/science.1200832 10.1149/1.2425884 10.1021/nn3021234 10.1002/anie.200504386 10.1016/j.electacta.2004.03.018 10.1021/ja507463w 10.1039/C3TA15335E 10.1021/nl2029078 10.1002/anie.201406695 10.1002/ange.201208582 10.1038/nchem.367 10.1002/anie.201408408 10.1016/j.apcatb.2004.06.021 10.1039/C3TA13877A 10.1039/b912552c 10.1021/ja3091643 10.1016/S0360-0564(02)45013-4 10.1038/nnano.2012.134 10.1002/ange.201207186 10.1126/science.1135941 10.1021/ja3030565 10.1149/1.2734880 10.1021/ac900777n 10.1039/C3EE42696C 10.1149/1.1943550 10.1038/354056a0 10.1016/j.electacta.2008.02.092 10.1016/j.electacta.2014.10.138 10.1002/ange.201400358 10.1002/anie.201411125 10.1002/anie.201403363 10.1038/ncomms2812 10.1039/C4TA05342G 10.1002/anie.201204958 10.1002/adfm.201401264 10.1039/C4CS00141A 10.1021/nn504637y 10.1038/nmat3458 10.1038/nchem.121 10.1016/S1452-3981(23)15306-5 10.1002/chem.201003080 10.1002/anie.201207193 10.1002/chem.201302425 10.1039/c3ta13299d 10.1039/C4TA00029C 10.1038/2011212a0 10.1039/C4TA03986F 10.1002/ange.200504386 10.1021/cs502029h 10.1016/0013-4686(70)80037-8 10.1149/1.1837229 10.1021/cs500741s 10.1002/ange.201209871 10.1038/nchem.931 10.1021/ja403041g 10.1002/anie.201101287 10.1038/ncomms5973 10.1021/acs.nanolett.5b00320 10.1002/ange.201402574 10.3390/en20400873 10.1021/ic9022486 10.1021/ja310614x 10.1002/bbpc.19740780616 10.1016/j.electacta.2013.06.133 10.1126/science.1186476 10.1016/0378-7753(79)85009-0 10.1002/ange.201100170 10.1038/ncomms1427 10.1002/ange.201402710 10.1021/ja503656a 10.1021/ic5024778 10.1002/ange.201005314 10.1016/j.electacta.2013.01.074 10.1038/nnano.2012.18 10.1038/nmat3087 10.1021/j100298a016 10.1021/ja402450a 10.1039/C2CP42369C 10.1021/nl2017459 10.1039/C3NR05885A 10.1126/science.1170051 10.1038/nchem.288 10.1021/ja2047655 10.1021/ja5129132 10.1039/c2sc20657a 10.1016/S0378-7753(01)01009-6 10.1021/ja0449729 10.1016/j.micromeso.2004.03.034 10.1021/ja310566z 10.1002/anie.201402710 10.1039/c1ee01437d 10.1021/ja209206c 10.1002/ange.201407629 10.1016/0013-4686(75)90047-X 10.1021/ja5082553 10.1002/ange.201306828 10.1021/ja104587v 10.1039/c3nr05578g 10.1002/anie.201208582 10.1039/C1EE01431E 10.1002/anie.201206720 10.1002/ange.201308896 10.1002/ange.201307203 10.1002/ange.201207193 10.1039/B709893F 10.1002/9781118878330 10.1039/c4cc00730a 10.1016/j.electacta.2015.03.022 10.1039/C3EE43886D 10.1002/cctc.201301102 10.1016/j.jpowsour.2008.05.020 10.1002/anie.201209871 10.1002/aenm.201301415 10.1002/ange.201101287 10.1021/ja5084128 10.1002/chem.200903263 10.1039/C4CS00492B 10.1021/nl401325u 10.1039/c0ee00558d 10.1002/ange.201206720 10.1002/anie.201308896 10.1126/science.287.5460.1989 10.1021/ja305623m 10.1016/j.electacta.2010.05.019 10.1038/nchem.1083 10.1016/j.catcom.2011.08.038 10.1002/anie.201100170 10.1002/anie.201400358 10.1016/S0013-4686(02)00815-0 10.1002/ange.201206152 10.1002/ange.201403363 10.1021/jp047349j 10.1002/aenm.201400654 10.1021/ja306376s 10.1039/c2cc17537a 10.1039/C4CC03987D 10.1149/1.2364836 10.1039/c2cc34544g 10.1007/BF01039385 10.1039/C3TA14043A 10.1002/celc.201300157 10.1021/ar400011z 10.1002/adma.201104392 10.1016/j.electacta.2009.12.039 10.1021/ja502532y 10.1039/b200393g 10.1039/C3SC52026A 10.1021/jp104074t 10.1002/aenm.201301523 10.1021/ja505708y 10.1016/j.electacta.2008.02.012 10.1039/C4TA02790F 10.1021/nn404927n 10.1002/anie.201207186 10.1002/adma.201304218 10.1039/C4NR02646B 10.1002/adfm.201200186 10.1016/j.comptc.2013.04.003 10.1039/C4CC07137A 10.1021/cm201542m 10.1002/anie.201307203 10.1002/anie.201104004 10.1038/nnano.2012.72 10.1021/la1042475 10.1002/ange.201302924 10.1002/smll.201303715 10.1126/science.1168049 10.1002/ange.201405314 10.1002/ange.201406695 10.1039/C4NR05988C 10.1039/C4TA00846D 10.1021/nn303275d 10.1016/j.electacta.2005.07.006 10.1021/ac5039187 10.1016/j.nantod.2011.06.002 10.1126/science.1249061 10.1021/ac102191u 10.1021/ja061246s 10.1038/srep02771 10.1039/C5CC01152C 10.1016/j.elecom.2014.07.002 10.1021/ja100922h 10.1039/c1cp21665a 10.1002/asia.201100715 10.1039/c3ta11917c 10.1002/anie.201306828 10.1039/c4ee00106k 10.1021/cr100060r 10.1002/anie.201303197 10.1002/anie.201410258 10.1126/science.aaa8765 10.1016/j.jelechem.2006.02.029 10.1021/ja407552k 10.1002/adma.201304683 10.1021/ja210924t 10.1016/j.nantod.2014.09.002 10.1039/C4EE02281E 10.1039/b413177k 10.1149/1.2432061 10.1002/ange.201303197 10.1002/ange.201204958 10.1016/j.carbon.2012.11.036 10.1002/ange.201410258 10.1039/C4EE01760A 10.1016/0013-4686(84)85006-9 10.1002/adma.201203923 10.1016/j.electacta.2014.06.120 10.1016/j.jpowsour.2003.09.013 10.1039/C4NR00348A 10.1016/j.carbon.2014.04.017 10.1016/j.jpowsour.2007.08.028 10.1002/ange.201306588 10.1039/C4TA03850A 10.1149/1.1865612 10.1038/srep06013 10.1002/adfm.201302940 10.1039/c2ee03590a 10.1002/anie.201404333 10.1021/ja406091p 10.1021/ac403890n 10.1016/j.electacta.2006.08.059 10.1002/aenm.201400337 10.1038/nchem.1069 10.1016/S1388-2481(03)00053-5 10.1021/ja072344w 10.1021/ja7106146 10.1039/C3CC48942F 10.1002/ange.201411125 10.1021/am507033x 10.1002/9783527664900.ch4 10.1021/ja5030172 10.1039/C4TA01656D 10.1039/c0cc02048f 10.1149/1.2404164 10.1002/ange.201408408 10.1002/adma.201302753 10.1021/jp021634q 10.1002/aenm.201200230 10.1016/j.nanoen.2012.07.021 10.1039/C3EE43743D 10.1016/j.nantod.2014.05.003 10.1021/ja5009954 10.1038/srep05130 10.1021/ja500432h 10.1016/j.elecom.2006.02.020 10.1002/anie.201206152 10.1021/ja509348t 10.1002/adma.201202424 10.1002/anie.201405314 10.1021/ja5003907 10.1126/science.181.4099.547 10.1021/ar300359w 10.1016/j.jpowsour.2010.07.082 10.1002/adma.201301870 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201504830 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2676 |
ExternalDocumentID | 3953572081 26663778 10_1002_anie_201504830 ANIE201504830 ark_67375_WNG_Q80DVQ1T_Z |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11175006; 51322205; 21371014 – fundername: Beijing Committee of Science and Technology funderid: 2012004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c6120-c03363effb1fb26d3c6d79d6defbcc37eb4f92978d9af9adcba0a3b5fc79e1243 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:56:13 EDT 2025 Sun Jul 13 04:52:21 EDT 2025 Sun Jul 13 05:02:47 EDT 2025 Wed Feb 19 01:59:38 EST 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 03:27:06 EDT 2025 Wed Jan 22 16:20:46 EST 2025 Wed Oct 30 10:02:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fuel cells nanostructure electrocatalysts platinum-free catalysts oxygen reduction |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6120-c03363effb1fb26d3c6d79d6defbcc37eb4f92978d9af9adcba0a3b5fc79e1243 |
Notes | ArticleID:ANIE201504830 Beijing Committee of Science and Technology - No. 2012004 ark:/67375/WNG-Q80DVQ1T-Z National Natural Science Foundation of China - No. 11175006; No. 51322205; No. 21371014 istex:9F98BB82672ED354AE46C8E31B24AA7D677D0756 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 26663778 |
PQID | 1765272844 |
PQPubID | 946352 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_1765922376 proquest_journals_1908257566 proquest_journals_1765272844 pubmed_primary_26663778 crossref_citationtrail_10_1002_anie_201504830 crossref_primary_10_1002_anie_201504830 wiley_primary_10_1002_anie_201504830_ANIE201504830 istex_primary_ark_67375_WNG_Q80DVQ1T_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 18, 2016 |
PublicationDateYYYYMMDD | 2016-02-18 |
PublicationDate_xml | – month: 02 year: 2016 text: February 18, 2016 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Angew. Chem. 2014, 126, 3749-3753. T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 2015, 5, 1857-1862. W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A 2014, 2, 11606-11613. T. Sun, Y. Yu, B. J. Zacher, M. V. Mirkin, Angew. Chem. Int. Ed. 2014, 53, 14120-14123 E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T. J. Schmidt, ChemElectroChem 2014, 1, 338-342. Z. Wen, S. Ci, Y. Hou, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 6496-6500 J.-S. Lee, G. S. Park, S. T. Kim, M. Liu, J. Cho, Angew. Chem. Int. Ed. 2013, 52, 1026-1030 R. Zhou, Y. Zheng, D. Hulicova-Jurcakova, S. Z. Qiao, J. Mater. Chem. A 2013, 1, 13179-13185. Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 2014, 7, 2535-2558. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552-556. A. A. Tanaka, C. Fierro, D. Scherson, E. B. Yaeger, J. Phys. Chem. 1987, 91, 3799-3807. W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436-1439. W. Yang, Y. Zhai, X. Yue, Y. Wang, J. Jia, Chem. Commun. 2014, 50, 11151-11153. J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang, G. Sun, ACS Catal. 2014, 4, 2998-3001. G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889. A. Kong, Q. Lin, C. Mao, X. P. Feng, Chem. Commun. 2014, 50, 15619-15622. Angew. Chem. 2014, 126, 3630-3660. X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin, X. Y. Guo, Chem. Commun. 2012, 48, 1892-1894. Y. Li, D. Bergman, B. Zhang, Anal. Chem. 2009, 81, 5496-5502. J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3-14. G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater. 2014, 24, 5956-5961. Y.-g. Wang, L. Cheng, F. Li, H.-m. Xiong, Y.-y. Xia, Chem. Mater. 2007, 19, 2095-2101. Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 2013, 135, 1201-1204. Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612-13614. Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184-2202. X. Xiao, A. J. Bard, J. Am. Chem. Soc. 2007, 129, 9610-9612. Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849-15857. K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998-1003. Angew. Chem. 2013, 125, 2534-2537. Y. Zhao, C. Hu, L. Song, L. Wang, G. Shi, L. Dai, L. Qu, Energy Environ. Sci. 2014, 7, 1913-1918. R. B. Levy, M. Boudart, Science 1973, 181, 547-549. S. L. James, Chem. Soc. Rev. 2003, 32, 276-288. Angew. Chem. 2012, 124, 11664-11668. T. Huang, S. Mao, G. Zhou, Z. Wen, X. Huang, S. Ci, J. Chen, Nanoscale 2014, 6, 9608-9613. Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz, S. H. Joo, J. Mater. Chem. A 2013, 1, 9992-10001. Y. J. Wang, D. P. Wilkinson, J. Zhang, Chem. Rev. 2011, 111, 7625-7651. B. Cao, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, Inorg. Chem. 2015, 54, 2128-2136. Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517-3523. W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568-576. Angew. Chem. 2014, 126, 10849-10853. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81-87. C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646-4650 P. S. Toth, A. T. Valota, M. Velický, I. A. Kinloch, K. S. Novoselov, E. W. Hill, R. A. W. Dryfe, Chem. Sci. 2014, 5, 582-589. S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7, 609-616. J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 2011, 11, 5362-5366. H. Jin, H. Zhang, H. Zhong, J. Zhang, Energy Environ. Sci. 2011, 4, 3389-3394. X. Shan, I. Diez-Perez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Nat. Nanotechnol. 2012, 7, 668-672. N. Ebejer, M. Schnippering, A. W. Colburn, M. A. Edwards, P. R. Unwin, Anal. Chem. 2010, 82, 9141-9145. M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, J. Phys. Chem. C 2012, 116, 16001-16013. Angew. Chem. 2011, 123, 662-665. Angew. Chem. 2013, 125, 10953-10957. D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, Ber. Bunsen-Ges. 1974, 78, 608-611. A. S. Bondarenko, I. E. L. Stephens, H. A. Hansen, F. J. Pérez-Alonso, V. Tripkovic, T. P. Johansson, J. Rossmeisl, J. K. Nørskov, I. Chorkendorff, Langmuir 2011, 27, 2058-2066. Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng, J. Mater. Chem. A 2015, 3, 1142-1151. C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta 2008, 53, 4937-4951. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339-1343. Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394-4403. S. Yuan, J.-L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. Yu, D.-J. Liu, Angew. Chem. Int. Ed. 2013, 52, 8349-8353 H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, Electrochem. Commun. 2006, 8, 707-712. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764. F. Mazza, S. Trassatti, J. Electrochem. Soc. 1963, 110, 847-849. Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675-3679 J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546-550. Angew. Chem. 2013, 125, 8507-8511. T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925-13931. X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067-7098. J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 2015, 54, 588-593 Angew. Chem. 2014, 126, 7025-7029. L. An, W. Huang, N. Zhang, X. Chen, D. Xia, J. Mater. Chem. A 2014, 2, 62-65. H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan, J. M. Tour, ACS Nano 2014, 8, 10837-10843. C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88-97. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132-7135 Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Müllen, Adv. Mater. 2014, 26, 1450-1455. A. Shen, Y. Zou, Q. Wang, R. A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2014, 53, 10804-10808 Angew. Chem. 2013, 125, 8686-8705. H. Behret, H. Binder, G. Sandstede, Electrochim. Acta 1975, 20, 111-117. Angew. Chem. 2014, 126, 9657-9661. Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Sci. Rep. 2013, 3, 2771. J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, K. Domen, Chem. Commun. 2010, 46, 7492-7494. Angew. Chem. 2015, 127, 598-603. S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526-8544 A. J. Wain, Electrochim. Acta 2013, 92, 383-391. J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508-8512 I. Morcos, E. Yeager, Electrochim. Acta 1970, 15, 953-975. Angew. Chem. 2014, 126, 2465-2469. Y. Takasu, M. Suzuki, H. Yang, T. Ohashi, W. Sugimoto, Electrochim. Acta 2010, 55, 8220-8229. P. Chen, X. Zhou, N. M. Andoy, K. S. Han, E. Choudhary, N. Zou, G. Chen, H. Shen, Chem. Soc. Rev. 2014, 43, 1107-1117. Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337. J. Larminie, A. L. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, Hoboken, 2003. L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 2014, 6, 6590-6602. D. R. McIntyre, A. Vossen, J. R. Wilde, G. T. Burstein, J. Power Sources 2002, 108, 1-7. D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D.-J. Liu, Chem. Sci. 2012, 3, 3200-3205. S. Inamdar, H.-S. Choi, P. Wang, M. Y. Song, J.-S. Yu, Electrochem. Commun. 2013, 30, 9-12. M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74. S. Doi, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B362. R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826. G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, P. Zelenay, ACS Nano 2012, 6, 9764-9776. H. Zhu, S. Zhang, Y. X. Huang, L. Wu, S. Sun, Nano Lett. 2013, 13, 2947-2951. R. Dasari, D. A. Robinson, K. J. Stevenson, J. Am. Chem. Soc. 2013, 135, 570-573. I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2014, 53, 102-121 G. Zhang, B. Y. Xia, X. Wang, X. W. David Lou, Adv. Mater. 2014, 26, 2408-2412. T. Zhang, F. Cheng, J. Du, Y. Hu, J. Chen, Adv. Energy Mater. 2015, 5, 1400654. G. L. Chai, Z. Hou, D. J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 2014, 136, 13629-13640. Angew. Chem. 2015, 127, 4729-4733. Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B664. Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 2015, 15, 2468-2473. Angew. Chem. 2006, 118, 2963-2967. J. Wang, Z. Xu, Y. Gong, C. Han, H. Li, Y. Wang, ChemCatChem 2014, 6, 1204-1209. M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556-577. S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339-5343 K. Sasaki, L. Zhang, R. R. Adzic, Phys. Chem. Chem. Phys. 2008, 10, 159-167. Angew. Chem. 2012, 124, 11940-11943. F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, J. Electroanal. Chem. 2006, 590, 152-160. Y. Su, H. Jiang, Y. Zhu, X. Yang, J. Shen, W. Zou, J. Chen, C. Li, J. Mater. Chem. A 2014, 2, 7281-7287. Angew. Chem. 2014; 138 2010; 16 2013; 3 2013; 4 2013; 1 1991; 354 2013; 2 2009; 81 1973; 181 2014; 26 2014; 24 1996; 143 2011; 196 2014; 136 2011; 111 2008; 183 2012; 134 2015; 137 2007; 173 2013; 54 2010; 114 2015; 87 2003; 48 1979; 4 2012; 24 2010; 5 2012; 22 2014; 10 2007; 19 1974; 78 2011; 2 2006; 51 2010; 327 2013; 108 2004; 49 2015; 51 2010; 39 2015; 54 2014; 46 2013; 92 2014; 150 2006; 590 2013; 341 2008; 53 2011; 4 2011; 3 2011; 6 1970; 15 2011; 133 2003; 32 2014; 43 2010; 49 2003; 107 2007; 315 2010; 46 2007; 154 2005; 8 2005; 127 1975; 20 2011 2011; 50 123 2012; 48 2012; 116 2008; 130 2011; 660 2014 2014; 53 126 2010; 55 2004; 127 2013; 1015 2013; 25 2000; 45 2011; 11 1978; 2 2011; 10 1984; 29 2011; 13 2015; 348 2011; 17 2011; 16 2013 2013; 52 125 2013; 19 2014; 1 2013; 15 2014; 5 2014; 4 2004; 73 2014; 2 2013; 13 2013; 12 2012 2012; 51 124 2015; 44 2015 2015; 54 127 2003; 5 2011; 23 2000; 287 2002; 108 2014; 9 2011; 27 2014; 8 2014; 50 2014; 7 2006; 128 2014; 6 2009; 323 2009; 324 2015; 15 1972; 119 1963; 110 2007; 129 2015; 5 2015; 3 2013; 46 1987; 91 2015; 165 2006; 8 2008; 10 2005 2003 2007; 52 2004; 108 2015; 8 2015; 7 2011; 332 2014; 86 2010; 82 2006 2006; 45 118 2012; 2 2015; 27 2012; 3 2013; 30 2010; 132 2013; 135 2015 2014 2012; 6 2009; 2 2012; 7 2009; 1 2012; 5 1989; 19 2005; 56 2014; 343 2014; 75 1964; 201 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_200_1 e_1_2_11_223_1 e_1_2_11_246_1 e_1_2_11_186_1 e_1_2_11_223_2 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_55_2 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_211_1 e_1_2_11_197_1 e_1_2_11_234_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_2 e_1_2_11_17_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_151_2 e_1_2_11_208_1 e_1_2_11_174_1 e_1_2_11_151_1 e_1_2_11_201_1 e_1_2_11_247_1 e_1_2_11_92_1 e_1_2_11_201_2 e_1_2_11_224_2 e_1_2_11_224_1 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_54_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_190_1 e_1_2_11_212_1 e_1_2_11_235_1 e_1_2_11_80_1 e_1_2_11_198_1 e_1_2_11_250_1 e_1_2_11_88_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_39_2 e_1_2_11_175_2 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_209_1 Xiao J. (e_1_2_11_81_1) 2015; 7 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_248_1 e_1_2_11_248_2 Hamdani M. (e_1_2_11_117_1) 2010; 5 e_1_2_11_202_1 e_1_2_11_225_1 e_1_2_11_188_1 e_1_2_11_57_1 e_1_2_11_240_1 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_95_2 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_142_2 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_191_1 e_1_2_11_236_1 e_1_2_11_191_2 e_1_2_11_60_1 e_1_2_11_213_1 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_251_1 e_1_2_11_68_1 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_2 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_249_1 e_1_2_11_226_1 e_1_2_11_203_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_2 e_1_2_11_189_1 e_1_2_11_79_1 e_1_2_11_241_1 e_1_2_11_33_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_237_1 e_1_2_11_237_2 e_1_2_11_214_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_252_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_154_1 e_1_2_11_177_1 e_1_2_11_131_1 e_1_2_11_182_1 e_1_2_11_204_1 e_1_2_11_227_1 e_1_2_11_242_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_144_1 e_1_2_11_239_1 e_1_2_11_193_1 e_1_2_11_238_1 e_1_2_11_215_2 e_1_2_11_230_2 e_1_2_11_215_1 e_1_2_11_253_1 e_1_2_11_47_1 e_1_2_11_230_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_2 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_59_1 e_1_2_11_178_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_227_2 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_220_1 e_1_2_11_183_1 e_1_2_11_205_1 e_1_2_11_243_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_145_2 e_1_2_11_1_1 e_1_2_11_217_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_216_1 e_1_2_11_231_1 e_1_2_11_231_2 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_228_2 e_1_2_11_228_1 e_1_2_11_171_1 e_1_2_11_91_1 e_1_2_11_221_1 e_1_2_11_184_1 e_1_2_11_244_1 e_1_2_11_30_1 e_1_2_11_99_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_169_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_218_1 e_1_2_11_161_1 e_1_2_11_195_1 e_1_2_11_232_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_206_1 e_1_2_11_229_1 e_1_2_11_172_1 e_1_2_11_222_1 e_1_2_11_90_1 e_1_2_11_185_1 e_1_2_11_245_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_52_2 e_1_2_11_75_2 e_1_2_11_75_1 e_1_2_11_7_1 Vielstich W. (e_1_2_11_2_1) 2003 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_219_2 e_1_2_11_219_1 e_1_2_11_162_1 e_1_2_11_210_2 e_1_2_11_210_1 e_1_2_11_196_1 e_1_2_11_233_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_7_2 e_1_2_11_158_2 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 e_1_2_11_150_2 e_1_2_11_207_1 |
References_xml | – reference: J. L. Fernández, D. A. Walsh, A. J. Bard, J. Am. Chem. Soc. 2005, 127, 357-365. – reference: Y. Tan, C. Xu, G. Chen, X. Fang, N. Zheng, Q. Xie, Adv. Funct. Mater. 2012, 22, 4584-4591. – reference: J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 2011, 11, 5362-5366. – reference: A. J. Wain, Electrochim. Acta 2013, 92, 383-391. – reference: T. Sun, Y. Yu, B. J. Zacher, M. V. Mirkin, Angew. Chem. Int. Ed. 2014, 53, 14120-14123; – reference: S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593-5597. – reference: C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084-7091. – reference: Angew. Chem. 2014, 126, 6614-6618. – reference: J. Xiao, C. Chen, J. Xi, Y. Xu, F. Xiao, S. Wang, S. Yang, Nanoscale 2015, 7, 7056-7064. – reference: R. F. Savinell, Nat. Chem. 2011, 3, 501-502. – reference: Angew. Chem. 2014, 126, 3749-3753. – reference: Y. Zhu, B. Zhang, X. Liu, D. W. Wang, D. S. Su, Angew. Chem. Int. Ed. 2014, 53, 10673-10677; – reference: Z. Guo, S. J. Percival, B. Zhang, J. Am. Chem. Soc. 2014, 136, 8879-8882. – reference: M.-h. Shao, P. Liu, R. R. Adzic, J. Am. Chem. Soc. 2006, 128, 7408-7409. – reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. – reference: F. Jaouen, S. Marcotte, J.-P. Dodelet, G. Lindbergh, J. Phys. Chem. B 2003, 107, 1376-1386. – reference: Angew. Chem. 2013, 125, 389-393. – reference: Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888-1892; – reference: Angew. Chem. 2014, 126, 14344-14347. – reference: A. Shen, Y. Zou, Q. Wang, R. A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2014, 53, 10804-10808; – reference: Angew. Chem. 2011, 123, 662-665. – reference: S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, P. R. Unwin, Angew. Chem. Int. Ed. 2014, 53, 3558-3586; – reference: T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 2015, 5, 1857-1862. – reference: S. Yuan, J.-L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. Yu, D.-J. Liu, Angew. Chem. Int. Ed. 2013, 52, 8349-8353; – reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786. – reference: S. Isogai, R. Ohnishi, M. Katayama, J. Kubota, D. Y. Kim, S. Noda, D. Cha, K. Takanabe, K. Domen, Chem. Asian J. 2012, 7, 286-289. – reference: Angew. Chem. 2014, 126, 104-124. – reference: Z. Xiang, Y. Xue, D. Cao, L. Huang, J. F. Chen, L. Dai, Angew. Chem. Int. Ed. 2014, 53, 2433-2437; – reference: J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, Z. Dai, J. Mater. Chem. A 2014, 2, 6316-6319. – reference: D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 2013, 52, 371-375; – reference: I. E. L. Stephens, A. S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 6744-6762. – reference: Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168-2201. – reference: S. L. James, Chem. Soc. Rev. 2003, 32, 276-288. – reference: M. Seredych, E. Rodriguez-Castellon, T. J. Bandosz, J. Mater. Chem. A 2014, 2, 20164-20176. – reference: S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 3465-3468; – reference: J. Duan, S. Chen, S. Dai, S. Z. Qiao, Adv. Funct. Mater. 2014, 24, 2072-2078. – reference: A. A. Tanaka, C. Fierro, D. Scherson, E. B. Yaeger, J. Phys. Chem. 1987, 91, 3799-3807. – reference: J. Larminie, A. L. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, Hoboken, 2003. – reference: K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 2009, 1, 397-402. – reference: K. Sasaki, L. Zhang, R. R. Adzic, Phys. Chem. Chem. Phys. 2008, 10, 159-167. – reference: Angew. Chem. 2012, 124, 11940-11943. – reference: V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Marković, Science 2007, 315, 493-497. – reference: X. Shan, I. Diez-Perez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Nat. Nanotechnol. 2012, 7, 668-672. – reference: Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517-3523. – reference: Y.-g. Wang, L. Cheng, F. Li, H.-m. Xiong, Y.-y. Xia, Chem. Mater. 2007, 19, 2095-2101. – reference: J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552-556. – reference: B. Li, X. Ge, F. W. T. Goh, T. S. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, Nanoscale 2015, 7, 1830-1838. – reference: T. Ando, S. Izhar, H. Tominaga, M. Nagai, Electrochim. Acta 2010, 55, 2614-2621. – reference: S. Iijima, Nature 1991, 354, 56-58. – reference: H. Wang, X. Bo, Y. Zhang, L. Guo, Electrochim. Acta 2013, 108, 404-411. – reference: S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. Int. Ed. 2012, 51, 11770-11773; – reference: K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998-1003. – reference: W. Yang, Y. Zhai, X. Yue, Y. Wang, J. Jia, Chem. Commun. 2014, 50, 11151-11153. – reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132-7135; – reference: X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin, X. Y. Guo, Chem. Commun. 2012, 48, 1892-1894. – reference: V. S. Bagotzky, M. R. Tarasevich, K. A. Radyushkina, O. A. Levina, S. I. Andrusyova, J. Power Sources 1978, 2, 233-240. – reference: Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 2013, 4, 1805. – reference: J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546-550. – reference: M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, J. Phys. Chem. C 2012, 116, 16001-16013. – reference: Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082-9085. – reference: G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang, F. Wei, Small 2014, 10, 2251-2259. – reference: M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater. 2015, 27, 2521-2527. – reference: Y. Zhao, C. Hu, L. Song, L. Wang, G. Shi, L. Dai, L. Qu, Energy Environ. Sci. 2014, 7, 1913-1918. – reference: N. Daems, X. Sheng, I. F. J. Vankelecom, P. P. Pescarmona, J. Mater. Chem. A 2014, 2, 4085-4110. – reference: S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634-3640. – reference: S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339-5343; – reference: S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, J. Appl. Electrochem. 1989, 19, 19-27. – reference: F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79-84. – reference: G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889. – reference: G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, P. Zelenay, ACS Nano 2012, 6, 9764-9776. – reference: Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337. – reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764. – reference: V. Nallathambi, J.-W. Lee, S. P. Kumaraguru, G. Wu, B. N. Popov, J. Power Sources 2008, 183, 34-42. – reference: R. Yang, A. Bonakdarpour, J. R. Dhan, J. Electrochem. Soc. 2007, 154, B1. – reference: Angew. Chem. 2014, 126, 7025-7029. – reference: J. D. Voorhies, J. Electrochem. Soc. 1972, 119, 219-222. – reference: Y. Su, H. Jiang, Y. Zhu, X. Yang, J. Shen, W. Zou, J. Chen, C. Li, J. Mater. Chem. A 2014, 2, 7281-7287. – reference: I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2014, 53, 102-121; – reference: Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675-3679; – reference: S. Ma, G. A. Goenaga, A. V. Call, D. J. Liu, Chem. Eur. J. 2011, 17, 2063-2067. – reference: H. Kim, K. Lee, S. I. Woo, Y. Jung, Phys. Chem. Chem. Phys. 2011, 13, 17505-17510. – reference: C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932-4937. – reference: X. Xiao, A. J. Bard, J. Am. Chem. Soc. 2007, 129, 9610-9612. – reference: J. Wu, H. Yang, Acc. Chem. Res. 2013, 46, 1848-1857. – reference: Y. Takasu, M. Suzuki, H. Yang, T. Ohashi, W. Sugimoto, Electrochim. Acta 2010, 55, 8220-8229. – reference: B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390-5391. – reference: R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826. – reference: A. Ishihara, K. Lee, S. Doi, S. Mitsushima, N. Kamiya, M. Hara, K. Domen, K. Fukuda, K.-U. Ota, Electrochem. Solid-State Lett. 2005, 8, A201. – reference: S. Doi, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B362. – reference: J. P. Brenet, J. Power Sources 1979, 4, 183-190. – reference: P. S. Toth, A. T. Valota, M. Velický, I. A. Kinloch, K. S. Novoselov, E. W. Hill, R. A. W. Dryfe, Chem. Sci. 2014, 5, 582-589. – reference: C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829-841. – reference: S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989-1992. – reference: S. Guo, S. Zhang, D. Su, S. Sun, J. Am. Chem. Soc. 2013, 135, 13879-13884. – reference: M. Shao, A. Peles, K. Shoemaker, Nano Lett. 2011, 11, 3714-3719. – reference: W. Sun, A. Hsu, R. Chen, J. Power Sources 2011, 196, 627-635. – reference: Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 2005, 8, A400. – reference: A. S. Bondarenko, I. E. L. Stephens, H. A. Hansen, F. J. Pérez-Alonso, V. Tripkovic, T. P. Johansson, J. Rossmeisl, J. K. Nørskov, I. Chorkendorff, Langmuir 2011, 27, 2058-2066. – reference: W. Li, D. Yang, H. Chen, Y. Gao, H. Li, Electrochim. Acta 2015, 165, 191-197. – reference: M. Fayette, A. Nelson, R. D. Robinson, J. Mater. Chem. A 2015, 3, 4274-4283. – reference: C.-H. Kuo, I. M. Mosa, S. Thanneeru, V. Sharma, L. Zhang, S. Biswas, M. Aindow, S. Pamir Alpay, J. F. Rusling, S. L. Suib, J. He, Chem. Commun. 2015, 51, 5951-5954. – reference: J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255. – reference: Y. J. Wang, D. P. Wilkinson, J. Zhang, Chem. Rev. 2011, 111, 7625-7651. – reference: C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, J. Power Sources 2007, 173, 891-908. – reference: S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, S. Sun, J. Am. Chem. Soc. 2014, 136, 7734-7739. – reference: Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H. B. Yang, B. Liu, Y. Yang, Chem. Soc. Rev. 2015, 44, 3295-3346. – reference: R. Jasinski, Nature 1964, 201, 1212-1213. – reference: G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443-447. – reference: J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang, G. Sun, ACS Catal. 2014, 4, 2998-3001. – reference: W. Vielstich, A. Lamm, H. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wiley, Chichester, 2003. – reference: C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88-97. – reference: E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T. J. Schmidt, ChemElectroChem 2014, 1, 338-342. – reference: Q. Li, N. Mahmood, J. Zhu, Y. Hou, S. Sun, Nano Today 2014, 9, 668-683. – reference: Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale 2014, 6, 3540-3544. – reference: M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74. – reference: Angew. Chem. 2014, 126, 10849-10853. – reference: Angew. Chem. 2013, 125, 8507-8511. – reference: G. L. Chai, Z. Hou, D. J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 2014, 136, 13629-13640. – reference: Angew. Chem. 2011, 123, 5451-5455. – reference: Y. J. Sa, C. Park, H. Y. Jeong, S. H. Park, Z. Lee, K. T. Kim, G. G. Park, S. H. Joo, Angew. Chem. Int. Ed. 2014, 53, 4102-4106; – reference: W. He, C. Jiang, J. Wang, L. Lu, Angew. Chem. Int. Ed. 2014, 53, 9503-9507; – reference: Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415. – reference: M. Liu, Y. Dong, Y. Wu, H. Feng, J. Li, Chem. Eur. J. 2013, 19, 14781-14786. – reference: E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nat. Commun. 2011, 2, 416. – reference: D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, Ber. Bunsen-Ges. 1974, 78, 608-611. – reference: Angew. Chem. 2015, 127, 4729-4733. – reference: M. Lei, J. Wang, J. R. Li, Y. G. Wang, H. L. Tang, W. J. Wang, Sci. Rep. 2014, 4, 6013. – reference: Angew. Chem. 2013, 125, 10953-10957. – reference: Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu, Catal. Commun. 2011, 16, 35-38. – reference: E. J. Biddinger, U. S. Ozkan, J. Phys. Chem. C 2010, 114, 15306-15314. – reference: J. L. Fernández, M. Wijesinghe, C. G. Zoski, Anal. Chem. 2015, 87, 1066-1074. – reference: H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan, J. M. Tour, ACS Nano 2014, 8, 10837-10843. – reference: J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306-311. – reference: J.-S. Lee, G. S. Park, S. T. Kim, M. Liu, J. Cho, Angew. Chem. Int. Ed. 2013, 52, 1026-1030; – reference: A. Kong, Q. Lin, C. Mao, X. P. Feng, Chem. Commun. 2014, 50, 15619-15622. – reference: J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37-46. – reference: H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, Electrochem. Commun. 2006, 8, 707-712. – reference: R. Zhou, Y. Zheng, D. Hulicova-Jurcakova, S. Z. Qiao, J. Mater. Chem. A 2013, 1, 13179-13185. – reference: D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D.-J. Liu, Chem. Sci. 2012, 3, 3200-3205. – reference: Z. Zhang, G. M. Veith, G. M. Brown, P. F. Fulvio, P. C. Hillesheim, S. Dai, S. H. Overbury, Chem. Commun. 2014, 50, 1469-1471. – reference: Z. Shi, J. Zhang, Z.-S. Liu, H. Wang, D. P. Wilkinson, Electrochim. Acta 2006, 51, 1905-1916. – reference: L. Mao, Electrochim. Acta 2003, 48, 1015-1021. – reference: C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta 2008, 53, 4937-4951. – reference: H. Jin, H. Zhang, H. Zhong, J. Zhang, Energy Environ. Sci. 2011, 4, 3389-3394. – reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969-10972; – reference: >W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 1837-1866. – reference: Angew. Chem. 2006, 118, 2963-2967. – reference: Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4, 3167-3192. – reference: K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo, S. F. Bent, Adv. Energy Mater. 2012, 2, 1269-1277. – reference: Q. Guo, D. Zhao, S. Liu, S. Chen, M. Hanif, H. Hou, Electrochim. Acta 2014, 138, 318-324. – reference: H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Mater. Chem. A 2014, 2, 15704-15716. – reference: J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, K. Domen, Chem. Commun. 2010, 46, 7492-7494. – reference: J. Tang, J. Liu, N. L. Torad, T. Kimura, Y. Yamauchi, Nano Today 2014, 9, 305-323. – reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496-11500; – reference: X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Nanoscale 2014, 6, 2603-2607. – reference: Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394-400. – reference: V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int. Ed. 2006, 45, 2897-2901; – reference: T. Hyodo, M. Hayashi, N. Miura, N. Yamazoe, J. Electrochem. Soc. 1996, 143, L266-L267. – reference: F. Mazza, S. Trassatti, J. Electrochem. Soc. 1963, 110, 847-849. – reference: S. Inamdar, H.-S. Choi, P. Wang, M. Y. Song, J.-S. Yu, Electrochem. Commun. 2013, 30, 9-12. – reference: R. Dasari, D. A. Robinson, K. J. Stevenson, J. Am. Chem. Soc. 2013, 135, 570-573. – reference: R. B. Levy, M. Boudart, Science 1973, 181, 547-549. – reference: J. S. Li, S. L. Li, Y. J. Tang, K. Li, L. Zhou, N. Kong, Y. Q. Lan, J. C. Bao, Z. H. Dai, Sci. Rep. 2014, 4, 5130. – reference: T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059-1067. – reference: Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz, S. H. Joo, J. Mater. Chem. A 2013, 1, 9992-10001. – reference: W. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 14385-14388. – reference: J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 2015, 54, 588-593; – reference: Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. L. Wang, G. Wu, Adv. Mater. 2014, 26, 1378-1386. – reference: H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, J. Am. Chem. Soc. 2013, 135, 7130-7133. – reference: T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925-13931. – reference: Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184-2202. – reference: H. Nie, Y. Zhang, W. Zhou, J. Li, B. Wu, T. Liu, H. Zhang, Electrochim. Acta 2014, 150, 205-210. – reference: Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu, T. Asefa, J. Am. Chem. Soc. 2014, 136, 13554-13557. – reference: C. M. Sánchez-Sánchez, J. Solla-Gullón, F. J. Vidal-Iglesias, A. Aldaz, V. Montiel, E. Herrero, J. Am. Chem. Soc. 2010, 132, 5622-5624. – reference: Y. X. Zhou, H. B. Yao, Y. Wang, H. L. Liu, M. R. Gao, P. K. Shen, S. H. Yu, Chem. Eur. J. 2010, 16, 12000-12007. – reference: J.-H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Electrochim. Acta 2007, 52, 2492-2497. – reference: Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849-15857. – reference: F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, J. Electroanal. Chem. 2006, 590, 152-160. – reference: K. Lee, N. Alonso-Vante, J. Zhang, Non-Noble Metal Fuel Cell Catalysts, Wiley-VCH, Weinheim, 2014, pp. 157-182. – reference: H. Li, W. Kang, L. Wang, Q. Yue, S. Xu, H. Wang, J. Liu, Carbon 2013, 54, 249-257. – reference: T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646-4650; – reference: X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067-7098. – reference: M. S. Faber, S. Jin, Energy Environ. Sci. 2014, 7, 3519-3542. – reference: Angew. Chem. 2014, 126, 8648-8652. – reference: Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 2015, 15, 2468-2473. – reference: X. Zhao, H. Zhao, T. Zhang, X. Yan, Y. Yuan, H. Zhang, H. Zhao, D. Zhang, G. Zhu, X. Yao, J. Mater. Chem. A 2014, 2, 11666-11671. – reference: Angew. Chem. 2014, 126, 3630-3660. – reference: Y. Dong, J. Li, Chem. Commun. 2015, 51, 572-575. – reference: A. Zhao, J. Masa, W. Xia, A. Maljusch, M. G. Willinger, G. Clavel, K. Xie, R. Schlogl, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551-7554. – reference: X. Zhou, J. Qiao, L. Yang, J. Zhang, Adv. Energy Mater. 2014, 4, 1301523. – reference: H. Zhu, S. Zhang, Y. X. Huang, L. Wu, S. Sun, Nano Lett. 2013, 13, 2947-2951. – reference: J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508-8512; – reference: Angew. Chem. 2013, 125, 3549-3552. – reference: H. Behret, H. Binder, G. Sandstede, Electrochim. Acta 1975, 20, 111-117. – reference: Angew. Chem. 2014, 126, 2465-2469. – reference: E. Yeager, Electrochim. Acta 1984, 29, 1527-1537. – reference: S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7, 609-616. – reference: C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K. C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, V. R. Stamenkovic, J. Am. Chem. Soc. 2011, 133, 14396-14403. – reference: M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai, L. Lu, ACS Appl. Mater. Interfaces 2015, 7, 1207-1218. – reference: Angew. Chem. 2013, 125, 2534-2537. – reference: Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 2013, 135, 1201-1204. – reference: Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, J. Am. Chem. Soc. 2011, 133, 20116-20119. – reference: Y. Hu, J. O. Jensen, W. Zhang, S. Martin, R. Chenitz, C. Pan, W. Xing, N. J. Bjerrum, Q. Li, J. Mater. Chem. A 2015, 3, 1752-1760. – reference: D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127-16130. – reference: Y. Li, D. Bergman, B. Zhang, Anal. Chem. 2009, 81, 5496-5502. – reference: I.-Y. Jeon, D. Yu, S.-Y. Bae, H.-J. Choi, D. W. Chang, L. Dai, J.-B. Baek, Chem. Mater. 2011, 23, 3987-3992. – reference: W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568-576. – reference: C. Giordano, M. Antonietti, Nano Today 2011, 6, 366-380. – reference: J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3-14. – reference: Angew. Chem. 2012, 124, 11664-11668. – reference: J. Seo, D. Cha, K. Takanabe, J. Kubota, K. Domen, Chem. Commun. 2012, 48, 9074-9076. – reference: A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530-17536. – reference: K. Waki, R. A. Wong, H. S. Oktaviano, T. Fujio, T. Nagai, K. Kimoto, K. Yamada, Energy Environ. Sci. 2014, 7, 1950-1958. – reference: Angew. Chem. 2014, 126, 9657-9661. – reference: Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng, J. Mater. Chem. A 2015, 3, 1142-1151. – reference: M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556-577. – reference: Y. Zhao, J. Zhang, B. Han, J. Song, J. Li, Q. Wang, Angew. Chem. Int. Ed. 2011, 50, 636-639; – reference: H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35. – reference: T. Zhang, F. Cheng, J. Du, Y. Hu, J. Chen, Adv. Energy Mater. 2015, 5, 1400654. – reference: G. Zhang, B. Y. Xia, X. Wang, X. W. David Lou, Adv. Mater. 2014, 26, 2408-2412. – reference: C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339-1343. – reference: B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71-129. – reference: W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436-1439. – reference: Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394-4403. – reference: A. Ishihara, S. Doi, S. Mitsushima, K.-i. Ota, Electrochim. Acta 2008, 53, 5442-5450. – reference: Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 2014, 7, 2535-2558. – reference: F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 2013, 52, 2474-2477; – reference: L. An, W. Huang, N. Zhang, X. Chen, D. Xia, J. Mater. Chem. A 2014, 2, 62-65. – reference: J. Xu, P. Gao, T. S. Zhao, Energy Environ. Sci. 2012, 5, 5333-5339. – reference: Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Sci. Rep. 2013, 3, 2771. – reference: C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318. – reference: J. Wang, G. Wang, S. Miao, X. Jiang, J. Li, X. Bao, Carbon 2014, 75, 381-389. – reference: Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B664. – reference: H. A. Gasteiger, J. E. Panels, S. G. Yan, J. Power Sources 2004, 127, 162-171. – reference: Angew. Chem. 2013, 125, 1060-1064. – reference: X. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Science 2010, 327, 1363-1366. – reference: I. Morcos, E. Yeager, Electrochim. Acta 1970, 15, 953-975. – reference: K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Electrochim. Acta 2004, 49, 3479-3485. – reference: J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313-3321. – reference: Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Müllen, Adv. Mater. 2014, 26, 1450-1455. – reference: G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater. 2014, 24, 5956-5961. – reference: X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu, W. Xing, ACS Catal. 2013, 3, 1726-1729. – reference: Angew. Chem. 2015, 127, 1908-1912. – reference: P. Chen, X. Zhou, N. M. Andoy, K. S. Han, E. Choudhary, N. Zou, G. Chen, H. Shen, Chem. Soc. Rev. 2014, 43, 1107-1117. – reference: Angew. Chem. 2013, 125, 8686-8705. – reference: L. Kong, Z. Ren, S. Du, J. Wu, H. Fu, Chem. Commun. 2014, 50, 4921-4923. – reference: S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526-8544; – reference: J. Wang, Z. Xu, Y. Gong, C. Han, H. Li, Y. Wang, ChemCatChem 2014, 6, 1204-1209. – reference: H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973. – reference: M. Risch, K. A. Stoerzinger, S. Maruyama, W. T. Hong, I. Takeuchi, Y. Shao-Horn, J. Am. Chem. Soc. 2014, 136, 5229-5232. – reference: I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. Dai, J. B. Baek, J. Am. Chem. Soc. 2013, 135, 1386-1393. – reference: T. N. Ye, L. B. Lv, X. H. Li, M. Xu, J. S. Chen, Angew. Chem. Int. Ed. 2014, 53, 6905-6909; – reference: J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886-17892. – reference: B. Cao, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, Inorg. Chem. 2015, 54, 2128-2136. – reference: M. D. Esrafili, Comput. Theor. Chem. 2013, 1015, 1-7. – reference: J. Lee, B. Jeong, J. D. Ocon, Curr. Appl. Phys. 2013, 13, 309-321. – reference: L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 2014, 6, 6590-6602. – reference: M. T. M. Koper, J. Electroanal. Chem. 2011, 660, 254-260. – reference: W. Wang, N. Tao, Anal. Chem. 2014, 86, 2-14. – reference: N. Ebejer, M. Schnippering, A. W. Colburn, M. A. Edwards, P. R. Unwin, Anal. Chem. 2010, 82, 9141-9145. – reference: Angew. Chem. 2014, 126, 4186-4190. – reference: A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790-6793. – reference: X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230-1234. – reference: B. Cao, G. M. Veith, R. E. Diaz, J. Liu, E. A. Stach, R. R. Adzic, P. G. Khalifah, Angew. Chem. Int. Ed. 2013, 52, 10753-10757; – reference: D. R. McIntyre, A. Vossen, J. R. Wilde, G. T. Burstein, J. Power Sources 2002, 108, 1-7. – reference: M. T. Koper, Phys. Chem. Chem. Phys. 2013, 15, 1399-1407. – reference: Angew. Chem. 2015, 127, 598-603. – reference: D. J. Ham, J. S. Lee, Energies 2009, 2, 873-899. – reference: A. A. Gewirth, M. S. Thorum, Inorg. Chem. 2010, 49, 3557-3566. – reference: T. Huang, S. Mao, G. Zhou, Z. Wen, X. Huang, S. Ci, J. Chen, Nanoscale 2014, 6, 9608-9613. – reference: X. Zhou, N. M. Andoy, G. Liu, E. Choudhary, K.-S. Han, H. Shen, P. Chen, Nat. Nanotechnol. 2012, 7, 237-241. – reference: Z. Wen, S. Ci, Y. Hou, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 6496-6500; – reference: Angew. Chem. 2014, 126, 10980-10984. – reference: Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612-13614. – reference: H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002-16005. – reference: I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai, J. B. Baek, Adv. Mater. 2013, 25, 6138-6145. – reference: Angew. Chem. 2011, 123, 11161-11164. – reference: L. Wang, Z. Sofer, A. Ambrosi, P. Šimek, M. Pumera, Electrochem. Commun. 2014, 46, 148-151. – reference: Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399-1404. – reference: W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A 2014, 2, 11606-11613. – reference: Angew. Chem. 2011, 123, 7270-7273. – reference: D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81-87. – volume: 55 start-page: 8220 year: 2010 end-page: 8229 publication-title: Electrochim. Acta – volume: 1 start-page: 552 year: 2009 end-page: 556 publication-title: Nat. Chem. – volume: 52 125 start-page: 10753 10953 year: 2013 2013 end-page: 10757 10957 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 3714 year: 2011 end-page: 3719 publication-title: Nano Lett. – volume: 136 start-page: 17530 year: 2014 end-page: 17536 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 10673 10849 year: 2014 2014 end-page: 10677 10853 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 397 year: 2009 end-page: 402 publication-title: Nat. Chem. – volume: 4 start-page: 5130 year: 2014 publication-title: Sci. Rep. – volume: 50 123 start-page: 5339 5451 year: 2011 2011 end-page: 5343 5455 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 17505 year: 2011 end-page: 17510 publication-title: Phys. Chem. Chem. Phys. – volume: 52 125 start-page: 8349 8507 year: 2013 2013 end-page: 8353 8511 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 323 start-page: 760 year: 2009 end-page: 764 publication-title: Science – volume: 9 start-page: 305 year: 2014 end-page: 323 publication-title: Nano Today – volume: 10 start-page: 2251 year: 2014 end-page: 2259 publication-title: Small – volume: 24 start-page: 2072 year: 2014 end-page: 2078 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 1436 year: 2015 end-page: 1439 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 19 year: 1989 end-page: 27 publication-title: J. Appl. Electrochem. – volume: 5 start-page: 306 year: 2003 end-page: 311 publication-title: Electrochem. Commun. – volume: 111 start-page: 7625 year: 2011 end-page: 7651 publication-title: Chem. Rev. – volume: 127 start-page: 357 year: 2005 end-page: 365 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1207 year: 2015 end-page: 1218 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5362 year: 2011 end-page: 5366 publication-title: Nano Lett. – volume: 15 start-page: 953 year: 1970 end-page: 975 publication-title: Electrochim. Acta – volume: 1 start-page: 37 year: 2009 end-page: 46 publication-title: Nat. Chem. – volume: 7 start-page: 1059 year: 2014 end-page: 1067 publication-title: Energy Environ. Sci. – volume: 2 start-page: 233 year: 1978 end-page: 240 publication-title: J. Power Sources – volume: 183 start-page: 34 year: 2008 end-page: 42 publication-title: J. Power Sources – volume: 13 start-page: 309 year: 2013 end-page: 321 publication-title: Curr. Appl. Phys. – volume: 44 start-page: 2168 year: 2015 end-page: 2201 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 11151 year: 2014 end-page: 11153 publication-title: Chem. Commun. – volume: 53 126 start-page: 8508 8648 year: 2014 2014 end-page: 8512 8652 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 82 start-page: 9141 year: 2010 end-page: 9145 publication-title: Anal. Chem. – volume: 43 start-page: 7067 year: 2014 end-page: 7098 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 5333 year: 2012 end-page: 5339 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1400337 year: 2014 publication-title: Adv. Energy Mater. – volume: 143 start-page: L266 year: 1996 end-page: L267 publication-title: J. Electrochem. Soc. – volume: 52 125 start-page: 8526 8686 year: 2013 2013 end-page: 8544 8705 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 4102 4186 year: 2014 2014 end-page: 4106 4190 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 5442 year: 2008 end-page: 5450 publication-title: Electrochim. Acta – volume: 6 start-page: 7084 year: 2012 end-page: 7091 publication-title: ACS Nano – volume: 2 start-page: 4085 year: 2014 end-page: 4110 publication-title: J. Mater. Chem. A – start-page: 157 year: 2014 end-page: 182 – volume: 136 start-page: 13554 year: 2014 end-page: 13557 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 5496 year: 2009 end-page: 5502 publication-title: Anal. Chem. – volume: 52 125 start-page: 3465 3549 year: 2013 2013 end-page: 3468 3552 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 1837 year: 2015 end-page: 1866 publication-title: Energy Environ. Sci. – volume: 51 124 start-page: 11496 11664 year: 2012 2012 end-page: 11500 11668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 118 start-page: 2897 2963 year: 2006 2006 end-page: 2901 2967 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 1015 year: 2003 end-page: 1021 publication-title: Electrochim. Acta – volume: 136 start-page: 4394 year: 2014 end-page: 4403 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 79 year: 2011 end-page: 84 publication-title: Nat. Chem. – volume: 4 start-page: 183 year: 1979 end-page: 190 publication-title: J. Power Sources – volume: 135 start-page: 7130 year: 2013 end-page: 7133 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 338 year: 2014 end-page: 342 publication-title: ChemElectroChem – start-page: 829 year: 2005 end-page: 841 publication-title: Chem. Commun. – volume: 46 start-page: 1848 year: 2013 end-page: 1857 publication-title: Acc. Chem. Res. – volume: 660 start-page: 254 year: 2011 end-page: 260 publication-title: J. Electroanal. Chem. – volume: 53 126 start-page: 6905 7025 year: 2014 2014 end-page: 6909 7029 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 1888 1908 year: 2015 2015 end-page: 1892 1912 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 10804 10980 year: 2014 2014 end-page: 10808 10984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 26 start-page: 2295 year: 2014 end-page: 2318 publication-title: Adv. Mater. – volume: 54 127 start-page: 588 598 year: 2015 2015 end-page: 593 603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 249 year: 2013 end-page: 257 publication-title: Carbon – volume: 150 start-page: 205 year: 2014 end-page: 210 publication-title: Electrochim. Acta – volume: 51 start-page: 1905 year: 2006 end-page: 1916 publication-title: Electrochim. Acta – volume: 53 start-page: 4937 year: 2008 end-page: 4951 publication-title: Electrochim. Acta – volume: 135 start-page: 7823 year: 2013 end-page: 7826 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 14385 year: 2014 end-page: 14388 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 81 year: 2013 end-page: 87 publication-title: Nat. Mater. – volume: 3 start-page: 1142 year: 2015 end-page: 1151 publication-title: J. Mater. Chem. A – volume: 1 start-page: 13179 year: 2013 end-page: 13185 publication-title: J. Mater. Chem. A – volume: 50 start-page: 4921 year: 2014 end-page: 4923 publication-title: Chem. Commun. – volume: 50 123 start-page: 10969 11161 year: 2011 2011 end-page: 10972 11164 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 7281 year: 2014 end-page: 7287 publication-title: J. Mater. Chem. A – volume: 3 start-page: 546 year: 2011 end-page: 550 publication-title: Nat. Chem. – volume: 134 start-page: 16127 year: 2012 end-page: 16130 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6590 year: 2014 end-page: 6602 publication-title: Nanoscale – volume: 7 start-page: 3519 year: 2014 end-page: 3542 publication-title: Energy Environ. Sci. – volume: 136 start-page: 7551 year: 2014 end-page: 7554 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1857 year: 2015 end-page: 1862 publication-title: ACS Catal. – volume: 128 start-page: 7408 year: 2006 end-page: 7409 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1878 year: 2013 end-page: 1889 publication-title: Acc. Chem. Res. – volume: 24 start-page: 1399 year: 2012 end-page: 1404 publication-title: Adv. Mater. – volume: 43 start-page: 1107 year: 2014 end-page: 1117 publication-title: Chem. Soc. Rev. – volume: 354 start-page: 56 year: 1991 end-page: 58 publication-title: Nature – volume: 7 start-page: 394 year: 2012 end-page: 400 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1726 year: 2013 end-page: 1729 publication-title: ACS Catal. – volume: 6 start-page: 3540 year: 2014 end-page: 3544 publication-title: Nanoscale – volume: 136 start-page: 8879 year: 2014 end-page: 8882 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 3675 3749 year: 2014 2014 end-page: 3679 3753 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 371 389 year: 2013 2013 end-page: 375 393 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 2492 year: 2007 end-page: 2497 publication-title: Electrochim. Acta – volume: 201 start-page: 1212 year: 1964 end-page: 1213 publication-title: Nature – volume: 7 start-page: 7056 year: 2015 end-page: 7064 publication-title: Nanoscale – volume: 10 start-page: 159 year: 2008 end-page: 167 publication-title: Phys. Chem. Chem. Phys. – volume: 135 start-page: 1386 year: 2013 end-page: 1393 publication-title: J. Am. Chem. Soc. – volume: 75 start-page: 381 year: 2014 end-page: 389 publication-title: Carbon – volume: 44 start-page: 3295 year: 2015 end-page: 3346 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 501 year: 2011 end-page: 502 publication-title: Nat. Chem. – volume: 7 start-page: 2535 year: 2014 end-page: 2558 publication-title: Energy Environ. Sci. – volume: 86 start-page: 2 year: 2014 end-page: 14 publication-title: Anal. Chem. – volume: 348 start-page: 1230 year: 2015 end-page: 1234 publication-title: Science – volume: 4 start-page: 6013 year: 2014 publication-title: Sci. Rep. – volume: 343 start-page: 1339 year: 2014 end-page: 1343 publication-title: Science – volume: 13 start-page: 2947 year: 2013 end-page: 2951 publication-title: Nano Lett. – volume: 53 126 start-page: 2433 2465 year: 2014 2014 end-page: 2437 2469 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: 404 year: 2013 end-page: 411 publication-title: Electrochim. Acta – year: 2003 – volume: 324 start-page: 71 year: 2009 end-page: 74 publication-title: Science – volume: 53 126 start-page: 6496 6614 year: 2014 2014 end-page: 6500 6618 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 13612 year: 2010 end-page: 13614 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 366 year: 2011 end-page: 380 publication-title: Nano Today – volume: 154 start-page: 362 year: 2007 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 11606 year: 2014 end-page: 11613 publication-title: J. Mater. Chem. A – volume: 24 start-page: 5593 year: 2012 end-page: 5597 publication-title: Adv. Mater. – volume: 154 start-page: 664 year: 2007 publication-title: J. Electrochem. Soc. – volume: 136 start-page: 5229 year: 2014 end-page: 5232 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1913 year: 2014 end-page: 1918 publication-title: Energy Environ. Sci. – volume: 135 start-page: 570 year: 2013 end-page: 573 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 62 year: 2014 end-page: 65 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1400654 year: 2015 publication-title: Adv. Energy Mater. – volume: 2 start-page: 416 year: 2011 publication-title: Nat. Commun. – volume: 92 start-page: 383 year: 2013 end-page: 391 publication-title: Electrochim. Acta – volume: 136 start-page: 11252 year: 2014 end-page: 11255 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6744 year: 2012 end-page: 6762 publication-title: Energy Environ. Sci. – volume: 53 126 start-page: 9503 9657 year: 2014 2014 end-page: 9507 9661 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 3987 year: 2011 end-page: 3992 publication-title: Chem. Mater. – volume: 53 126 start-page: 102 104 year: 2014 2014 end-page: 121 124 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 998 year: 2013 end-page: 1003 publication-title: Adv. Mater. – volume: 134 start-page: 15849 year: 2012 end-page: 15857 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 1201 year: 2013 end-page: 1204 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 4274 year: 2015 end-page: 4283 publication-title: J. Mater. Chem. A – volume: 16 start-page: 12000 year: 2010 end-page: 12007 publication-title: Chem. Eur. J. – volume: 49 start-page: 3557 year: 2010 end-page: 3566 publication-title: Inorg. Chem. – volume: 6 start-page: 2603 year: 2014 end-page: 2607 publication-title: Nanoscale – volume: 134 start-page: 9082 year: 2012 end-page: 9085 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 608 year: 1974 end-page: 611 publication-title: Ber. Bunsen-Ges. – volume: 32 start-page: 276 year: 2003 end-page: 288 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 6316 year: 2014 end-page: 6319 publication-title: J. Mater. Chem. A – volume: 136 start-page: 7734 year: 2014 end-page: 7739 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1527 year: 1984 end-page: 1537 publication-title: Electrochim. Acta – volume: 8 start-page: 400 year: 2005 publication-title: Electrochem. Solid-State Lett. – volume: 20 start-page: 111 year: 1975 end-page: 117 publication-title: Electrochim. Acta – volume: 49 start-page: 3479 year: 2004 end-page: 3485 publication-title: Electrochim. Acta – volume: 4 start-page: 3167 year: 2011 end-page: 3192 publication-title: Energy Environ. Sci. – volume: 108 start-page: 1 year: 2002 end-page: 7 publication-title: J. Power Sources – volume: 8 start-page: 10837 year: 2014 end-page: 10843 publication-title: ACS Nano – volume: 51 start-page: 572 year: 2015 end-page: 575 publication-title: Chem. Commun. – volume: 3 start-page: 3200 year: 2012 end-page: 3205 publication-title: Chem. Sci. – volume: 91 start-page: 3799 year: 1987 end-page: 3807 publication-title: J. Phys. Chem. – volume: 15 start-page: 1399 year: 2013 end-page: 1407 publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 1450 year: 2014 end-page: 1455 publication-title: Adv. Mater. – volume: 4 start-page: 3389 year: 2011 end-page: 3394 publication-title: Energy Environ. Sci. – volume: 50 start-page: 1469 year: 2014 end-page: 1471 publication-title: Chem. Commun. – volume: 7 start-page: 237 year: 2012 end-page: 241 publication-title: Nat. Nanotechnol. – volume: 181 start-page: 547 year: 1973 end-page: 549 publication-title: Science – volume: 7 start-page: 668 year: 2012 end-page: 672 publication-title: Nat. Nanotechnol. – volume: 46 start-page: 7492 year: 2010 end-page: 7494 publication-title: Chem. Commun. – volume: 51 124 start-page: 11770 11940 year: 2012 2012 end-page: 11773 11943 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 2095 year: 2007 end-page: 2101 publication-title: Chem. Mater. – volume: 4 start-page: 2998 year: 2014 end-page: 3001 publication-title: ACS Catal. – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 130 start-page: 5390 year: 2008 end-page: 5391 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2058 year: 2011 end-page: 2066 publication-title: Langmuir – volume: 19 start-page: 14781 year: 2013 end-page: 14786 publication-title: Chem. Eur. J. – volume: 4 start-page: 1301415 year: 2014 publication-title: Adv. Energy Mater. – volume: 48 start-page: 1892 year: 2012 end-page: 1894 publication-title: Chem. Commun. – volume: 2 start-page: 11666 year: 2014 end-page: 11671 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1269 year: 2012 end-page: 1277 publication-title: Adv. Energy Mater. – volume: 341 start-page: 1230444 year: 2013 publication-title: Science – volume: 27 start-page: 2521 year: 2015 end-page: 2527 publication-title: Adv. Mater. – volume: 6 start-page: 9764 year: 2012 end-page: 9776 publication-title: ACS Nano – volume: 133 start-page: 20116 year: 2011 end-page: 20119 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 4584 year: 2012 end-page: 4591 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 15619 year: 2014 end-page: 15622 publication-title: Chem. Commun. – volume: 1 start-page: 9992 year: 2013 end-page: 10001 publication-title: J. Mater. Chem. A – volume: 5 start-page: 582 year: 2014 end-page: 589 publication-title: Chem. Sci. – volume: 25 start-page: 4932 year: 2013 end-page: 4937 publication-title: Adv. Mater. – volume: 287 start-page: 1989 year: 2000 end-page: 1992 publication-title: Science – volume: 3 start-page: 2771 year: 2013 publication-title: Sci. Rep. – volume: 116 start-page: 16001 year: 2012 end-page: 16013 publication-title: J. Phys. Chem. C – volume: 9 start-page: 668 year: 2014 end-page: 683 publication-title: Nano Today – volume: 135 start-page: 13879 year: 2013 end-page: 13884 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 707 year: 2006 end-page: 712 publication-title: Electrochem. Commun. – volume: 6 start-page: 9608 year: 2014 end-page: 9613 publication-title: Nanoscale – volume: 39 start-page: 2184 year: 2010 end-page: 2202 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 201 year: 2005 publication-title: Electrochem. Solid-State Lett. – volume: 3 start-page: 1752 year: 2015 end-page: 1760 publication-title: J. Mater. Chem. A – volume: 127 start-page: 162 year: 2004 end-page: 171 publication-title: J. Power Sources – volume: 24 start-page: 5956 year: 2014 end-page: 5961 publication-title: Adv. Funct. Mater. – volume: 134 start-page: 3517 year: 2012 end-page: 3523 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 2474 2534 year: 2013 2013 end-page: 2477 2537 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 590 start-page: 152 year: 2006 end-page: 160 publication-title: J. Electroanal. Chem. – volume: 56 start-page: 9 year: 2005 end-page: 35 publication-title: Appl. Catal. B – volume: 135 start-page: 16002 year: 2013 end-page: 16005 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 7132 7270 year: 2011 2011 end-page: 7135 7273 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 9074 year: 2012 end-page: 9076 publication-title: Chem. Commun. – volume: 196 start-page: 627 year: 2011 end-page: 635 publication-title: J. Power Sources – volume: 327 start-page: 1363 year: 2010 end-page: 1366 publication-title: Science – volume: 50 123 start-page: 636 662 year: 2011 2011 end-page: 639 665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1015 start-page: 1 year: 2013 end-page: 7 publication-title: Comput. Theor. Chem. – volume: 332 start-page: 443 year: 2011 end-page: 447 publication-title: Science – volume: 8 start-page: 3313 year: 2014 end-page: 3321 publication-title: ACS Nano – volume: 2 start-page: 873 year: 2009 end-page: 899 publication-title: Energies – volume: 2 start-page: 15704 year: 2014 end-page: 15716 publication-title: J. Mater. Chem. A – volume: 108 start-page: 17886 year: 2004 end-page: 17892 publication-title: J. Phys. Chem. B – volume: 138 start-page: 318 year: 2014 end-page: 324 publication-title: Electrochim. Acta – volume: 25 start-page: 6138 year: 2013 end-page: 6145 publication-title: Adv. Mater. – volume: 4 start-page: 1301523 year: 2014 publication-title: Adv. Energy Mater. – volume: 5 start-page: 556 year: 2010 end-page: 577 publication-title: Int. J. Electrochem. Sci. – volume: 136 start-page: 13925 year: 2014 end-page: 13931 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1950 year: 2014 end-page: 1958 publication-title: Energy Environ. Sci. – volume: 46 start-page: 148 year: 2014 end-page: 151 publication-title: Electrochem. Commun. – volume: 54 127 start-page: 4646 4729 year: 2015 2015 end-page: 4650 4733 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 154 start-page: 1 year: 2007 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 286 year: 2012 end-page: 289 publication-title: Chem. Asian J. – volume: 17 start-page: 2063 year: 2011 end-page: 2067 publication-title: Chem. Eur. J. – volume: 136 start-page: 6790 year: 2014 end-page: 6793 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 35 year: 2011 end-page: 38 publication-title: Catal. Commun. – volume: 7 start-page: 609 year: 2014 end-page: 616 publication-title: Energy Environ. Sci. – volume: 51 start-page: 5951 year: 2015 end-page: 5954 publication-title: Chem. Commun. – volume: 45 start-page: 71 year: 2000 end-page: 129 publication-title: Adv. Catal. – volume: 87 start-page: 1066 year: 2015 end-page: 1074 publication-title: Anal. Chem. – volume: 10 start-page: 780 year: 2011 end-page: 786 publication-title: Nat. Mater. – volume: 2 start-page: 88 year: 2013 end-page: 97 publication-title: Nano Energy – volume: 22 start-page: 3634 year: 2012 end-page: 3640 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 2468 year: 2015 end-page: 2473 publication-title: Nano Lett. – volume: 55 start-page: 2614 year: 2010 end-page: 2621 publication-title: Electrochim. Acta – volume: 165 start-page: 191 year: 2015 end-page: 197 publication-title: Electrochim. Acta – volume: 110 start-page: 847 year: 1963 end-page: 849 publication-title: J. Electrochem. Soc. – volume: 73 start-page: 3 year: 2004 end-page: 14 publication-title: Microporous Mesoporous Mater. – volume: 30 start-page: 9 year: 2013 end-page: 12 publication-title: Electrochem. Commun. – volume: 129 start-page: 9610 year: 2007 end-page: 9612 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2128 year: 2015 end-page: 2136 publication-title: Inorg. Chem. – volume: 26 start-page: 1378 year: 2014 end-page: 1386 publication-title: Adv. Mater. – volume: 2 start-page: 20164 year: 2014 end-page: 20176 publication-title: J. Mater. Chem. A – volume: 8 start-page: 568 year: 2015 end-page: 576 publication-title: Energy Environ. Sci. – volume: 173 start-page: 891 year: 2007 end-page: 908 publication-title: J. Power Sources – volume: 132 start-page: 5622 year: 2010 end-page: 5624 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 219 year: 1972 end-page: 222 publication-title: J. Electrochem. Soc. – volume: 52 125 start-page: 1026 1060 year: 2013 2013 end-page: 1030 1064 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 15306 year: 2010 end-page: 15314 publication-title: J. Phys. Chem. C – volume: 53 126 start-page: 14120 14344 year: 2014 2014 end-page: 14123 14347 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 3558 3630 year: 2014 2014 end-page: 3586 3660 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 13629 year: 2014 end-page: 13640 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 1376 year: 2003 end-page: 1386 publication-title: J. Phys. Chem. B – volume: 133 start-page: 14396 year: 2011 end-page: 14403 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1830 year: 2015 end-page: 1838 publication-title: Nanoscale – volume: 315 start-page: 493 year: 2007 end-page: 497 publication-title: Science – volume: 6 start-page: 1204 year: 2014 end-page: 1209 publication-title: ChemCatChem – volume: 26 start-page: 2408 year: 2014 end-page: 2412 publication-title: Adv. Mater. – ident: e_1_2_11_183_1 doi: 10.1021/cs400374k – ident: e_1_2_11_249_1 doi: 10.1039/c3ee43648a – ident: e_1_2_11_82_1 doi: 10.1039/C4TA04189E – ident: e_1_2_11_1_1 doi: 10.1016/j.cap.2012.08.008 – ident: e_1_2_11_155_1 doi: 10.1039/C5EE00762C – ident: e_1_2_11_228_1 doi: 10.1002/anie.201402574 – ident: e_1_2_11_12_1 doi: 10.1039/C4CS00484A – ident: e_1_2_11_51_1 doi: 10.1002/adma.201500262 – ident: e_1_2_11_18_1 doi: 10.1016/j.jelechem.2010.10.004 – ident: e_1_2_11_17_1 doi: 10.1002/anie.201306588 – ident: e_1_2_11_94_1 doi: 10.1021/cm062685t – ident: e_1_2_11_242_1 doi: 10.1039/C3CS60215J – volume: 7 start-page: 7056 year: 2015 ident: e_1_2_11_81_1 publication-title: Nanoscale – ident: e_1_2_11_154_1 doi: 10.1126/science.1230444 – ident: e_1_2_11_158_1 doi: 10.1002/anie.201005314 – ident: e_1_2_11_218_1 doi: 10.1002/adma.201305254 – ident: e_1_2_11_175_2 doi: 10.1002/ange.201404333 – ident: e_1_2_11_184_1 doi: 10.1016/j.elecom.2013.01.023 – ident: e_1_2_11_250_1 doi: 10.1021/ja502646c – ident: e_1_2_11_90_1 doi: 10.1002/adfm.201201244 – ident: e_1_2_11_49_1 doi: 10.1021/jp302396g – ident: e_1_2_11_151_1 doi: 10.1002/anie.201302924 – ident: e_1_2_11_130_2 doi: 10.1002/ange.201104004 – ident: e_1_2_11_163_1 doi: 10.1039/C4CC06867J – ident: e_1_2_11_135_1 doi: 10.1016/0378-7753(78)85014-9 – ident: e_1_2_11_147_1 doi: 10.1002/adma.201304147 – ident: e_1_2_11_191_1 doi: 10.1002/anie.201407629 – ident: e_1_2_11_140_1 doi: 10.1126/science.1200832 – ident: e_1_2_11_44_1 doi: 10.1149/1.2425884 – ident: e_1_2_11_186_1 doi: 10.1021/nn3021234 – ident: e_1_2_11_7_1 doi: 10.1002/anie.200504386 – ident: e_1_2_11_46_1 doi: 10.1016/j.electacta.2004.03.018 – ident: e_1_2_11_189_1 doi: 10.1021/ja507463w – ident: e_1_2_11_167_1 doi: 10.1039/C3TA15335E – ident: e_1_2_11_124_1 doi: 10.1021/nl2029078 – ident: e_1_2_11_248_1 doi: 10.1002/anie.201406695 – ident: e_1_2_11_95_2 doi: 10.1002/ange.201208582 – ident: e_1_2_11_34_1 doi: 10.1038/nchem.367 – ident: e_1_2_11_237_1 doi: 10.1002/anie.201408408 – ident: e_1_2_11_29_1 doi: 10.1016/j.apcatb.2004.06.021 – ident: e_1_2_11_71_1 doi: 10.1039/C3TA13877A – ident: e_1_2_11_9_1 doi: 10.1039/b912552c – ident: e_1_2_11_213_1 doi: 10.1021/ja3091643 – ident: e_1_2_11_24_1 doi: 10.1016/S0360-0564(02)45013-4 – ident: e_1_2_11_240_1 doi: 10.1038/nnano.2012.134 – ident: e_1_2_11_8_2 doi: 10.1002/ange.201207186 – ident: e_1_2_11_15_1 doi: 10.1126/science.1135941 – ident: e_1_2_11_101_1 doi: 10.1021/ja3030565 – ident: e_1_2_11_110_1 doi: 10.1149/1.2734880 – ident: e_1_2_11_238_1 doi: 10.1021/ac900777n – ident: e_1_2_11_88_1 doi: 10.1039/C3EE42696C – ident: e_1_2_11_107_1 doi: 10.1149/1.1943550 – ident: e_1_2_11_193_1 doi: 10.1038/354056a0 – ident: e_1_2_11_72_1 doi: 10.1016/j.electacta.2008.02.092 – ident: e_1_2_11_180_1 doi: 10.1016/j.electacta.2014.10.138 – ident: e_1_2_11_55_2 doi: 10.1002/ange.201400358 – ident: e_1_2_11_224_1 doi: 10.1002/anie.201411125 – ident: e_1_2_11_230_1 doi: 10.1002/anie.201403363 – ident: e_1_2_11_86_1 doi: 10.1038/ncomms2812 – ident: e_1_2_11_161_1 doi: 10.1039/C4TA05342G – ident: e_1_2_11_219_1 doi: 10.1002/anie.201204958 – ident: e_1_2_11_205_1 doi: 10.1002/adfm.201401264 – ident: e_1_2_11_211_1 doi: 10.1039/C4CS00141A – ident: e_1_2_11_222_1 doi: 10.1021/nn504637y – ident: e_1_2_11_36_1 doi: 10.1038/nmat3458 – ident: e_1_2_11_25_1 doi: 10.1038/nchem.121 – volume: 5 start-page: 556 year: 2010 ident: e_1_2_11_117_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15306-5 – ident: e_1_2_11_160_1 doi: 10.1002/chem.201003080 – ident: e_1_2_11_52_1 doi: 10.1002/anie.201207193 – ident: e_1_2_11_70_1 doi: 10.1002/chem.201302425 – ident: e_1_2_11_104_1 doi: 10.1039/c3ta13299d – ident: e_1_2_11_102_1 doi: 10.1039/C4TA00029C – ident: e_1_2_11_133_1 doi: 10.1038/2011212a0 – ident: e_1_2_11_57_1 doi: 10.1039/C4TA03986F – ident: e_1_2_11_7_2 doi: 10.1002/ange.200504386 – ident: e_1_2_11_67_1 doi: 10.1021/cs502029h – ident: e_1_2_11_21_1 doi: 10.1016/0013-4686(70)80037-8 – ident: e_1_2_11_111_1 doi: 10.1149/1.1837229 – ident: e_1_2_11_76_1 doi: 10.1021/cs500741s – ident: e_1_2_11_39_2 doi: 10.1002/ange.201209871 – ident: e_1_2_11_120_1 doi: 10.1038/nchem.931 – ident: e_1_2_11_40_1 doi: 10.1021/ja403041g – ident: e_1_2_11_201_1 doi: 10.1002/anie.201101287 – ident: e_1_2_11_192_1 doi: 10.1038/ncomms5973 – ident: e_1_2_11_38_1 doi: 10.1021/acs.nanolett.5b00320 – ident: e_1_2_11_228_2 doi: 10.1002/ange.201402574 – ident: e_1_2_11_59_1 doi: 10.3390/en20400873 – ident: e_1_2_11_3_1 doi: 10.1021/ic9022486 – ident: e_1_2_11_234_1 doi: 10.1021/ja310614x – ident: e_1_2_11_127_1 doi: 10.1002/bbpc.19740780616 – ident: e_1_2_11_187_1 doi: 10.1016/j.electacta.2013.06.133 – ident: e_1_2_11_239_1 doi: 10.1126/science.1186476 – ident: e_1_2_11_100_1 doi: 10.1016/0378-7753(79)85009-0 – ident: e_1_2_11_227_2 doi: 10.1002/ange.201100170 – ident: e_1_2_11_14_1 doi: 10.1038/ncomms1427 – volume-title: Handbook of Fuel Cells: Fundamentals, Technology, Applications year: 2003 ident: e_1_2_11_2_1 – ident: e_1_2_11_145_2 doi: 10.1002/ange.201402710 – ident: e_1_2_11_235_1 doi: 10.1021/ja503656a – ident: e_1_2_11_63_1 doi: 10.1021/ic5024778 – ident: e_1_2_11_158_2 doi: 10.1002/ange.201005314 – ident: e_1_2_11_243_1 doi: 10.1016/j.electacta.2013.01.074 – ident: e_1_2_11_241_1 doi: 10.1038/nnano.2012.18 – ident: e_1_2_11_87_1 doi: 10.1038/nmat3087 – ident: e_1_2_11_134_1 doi: 10.1021/j100298a016 – ident: e_1_2_11_190_1 doi: 10.1021/ja402450a – ident: e_1_2_11_16_1 doi: 10.1039/C2CP42369C – ident: e_1_2_11_32_1 doi: 10.1021/nl2017459 – ident: e_1_2_11_131_1 doi: 10.1039/C3NR05885A – ident: e_1_2_11_139_1 doi: 10.1126/science.1170051 – ident: e_1_2_11_31_1 doi: 10.1038/nchem.288 – ident: e_1_2_11_35_1 doi: 10.1021/ja2047655 – ident: e_1_2_11_149_1 doi: 10.1021/ja5129132 – ident: e_1_2_11_159_1 doi: 10.1039/c2sc20657a – ident: e_1_2_11_48_1 doi: 10.1016/S0378-7753(01)01009-6 – ident: e_1_2_11_245_1 doi: 10.1021/ja0449729 – ident: e_1_2_11_153_1 doi: 10.1016/j.micromeso.2004.03.034 – ident: e_1_2_11_204_1 doi: 10.1021/ja310566z – ident: e_1_2_11_145_1 doi: 10.1002/anie.201402710 – ident: e_1_2_11_178_1 doi: 10.1039/c1ee01437d – ident: e_1_2_11_225_1 doi: 10.1021/ja209206c – ident: e_1_2_11_191_2 doi: 10.1002/ange.201407629 – ident: e_1_2_11_128_1 doi: 10.1016/0013-4686(75)90047-X – ident: e_1_2_11_171_1 doi: 10.1021/ja5082553 – ident: e_1_2_11_231_2 doi: 10.1002/ange.201306828 – ident: e_1_2_11_91_1 doi: 10.1021/ja104587v – ident: e_1_2_11_221_1 doi: 10.1039/c3nr05578g – ident: e_1_2_11_95_1 doi: 10.1002/anie.201208582 – ident: e_1_2_11_77_1 doi: 10.1039/C1EE01431E – ident: e_1_2_11_210_1 doi: 10.1002/anie.201206720 – ident: e_1_2_11_150_2 doi: 10.1002/ange.201308896 – ident: e_1_2_11_223_2 doi: 10.1002/ange.201307203 – ident: e_1_2_11_52_2 doi: 10.1002/ange.201207193 – ident: e_1_2_11_109_1 doi: 10.1039/B709893F – ident: e_1_2_11_4_1 doi: 10.1002/9781118878330 – ident: e_1_2_11_62_1 doi: 10.1039/c4cc00730a – ident: e_1_2_11_203_1 doi: 10.1016/j.electacta.2015.03.022 – ident: e_1_2_11_112_1 doi: 10.1039/C3EE43886D – ident: e_1_2_11_188_1 doi: 10.1002/cctc.201301102 – ident: e_1_2_11_143_1 doi: 10.1016/j.jpowsour.2008.05.020 – ident: e_1_2_11_39_1 doi: 10.1002/anie.201209871 – ident: e_1_2_11_198_1 doi: 10.1002/aenm.201301415 – ident: e_1_2_11_201_2 doi: 10.1002/ange.201101287 – ident: e_1_2_11_170_1 doi: 10.1021/ja5084128 – ident: e_1_2_11_129_1 doi: 10.1002/chem.200903263 – ident: e_1_2_11_194_1 doi: 10.1039/C4CS00492B – ident: e_1_2_11_121_1 doi: 10.1021/nl401325u – ident: e_1_2_11_13_1 doi: 10.1039/c0ee00558d – ident: e_1_2_11_210_2 doi: 10.1002/ange.201206720 – ident: e_1_2_11_150_1 doi: 10.1002/anie.201308896 – ident: e_1_2_11_30_1 doi: 10.1126/science.287.5460.1989 – ident: e_1_2_11_85_1 doi: 10.1021/ja305623m – ident: e_1_2_11_106_1 doi: 10.1016/j.electacta.2010.05.019 – ident: e_1_2_11_113_1 doi: 10.1038/nchem.1083 – ident: e_1_2_11_202_1 doi: 10.1016/j.catcom.2011.08.038 – ident: e_1_2_11_227_1 doi: 10.1002/anie.201100170 – ident: e_1_2_11_55_1 doi: 10.1002/anie.201400358 – ident: e_1_2_11_97_1 doi: 10.1016/S0013-4686(02)00815-0 – ident: e_1_2_11_79_2 doi: 10.1002/ange.201206152 – ident: e_1_2_11_230_2 doi: 10.1002/ange.201403363 – ident: e_1_2_11_20_1 doi: 10.1021/jp047349j – ident: e_1_2_11_96_1 doi: 10.1002/aenm.201400654 – ident: e_1_2_11_185_1 doi: 10.1021/ja306376s – ident: e_1_2_11_103_1 doi: 10.1039/c2cc17537a – ident: e_1_2_11_56_1 doi: 10.1039/C4CC03987D – ident: e_1_2_11_47_1 doi: 10.1149/1.2364836 – ident: e_1_2_11_108_1 doi: 10.1039/c2cc34544g – ident: e_1_2_11_137_1 doi: 10.1007/BF01039385 – ident: e_1_2_11_28_1 doi: 10.1039/C3TA14043A – ident: e_1_2_11_114_1 doi: 10.1002/celc.201300157 – ident: e_1_2_11_146_1 doi: 10.1021/ar400011z – ident: e_1_2_11_50_1 doi: 10.1002/adma.201104392 – ident: e_1_2_11_68_1 doi: 10.1016/j.electacta.2009.12.039 – ident: e_1_2_11_220_1 doi: 10.1021/ja502532y – ident: e_1_2_11_152_1 doi: 10.1039/b200393g – ident: e_1_2_11_253_1 doi: 10.1039/C3SC52026A – ident: e_1_2_11_182_1 doi: 10.1021/jp104074t – ident: e_1_2_11_27_1 doi: 10.1002/aenm.201301523 – ident: e_1_2_11_246_1 doi: 10.1021/ja505708y – ident: e_1_2_11_138_1 doi: 10.1016/j.electacta.2008.02.012 – ident: e_1_2_11_172_1 doi: 10.1039/C4TA02790F – ident: e_1_2_11_207_1 doi: 10.1021/nn404927n – ident: e_1_2_11_8_1 doi: 10.1002/anie.201207186 – ident: e_1_2_11_169_1 doi: 10.1002/adma.201304218 – ident: e_1_2_11_64_1 doi: 10.1039/C4NR02646B – ident: e_1_2_11_209_1 doi: 10.1002/adfm.201200186 – ident: e_1_2_11_195_1 doi: 10.1016/j.comptc.2013.04.003 – ident: e_1_2_11_65_1 doi: 10.1039/C4CC07137A – ident: e_1_2_11_212_1 doi: 10.1021/cm201542m – ident: e_1_2_11_223_1 doi: 10.1002/anie.201307203 – ident: e_1_2_11_130_1 doi: 10.1002/anie.201104004 – ident: e_1_2_11_200_1 doi: 10.1038/nnano.2012.72 – ident: e_1_2_11_23_1 doi: 10.1021/la1042475 – ident: e_1_2_11_151_2 doi: 10.1002/ange.201302924 – ident: e_1_2_11_229_1 doi: 10.1002/smll.201303715 – ident: e_1_2_11_199_1 doi: 10.1126/science.1168049 – ident: e_1_2_11_142_2 doi: 10.1002/ange.201405314 – ident: e_1_2_11_248_2 doi: 10.1002/ange.201406695 – ident: e_1_2_11_84_1 doi: 10.1039/C4NR05988C – ident: e_1_2_11_166_1 doi: 10.1039/C4TA00846D – ident: e_1_2_11_144_1 doi: 10.1021/nn303275d – ident: e_1_2_11_197_1 doi: 10.1016/j.electacta.2005.07.006 – ident: e_1_2_11_244_1 doi: 10.1021/ac5039187 – ident: e_1_2_11_58_1 doi: 10.1016/j.nantod.2011.06.002 – ident: e_1_2_11_41_1 doi: 10.1126/science.1249061 – ident: e_1_2_11_247_1 doi: 10.1021/ac102191u – ident: e_1_2_11_22_1 doi: 10.1021/ja061246s – ident: e_1_2_11_179_1 doi: 10.1038/srep02771 – ident: e_1_2_11_89_1 doi: 10.1039/C5CC01152C – ident: e_1_2_11_216_1 doi: 10.1016/j.elecom.2014.07.002 – ident: e_1_2_11_236_1 doi: 10.1021/ja100922h – ident: e_1_2_11_251_1 doi: 10.1039/c1cp21665a – ident: e_1_2_11_61_1 doi: 10.1002/asia.201100715 – ident: e_1_2_11_78_1 doi: 10.1039/c3ta11917c – ident: e_1_2_11_231_1 doi: 10.1002/anie.201306828 – ident: e_1_2_11_217_1 doi: 10.1039/c4ee00106k – ident: e_1_2_11_6_1 doi: 10.1021/cr100060r – ident: e_1_2_11_75_1 doi: 10.1002/anie.201303197 – ident: e_1_2_11_215_1 doi: 10.1002/anie.201410258 – ident: e_1_2_11_42_1 doi: 10.1126/science.aaa8765 – ident: e_1_2_11_99_1 doi: 10.1016/j.jelechem.2006.02.029 – ident: e_1_2_11_148_1 doi: 10.1021/ja407552k – ident: e_1_2_11_118_1 doi: 10.1002/adma.201304683 – ident: e_1_2_11_119_1 doi: 10.1021/ja210924t – ident: e_1_2_11_206_1 doi: 10.1016/j.nantod.2014.09.002 – ident: e_1_2_11_80_1 doi: 10.1039/C4EE02281E – ident: e_1_2_11_252_1 doi: 10.1039/b413177k – ident: e_1_2_11_74_1 doi: 10.1149/1.2432061 – ident: e_1_2_11_75_2 doi: 10.1002/ange.201303197 – ident: e_1_2_11_219_2 doi: 10.1002/ange.201204958 – ident: e_1_2_11_176_1 doi: 10.1016/j.carbon.2012.11.036 – ident: e_1_2_11_215_2 doi: 10.1002/ange.201410258 – ident: e_1_2_11_122_1 doi: 10.1039/C4EE01760A – ident: e_1_2_11_19_1 doi: 10.1016/0013-4686(84)85006-9 – ident: e_1_2_11_54_1 doi: 10.1002/adma.201203923 – ident: e_1_2_11_226_1 doi: 10.1016/j.electacta.2014.06.120 – ident: e_1_2_11_5_1 doi: 10.1016/j.jpowsour.2003.09.013 – ident: e_1_2_11_157_1 doi: 10.1039/C4NR00348A – ident: e_1_2_11_53_1 doi: 10.1016/j.carbon.2014.04.017 – ident: e_1_2_11_136_1 doi: 10.1016/j.jpowsour.2007.08.028 – ident: e_1_2_11_17_2 doi: 10.1002/ange.201306588 – ident: e_1_2_11_83_1 doi: 10.1039/C4TA03850A – ident: e_1_2_11_73_1 doi: 10.1149/1.1865612 – ident: e_1_2_11_66_1 doi: 10.1038/srep06013 – ident: e_1_2_11_93_1 doi: 10.1002/adfm.201302940 – ident: e_1_2_11_10_1 doi: 10.1039/c2ee03590a – ident: e_1_2_11_175_1 doi: 10.1002/anie.201404333 – ident: e_1_2_11_33_1 doi: 10.1021/ja406091p – ident: e_1_2_11_232_1 doi: 10.1021/ac403890n – ident: e_1_2_11_105_1 doi: 10.1016/j.electacta.2006.08.059 – ident: e_1_2_11_162_1 doi: 10.1002/aenm.201400337 – ident: e_1_2_11_116_1 doi: 10.1038/nchem.1069 – ident: e_1_2_11_123_1 doi: 10.1016/S1388-2481(03)00053-5 – ident: e_1_2_11_233_1 doi: 10.1021/ja072344w – ident: e_1_2_11_165_1 doi: 10.1021/ja7106146 – ident: e_1_2_11_177_1 doi: 10.1039/C3CC48942F – ident: e_1_2_11_224_2 doi: 10.1002/ange.201411125 – ident: e_1_2_11_132_1 doi: 10.1021/am507033x – ident: e_1_2_11_126_1 doi: 10.1002/9783527664900.ch4 – ident: e_1_2_11_37_1 doi: 10.1021/ja5030172 – ident: e_1_2_11_156_1 doi: 10.1039/C4TA01656D – ident: e_1_2_11_69_1 doi: 10.1039/c0cc02048f – ident: e_1_2_11_45_1 doi: 10.1149/1.2404164 – ident: e_1_2_11_237_2 doi: 10.1002/ange.201408408 – ident: e_1_2_11_214_1 doi: 10.1002/adma.201302753 – ident: e_1_2_11_141_1 doi: 10.1021/jp021634q – ident: e_1_2_11_92_1 doi: 10.1002/aenm.201200230 – ident: e_1_2_11_181_1 doi: 10.1016/j.nanoen.2012.07.021 – ident: e_1_2_11_196_1 doi: 10.1039/C3EE43743D – ident: e_1_2_11_173_1 doi: 10.1016/j.nantod.2014.05.003 – ident: e_1_2_11_115_1 doi: 10.1021/ja5009954 – ident: e_1_2_11_168_1 doi: 10.1038/srep05130 – ident: e_1_2_11_26_1 doi: 10.1021/ja500432h – ident: e_1_2_11_60_1 doi: 10.1016/j.elecom.2006.02.020 – ident: e_1_2_11_79_1 doi: 10.1002/anie.201206152 – ident: e_1_2_11_125_1 doi: 10.1021/ja509348t – ident: e_1_2_11_174_1 doi: 10.1002/adma.201202424 – ident: e_1_2_11_142_1 doi: 10.1002/anie.201405314 – ident: e_1_2_11_164_1 doi: 10.1021/ja5003907 – ident: e_1_2_11_43_1 doi: 10.1126/science.181.4099.547 – ident: e_1_2_11_11_1 doi: 10.1021/ar300359w – ident: e_1_2_11_98_1 doi: 10.1016/j.jpowsour.2010.07.082 – ident: e_1_2_11_208_1 doi: 10.1002/adma.201301870 |
SSID | ssj0028806 |
Score | 2.6672103 |
SecondaryResourceType | review_article |
Snippet | Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode... Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2650 |
SubjectTerms | Catalysis Catalytic activity Design engineering Design optimization Devices Earth Electrocatalysts Energy Fuel cells Fuels Mass transport Nanomaterials Nanostructure Nanotechnology Oxygen oxygen reduction Oxygen reduction reactions Platinum platinum-free catalysts Renewable energy Sustainable energy Transport properties |
Title | Earth-Abundant Nanomaterials for Oxygen Reduction |
URI | https://api.istex.fr/ark:/67375/WNG-Q80DVQ1T-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201504830 https://www.ncbi.nlm.nih.gov/pubmed/26663778 https://www.proquest.com/docview/1765272844 https://www.proquest.com/docview/1908257566 https://www.proquest.com/docview/1765922376 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V5VAu_LRAUwoKEoJT2qwd28lxVba0SCxq1ULFxfJfVKlVFrW7UsuJR-AZeRJm4k3KoiIkuCWyHdmeGc9nZ_wNwEuJLs6ygJuckqms4L6kgyaXKYv-ThiPnacD_fdjuXdcvDsRJ7_c4o_8EP2BG1lGu16TgRt7uX1DGko3sCk0SxApOm3aKWCLUNFhzx_FUDnj9SLOM8pC37E25mx7sfmCV7pDE3x1G-RcRLCtC9q9D6brfIw8OduaTe2W-_obr-P_jO4B3Jvj03QYFeohLIVmFVZ2urRwa8BHqGynP759H1q6RNJMU1ygJ4h7oyqnCILTD1fXqJfpIdHCkuAfwfHu6GhnL5tnXsgcIp48cznnkoe6toPaMum5k15VXvpQW-e4CraoEVep0lemrox31uSGW1E7VQVEDPwxLDeTJqxDqoKQQai8Nrj_dUKWXgkWihDyUFJMaAJZN_PazWnJKTvGuY6EykzTVOh-KhJ43df_Egk5_ljzVSvIvpq5OKMwNiX0p_FbfVDmbz4eDI705wQ2O0nruQVf6oGSgil03sXtxZQqHqGulAm86ItRFPS_xTRhMoufqBiFHSXwJCpQ3xfERZIrVSbAWjX4y1j0cLw_6t82_qXRU7iLz23E-aDchOXpxSw8Q0A1tc9bo_kJ0WIVrg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V7aFceJRXSqFBQnBKm7VjOzmuyrZbaBe12gLiYsWPCKkoW5VdqXDiJ_Q39pcwE2-CtmqFBMfEdmR7xp7Pzsw3AK8kmjjDPB5ycqaSjLucLppsogzaO1E67Dxd6B-O5PAke_dZtN6EFAsT-CG6CzdaGc1-TQucLqS3_7CGUgg2-WYJYkXHU_sKpfVuTlXHHYMUQ_UMAUacJ5SHvuVtTNn2YvsFu7RCU3xxE-hcxLCNEdq9B6btfvA9Od2aTc2W_XmN2fG_xncf7s4hatwPOvUAlny9Bqs7bWa4h8AHqG9fr35d9g3FkdTTGPfoCULfoM0x4uD4w8UPVM34mJhhSfaP4GR3MN4ZJvPkC4lF0JMmNuVccl9VplcZJh230qnCSecrYy1X3mQVQiuVu6KsitJZU6YlN6KyqvAIGvhjWK4ntX8KsfJCeqHSqsQjsBUyd0own3mf-pzcQiNI2qnXds5MTgkyvunAqcw0TYXupiKCN139s8DJcWvN140ku2rl-Sl5simhP4329FGevv141BvrLxFstKLW80X8XfeUFEyh_c5uLqZs8Yh2pYzgZVeMoqBfLmXtJ7PwiYKR51EET4IGdX1BaCS5UnkErNGDv4xF90f7g-5p_V8abcLqcHx4oA_2R--fwR183zig9_INWJ6ez_xzxFdT86JZQb8BKGAZyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVgIutLxTCgQJwSlt1o7t5Ljq7tLyWGjVQtWLFb-E1CpbtbtS4cRP6G_klzCTbAKLipDgmNiObM-M57Mz_gbguUQXZ5jHTU7OVJJxl9NBk02UQX8nSoedpwP9d2O5fZC9PhSHv9zib_ghugM3sox6vSYDP3Vh8ydpKN3AptAsQaTouGlfzmSak14P9joCKYba2dwv4jyhNPQtbWPKNhfbL7ilZZrhi6sw5yKErX3QaAXKtvdN6MnxxmxqNuzX34gd_2d4q3BrDlDjfqNRt-Gar-7Aja02L9xd4EPUts_fv132Dd0iqaYxrtATBL6NLseIguP3F19QMeM94oUlyd-Dg9Fwf2s7madeSCxCnjSxKeeS-xBMLxgmHbfSqcJJ54OxlitvsoDASuWuKENROmvKtORGBKsKj5CB34elalL5hxArL6QXKg0lboCtkLlTgvnM-9TnFBQaQdLOvLZzXnJKj3GiG0ZlpmkqdDcVEbzs6p82jBx_rPmiFmRXrTw7pjg2JfSn8Su9m6eDj7u9fX0UwXoraT034XPdU1Iwhd47u7qYcsUj1pUygmddMYqCfriUlZ_Mmk8UjOKOInjQKFDXFwRGkiuVR8BqNfjLWHR_vDPsntb-pdFTuP5hMNJvd8ZvHsFNfF1Hn_fydVians38YwRXU_Oktp8f2tgYgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earth-Abundant+Nanomaterials+for+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xia%2C+Wei&rft.au=Mahmood%2C+Asif&rft.au=Liang%2C+Zibin&rft.au=Zou%2C+Ruqiang&rft.date=2016-02-18&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=55&rft.issue=8&rft.spage=2650&rft.epage=2676&rft_id=info:doi/10.1002%2Fanie.201504830&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Q80DVQ1T_Z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |