Earth-Abundant Nanomaterials for Oxygen Reduction

Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 55; no. 8; pp. 2650 - 2676
Main Authors Xia, Wei, Mahmood, Asif, Liang, Zibin, Zou, Ruqiang, Guo, Shaojun
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 18.02.2016
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with non‐Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth‐abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth‐abundant materials for boosting ORR. Pt free: Great efforts have been devoted to designing and optimizing earth‐abundant nanomaterials for use as catalysts for the oxygen reduction reaction (ORR). These new catalysts have improved intrinsic catalytic activity, stability, and selectivity as well as performances nearing that of the classical platinum‐based catalysts. This Review highlights the recent breakthroughs in engineering non‐Pt nanomaterials with advanced structures for enhanced ORR catalysis.
AbstractList Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.
Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high‐performance sustainable energy devices. However, the challenging issues associated with non‐Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth‐abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth‐abundant materials for boosting ORR. Pt free: Great efforts have been devoted to designing and optimizing earth‐abundant nanomaterials for use as catalysts for the oxygen reduction reaction (ORR). These new catalysts have improved intrinsic catalytic activity, stability, and selectivity as well as performances nearing that of the classical platinum‐based catalysts. This Review highlights the recent breakthroughs in engineering non‐Pt nanomaterials with advanced structures for enhanced ORR catalysis.
Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.
Author Xia, Wei
Guo, Shaojun
Mahmood, Asif
Zou, Ruqiang
Liang, Zibin
Author_xml – sequence: 1
  givenname: Wei
  surname: Xia
  fullname: Xia, Wei
  organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
– sequence: 2
  givenname: Asif
  surname: Mahmood
  fullname: Mahmood, Asif
  organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
– sequence: 3
  givenname: Zibin
  surname: Liang
  fullname: Liang, Zibin
  organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
– sequence: 4
  givenname: Ruqiang
  surname: Zou
  fullname: Zou, Ruqiang
  email: rzou@pku.edu.cn
  organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
– sequence: 5
  givenname: Shaojun
  surname: Guo
  fullname: Guo, Shaojun
  email: guosj@pku.edu.cn
  organization: Materials Science & Engineering, College of Engineering, Peking University, 100871, Beijing, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26663778$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LHDEYh4NY_KpXj2Whl15mm4-ZfBwXu7WCrCi2BS8hk7yxsbMZm8yg-9-bZVWK0HpKIM_zy8v720fbsY-A0BHBU4Ix_WxigCnFpMG1ZHgL7ZGGkooJwbbLvWasErIhu2g_59vCS4n5DtqlnPPCyD1E5iYNv6pZO0Zn4jBZmNgvzQApmC5PfJ8m5w-rG4iTS3CjHUIf36N3vrzB4dN5gL5_nV8df6vOzk9Oj2dnleWE4spixjgD71viW8ods9wJ5bgD31rLBLS1V1QJ6ZTxyjjbGmxY23grFBBaswP0aZN7l_o_I-RBL0O20HUmQj9mTQRvFKVM8IJ-fIXe9mOKZTpNFJa0EQ3_P1WyqKCyXn_74Yka2yU4fZfC0qSVfl5ZAeoNYFOfcwKvbRjMejNDMqHTBOt1M3rdjH5ppmjTV9pz8j8FtRHuQwerN2g9W5zO_3arjRvyAA8vrkm_NRdMNPrn4kRfSPzlxwW50tfsEclkrjc
CODEN ACIEAY
CitedBy_id crossref_primary_10_1016_j_electacta_2023_143120
crossref_primary_10_1002_adma_201803339
crossref_primary_10_1021_acsomega_3c02544
crossref_primary_10_1016_j_jallcom_2021_160523
crossref_primary_10_1021_acs_jpclett_1c03753
crossref_primary_10_1016_j_materresbull_2022_111729
crossref_primary_10_1002_ange_202311113
crossref_primary_10_1039_D1CS00887K
crossref_primary_10_1016_j_electacta_2017_09_143
crossref_primary_10_1016_j_jcis_2021_04_084
crossref_primary_10_1002_anie_202407628
crossref_primary_10_1002_celc_202001475
crossref_primary_10_3390_catal8020065
crossref_primary_10_1002_smll_202306396
crossref_primary_10_1016_j_cej_2023_143996
crossref_primary_10_1016_j_jece_2024_113417
crossref_primary_10_1002_celc_201901253
crossref_primary_10_1063_5_0157188
crossref_primary_10_1016_j_gee_2017_06_005
crossref_primary_10_1002_cssc_202002359
crossref_primary_10_1039_D2TA02766F
crossref_primary_10_1016_j_electacta_2017_09_131
crossref_primary_10_1016_j_mcat_2018_01_036
crossref_primary_10_1021_jacs_6b09470
crossref_primary_10_1002_celc_201800796
crossref_primary_10_1002_ppsc_201600150
crossref_primary_10_1016_j_ijhydene_2017_05_236
crossref_primary_10_12677_MS_2020_109092
crossref_primary_10_1002_chem_202100736
crossref_primary_10_1039_C8NR09680E
crossref_primary_10_1039_C8TA00689J
crossref_primary_10_1002_chem_202102915
crossref_primary_10_1007_s12274_020_2868_8
crossref_primary_10_1021_acs_energyfuels_4c04109
crossref_primary_10_3389_fchem_2018_00351
crossref_primary_10_1016_j_electacta_2017_09_125
crossref_primary_10_1002_celc_202400060
crossref_primary_10_1016_j_mtchem_2022_100829
crossref_primary_10_1039_D0CE00325E
crossref_primary_10_1002_anie_201800269
crossref_primary_10_1016_j_electacta_2019_134569
crossref_primary_10_3390_catal14010057
crossref_primary_10_1002_adfm_202106715
crossref_primary_10_1002_celc_201800331
crossref_primary_10_1016_j_cej_2018_12_105
crossref_primary_10_1016_j_jcat_2023_115148
crossref_primary_10_1002_smll_201603793
crossref_primary_10_1039_D1TA09278B
crossref_primary_10_1002_cssc_202002103
crossref_primary_10_1149_1945_7111_ab9b9c
crossref_primary_10_1016_j_nanoen_2017_01_026
crossref_primary_10_1021_acsaem_2c01548
crossref_primary_10_1016_j_apsusc_2017_08_222
crossref_primary_10_1016_j_jpowsour_2019_227229
crossref_primary_10_1002_advs_202001069
crossref_primary_10_1016_j_jcis_2019_12_120
crossref_primary_10_1016_j_ensm_2020_02_002
crossref_primary_10_1016_S1872_2067_21_63961_X
crossref_primary_10_1021_acsami_6b13166
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1002_adfm_202000768
crossref_primary_10_1002_adma_201805717
crossref_primary_10_1002_cctc_202001912
crossref_primary_10_1246_cl_160573
crossref_primary_10_1002_adsu_201700085
crossref_primary_10_1039_C7TA10569J
crossref_primary_10_1016_j_synthmet_2017_10_010
crossref_primary_10_1039_C9DT04570H
crossref_primary_10_1007_s12274_019_2480_y
crossref_primary_10_1016_j_jechem_2016_10_012
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1039_C9CC08250F
crossref_primary_10_1002_ange_201804958
crossref_primary_10_1016_j_jhazmat_2019_121881
crossref_primary_10_1002_tee_23343
crossref_primary_10_1016_j_nanoen_2020_105487
crossref_primary_10_1039_C8CC02646G
crossref_primary_10_1002_smll_202310694
crossref_primary_10_1007_s12678_023_00836_9
crossref_primary_10_1016_j_mattod_2021_11_022
crossref_primary_10_1039_C9SE00861F
crossref_primary_10_1002_smll_201704282
crossref_primary_10_1016_j_apsusc_2017_02_191
crossref_primary_10_1002_smll_202104349
crossref_primary_10_1002_celc_201801688
crossref_primary_10_1002_cnma_202100531
crossref_primary_10_1039_D2NJ00092J
crossref_primary_10_1002_chem_201905598
crossref_primary_10_1039_D0TA06987F
crossref_primary_10_1016_j_apsusc_2020_147818
crossref_primary_10_1002_celc_202100168
crossref_primary_10_1002_chem_201804610
crossref_primary_10_1002_smll_201906057
crossref_primary_10_1002_chem_201803764
crossref_primary_10_1016_j_carbon_2021_11_020
crossref_primary_10_1007_s12274_022_4492_2
crossref_primary_10_1016_j_ijhydene_2016_11_108
crossref_primary_10_1002_cssc_202002137
crossref_primary_10_1002_smsc_202100061
crossref_primary_10_1021_acsanm_9b00867
crossref_primary_10_1007_s12274_019_2512_7
crossref_primary_10_3390_catal12121528
crossref_primary_10_1016_j_jssc_2019_04_033
crossref_primary_10_3390_nano9081161
crossref_primary_10_1016_j_apcatb_2021_120586
crossref_primary_10_1039_D4NJ05417B
crossref_primary_10_1002_cssc_201801480
crossref_primary_10_1021_acscatal_8b01715
crossref_primary_10_1016_j_carbon_2018_05_027
crossref_primary_10_1002_celc_202101246
crossref_primary_10_1016_j_apsusc_2018_12_204
crossref_primary_10_1016_j_jcis_2021_12_023
crossref_primary_10_1039_D1NR05125C
crossref_primary_10_1002_chem_201805936
crossref_primary_10_1021_acsami_7b13872
crossref_primary_10_1021_acsami_9b12638
crossref_primary_10_1039_D0RA08575H
crossref_primary_10_1021_acs_analchem_1c05566
crossref_primary_10_1016_j_molstruc_2023_135971
crossref_primary_10_1021_acsami_8b07863
crossref_primary_10_1016_j_cattod_2018_02_015
crossref_primary_10_1002_celc_201800141
crossref_primary_10_1016_j_nanoen_2019_04_076
crossref_primary_10_1002_slct_201701020
crossref_primary_10_1021_acs_jpcc_9b10173
crossref_primary_10_1039_C6CC06311J
crossref_primary_10_1039_C9TA00302A
crossref_primary_10_1039_C7RA06352K
crossref_primary_10_1039_C7NR09620H
crossref_primary_10_3390_batteries9080394
crossref_primary_10_1016_j_jcis_2020_07_055
crossref_primary_10_1016_j_nanoen_2018_08_005
crossref_primary_10_1016_j_jelechem_2018_06_006
crossref_primary_10_1021_acs_jpcc_4c01292
crossref_primary_10_1016_j_jelechem_2023_117798
crossref_primary_10_1002_ente_201900984
crossref_primary_10_1038_s41598_017_03609_9
crossref_primary_10_1021_acsanm_8b01430
crossref_primary_10_1039_C8CC00025E
crossref_primary_10_1021_acsenergylett_7b00741
crossref_primary_10_1039_D0SE00671H
crossref_primary_10_1039_D2NJ03091H
crossref_primary_10_1038_am_2017_212
crossref_primary_10_1016_j_apcatb_2019_118559
crossref_primary_10_1016_j_cej_2021_129063
crossref_primary_10_1002_cssc_201600030
crossref_primary_10_1021_acssuschemeng_9b05238
crossref_primary_10_3390_en15114029
crossref_primary_10_1021_acs_jpcc_6b12868
crossref_primary_10_1002_adfm_201603937
crossref_primary_10_1038_s41467_020_16848_8
crossref_primary_10_1002_aenm_202400790
crossref_primary_10_1038_s41467_024_51280_2
crossref_primary_10_1002_admi_201701345
crossref_primary_10_1002_cssc_201601396
crossref_primary_10_1021_acs_jpcc_7b10201
crossref_primary_10_1016_j_jtice_2019_04_030
crossref_primary_10_1007_s10008_022_05209_8
crossref_primary_10_1002_admi_201901476
crossref_primary_10_1002_smll_202300200
crossref_primary_10_1002_chem_201604113
crossref_primary_10_1021_acsaem_2c00863
crossref_primary_10_1002_ange_201908021
crossref_primary_10_1016_j_ensm_2019_12_011
crossref_primary_10_1039_D1RA08618A
crossref_primary_10_1021_acscatal_7b01649
crossref_primary_10_1021_acsnano_7b05832
crossref_primary_10_1515_ntrev_2021_0008
crossref_primary_10_1016_j_ijhydene_2021_02_056
crossref_primary_10_1039_D1EE03972E
crossref_primary_10_1002_celc_202001625
crossref_primary_10_1016_j_jpowsour_2021_230960
crossref_primary_10_1016_j_mattod_2021_03_011
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1002_anie_202216950
crossref_primary_10_1016_j_electacta_2020_137225
crossref_primary_10_1002_adma_201801563
crossref_primary_10_1021_acsaem_1c00869
crossref_primary_10_1002_celc_201800183
crossref_primary_10_1016_j_pnsc_2024_05_014
crossref_primary_10_1021_acsenergylett_6b00602
crossref_primary_10_1002_adma_201705796
crossref_primary_10_1016_j_elecom_2021_107039
crossref_primary_10_1007_s10008_019_04403_5
crossref_primary_10_1016_S1872_2067_19_63507_2
crossref_primary_10_1002_asia_201800245
crossref_primary_10_1016_j_gee_2023_01_003
crossref_primary_10_1002_celc_201700106
crossref_primary_10_1002_celc_202200867
crossref_primary_10_1007_s12274_023_5987_1
crossref_primary_10_1016_j_cej_2023_147915
crossref_primary_10_1021_acsaem_3c02911
crossref_primary_10_1007_s42235_022_00173_5
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1021_acsami_9b07436
crossref_primary_10_1039_D0NJ03443F
crossref_primary_10_1021_acs_chemrev_0c01328
crossref_primary_10_1149_1945_7111_acfc2a
crossref_primary_10_1016_j_jechem_2021_04_029
crossref_primary_10_1002_cnma_201900139
crossref_primary_10_1021_acsnano_2c00641
crossref_primary_10_1002_aenm_202003410
crossref_primary_10_1021_acsmaterialsau_3c00088
crossref_primary_10_1039_D2CY00153E
crossref_primary_10_1002_ange_201807854
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1002_sstr_202100144
crossref_primary_10_1021_jacs_1c11331
crossref_primary_10_1016_j_carbon_2018_10_040
crossref_primary_10_1016_j_carbon_2018_03_044
crossref_primary_10_1016_j_nanoen_2019_02_043
crossref_primary_10_1039_C6CY02450E
crossref_primary_10_1016_j_cclet_2021_02_032
crossref_primary_10_1007_s12039_022_02041_5
crossref_primary_10_1002_ange_201910309
crossref_primary_10_1007_s40843_017_9041_0
crossref_primary_10_1039_D0TA00794C
crossref_primary_10_1021_acsami_8b11726
crossref_primary_10_1002_aenm_201700363
crossref_primary_10_1016_j_cclet_2019_08_008
crossref_primary_10_1021_acsami_7b08437
crossref_primary_10_1021_acsami_9b18101
crossref_primary_10_1002_cctc_202400582
crossref_primary_10_1002_smll_201700740
crossref_primary_10_1039_D0SE00019A
crossref_primary_10_1002_ange_201906289
crossref_primary_10_1021_acsaem_2c01987
crossref_primary_10_1002_slct_202200570
crossref_primary_10_26599_NR_2025_94907195
crossref_primary_10_1002_anie_201907915
crossref_primary_10_1021_acsami_7b19332
crossref_primary_10_1016_j_apcata_2023_119293
crossref_primary_10_1021_acscatal_6b01222
crossref_primary_10_1016_j_carbon_2018_04_061
crossref_primary_10_3390_catal14090570
crossref_primary_10_1021_acsnano_2c00420
crossref_primary_10_1002_aenm_201602355
crossref_primary_10_1002_cnl2_169
crossref_primary_10_1016_j_jallcom_2021_161059
crossref_primary_10_1007_s41918_022_00141_x
crossref_primary_10_1016_j_nanoen_2019_104052
crossref_primary_10_1016_j_nanoen_2019_104051
crossref_primary_10_1002_aenm_201902535
crossref_primary_10_1002_anie_202300826
crossref_primary_10_1016_j_cej_2019_123294
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_3390_catal12030250
crossref_primary_10_1002_chem_201903822
crossref_primary_10_1002_celc_201701341
crossref_primary_10_1016_j_pmatsci_2020_100717
crossref_primary_10_1002_aenm_202002753
crossref_primary_10_1016_j_ensm_2020_05_014
crossref_primary_10_1002_adma_201706330
crossref_primary_10_1016_j_jece_2023_109572
crossref_primary_10_1039_C9CP03287H
crossref_primary_10_1016_j_ijhydene_2024_02_058
crossref_primary_10_1021_acsami_1c10192
crossref_primary_10_1021_acs_inorgchem_2c00735
crossref_primary_10_1021_acs_langmuir_2c01594
crossref_primary_10_1039_D1TA05039G
crossref_primary_10_1016_j_susmat_2024_e01153
crossref_primary_10_1021_acs_nanolett_0c00081
crossref_primary_10_1039_C7CY01957B
crossref_primary_10_1016_j_coelec_2018_03_035
crossref_primary_10_1016_j_jpowsour_2017_06_046
crossref_primary_10_1149_2_1131810jes
crossref_primary_10_1002_adma_201800406
crossref_primary_10_1002_eem2_12085
crossref_primary_10_1039_D2RA06806K
crossref_primary_10_1039_C9TA12171D
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1016_j_envres_2022_112992
crossref_primary_10_1021_acs_chemrev_6b00437
crossref_primary_10_1021_acssuschemeng_8b00657
crossref_primary_10_4491_eer_2023_657
crossref_primary_10_1002_celc_201600799
crossref_primary_10_1039_C6EE03265F
crossref_primary_10_1039_C6CC03073D
crossref_primary_10_1002_aenm_201902521
crossref_primary_10_1007_s11581_023_04896_1
crossref_primary_10_1016_j_apsusc_2020_147689
crossref_primary_10_1039_C8CC06638H
crossref_primary_10_1007_s11144_022_02331_6
crossref_primary_10_1016_j_cclet_2021_04_051
crossref_primary_10_1002_asia_201900727
crossref_primary_10_1002_slct_201702514
crossref_primary_10_1021_acsami_0c16081
crossref_primary_10_1039_D0TA12439G
crossref_primary_10_1016_j_cej_2023_145464
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_59761_RCR5085
crossref_primary_10_1002_ange_201907322
crossref_primary_10_1016_j_ijhydene_2019_11_201
crossref_primary_10_1021_jacs_7b01530
crossref_primary_10_1002_ppsc_201800266
crossref_primary_10_1007_s12274_023_5994_2
crossref_primary_10_1016_j_cattod_2020_04_015
crossref_primary_10_1021_acscatal_8b02360
crossref_primary_10_1021_acsami_3c15627
crossref_primary_10_1002_smtd_201900575
crossref_primary_10_1002_adma_201902339
crossref_primary_10_1149_2_0481707jes
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1016_j_electacta_2017_04_002
crossref_primary_10_1039_C8CY01223G
crossref_primary_10_1021_acsanm_0c00438
crossref_primary_10_1016_j_jcat_2019_12_011
crossref_primary_10_1021_acsami_6b13417
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1002_admi_202002060
crossref_primary_10_1021_acs_jpcc_1c02193
crossref_primary_10_1039_C8CS00797G
crossref_primary_10_1021_acssuschemeng_9b00026
crossref_primary_10_1039_C7MH00586E
crossref_primary_10_1002_chem_201701389
crossref_primary_10_1002_er_5524
crossref_primary_10_1007_s40820_017_0144_6
crossref_primary_10_1002_batt_201900052
crossref_primary_10_1021_acsanm_9b02260
crossref_primary_10_1016_j_ccr_2022_214592
crossref_primary_10_1002_smll_201703843
crossref_primary_10_1021_acs_iecr_7b01941
crossref_primary_10_1016_j_jcis_2021_06_021
crossref_primary_10_1021_acs_jpcc_8b09430
crossref_primary_10_1002_aenm_201901227
crossref_primary_10_1016_j_arabjc_2022_104256
crossref_primary_10_1002_anie_202101562
crossref_primary_10_1016_j_electacta_2018_06_152
crossref_primary_10_1134_S0018143920030091
crossref_primary_10_1016_j_jallcom_2020_155791
crossref_primary_10_1039_D1NR02457D
crossref_primary_10_1039_D0NJ02621B
crossref_primary_10_1002_adfm_201707219
crossref_primary_10_1039_C9TA04949E
crossref_primary_10_1002_celc_201700049
crossref_primary_10_1039_D3SE00570D
crossref_primary_10_1016_j_mcat_2024_114123
crossref_primary_10_1021_acsami_6b02522
crossref_primary_10_1016_j_electacta_2019_04_171
crossref_primary_10_1007_s12678_016_0347_5
crossref_primary_10_1016_j_jelechem_2022_117041
crossref_primary_10_1021_acs_jpcc_9b05843
crossref_primary_10_1039_C8TA10574J
crossref_primary_10_3390_molecules29143311
crossref_primary_10_1007_s12274_016_1249_9
crossref_primary_10_1021_acs_jpcc_9b01480
crossref_primary_10_1016_j_carbon_2017_05_078
crossref_primary_10_3390_catal11111408
crossref_primary_10_1002_adfm_202009070
crossref_primary_10_1016_j_jallcom_2017_05_221
crossref_primary_10_1088_1361_6528_ab2616
crossref_primary_10_1002_chem_201801764
crossref_primary_10_1016_j_ijhydene_2020_11_265
crossref_primary_10_1016_j_electacta_2019_134869
crossref_primary_10_1016_j_jcis_2018_03_092
crossref_primary_10_1002_chin_201614213
crossref_primary_10_1016_j_jpowsour_2016_10_038
crossref_primary_10_1039_D4SE01528B
crossref_primary_10_1016_j_nanoen_2021_105840
crossref_primary_10_1021_acsaem_4c00001
crossref_primary_10_1002_adma_202004654
crossref_primary_10_1016_j_jcat_2020_11_024
crossref_primary_10_1016_j_elecom_2019_01_021
crossref_primary_10_1021_acs_chemmater_8b02117
crossref_primary_10_1021_acs_inorgchem_2c02755
crossref_primary_10_1016_j_ijhydene_2021_09_040
crossref_primary_10_1016_j_jwpe_2023_103850
crossref_primary_10_1039_D0TA09537K
crossref_primary_10_1039_D0NJ02933E
crossref_primary_10_1021_jacs_0c06329
crossref_primary_10_1016_j_apsusc_2021_150054
crossref_primary_10_33961_JECST_2017_8_3_169
crossref_primary_10_1016_S1872_2067_17_62982_6
crossref_primary_10_1002_aesr_202100030
crossref_primary_10_1002_adma_201806312
crossref_primary_10_1021_acsami_0c10155
crossref_primary_10_1039_D0SE00735H
crossref_primary_10_1002_ejic_201901027
crossref_primary_10_1007_s41918_019_00030_w
crossref_primary_10_1016_j_ijhydene_2019_12_030
crossref_primary_10_1016_j_jallcom_2022_168107
crossref_primary_10_1007_s40820_019_0277_x
crossref_primary_10_1016_j_cej_2022_137542
crossref_primary_10_1021_acsanm_3c04202
crossref_primary_10_1002_aenm_201902115
crossref_primary_10_1039_C9QM00385A
crossref_primary_10_1002_smll_201703642
crossref_primary_10_1016_j_energy_2018_06_114
crossref_primary_10_1016_j_cej_2020_126088
crossref_primary_10_1016_j_colsurfa_2024_133637
crossref_primary_10_1007_s12678_020_00582_2
crossref_primary_10_1039_C7TA08423D
crossref_primary_10_3390_cryst14030203
crossref_primary_10_1021_acscatal_8b02167
crossref_primary_10_1002_chem_201704041
crossref_primary_10_1016_j_electacta_2022_140667
crossref_primary_10_1016_j_synthmet_2019_06_001
crossref_primary_10_1039_D0SC02343D
crossref_primary_10_1002_adfm_202001575
crossref_primary_10_1021_acs_jpcc_9b05005
crossref_primary_10_1021_acsnano_3c01380
crossref_primary_10_1039_C6TA08016B
crossref_primary_10_1007_s40843_017_9191_5
crossref_primary_10_1002_slct_202301645
crossref_primary_10_1039_C6TA10190A
crossref_primary_10_1016_j_ijhydene_2020_06_156
crossref_primary_10_1016_j_asems_2022_100006
crossref_primary_10_1039_C8CY01371C
crossref_primary_10_3390_catal10080929
crossref_primary_10_1021_acsnano_8b08692
crossref_primary_10_1039_C5CS00665A
crossref_primary_10_1016_j_renene_2020_05_050
crossref_primary_10_1021_acsanm_0c02695
crossref_primary_10_1016_j_jallcom_2024_175024
crossref_primary_10_1002_smll_201603903
crossref_primary_10_1016_j_nanoen_2016_09_016
crossref_primary_10_3390_ijms232314768
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1002_chem_201604930
crossref_primary_10_1002_adfm_202209315
crossref_primary_10_1021_acsami_7b04997
crossref_primary_10_1149_1945_7111_ad9412
crossref_primary_10_1016_j_apsusc_2018_10_116
crossref_primary_10_1016_j_carbon_2017_07_051
crossref_primary_10_1002_cctc_202402062
crossref_primary_10_1016_j_apcatb_2019_118198
crossref_primary_10_1021_acs_chemrev_8b00400
crossref_primary_10_1039_D0SE00271B
crossref_primary_10_1002_ange_202300826
crossref_primary_10_1016_j_ces_2018_01_026
crossref_primary_10_1039_C9NH00095J
crossref_primary_10_1126_sciadv_ado4935
crossref_primary_10_1002_chem_202005112
crossref_primary_10_3390_catal8030101
crossref_primary_10_1016_j_talanta_2017_12_082
crossref_primary_10_1021_acscatal_0c01498
crossref_primary_10_1039_C8CC00846A
crossref_primary_10_1039_C8TA06455E
crossref_primary_10_1002_slct_201800251
crossref_primary_10_1021_acsami_4c12970
crossref_primary_10_1021_acsami_7b12160
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1039_D1DT03897D
crossref_primary_10_1002_elan_201700780
crossref_primary_10_1002_cctc_202001855
crossref_primary_10_1016_j_cplett_2022_140126
crossref_primary_10_1039_C9NJ02408E
crossref_primary_10_1002_adma_202202714
crossref_primary_10_1039_C8TA08870E
crossref_primary_10_1016_j_jelechem_2019_113191
crossref_primary_10_1016_j_pmatsci_2019_100574
crossref_primary_10_1016_j_apsusc_2020_147659
crossref_primary_10_1021_acsenergylett_8b00245
crossref_primary_10_1021_acs_langmuir_7b02930
crossref_primary_10_1021_acsami_0c03823
crossref_primary_10_1016_j_carbon_2016_12_094
crossref_primary_10_1021_acsanm_2c02453
crossref_primary_10_1016_j_jpowsour_2019_227659
crossref_primary_10_1016_j_ijhydene_2019_12_079
crossref_primary_10_1016_j_ijhydene_2018_04_074
crossref_primary_10_1016_j_jpowsour_2019_227650
crossref_primary_10_1080_00032719_2024_2345745
crossref_primary_10_3390_catal13121484
crossref_primary_10_1039_C6RA14339C
crossref_primary_10_1021_acscatal_2c00164
crossref_primary_10_1021_acsnano_3c07963
crossref_primary_10_1016_j_carbon_2016_12_084
crossref_primary_10_1016_j_jcis_2016_12_064
crossref_primary_10_1016_j_jpowsour_2019_227660
crossref_primary_10_1021_acs_nanolett_2c00238
crossref_primary_10_1039_D0NA00717J
crossref_primary_10_1007_s43207_022_00241_w
crossref_primary_10_1002_adma_201905007
crossref_primary_10_1016_j_mcat_2023_113102
crossref_primary_10_1016_j_electacta_2023_143001
crossref_primary_10_1007_s00339_023_06464_w
crossref_primary_10_3390_catal12060585
crossref_primary_10_1016_j_apcatb_2018_11_072
crossref_primary_10_1016_j_apcatb_2021_119888
crossref_primary_10_1002_adma_201703614
crossref_primary_10_1002_ange_201907915
crossref_primary_10_1002_admi_202100244
crossref_primary_10_1039_C9QM00565J
crossref_primary_10_1016_j_electacta_2019_06_175
crossref_primary_10_1016_j_jmgm_2017_09_001
crossref_primary_10_1016_j_ensm_2018_04_020
crossref_primary_10_1016_j_catcom_2017_04_038
crossref_primary_10_1002_adma_201804784
crossref_primary_10_1039_D1QM00854D
crossref_primary_10_1016_j_mtchem_2024_102213
crossref_primary_10_1021_acs_chemmater_7b01550
crossref_primary_10_1016_j_nanoen_2017_09_040
crossref_primary_10_1016_j_pnsc_2020_08_010
crossref_primary_10_1016_j_pnsc_2020_08_012
crossref_primary_10_1016_j_gee_2022_10_007
crossref_primary_10_1016_j_jcat_2019_08_018
crossref_primary_10_3390_catal7120379
crossref_primary_10_1021_acs_energyfuels_4c05356
crossref_primary_10_1002_smll_202106841
crossref_primary_10_1016_j_snb_2016_10_138
crossref_primary_10_1039_C7TA10118J
crossref_primary_10_1360_SSC_2022_0056
crossref_primary_10_1039_C7CC08149A
crossref_primary_10_1016_j_jcis_2019_05_048
crossref_primary_10_1016_j_jcis_2020_11_095
crossref_primary_10_2139_ssrn_4016038
crossref_primary_10_34133_2019_6813585
crossref_primary_10_1021_acsami_0c14112
crossref_primary_10_1039_C7TA07387A
crossref_primary_10_1021_acs_analchem_8b00247
crossref_primary_10_1134_S1070363224120223
crossref_primary_10_1039_D1EE01675J
crossref_primary_10_1016_j_jcis_2020_07_117
crossref_primary_10_1016_j_carbon_2017_10_003
crossref_primary_10_1039_C9TA05981D
crossref_primary_10_1016_j_carbon_2017_10_004
crossref_primary_10_1039_D2EY00055E
crossref_primary_10_1016_j_mtchem_2025_102531
crossref_primary_10_1149_2_0361805jes
crossref_primary_10_1007_s40820_022_00857_x
crossref_primary_10_1016_j_fuel_2021_122954
crossref_primary_10_1039_C8NR10242B
crossref_primary_10_1016_j_ijhydene_2024_11_450
crossref_primary_10_1149_1945_7111_abf4ad
crossref_primary_10_1002_cctc_202101472
crossref_primary_10_1039_D0RA00264J
crossref_primary_10_1002_smtd_201800204
crossref_primary_10_1039_D0TA10811A
crossref_primary_10_1039_C9CC09481D
crossref_primary_10_1016_j_jpcs_2019_03_023
crossref_primary_10_3390_ma16083283
crossref_primary_10_1021_acsami_7b19498
crossref_primary_10_1002_ente_202101168
crossref_primary_10_1002_adma_201804799
crossref_primary_10_1021_acsanm_8b00275
crossref_primary_10_1021_acsaem_8b00594
crossref_primary_10_1021_acs_bioconjchem_0c00694
crossref_primary_10_1021_acsenergylett_8b01717
crossref_primary_10_1002_chem_201801442
crossref_primary_10_1039_C8CY00864G
crossref_primary_10_1021_acsami_6b11927
crossref_primary_10_1002_chem_202001288
crossref_primary_10_1016_j_surfin_2023_103729
crossref_primary_10_1021_acsami_1c16121
crossref_primary_10_3389_fchem_2022_945261
crossref_primary_10_1002_cssc_201601056
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1002_cssc_201902443
crossref_primary_10_1016_j_jcis_2019_05_063
crossref_primary_10_1007_s12274_019_2537_y
crossref_primary_10_1016_j_jechem_2016_07_005
crossref_primary_10_1049_mnl_2018_5100
crossref_primary_10_1016_S1872_2067_23_64538_3
crossref_primary_10_1007_s12274_020_3151_8
crossref_primary_10_1016_j_chempr_2023_01_003
crossref_primary_10_1002_celc_201700627
crossref_primary_10_1016_j_electacta_2018_09_107
crossref_primary_10_1016_j_jpcs_2021_109989
crossref_primary_10_1016_j_jelechem_2024_118398
crossref_primary_10_1002_adma_202203791
crossref_primary_10_1063_5_0130835
crossref_primary_10_1002_adfm_201807418
crossref_primary_10_1016_j_synthmet_2020_116487
crossref_primary_10_1002_ange_202407628
crossref_primary_10_1021_acs_chemmater_8b02275
crossref_primary_10_1039_C6RA22925E
crossref_primary_10_1039_C9NR04837E
crossref_primary_10_1021_acsanm_4c00516
crossref_primary_10_1016_j_jelechem_2022_116879
crossref_primary_10_1007_s12678_024_00869_8
crossref_primary_10_1021_acs_energyfuels_2c04369
crossref_primary_10_1016_j_matchemphys_2022_126884
crossref_primary_10_1002_anie_201804958
crossref_primary_10_1002_cssc_201700864
crossref_primary_10_1002_qua_27017
crossref_primary_10_1021_acscatal_9b02583
crossref_primary_10_1039_C7TA09254G
crossref_primary_10_1039_D1QI00394A
crossref_primary_10_1021_acs_inorgchem_9b02663
crossref_primary_10_1016_j_jcis_2025_03_011
crossref_primary_10_1016_j_diamond_2024_111848
crossref_primary_10_1039_C8TA12178H
crossref_primary_10_1002_smll_202307384
crossref_primary_10_1016_j_jelechem_2020_114542
crossref_primary_10_1016_j_cej_2019_123924
crossref_primary_10_1039_C8TA11704G
crossref_primary_10_1002_chem_201801694
crossref_primary_10_1002_slct_201800745
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1002_admi_202101998
crossref_primary_10_1007_s10853_021_06488_8
crossref_primary_10_1039_C8SE00445E
crossref_primary_10_1002_adma_202110279
crossref_primary_10_1016_j_mseb_2024_117625
crossref_primary_10_1021_acsami_9b20711
crossref_primary_10_1016_j_apcatb_2017_09_014
crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1021_acscatal_9b02920
crossref_primary_10_1002_anie_202107053
crossref_primary_10_1002_ijch_202200058
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1039_C7TA06515A
crossref_primary_10_1039_C9TA03300A
crossref_primary_10_1039_D1GC01040A
crossref_primary_10_1002_smtd_201800073
crossref_primary_10_1016_j_ijhydene_2022_03_250
crossref_primary_10_1016_j_micromeso_2018_10_020
crossref_primary_10_1016_j_xcrp_2022_100788
crossref_primary_10_31857_S0044460X24050123
crossref_primary_10_1016_j_ceramint_2019_01_143
crossref_primary_10_1021_acsenergylett_3c01173
crossref_primary_10_1021_acssuschemeng_1c05907
crossref_primary_10_1002_ange_201800269
crossref_primary_10_1016_j_jpowsour_2021_230868
crossref_primary_10_26599_NRE_2022_9120009
crossref_primary_10_3390_en14196385
crossref_primary_10_3390_catal12091023
crossref_primary_10_1021_jacs_8b09805
crossref_primary_10_1039_C9TB00301K
crossref_primary_10_1039_D1EE00142F
crossref_primary_10_1149_2_0461714jes
crossref_primary_10_1016_j_apsusc_2018_08_231
crossref_primary_10_1002_smtd_201800068
crossref_primary_10_1002_aesr_202000067
crossref_primary_10_1016_j_jelechem_2017_05_051
crossref_primary_10_20517_energymater_2023_52
crossref_primary_10_1016_j_carbon_2020_12_070
crossref_primary_10_1039_C9RA07334E
crossref_primary_10_1016_j_jallcom_2021_158940
crossref_primary_10_1039_C7TA04532H
crossref_primary_10_1016_j_electacta_2020_137335
crossref_primary_10_1016_j_cis_2021_102562
crossref_primary_10_1002_admi_201900273
crossref_primary_10_1021_acsanm_9b01865
crossref_primary_10_1002_smll_201803500
crossref_primary_10_1016_j_ijhydene_2022_03_276
crossref_primary_10_1016_j_checat_2022_06_002
crossref_primary_10_1002_adfm_201900015
crossref_primary_10_1016_j_elecom_2018_06_001
crossref_primary_10_1002_celc_201801144
crossref_primary_10_1016_j_jpowsour_2023_233483
crossref_primary_10_3390_inorganics11100388
crossref_primary_10_1016_j_jsamd_2019_07_001
crossref_primary_10_1002_asia_202000310
crossref_primary_10_1002_tcr_202400166
crossref_primary_10_1016_j_catcom_2019_105800
crossref_primary_10_1021_acs_jpcc_9b00235
crossref_primary_10_3389_fchem_2019_00747
crossref_primary_10_3390_cryst13010074
crossref_primary_10_1016_j_jechem_2020_10_034
crossref_primary_10_3390_en13092322
crossref_primary_10_1021_acsenergylett_0c00184
crossref_primary_10_1016_j_jpowsour_2018_06_095
crossref_primary_10_1039_D0NR05475E
crossref_primary_10_1016_j_ijhydene_2019_01_044
crossref_primary_10_1016_j_apcata_2024_119684
crossref_primary_10_1016_j_nanoen_2017_08_044
crossref_primary_10_1246_bcsj_20220094
crossref_primary_10_1016_j_jechem_2018_09_012
crossref_primary_10_1002_cey2_158
crossref_primary_10_1016_j_jelechem_2022_116023
crossref_primary_10_1039_D1SE01744F
crossref_primary_10_3389_fchem_2022_983549
crossref_primary_10_1016_j_apcata_2019_117120
crossref_primary_10_1039_C6TA02078J
crossref_primary_10_1021_acsami_7b09428
crossref_primary_10_1016_j_nanoen_2017_07_008
crossref_primary_10_1002_eom2_12067
crossref_primary_10_1002_slct_201900533
crossref_primary_10_1149_1945_7111_aba5da
crossref_primary_10_1039_C6TA10496G
crossref_primary_10_1021_acsaem_0c00215
crossref_primary_10_1007_s13399_019_00378_5
crossref_primary_10_1021_acsami_0c06506
crossref_primary_10_3390_nano10101947
crossref_primary_10_1016_j_pmatsci_2018_01_003
crossref_primary_10_1016_j_apsusc_2022_153907
crossref_primary_10_1016_j_seppur_2023_124155
crossref_primary_10_1039_D2CY00141A
crossref_primary_10_1016_j_jechem_2018_09_003
crossref_primary_10_1021_acssuschemeng_7b03046
crossref_primary_10_1002_smll_202302795
crossref_primary_10_1016_j_mtcomm_2023_107190
crossref_primary_10_1039_C9SE01216H
crossref_primary_10_1016_S1872_2067_19_63365_6
crossref_primary_10_1021_acscatal_7b02402
crossref_primary_10_1016_j_corsci_2022_110694
crossref_primary_10_1016_j_colsurfa_2022_129417
crossref_primary_10_1016_j_carbon_2019_11_046
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_3390_molecules26061631
crossref_primary_10_1021_acsami_9b09737
crossref_primary_10_1016_j_cej_2021_132174
crossref_primary_10_1021_acssuschemeng_9b05567
crossref_primary_10_1016_j_carbon_2017_02_045
crossref_primary_10_1016_j_jpowsour_2019_04_103
crossref_primary_10_1039_C9NR02914A
crossref_primary_10_1016_j_apsusc_2018_09_248
crossref_primary_10_1002_adfm_202423476
crossref_primary_10_1002_adma_201808281
crossref_primary_10_1007_s12274_021_3598_2
crossref_primary_10_1021_acsami_6b08101
crossref_primary_10_1039_D2CC02298B
crossref_primary_10_1016_j_nanoen_2019_103917
crossref_primary_10_1016_j_jpowsour_2021_229665
crossref_primary_10_1007_s12274_021_3292_4
crossref_primary_10_1002_anie_201908021
crossref_primary_10_1016_j_jpowsour_2020_228897
crossref_primary_10_1021_acs_jpcc_6b02670
crossref_primary_10_1002_chem_201703020
crossref_primary_10_1021_acscatal_3c00080
crossref_primary_10_1002_cctc_202200517
crossref_primary_10_1016_j_jallcom_2021_161174
crossref_primary_10_1016_j_ijhydene_2021_12_072
crossref_primary_10_1039_C7TA08964C
crossref_primary_10_3390_nano13172397
crossref_primary_10_1002_eem2_12173
crossref_primary_10_1016_j_apcatb_2020_118603
crossref_primary_10_1016_j_coco_2021_100994
crossref_primary_10_1039_D1TA01417J
crossref_primary_10_1016_j_nanoen_2018_07_033
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1002_adma_202400140
crossref_primary_10_1016_j_envres_2021_111054
crossref_primary_10_1016_j_electacta_2020_136792
crossref_primary_10_1016_j_jcis_2018_08_087
crossref_primary_10_1016_j_jcat_2018_11_039
crossref_primary_10_1021_acs_nanolett_6b05004
crossref_primary_10_1007_s12274_019_2496_3
crossref_primary_10_1016_j_cej_2017_08_072
crossref_primary_10_1021_acsaem_0c03092
crossref_primary_10_1039_D0TA02544E
crossref_primary_10_1002_ange_201702473
crossref_primary_10_1016_j_scib_2017_10_001
crossref_primary_10_1007_s10853_019_03508_6
crossref_primary_10_1039_D2SE00319H
crossref_primary_10_1039_C6CC09206C
crossref_primary_10_1039_D0TA09544C
crossref_primary_10_1039_D1DT00026H
crossref_primary_10_1002_adfm_201804886
crossref_primary_10_1016_j_ijhydene_2019_05_032
crossref_primary_10_1002_cctc_201701926
crossref_primary_10_1002_smll_201600977
crossref_primary_10_1016_j_jcis_2019_03_079
crossref_primary_10_1039_D1SE01871J
crossref_primary_10_1021_acscatal_0c02690
crossref_primary_10_1016_j_jcis_2016_11_101
crossref_primary_10_1039_D0NR09174J
crossref_primary_10_1016_j_jcis_2020_06_057
crossref_primary_10_1016_j_ijhydene_2022_05_025
crossref_primary_10_1021_acscatal_7b01800
crossref_primary_10_1039_C7CP01817G
crossref_primary_10_1016_j_electacta_2018_01_177
crossref_primary_10_1016_j_jpowsour_2020_228629
crossref_primary_10_1007_s10008_020_04543_z
crossref_primary_10_1021_acsnano_1c09450
crossref_primary_10_1016_j_electacta_2017_06_160
crossref_primary_10_1021_acsaem_0c03075
crossref_primary_10_1021_acssuschemeng_9b04327
crossref_primary_10_1002_cctc_202300454
crossref_primary_10_1002_sus2_108
crossref_primary_10_1039_C8NJ01593G
crossref_primary_10_1039_D1RA01350E
crossref_primary_10_1002_smll_201700238
crossref_primary_10_1002_asia_201701457
crossref_primary_10_1016_j_jobe_2024_108770
crossref_primary_10_1007_s12274_016_1400_7
crossref_primary_10_1016_j_apcatb_2019_118224
crossref_primary_10_1021_acsami_0c11945
crossref_primary_10_1002_adfm_201803973
crossref_primary_10_1002_adma_202311460
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1002_anie_201702473
crossref_primary_10_1021_acsaem_1c03424
crossref_primary_10_1002_ange_202216950
crossref_primary_10_3390_nano15030170
crossref_primary_10_1016_j_apsusc_2020_147367
crossref_primary_10_1039_D2NR01655A
crossref_primary_10_1016_j_ccr_2021_213954
crossref_primary_10_1039_D0CS01482F
crossref_primary_10_1016_j_jallcom_2024_177166
crossref_primary_10_1002_smll_202206071
crossref_primary_10_1039_C9TA01234F
crossref_primary_10_1016_j_mtcata_2024_100044
crossref_primary_10_1016_j_nanoen_2016_04_042
crossref_primary_10_1021_acs_jpcc_1c10916
crossref_primary_10_1002_adfm_202209273
crossref_primary_10_1016_j_nanoen_2016_04_041
crossref_primary_10_1039_C7TA04915C
crossref_primary_10_1016_j_ceramint_2023_06_056
crossref_primary_10_1016_j_jcis_2023_12_047
crossref_primary_10_1149_2162_8777_ac83f0
crossref_primary_10_1016_j_cej_2017_08_024
crossref_primary_10_1088_1361_6528_ac43ea
crossref_primary_10_1039_C9NR06080D
crossref_primary_10_1016_j_mset_2020_12_001
crossref_primary_10_1002_ange_202101562
crossref_primary_10_1016_j_apsusc_2021_148981
crossref_primary_10_1016_j_cclet_2018_11_021
crossref_primary_10_1021_acs_inorgchem_1c03573
crossref_primary_10_1016_j_ces_2023_118906
crossref_primary_10_1039_D0TA10666F
crossref_primary_10_1016_j_ensm_2019_09_024
crossref_primary_10_1002_smll_202304681
crossref_primary_10_1016_j_carbon_2019_02_006
crossref_primary_10_1039_C6EE01867J
crossref_primary_10_1021_acsami_9b04451
crossref_primary_10_1002_adsu_202400373
crossref_primary_10_1007_s11705_018_1706_y
crossref_primary_10_1021_acs_energyfuels_1c00785
crossref_primary_10_1021_acs_inorgchem_3c00290
crossref_primary_10_1021_acssuschemeng_9b06934
crossref_primary_10_1016_j_jmst_2022_09_004
crossref_primary_10_1016_j_cplett_2019_136813
crossref_primary_10_1016_j_jpowsour_2020_228684
crossref_primary_10_1002_smtd_201700167
crossref_primary_10_1016_j_ijhydene_2019_08_097
crossref_primary_10_1039_C9TA12516G
crossref_primary_10_1016_j_jallcom_2019_06_087
crossref_primary_10_1039_D0TA00010H
crossref_primary_10_1016_j_apcatb_2022_121619
crossref_primary_10_1016_j_ijhydene_2024_08_435
crossref_primary_10_1002_adma_201604563
crossref_primary_10_1016_j_cattod_2019_10_027
crossref_primary_10_1016_j_jallcom_2021_163361
crossref_primary_10_1016_j_jallcom_2022_164991
crossref_primary_10_1039_C6CP08925A
crossref_primary_10_1002_ente_202201456
crossref_primary_10_1039_C8TA04599B
crossref_primary_10_1039_C8CY01694A
crossref_primary_10_1002_cssc_202100055
crossref_primary_10_1039_D1CP00525A
crossref_primary_10_1002_adma_201602197
crossref_primary_10_1016_j_apsusc_2017_12_153
crossref_primary_10_1021_acs_jpcc_1c01333
crossref_primary_10_1016_S1872_2067_20_63536_7
crossref_primary_10_1039_D2NR05245H
crossref_primary_10_1039_D2NJ04441B
crossref_primary_10_1002_cctc_201601387
crossref_primary_10_3390_nano7110404
crossref_primary_10_1016_j_cclet_2018_10_039
crossref_primary_10_3390_catal14050325
crossref_primary_10_1016_j_envres_2023_115808
crossref_primary_10_1016_j_scib_2017_08_015
crossref_primary_10_1039_D4DT00152D
crossref_primary_10_1016_j_mtnano_2021_100144
crossref_primary_10_1016_j_electacta_2020_135855
crossref_primary_10_1002_anie_201807854
crossref_primary_10_1016_j_scib_2017_08_011
crossref_primary_10_1002_adma_202412525
crossref_primary_10_1007_s11581_018_2775_0
crossref_primary_10_1021_acssuschemeng_7b03888
crossref_primary_10_1039_C9TA01807G
crossref_primary_10_1002_advs_202409546
crossref_primary_10_1039_D1CC02667D
crossref_primary_10_1002_smll_201804371
crossref_primary_10_1016_j_ijhydene_2019_05_085
crossref_primary_10_1016_j_jelechem_2024_118475
crossref_primary_10_1002_batt_201800082
crossref_primary_10_1002_cssc_202002756
crossref_primary_10_1515_ntrev_2020_0052
crossref_primary_10_1039_D3GC02856A
crossref_primary_10_1016_j_ces_2021_116544
crossref_primary_10_1002_cctc_202000233
crossref_primary_10_1016_j_jelechem_2020_114556
crossref_primary_10_1016_j_jallcom_2024_174002
crossref_primary_10_1016_j_jelechem_2020_114316
crossref_primary_10_1016_j_ccr_2017_09_001
crossref_primary_10_1002_er_4746
crossref_primary_10_1021_acsomega_2c02395
crossref_primary_10_1016_j_ijhydene_2020_03_243
crossref_primary_10_1002_aoc_3738
crossref_primary_10_1002_adfm_201604356
crossref_primary_10_1021_acsnano_7b01908
crossref_primary_10_1186_s13705_019_0226_z
crossref_primary_10_1002_anie_201907322
crossref_primary_10_1007_s12274_020_2626_y
crossref_primary_10_1016_j_jallcom_2018_01_144
crossref_primary_10_1039_C9CS00159J
crossref_primary_10_1002_anie_202311113
crossref_primary_10_1039_C7SE00346C
crossref_primary_10_1007_s10934_022_01244_y
crossref_primary_10_1002_cssc_201900451
crossref_primary_10_1021_acscatal_4c02871
crossref_primary_10_1021_acsami_8b03742
crossref_primary_10_1016_j_apcatb_2018_08_074
crossref_primary_10_1002_adma_201805126
crossref_primary_10_1039_C9TA06128B
crossref_primary_10_1016_j_apcatb_2024_124698
crossref_primary_10_1016_j_jelechem_2022_116712
crossref_primary_10_1016_j_ijhydene_2021_11_220
crossref_primary_10_1039_C7CC08346G
crossref_primary_10_1016_j_diamond_2023_110386
crossref_primary_10_1016_j_electacta_2023_143282
crossref_primary_10_1002_anie_201910309
crossref_primary_10_1039_D0TA05326K
crossref_primary_10_1007_s12598_020_01440_2
crossref_primary_10_1039_C9QI00484J
crossref_primary_10_1002_anie_201906289
crossref_primary_10_1016_j_jcis_2017_12_012
crossref_primary_10_1142_S1793292020501155
crossref_primary_10_1002_smll_202106355
crossref_primary_10_1002_advs_202003212
crossref_primary_10_1002_fuce_201900120
crossref_primary_10_1016_j_carbon_2018_06_007
crossref_primary_10_1016_j_carbon_2021_12_096
crossref_primary_10_1002_cnma_201800231
crossref_primary_10_1016_j_mset_2018_06_005
crossref_primary_10_1016_j_electacta_2019_02_079
crossref_primary_10_1016_j_jallcom_2021_160036
crossref_primary_10_1021_acssuschemeng_0c05158
crossref_primary_10_1039_C8SC05236K
crossref_primary_10_1002_chem_201705232
crossref_primary_10_1007_s10853_017_0986_9
crossref_primary_10_1088_1361_6528_ac4f16
crossref_primary_10_1016_j_jcis_2019_02_084
crossref_primary_10_1016_j_cclet_2019_03_026
crossref_primary_10_1016_j_fuel_2021_121681
crossref_primary_10_1002_cctc_201800152
crossref_primary_10_1007_s40820_023_01067_9
crossref_primary_10_1002_sstr_202200201
crossref_primary_10_1007_s10853_021_06610_w
crossref_primary_10_1016_j_carbon_2019_01_039
crossref_primary_10_1021_acssuschemeng_9b00307
crossref_primary_10_1016_j_scib_2019_10_016
crossref_primary_10_1021_acsami_7b04667
crossref_primary_10_1039_C9RA08068F
crossref_primary_10_1021_acs_energyfuels_2c03434
crossref_primary_10_3390_polym15030521
crossref_primary_10_1016_j_mseb_2021_115341
crossref_primary_10_1016_j_ijhydene_2024_02_361
crossref_primary_10_1016_j_susmat_2020_e00221
crossref_primary_10_1016_j_electacta_2017_08_194
crossref_primary_10_1149_1945_7111_ad977a
crossref_primary_10_1021_acs_iecr_3c01588
crossref_primary_10_1039_D3EY00235G
crossref_primary_10_1002_celc_202300622
crossref_primary_10_1039_C9EE00315K
crossref_primary_10_1039_C8TA06442C
crossref_primary_10_1039_C9EE02974E
crossref_primary_10_1002_celc_201801859
crossref_primary_10_1002_celc_201701085
crossref_primary_10_1039_D4TA04066J
crossref_primary_10_1016_j_jcat_2020_05_034
crossref_primary_10_1039_D3NR01272G
crossref_primary_10_1016_j_pmatsci_2018_12_002
crossref_primary_10_1002_ange_202107053
crossref_primary_10_1002_adfm_201901949
crossref_primary_10_1002_smll_201702002
crossref_primary_10_1021_acsanm_4c03408
crossref_primary_10_1021_acssuschemeng_6b01210
crossref_primary_10_1039_D0NR02763D
crossref_primary_10_1002_adfm_201700795
Cites_doi 10.1021/cs400374k
10.1039/c3ee43648a
10.1039/C4TA04189E
10.1016/j.cap.2012.08.008
10.1039/C5EE00762C
10.1002/anie.201402574
10.1039/C4CS00484A
10.1002/adma.201500262
10.1016/j.jelechem.2010.10.004
10.1002/anie.201306588
10.1021/cm062685t
10.1039/C3CS60215J
10.1126/science.1230444
10.1002/anie.201005314
10.1002/adma.201305254
10.1002/ange.201404333
10.1016/j.elecom.2013.01.023
10.1021/ja502646c
10.1002/adfm.201201244
10.1021/jp302396g
10.1002/anie.201302924
10.1002/ange.201104004
10.1039/C4CC06867J
10.1016/0378-7753(78)85014-9
10.1002/adma.201304147
10.1002/anie.201407629
10.1126/science.1200832
10.1149/1.2425884
10.1021/nn3021234
10.1002/anie.200504386
10.1016/j.electacta.2004.03.018
10.1021/ja507463w
10.1039/C3TA15335E
10.1021/nl2029078
10.1002/anie.201406695
10.1002/ange.201208582
10.1038/nchem.367
10.1002/anie.201408408
10.1016/j.apcatb.2004.06.021
10.1039/C3TA13877A
10.1039/b912552c
10.1021/ja3091643
10.1016/S0360-0564(02)45013-4
10.1038/nnano.2012.134
10.1002/ange.201207186
10.1126/science.1135941
10.1021/ja3030565
10.1149/1.2734880
10.1021/ac900777n
10.1039/C3EE42696C
10.1149/1.1943550
10.1038/354056a0
10.1016/j.electacta.2008.02.092
10.1016/j.electacta.2014.10.138
10.1002/ange.201400358
10.1002/anie.201411125
10.1002/anie.201403363
10.1038/ncomms2812
10.1039/C4TA05342G
10.1002/anie.201204958
10.1002/adfm.201401264
10.1039/C4CS00141A
10.1021/nn504637y
10.1038/nmat3458
10.1038/nchem.121
10.1016/S1452-3981(23)15306-5
10.1002/chem.201003080
10.1002/anie.201207193
10.1002/chem.201302425
10.1039/c3ta13299d
10.1039/C4TA00029C
10.1038/2011212a0
10.1039/C4TA03986F
10.1002/ange.200504386
10.1021/cs502029h
10.1016/0013-4686(70)80037-8
10.1149/1.1837229
10.1021/cs500741s
10.1002/ange.201209871
10.1038/nchem.931
10.1021/ja403041g
10.1002/anie.201101287
10.1038/ncomms5973
10.1021/acs.nanolett.5b00320
10.1002/ange.201402574
10.3390/en20400873
10.1021/ic9022486
10.1021/ja310614x
10.1002/bbpc.19740780616
10.1016/j.electacta.2013.06.133
10.1126/science.1186476
10.1016/0378-7753(79)85009-0
10.1002/ange.201100170
10.1038/ncomms1427
10.1002/ange.201402710
10.1021/ja503656a
10.1021/ic5024778
10.1002/ange.201005314
10.1016/j.electacta.2013.01.074
10.1038/nnano.2012.18
10.1038/nmat3087
10.1021/j100298a016
10.1021/ja402450a
10.1039/C2CP42369C
10.1021/nl2017459
10.1039/C3NR05885A
10.1126/science.1170051
10.1038/nchem.288
10.1021/ja2047655
10.1021/ja5129132
10.1039/c2sc20657a
10.1016/S0378-7753(01)01009-6
10.1021/ja0449729
10.1016/j.micromeso.2004.03.034
10.1021/ja310566z
10.1002/anie.201402710
10.1039/c1ee01437d
10.1021/ja209206c
10.1002/ange.201407629
10.1016/0013-4686(75)90047-X
10.1021/ja5082553
10.1002/ange.201306828
10.1021/ja104587v
10.1039/c3nr05578g
10.1002/anie.201208582
10.1039/C1EE01431E
10.1002/anie.201206720
10.1002/ange.201308896
10.1002/ange.201307203
10.1002/ange.201207193
10.1039/B709893F
10.1002/9781118878330
10.1039/c4cc00730a
10.1016/j.electacta.2015.03.022
10.1039/C3EE43886D
10.1002/cctc.201301102
10.1016/j.jpowsour.2008.05.020
10.1002/anie.201209871
10.1002/aenm.201301415
10.1002/ange.201101287
10.1021/ja5084128
10.1002/chem.200903263
10.1039/C4CS00492B
10.1021/nl401325u
10.1039/c0ee00558d
10.1002/ange.201206720
10.1002/anie.201308896
10.1126/science.287.5460.1989
10.1021/ja305623m
10.1016/j.electacta.2010.05.019
10.1038/nchem.1083
10.1016/j.catcom.2011.08.038
10.1002/anie.201100170
10.1002/anie.201400358
10.1016/S0013-4686(02)00815-0
10.1002/ange.201206152
10.1002/ange.201403363
10.1021/jp047349j
10.1002/aenm.201400654
10.1021/ja306376s
10.1039/c2cc17537a
10.1039/C4CC03987D
10.1149/1.2364836
10.1039/c2cc34544g
10.1007/BF01039385
10.1039/C3TA14043A
10.1002/celc.201300157
10.1021/ar400011z
10.1002/adma.201104392
10.1016/j.electacta.2009.12.039
10.1021/ja502532y
10.1039/b200393g
10.1039/C3SC52026A
10.1021/jp104074t
10.1002/aenm.201301523
10.1021/ja505708y
10.1016/j.electacta.2008.02.012
10.1039/C4TA02790F
10.1021/nn404927n
10.1002/anie.201207186
10.1002/adma.201304218
10.1039/C4NR02646B
10.1002/adfm.201200186
10.1016/j.comptc.2013.04.003
10.1039/C4CC07137A
10.1021/cm201542m
10.1002/anie.201307203
10.1002/anie.201104004
10.1038/nnano.2012.72
10.1021/la1042475
10.1002/ange.201302924
10.1002/smll.201303715
10.1126/science.1168049
10.1002/ange.201405314
10.1002/ange.201406695
10.1039/C4NR05988C
10.1039/C4TA00846D
10.1021/nn303275d
10.1016/j.electacta.2005.07.006
10.1021/ac5039187
10.1016/j.nantod.2011.06.002
10.1126/science.1249061
10.1021/ac102191u
10.1021/ja061246s
10.1038/srep02771
10.1039/C5CC01152C
10.1016/j.elecom.2014.07.002
10.1021/ja100922h
10.1039/c1cp21665a
10.1002/asia.201100715
10.1039/c3ta11917c
10.1002/anie.201306828
10.1039/c4ee00106k
10.1021/cr100060r
10.1002/anie.201303197
10.1002/anie.201410258
10.1126/science.aaa8765
10.1016/j.jelechem.2006.02.029
10.1021/ja407552k
10.1002/adma.201304683
10.1021/ja210924t
10.1016/j.nantod.2014.09.002
10.1039/C4EE02281E
10.1039/b413177k
10.1149/1.2432061
10.1002/ange.201303197
10.1002/ange.201204958
10.1016/j.carbon.2012.11.036
10.1002/ange.201410258
10.1039/C4EE01760A
10.1016/0013-4686(84)85006-9
10.1002/adma.201203923
10.1016/j.electacta.2014.06.120
10.1016/j.jpowsour.2003.09.013
10.1039/C4NR00348A
10.1016/j.carbon.2014.04.017
10.1016/j.jpowsour.2007.08.028
10.1002/ange.201306588
10.1039/C4TA03850A
10.1149/1.1865612
10.1038/srep06013
10.1002/adfm.201302940
10.1039/c2ee03590a
10.1002/anie.201404333
10.1021/ja406091p
10.1021/ac403890n
10.1016/j.electacta.2006.08.059
10.1002/aenm.201400337
10.1038/nchem.1069
10.1016/S1388-2481(03)00053-5
10.1021/ja072344w
10.1021/ja7106146
10.1039/C3CC48942F
10.1002/ange.201411125
10.1021/am507033x
10.1002/9783527664900.ch4
10.1021/ja5030172
10.1039/C4TA01656D
10.1039/c0cc02048f
10.1149/1.2404164
10.1002/ange.201408408
10.1002/adma.201302753
10.1021/jp021634q
10.1002/aenm.201200230
10.1016/j.nanoen.2012.07.021
10.1039/C3EE43743D
10.1016/j.nantod.2014.05.003
10.1021/ja5009954
10.1038/srep05130
10.1021/ja500432h
10.1016/j.elecom.2006.02.020
10.1002/anie.201206152
10.1021/ja509348t
10.1002/adma.201202424
10.1002/anie.201405314
10.1021/ja5003907
10.1126/science.181.4099.547
10.1021/ar300359w
10.1016/j.jpowsour.2010.07.082
10.1002/adma.201301870
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201504830
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2676
ExternalDocumentID 3953572081
26663778
10_1002_anie_201504830
ANIE201504830
ark_67375_WNG_Q80DVQ1T_Z
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11175006; 51322205; 21371014
– fundername: Beijing Committee of Science and Technology
  funderid: 2012004
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c6120-c03363effb1fb26d3c6d79d6defbcc37eb4f92978d9af9adcba0a3b5fc79e1243
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:56:13 EDT 2025
Sun Jul 13 04:52:21 EDT 2025
Sun Jul 13 05:02:47 EDT 2025
Wed Feb 19 01:59:38 EST 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 03:27:06 EDT 2025
Wed Jan 22 16:20:46 EST 2025
Wed Oct 30 10:02:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fuel cells
nanostructure
electrocatalysts
platinum-free catalysts
oxygen reduction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6120-c03363effb1fb26d3c6d79d6defbcc37eb4f92978d9af9adcba0a3b5fc79e1243
Notes ArticleID:ANIE201504830
Beijing Committee of Science and Technology - No. 2012004
ark:/67375/WNG-Q80DVQ1T-Z
National Natural Science Foundation of China - No. 11175006; No. 51322205; No. 21371014
istex:9F98BB82672ED354AE46C8E31B24AA7D677D0756
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 26663778
PQID 1765272844
PQPubID 946352
PageCount 27
ParticipantIDs proquest_miscellaneous_1765922376
proquest_journals_1908257566
proquest_journals_1765272844
pubmed_primary_26663778
crossref_citationtrail_10_1002_anie_201504830
crossref_primary_10_1002_anie_201504830
wiley_primary_10_1002_anie_201504830_ANIE201504830
istex_primary_ark_67375_WNG_Q80DVQ1T_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 18, 2016
PublicationDateYYYYMMDD 2016-02-18
PublicationDate_xml – month: 02
  year: 2016
  text: February 18, 2016
  day: 18
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Angew. Chem. 2014, 126, 3749-3753.
T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 2015, 5, 1857-1862.
W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A 2014, 2, 11606-11613.
T. Sun, Y. Yu, B. J. Zacher, M. V. Mirkin, Angew. Chem. Int. Ed. 2014, 53, 14120-14123
E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T. J. Schmidt, ChemElectroChem 2014, 1, 338-342.
Z. Wen, S. Ci, Y. Hou, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 6496-6500
J.-S. Lee, G. S. Park, S. T. Kim, M. Liu, J. Cho, Angew. Chem. Int. Ed. 2013, 52, 1026-1030
R. Zhou, Y. Zheng, D. Hulicova-Jurcakova, S. Z. Qiao, J. Mater. Chem. A 2013, 1, 13179-13185.
Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 2014, 7, 2535-2558.
J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552-556.
A. A. Tanaka, C. Fierro, D. Scherson, E. B. Yaeger, J. Phys. Chem. 1987, 91, 3799-3807.
W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436-1439.
W. Yang, Y. Zhai, X. Yue, Y. Wang, J. Jia, Chem. Commun. 2014, 50, 11151-11153.
J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang, G. Sun, ACS Catal. 2014, 4, 2998-3001.
G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889.
A. Kong, Q. Lin, C. Mao, X. P. Feng, Chem. Commun. 2014, 50, 15619-15622.
Angew. Chem. 2014, 126, 3630-3660.
X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin, X. Y. Guo, Chem. Commun. 2012, 48, 1892-1894.
Y. Li, D. Bergman, B. Zhang, Anal. Chem. 2009, 81, 5496-5502.
J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3-14.
G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater. 2014, 24, 5956-5961.
Y.-g. Wang, L. Cheng, F. Li, H.-m. Xiong, Y.-y. Xia, Chem. Mater. 2007, 19, 2095-2101.
Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 2013, 135, 1201-1204.
Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612-13614.
Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184-2202.
X. Xiao, A. J. Bard, J. Am. Chem. Soc. 2007, 129, 9610-9612.
Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849-15857.
K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998-1003.
Angew. Chem. 2013, 125, 2534-2537.
Y. Zhao, C. Hu, L. Song, L. Wang, G. Shi, L. Dai, L. Qu, Energy Environ. Sci. 2014, 7, 1913-1918.
R. B. Levy, M. Boudart, Science 1973, 181, 547-549.
S. L. James, Chem. Soc. Rev. 2003, 32, 276-288.
Angew. Chem. 2012, 124, 11664-11668.
T. Huang, S. Mao, G. Zhou, Z. Wen, X. Huang, S. Ci, J. Chen, Nanoscale 2014, 6, 9608-9613.
Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz, S. H. Joo, J. Mater. Chem. A 2013, 1, 9992-10001.
Y. J. Wang, D. P. Wilkinson, J. Zhang, Chem. Rev. 2011, 111, 7625-7651.
B. Cao, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, Inorg. Chem. 2015, 54, 2128-2136.
Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517-3523.
W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568-576.
Angew. Chem. 2014, 126, 10849-10853.
D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81-87.
C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318.
T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646-4650
P. S. Toth, A. T. Valota, M. Velický, I. A. Kinloch, K. S. Novoselov, E. W. Hill, R. A. W. Dryfe, Chem. Sci. 2014, 5, 582-589.
S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7, 609-616.
J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 2011, 11, 5362-5366.
H. Jin, H. Zhang, H. Zhong, J. Zhang, Energy Environ. Sci. 2011, 4, 3389-3394.
X. Shan, I. Diez-Perez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Nat. Nanotechnol. 2012, 7, 668-672.
N. Ebejer, M. Schnippering, A. W. Colburn, M. A. Edwards, P. R. Unwin, Anal. Chem. 2010, 82, 9141-9145.
M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, J. Phys. Chem. C 2012, 116, 16001-16013.
Angew. Chem. 2011, 123, 662-665.
Angew. Chem. 2013, 125, 10953-10957.
D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, Ber. Bunsen-Ges. 1974, 78, 608-611.
A. S. Bondarenko, I. E. L. Stephens, H. A. Hansen, F. J. Pérez-Alonso, V. Tripkovic, T. P. Johansson, J. Rossmeisl, J. K. Nørskov, I. Chorkendorff, Langmuir 2011, 27, 2058-2066.
Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng, J. Mater. Chem. A 2015, 3, 1142-1151.
C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta 2008, 53, 4937-4951.
C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339-1343.
Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394-4403.
S. Yuan, J.-L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. Yu, D.-J. Liu, Angew. Chem. Int. Ed. 2013, 52, 8349-8353
H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, Electrochem. Commun. 2006, 8, 707-712.
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764.
F. Mazza, S. Trassatti, J. Electrochem. Soc. 1963, 110, 847-849.
Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675-3679
J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546-550.
Angew. Chem. 2013, 125, 8507-8511.
T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925-13931.
X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067-7098.
J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 2015, 54, 588-593
Angew. Chem. 2014, 126, 7025-7029.
L. An, W. Huang, N. Zhang, X. Chen, D. Xia, J. Mater. Chem. A 2014, 2, 62-65.
H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan, J. M. Tour, ACS Nano 2014, 8, 10837-10843.
C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88-97.
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132-7135
Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Müllen, Adv. Mater. 2014, 26, 1450-1455.
A. Shen, Y. Zou, Q. Wang, R. A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2014, 53, 10804-10808
Angew. Chem. 2013, 125, 8686-8705.
H. Behret, H. Binder, G. Sandstede, Electrochim. Acta 1975, 20, 111-117.
Angew. Chem. 2014, 126, 9657-9661.
Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Sci. Rep. 2013, 3, 2771.
J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, K. Domen, Chem. Commun. 2010, 46, 7492-7494.
Angew. Chem. 2015, 127, 598-603.
S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526-8544
A. J. Wain, Electrochim. Acta 2013, 92, 383-391.
J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508-8512
I. Morcos, E. Yeager, Electrochim. Acta 1970, 15, 953-975.
Angew. Chem. 2014, 126, 2465-2469.
Y. Takasu, M. Suzuki, H. Yang, T. Ohashi, W. Sugimoto, Electrochim. Acta 2010, 55, 8220-8229.
P. Chen, X. Zhou, N. M. Andoy, K. S. Han, E. Choudhary, N. Zou, G. Chen, H. Shen, Chem. Soc. Rev. 2014, 43, 1107-1117.
Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
J. Larminie, A. L. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, Hoboken, 2003.
L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 2014, 6, 6590-6602.
D. R. McIntyre, A. Vossen, J. R. Wilde, G. T. Burstein, J. Power Sources 2002, 108, 1-7.
D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D.-J. Liu, Chem. Sci. 2012, 3, 3200-3205.
S. Inamdar, H.-S. Choi, P. Wang, M. Y. Song, J.-S. Yu, Electrochem. Commun. 2013, 30, 9-12.
M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74.
S. Doi, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B362.
R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826.
G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, P. Zelenay, ACS Nano 2012, 6, 9764-9776.
H. Zhu, S. Zhang, Y. X. Huang, L. Wu, S. Sun, Nano Lett. 2013, 13, 2947-2951.
R. Dasari, D. A. Robinson, K. J. Stevenson, J. Am. Chem. Soc. 2013, 135, 570-573.
I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2014, 53, 102-121
G. Zhang, B. Y. Xia, X. Wang, X. W. David Lou, Adv. Mater. 2014, 26, 2408-2412.
T. Zhang, F. Cheng, J. Du, Y. Hu, J. Chen, Adv. Energy Mater. 2015, 5, 1400654.
G. L. Chai, Z. Hou, D. J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 2014, 136, 13629-13640.
Angew. Chem. 2015, 127, 4729-4733.
Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B664.
Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 2015, 15, 2468-2473.
Angew. Chem. 2006, 118, 2963-2967.
J. Wang, Z. Xu, Y. Gong, C. Han, H. Li, Y. Wang, ChemCatChem 2014, 6, 1204-1209.
M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556-577.
S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339-5343
K. Sasaki, L. Zhang, R. R. Adzic, Phys. Chem. Chem. Phys. 2008, 10, 159-167.
Angew. Chem. 2012, 124, 11940-11943.
F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, J. Electroanal. Chem. 2006, 590, 152-160.
Y. Su, H. Jiang, Y. Zhu, X. Yang, J. Shen, W. Zou, J. Chen, C. Li, J. Mater. Chem. A 2014, 2, 7281-7287.
Angew. Chem.
2014; 138
2010; 16
2013; 3
2013; 4
2013; 1
1991; 354
2013; 2
2009; 81
1973; 181
2014; 26
2014; 24
1996; 143
2011; 196
2014; 136
2011; 111
2008; 183
2012; 134
2015; 137
2007; 173
2013; 54
2010; 114
2015; 87
2003; 48
1979; 4
2012; 24
2010; 5
2012; 22
2014; 10
2007; 19
1974; 78
2011; 2
2006; 51
2010; 327
2013; 108
2004; 49
2015; 51
2010; 39
2015; 54
2014; 46
2013; 92
2014; 150
2006; 590
2013; 341
2008; 53
2011; 4
2011; 3
2011; 6
1970; 15
2011; 133
2003; 32
2014; 43
2010; 49
2003; 107
2007; 315
2010; 46
2007; 154
2005; 8
2005; 127
1975; 20
2011 2011; 50 123
2012; 48
2012; 116
2008; 130
2011; 660
2014 2014; 53 126
2010; 55
2004; 127
2013; 1015
2013; 25
2000; 45
2011; 11
1978; 2
2011; 10
1984; 29
2011; 13
2015; 348
2011; 17
2011; 16
2013 2013; 52 125
2013; 19
2014; 1
2013; 15
2014; 5
2014; 4
2004; 73
2014; 2
2013; 13
2013; 12
2012 2012; 51 124
2015; 44
2015 2015; 54 127
2003; 5
2011; 23
2000; 287
2002; 108
2014; 9
2011; 27
2014; 8
2014; 50
2014; 7
2006; 128
2014; 6
2009; 323
2009; 324
2015; 15
1972; 119
1963; 110
2007; 129
2015; 5
2015; 3
2013; 46
1987; 91
2015; 165
2006; 8
2008; 10
2005
2003
2007; 52
2004; 108
2015; 8
2015; 7
2011; 332
2014; 86
2010; 82
2006 2006; 45 118
2012; 2
2015; 27
2012; 3
2013; 30
2010; 132
2013; 135
2015
2014
2012; 6
2009; 2
2012; 7
2009; 1
2012; 5
1989; 19
2005; 56
2014; 343
2014; 75
1964; 201
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
e_1_2_11_223_1
e_1_2_11_246_1
e_1_2_11_186_1
e_1_2_11_223_2
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_55_2
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_211_1
e_1_2_11_197_1
e_1_2_11_234_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_2
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_151_2
e_1_2_11_208_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_201_1
e_1_2_11_247_1
e_1_2_11_92_1
e_1_2_11_201_2
e_1_2_11_224_2
e_1_2_11_224_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_54_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_190_1
e_1_2_11_212_1
e_1_2_11_235_1
e_1_2_11_80_1
e_1_2_11_198_1
e_1_2_11_250_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_39_2
e_1_2_11_175_2
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_209_1
Xiao J. (e_1_2_11_81_1) 2015; 7
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_248_1
e_1_2_11_248_2
Hamdani M. (e_1_2_11_117_1) 2010; 5
e_1_2_11_202_1
e_1_2_11_225_1
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_240_1
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_95_2
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_142_2
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_236_1
e_1_2_11_191_2
e_1_2_11_60_1
e_1_2_11_213_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_251_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_2
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_249_1
e_1_2_11_226_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_2
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_241_1
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_237_1
e_1_2_11_237_2
e_1_2_11_214_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_252_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_131_1
e_1_2_11_182_1
e_1_2_11_204_1
e_1_2_11_227_1
e_1_2_11_242_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
e_1_2_11_239_1
e_1_2_11_193_1
e_1_2_11_238_1
e_1_2_11_215_2
e_1_2_11_230_2
e_1_2_11_215_1
e_1_2_11_253_1
e_1_2_11_47_1
e_1_2_11_230_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_2
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_59_1
e_1_2_11_178_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_227_2
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_220_1
e_1_2_11_183_1
e_1_2_11_205_1
e_1_2_11_243_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_145_2
e_1_2_11_1_1
e_1_2_11_217_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_216_1
e_1_2_11_231_1
e_1_2_11_231_2
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_228_2
e_1_2_11_228_1
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_221_1
e_1_2_11_184_1
e_1_2_11_244_1
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_218_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_232_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_206_1
e_1_2_11_229_1
e_1_2_11_172_1
e_1_2_11_222_1
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_245_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_52_2
e_1_2_11_75_2
e_1_2_11_75_1
e_1_2_11_7_1
Vielstich W. (e_1_2_11_2_1) 2003
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_219_2
e_1_2_11_219_1
e_1_2_11_162_1
e_1_2_11_210_2
e_1_2_11_210_1
e_1_2_11_196_1
e_1_2_11_233_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_7_2
e_1_2_11_158_2
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_150_2
e_1_2_11_207_1
References_xml – reference: J. L. Fernández, D. A. Walsh, A. J. Bard, J. Am. Chem. Soc. 2005, 127, 357-365.
– reference: Y. Tan, C. Xu, G. Chen, X. Fang, N. Zheng, Q. Xie, Adv. Funct. Mater. 2012, 22, 4584-4591.
– reference: J. S. Lee, G. S. Park, H. I. Lee, S. T. Kim, R. Cao, M. Liu, J. Cho, Nano Lett. 2011, 11, 5362-5366.
– reference: A. J. Wain, Electrochim. Acta 2013, 92, 383-391.
– reference: T. Sun, Y. Yu, B. J. Zacher, M. V. Mirkin, Angew. Chem. Int. Ed. 2014, 53, 14120-14123;
– reference: S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593-5597.
– reference: C. H. Choi, S. H. Park, S. I. Woo, ACS Nano 2012, 6, 7084-7091.
– reference: Angew. Chem. 2014, 126, 6614-6618.
– reference: J. Xiao, C. Chen, J. Xi, Y. Xu, F. Xiao, S. Wang, S. Yang, Nanoscale 2015, 7, 7056-7064.
– reference: R. F. Savinell, Nat. Chem. 2011, 3, 501-502.
– reference: Angew. Chem. 2014, 126, 3749-3753.
– reference: Y. Zhu, B. Zhang, X. Liu, D. W. Wang, D. S. Su, Angew. Chem. Int. Ed. 2014, 53, 10673-10677;
– reference: Z. Guo, S. J. Percival, B. Zhang, J. Am. Chem. Soc. 2014, 136, 8879-8882.
– reference: M.-h. Shao, P. Liu, R. R. Adzic, J. Am. Chem. Soc. 2006, 128, 7408-7409.
– reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
– reference: F. Jaouen, S. Marcotte, J.-P. Dodelet, G. Lindbergh, J. Phys. Chem. B 2003, 107, 1376-1386.
– reference: Angew. Chem. 2013, 125, 389-393.
– reference: Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 1888-1892;
– reference: Angew. Chem. 2014, 126, 14344-14347.
– reference: A. Shen, Y. Zou, Q. Wang, R. A. Dryfe, X. Huang, S. Dou, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2014, 53, 10804-10808;
– reference: Angew. Chem. 2011, 123, 662-665.
– reference: S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, P. R. Unwin, Angew. Chem. Int. Ed. 2014, 53, 3558-3586;
– reference: T. Sun, Q. Wu, R. Che, Y. Bu, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 2015, 5, 1857-1862.
– reference: S. Yuan, J.-L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. Yu, D.-J. Liu, Angew. Chem. Int. Ed. 2013, 52, 8349-8353;
– reference: Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786.
– reference: S. Isogai, R. Ohnishi, M. Katayama, J. Kubota, D. Y. Kim, S. Noda, D. Cha, K. Takanabe, K. Domen, Chem. Asian J. 2012, 7, 286-289.
– reference: Angew. Chem. 2014, 126, 104-124.
– reference: Z. Xiang, Y. Xue, D. Cao, L. Huang, J. F. Chen, L. Dai, Angew. Chem. Int. Ed. 2014, 53, 2433-2437;
– reference: J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, Z. Dai, J. Mater. Chem. A 2014, 2, 6316-6319.
– reference: D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 2013, 52, 371-375;
– reference: I. E. L. Stephens, A. S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 6744-6762.
– reference: Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168-2201.
– reference: S. L. James, Chem. Soc. Rev. 2003, 32, 276-288.
– reference: M. Seredych, E. Rodriguez-Castellon, T. J. Bandosz, J. Mater. Chem. A 2014, 2, 20164-20176.
– reference: S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 3465-3468;
– reference: J. Duan, S. Chen, S. Dai, S. Z. Qiao, Adv. Funct. Mater. 2014, 24, 2072-2078.
– reference: A. A. Tanaka, C. Fierro, D. Scherson, E. B. Yaeger, J. Phys. Chem. 1987, 91, 3799-3807.
– reference: J. Larminie, A. L. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, Hoboken, 2003.
– reference: K. Yamamoto, T. Imaoka, W.-J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Nat. Chem. 2009, 1, 397-402.
– reference: K. Sasaki, L. Zhang, R. R. Adzic, Phys. Chem. Chem. Phys. 2008, 10, 159-167.
– reference: Angew. Chem. 2012, 124, 11940-11943.
– reference: V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Marković, Science 2007, 315, 493-497.
– reference: X. Shan, I. Diez-Perez, L. Wang, P. Wiktor, Y. Gu, L. Zhang, W. Wang, J. Lu, S. Wang, Q. Gong, J. Li, N. Tao, Nat. Nanotechnol. 2012, 7, 668-672.
– reference: Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517-3523.
– reference: Y.-g. Wang, L. Cheng, F. Li, H.-m. Xiong, Y.-y. Xia, Chem. Mater. 2007, 19, 2095-2101.
– reference: J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552-556.
– reference: B. Li, X. Ge, F. W. T. Goh, T. S. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, Nanoscale 2015, 7, 1830-1838.
– reference: T. Ando, S. Izhar, H. Tominaga, M. Nagai, Electrochim. Acta 2010, 55, 2614-2621.
– reference: S. Iijima, Nature 1991, 354, 56-58.
– reference: H. Wang, X. Bo, Y. Zhang, L. Guo, Electrochim. Acta 2013, 108, 404-411.
– reference: S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. Int. Ed. 2012, 51, 11770-11773;
– reference: K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998-1003.
– reference: W. Yang, Y. Zhai, X. Yue, Y. Wang, J. Jia, Chem. Commun. 2014, 50, 11151-11153.
– reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 50, 7132-7135;
– reference: X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin, X. Y. Guo, Chem. Commun. 2012, 48, 1892-1894.
– reference: V. S. Bagotzky, M. R. Tarasevich, K. A. Radyushkina, O. A. Levina, S. I. Andrusyova, J. Power Sources 1978, 2, 233-240.
– reference: Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 2013, 4, 1805.
– reference: J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546-550.
– reference: M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston, P. Zelenay, J. Phys. Chem. C 2012, 116, 16001-16013.
– reference: Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082-9085.
– reference: G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang, F. Wei, Small 2014, 10, 2251-2259.
– reference: M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater. 2015, 27, 2521-2527.
– reference: Y. Zhao, C. Hu, L. Song, L. Wang, G. Shi, L. Dai, L. Qu, Energy Environ. Sci. 2014, 7, 1913-1918.
– reference: N. Daems, X. Sheng, I. F. J. Vankelecom, P. P. Pescarmona, J. Mater. Chem. A 2014, 2, 4085-4110.
– reference: S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634-3640.
– reference: S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339-5343;
– reference: S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, J. Appl. Electrochem. 1989, 19, 19-27.
– reference: F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79-84.
– reference: G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878-1889.
– reference: G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, P. Zelenay, ACS Nano 2012, 6, 9764-9776.
– reference: Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
– reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764.
– reference: V. Nallathambi, J.-W. Lee, S. P. Kumaraguru, G. Wu, B. N. Popov, J. Power Sources 2008, 183, 34-42.
– reference: R. Yang, A. Bonakdarpour, J. R. Dhan, J. Electrochem. Soc. 2007, 154, B1.
– reference: Angew. Chem. 2014, 126, 7025-7029.
– reference: J. D. Voorhies, J. Electrochem. Soc. 1972, 119, 219-222.
– reference: Y. Su, H. Jiang, Y. Zhu, X. Yang, J. Shen, W. Zou, J. Chen, C. Li, J. Mater. Chem. A 2014, 2, 7281-7287.
– reference: I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2014, 53, 102-121;
– reference: Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675-3679;
– reference: S. Ma, G. A. Goenaga, A. V. Call, D. J. Liu, Chem. Eur. J. 2011, 17, 2063-2067.
– reference: H. Kim, K. Lee, S. I. Woo, Y. Jung, Phys. Chem. Chem. Phys. 2011, 13, 17505-17510.
– reference: C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932-4937.
– reference: X. Xiao, A. J. Bard, J. Am. Chem. Soc. 2007, 129, 9610-9612.
– reference: J. Wu, H. Yang, Acc. Chem. Res. 2013, 46, 1848-1857.
– reference: Y. Takasu, M. Suzuki, H. Yang, T. Ohashi, W. Sugimoto, Electrochim. Acta 2010, 55, 8220-8229.
– reference: B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 2008, 130, 5390-5391.
– reference: R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826.
– reference: A. Ishihara, K. Lee, S. Doi, S. Mitsushima, N. Kamiya, M. Hara, K. Domen, K. Fukuda, K.-U. Ota, Electrochem. Solid-State Lett. 2005, 8, A201.
– reference: S. Doi, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B362.
– reference: J. P. Brenet, J. Power Sources 1979, 4, 183-190.
– reference: P. S. Toth, A. T. Valota, M. Velický, I. A. Kinloch, K. S. Novoselov, E. W. Hill, R. A. W. Dryfe, Chem. Sci. 2014, 5, 582-589.
– reference: C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829-841.
– reference: S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989-1992.
– reference: S. Guo, S. Zhang, D. Su, S. Sun, J. Am. Chem. Soc. 2013, 135, 13879-13884.
– reference: M. Shao, A. Peles, K. Shoemaker, Nano Lett. 2011, 11, 3714-3719.
– reference: W. Sun, A. Hsu, R. Chen, J. Power Sources 2011, 196, 627-635.
– reference: Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 2005, 8, A400.
– reference: A. S. Bondarenko, I. E. L. Stephens, H. A. Hansen, F. J. Pérez-Alonso, V. Tripkovic, T. P. Johansson, J. Rossmeisl, J. K. Nørskov, I. Chorkendorff, Langmuir 2011, 27, 2058-2066.
– reference: W. Li, D. Yang, H. Chen, Y. Gao, H. Li, Electrochim. Acta 2015, 165, 191-197.
– reference: M. Fayette, A. Nelson, R. D. Robinson, J. Mater. Chem. A 2015, 3, 4274-4283.
– reference: C.-H. Kuo, I. M. Mosa, S. Thanneeru, V. Sharma, L. Zhang, S. Biswas, M. Aindow, S. Pamir Alpay, J. F. Rusling, S. L. Suib, J. He, Chem. Commun. 2015, 51, 5951-5954.
– reference: J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255.
– reference: Y. J. Wang, D. P. Wilkinson, J. Zhang, Chem. Rev. 2011, 111, 7625-7651.
– reference: C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, J. Power Sources 2007, 173, 891-908.
– reference: S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, S. Sun, J. Am. Chem. Soc. 2014, 136, 7734-7739.
– reference: Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H. B. Yang, B. Liu, Y. Yang, Chem. Soc. Rev. 2015, 44, 3295-3346.
– reference: R. Jasinski, Nature 1964, 201, 1212-1213.
– reference: G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443-447.
– reference: J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang, G. Sun, ACS Catal. 2014, 4, 2998-3001.
– reference: W. Vielstich, A. Lamm, H. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wiley, Chichester, 2003.
– reference: C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88-97.
– reference: E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T. J. Schmidt, ChemElectroChem 2014, 1, 338-342.
– reference: Q. Li, N. Mahmood, J. Zhu, Y. Hou, S. Sun, Nano Today 2014, 9, 668-683.
– reference: Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale 2014, 6, 3540-3544.
– reference: M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324, 71-74.
– reference: Angew. Chem. 2014, 126, 10849-10853.
– reference: Angew. Chem. 2013, 125, 8507-8511.
– reference: G. L. Chai, Z. Hou, D. J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 2014, 136, 13629-13640.
– reference: Angew. Chem. 2011, 123, 5451-5455.
– reference: Y. J. Sa, C. Park, H. Y. Jeong, S. H. Park, Z. Lee, K. T. Kim, G. G. Park, S. H. Joo, Angew. Chem. Int. Ed. 2014, 53, 4102-4106;
– reference: W. He, C. Jiang, J. Wang, L. Lu, Angew. Chem. Int. Ed. 2014, 53, 9503-9507;
– reference: Q. Li, R. Cao, J. Cho, G. Wu, Adv. Energy Mater. 2014, 4, 1301415.
– reference: M. Liu, Y. Dong, Y. Wu, H. Feng, J. Li, Chem. Eur. J. 2013, 19, 14781-14786.
– reference: E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nat. Commun. 2011, 2, 416.
– reference: D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, Ber. Bunsen-Ges. 1974, 78, 608-611.
– reference: Angew. Chem. 2015, 127, 4729-4733.
– reference: M. Lei, J. Wang, J. R. Li, Y. G. Wang, H. L. Tang, W. J. Wang, Sci. Rep. 2014, 4, 6013.
– reference: Angew. Chem. 2013, 125, 10953-10957.
– reference: Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu, Catal. Commun. 2011, 16, 35-38.
– reference: E. J. Biddinger, U. S. Ozkan, J. Phys. Chem. C 2010, 114, 15306-15314.
– reference: J. L. Fernández, M. Wijesinghe, C. G. Zoski, Anal. Chem. 2015, 87, 1066-1074.
– reference: H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan, J. M. Tour, ACS Nano 2014, 8, 10837-10843.
– reference: J. Yang, J. J. Xu, Electrochem. Commun. 2003, 5, 306-311.
– reference: J.-S. Lee, G. S. Park, S. T. Kim, M. Liu, J. Cho, Angew. Chem. Int. Ed. 2013, 52, 1026-1030;
– reference: A. Kong, Q. Lin, C. Mao, X. P. Feng, Chem. Commun. 2014, 50, 15619-15622.
– reference: J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37-46.
– reference: H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, Electrochem. Commun. 2006, 8, 707-712.
– reference: R. Zhou, Y. Zheng, D. Hulicova-Jurcakova, S. Z. Qiao, J. Mater. Chem. A 2013, 1, 13179-13185.
– reference: D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang, D.-J. Liu, Chem. Sci. 2012, 3, 3200-3205.
– reference: Z. Zhang, G. M. Veith, G. M. Brown, P. F. Fulvio, P. C. Hillesheim, S. Dai, S. H. Overbury, Chem. Commun. 2014, 50, 1469-1471.
– reference: Z. Shi, J. Zhang, Z.-S. Liu, H. Wang, D. P. Wilkinson, Electrochim. Acta 2006, 51, 1905-1916.
– reference: L. Mao, Electrochim. Acta 2003, 48, 1015-1021.
– reference: C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta 2008, 53, 4937-4951.
– reference: H. Jin, H. Zhang, H. Zhong, J. Zhang, Energy Environ. Sci. 2011, 4, 3389-3394.
– reference: H. Wang, Y. Liang, Y. Li, H. Dai, Angew. Chem. Int. Ed. 2011, 50, 10969-10972;
– reference: >W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 1837-1866.
– reference: Angew. Chem. 2006, 118, 2963-2967.
– reference: Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4, 3167-3192.
– reference: K. L. Pickrahn, S. W. Park, Y. Gorlin, H.-B.-R. Lee, T. F. Jaramillo, S. F. Bent, Adv. Energy Mater. 2012, 2, 1269-1277.
– reference: Q. Guo, D. Zhao, S. Liu, S. Chen, M. Hanif, H. Hou, Electrochim. Acta 2014, 138, 318-324.
– reference: H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Mater. Chem. A 2014, 2, 15704-15716.
– reference: J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, K. Domen, Chem. Commun. 2010, 46, 7492-7494.
– reference: J. Tang, J. Liu, N. L. Torad, T. Kimura, Y. Yamauchi, Nano Today 2014, 9, 305-323.
– reference: J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496-11500;
– reference: X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Nanoscale 2014, 6, 2603-2607.
– reference: Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394-400.
– reference: V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int. Ed. 2006, 45, 2897-2901;
– reference: T. Hyodo, M. Hayashi, N. Miura, N. Yamazoe, J. Electrochem. Soc. 1996, 143, L266-L267.
– reference: F. Mazza, S. Trassatti, J. Electrochem. Soc. 1963, 110, 847-849.
– reference: S. Inamdar, H.-S. Choi, P. Wang, M. Y. Song, J.-S. Yu, Electrochem. Commun. 2013, 30, 9-12.
– reference: R. Dasari, D. A. Robinson, K. J. Stevenson, J. Am. Chem. Soc. 2013, 135, 570-573.
– reference: R. B. Levy, M. Boudart, Science 1973, 181, 547-549.
– reference: J. S. Li, S. L. Li, Y. J. Tang, K. Li, L. Zhou, N. Kong, Y. Q. Lan, J. C. Bao, Z. H. Dai, Sci. Rep. 2014, 4, 5130.
– reference: T. Palaniselvam, M. O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 2014, 7, 1059-1067.
– reference: Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz, S. H. Joo, J. Mater. Chem. A 2013, 1, 9992-10001.
– reference: W. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 14385-14388.
– reference: J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, Angew. Chem. Int. Ed. 2015, 54, 588-593;
– reference: Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. L. Wang, G. Wu, Adv. Mater. 2014, 26, 1378-1386.
– reference: H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, J. Am. Chem. Soc. 2013, 135, 7130-7133.
– reference: T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925-13931.
– reference: Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Chem. Soc. Rev. 2010, 39, 2184-2202.
– reference: H. Nie, Y. Zhang, W. Zhou, J. Li, B. Wu, T. Liu, H. Zhang, Electrochim. Acta 2014, 150, 205-210.
– reference: Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu, T. Asefa, J. Am. Chem. Soc. 2014, 136, 13554-13557.
– reference: C. M. Sánchez-Sánchez, J. Solla-Gullón, F. J. Vidal-Iglesias, A. Aldaz, V. Montiel, E. Herrero, J. Am. Chem. Soc. 2010, 132, 5622-5624.
– reference: Y. X. Zhou, H. B. Yao, Y. Wang, H. L. Liu, M. R. Gao, P. K. Shen, S. H. Yu, Chem. Eur. J. 2010, 16, 12000-12007.
– reference: J.-H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Electrochim. Acta 2007, 52, 2492-2497.
– reference: Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T. Z. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2012, 134, 15849-15857.
– reference: F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, J. Electroanal. Chem. 2006, 590, 152-160.
– reference: K. Lee, N. Alonso-Vante, J. Zhang, Non-Noble Metal Fuel Cell Catalysts, Wiley-VCH, Weinheim, 2014, pp. 157-182.
– reference: H. Li, W. Kang, L. Wang, Q. Yue, S. Xu, H. Wang, J. Liu, Carbon 2013, 54, 249-257.
– reference: T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646-4650;
– reference: X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067-7098.
– reference: M. S. Faber, S. Jin, Energy Environ. Sci. 2014, 7, 3519-3542.
– reference: Angew. Chem. 2014, 126, 8648-8652.
– reference: Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 2015, 15, 2468-2473.
– reference: X. Zhao, H. Zhao, T. Zhang, X. Yan, Y. Yuan, H. Zhang, H. Zhao, D. Zhang, G. Zhu, X. Yao, J. Mater. Chem. A 2014, 2, 11666-11671.
– reference: Angew. Chem. 2014, 126, 3630-3660.
– reference: Y. Dong, J. Li, Chem. Commun. 2015, 51, 572-575.
– reference: A. Zhao, J. Masa, W. Xia, A. Maljusch, M. G. Willinger, G. Clavel, K. Xie, R. Schlogl, W. Schuhmann, M. Muhler, J. Am. Chem. Soc. 2014, 136, 7551-7554.
– reference: X. Zhou, J. Qiao, L. Yang, J. Zhang, Adv. Energy Mater. 2014, 4, 1301523.
– reference: H. Zhu, S. Zhang, Y. X. Huang, L. Wu, S. Sun, Nano Lett. 2013, 13, 2947-2951.
– reference: J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508-8512;
– reference: Angew. Chem. 2013, 125, 3549-3552.
– reference: H. Behret, H. Binder, G. Sandstede, Electrochim. Acta 1975, 20, 111-117.
– reference: Angew. Chem. 2014, 126, 2465-2469.
– reference: E. Yeager, Electrochim. Acta 1984, 29, 1527-1537.
– reference: S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7, 609-616.
– reference: C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K. C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, V. R. Stamenkovic, J. Am. Chem. Soc. 2011, 133, 14396-14403.
– reference: M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai, L. Lu, ACS Appl. Mater. Interfaces 2015, 7, 1207-1218.
– reference: Angew. Chem. 2013, 125, 2534-2537.
– reference: Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 2013, 135, 1201-1204.
– reference: Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu, S. Z. Qiao, J. Am. Chem. Soc. 2011, 133, 20116-20119.
– reference: Y. Hu, J. O. Jensen, W. Zhang, S. Martin, R. Chenitz, C. Pan, W. Xing, N. J. Bjerrum, Q. Li, J. Mater. Chem. A 2015, 3, 1752-1760.
– reference: D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127-16130.
– reference: Y. Li, D. Bergman, B. Zhang, Anal. Chem. 2009, 81, 5496-5502.
– reference: I.-Y. Jeon, D. Yu, S.-Y. Bae, H.-J. Choi, D. W. Chang, L. Dai, J.-B. Baek, Chem. Mater. 2011, 23, 3987-3992.
– reference: W. Xia, R. Zou, L. An, D. Xia, S. Guo, Energy Environ. Sci. 2015, 8, 568-576.
– reference: C. Giordano, M. Antonietti, Nano Today 2011, 6, 366-380.
– reference: J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3-14.
– reference: Angew. Chem. 2012, 124, 11664-11668.
– reference: J. Seo, D. Cha, K. Takanabe, J. Kubota, K. Domen, Chem. Commun. 2012, 48, 9074-9076.
– reference: A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530-17536.
– reference: K. Waki, R. A. Wong, H. S. Oktaviano, T. Fujio, T. Nagai, K. Kimoto, K. Yamada, Energy Environ. Sci. 2014, 7, 1950-1958.
– reference: Angew. Chem. 2014, 126, 9657-9661.
– reference: Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng, J. Mater. Chem. A 2015, 3, 1142-1151.
– reference: M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556-577.
– reference: Y. Zhao, J. Zhang, B. Han, J. Song, J. Li, Q. Wang, Angew. Chem. Int. Ed. 2011, 50, 636-639;
– reference: H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35.
– reference: T. Zhang, F. Cheng, J. Du, Y. Hu, J. Chen, Adv. Energy Mater. 2015, 5, 1400654.
– reference: G. Zhang, B. Y. Xia, X. Wang, X. W. David Lou, Adv. Mater. 2014, 26, 2408-2412.
– reference: C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339-1343.
– reference: B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71-129.
– reference: W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436-1439.
– reference: Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394-4403.
– reference: A. Ishihara, S. Doi, S. Mitsushima, K.-i. Ota, Electrochim. Acta 2008, 53, 5442-5450.
– reference: Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 2014, 7, 2535-2558.
– reference: F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Angew. Chem. Int. Ed. 2013, 52, 2474-2477;
– reference: L. An, W. Huang, N. Zhang, X. Chen, D. Xia, J. Mater. Chem. A 2014, 2, 62-65.
– reference: J. Xu, P. Gao, T. S. Zhao, Energy Environ. Sci. 2012, 5, 5333-5339.
– reference: Y. Zhang, J. Ge, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen, Sci. Rep. 2013, 3, 2771.
– reference: C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318.
– reference: J. Wang, G. Wang, S. Miao, X. Jiang, J. Li, X. Bao, Carbon 2014, 75, 381-389.
– reference: Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, J. Electrochem. Soc. 2007, 154, B664.
– reference: H. A. Gasteiger, J. E. Panels, S. G. Yan, J. Power Sources 2004, 127, 162-171.
– reference: Angew. Chem. 2013, 125, 1060-1064.
– reference: X. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Science 2010, 327, 1363-1366.
– reference: I. Morcos, E. Yeager, Electrochim. Acta 1970, 15, 953-975.
– reference: K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K.-I. Ota, Electrochim. Acta 2004, 49, 3479-3485.
– reference: J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, J. Zhang, G. Sun, ACS Nano 2014, 8, 3313-3321.
– reference: Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Müllen, Adv. Mater. 2014, 26, 1450-1455.
– reference: G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater. 2014, 24, 5956-5961.
– reference: X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu, W. Xing, ACS Catal. 2013, 3, 1726-1729.
– reference: Angew. Chem. 2015, 127, 1908-1912.
– reference: P. Chen, X. Zhou, N. M. Andoy, K. S. Han, E. Choudhary, N. Zou, G. Chen, H. Shen, Chem. Soc. Rev. 2014, 43, 1107-1117.
– reference: Angew. Chem. 2013, 125, 8686-8705.
– reference: L. Kong, Z. Ren, S. Du, J. Wu, H. Fu, Chem. Commun. 2014, 50, 4921-4923.
– reference: S. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526-8544;
– reference: J. Wang, Z. Xu, Y. Gong, C. Han, H. Li, Y. Wang, ChemCatChem 2014, 6, 1204-1209.
– reference: H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 2014, 5, 4973.
– reference: M. Risch, K. A. Stoerzinger, S. Maruyama, W. T. Hong, I. Takeuchi, Y. Shao-Horn, J. Am. Chem. Soc. 2014, 136, 5229-5232.
– reference: I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. Dai, J. B. Baek, J. Am. Chem. Soc. 2013, 135, 1386-1393.
– reference: T. N. Ye, L. B. Lv, X. H. Li, M. Xu, J. S. Chen, Angew. Chem. Int. Ed. 2014, 53, 6905-6909;
– reference: J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886-17892.
– reference: B. Cao, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, Inorg. Chem. 2015, 54, 2128-2136.
– reference: M. D. Esrafili, Comput. Theor. Chem. 2013, 1015, 1-7.
– reference: J. Lee, B. Jeong, J. D. Ocon, Curr. Appl. Phys. 2013, 13, 309-321.
– reference: L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Nanoscale 2014, 6, 6590-6602.
– reference: M. T. M. Koper, J. Electroanal. Chem. 2011, 660, 254-260.
– reference: W. Wang, N. Tao, Anal. Chem. 2014, 86, 2-14.
– reference: N. Ebejer, M. Schnippering, A. W. Colburn, M. A. Edwards, P. R. Unwin, Anal. Chem. 2010, 82, 9141-9145.
– reference: Angew. Chem. 2014, 126, 4186-4190.
– reference: A. Aijaz, N. Fujiwara, Q. Xu, J. Am. Chem. Soc. 2014, 136, 6790-6793.
– reference: X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230-1234.
– reference: B. Cao, G. M. Veith, R. E. Diaz, J. Liu, E. A. Stach, R. R. Adzic, P. G. Khalifah, Angew. Chem. Int. Ed. 2013, 52, 10753-10757;
– reference: D. R. McIntyre, A. Vossen, J. R. Wilde, G. T. Burstein, J. Power Sources 2002, 108, 1-7.
– reference: M. T. Koper, Phys. Chem. Chem. Phys. 2013, 15, 1399-1407.
– reference: Angew. Chem. 2015, 127, 598-603.
– reference: D. J. Ham, J. S. Lee, Energies 2009, 2, 873-899.
– reference: A. A. Gewirth, M. S. Thorum, Inorg. Chem. 2010, 49, 3557-3566.
– reference: T. Huang, S. Mao, G. Zhou, Z. Wen, X. Huang, S. Ci, J. Chen, Nanoscale 2014, 6, 9608-9613.
– reference: X. Zhou, N. M. Andoy, G. Liu, E. Choudhary, K.-S. Han, H. Shen, P. Chen, Nat. Nanotechnol. 2012, 7, 237-241.
– reference: Z. Wen, S. Ci, Y. Hou, J. Chen, Angew. Chem. Int. Ed. 2014, 53, 6496-6500;
– reference: Angew. Chem. 2014, 126, 10980-10984.
– reference: Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612-13614.
– reference: H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002-16005.
– reference: I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai, J. B. Baek, Adv. Mater. 2013, 25, 6138-6145.
– reference: Angew. Chem. 2011, 123, 11161-11164.
– reference: L. Wang, Z. Sofer, A. Ambrosi, P. Šimek, M. Pumera, Electrochem. Commun. 2014, 46, 148-151.
– reference: Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Adv. Mater. 2012, 24, 1399-1404.
– reference: W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A 2014, 2, 11606-11613.
– reference: Angew. Chem. 2011, 123, 7270-7273.
– reference: D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81-87.
– volume: 55
  start-page: 8220
  year: 2010
  end-page: 8229
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 552
  year: 2009
  end-page: 556
  publication-title: Nat. Chem.
– volume: 52 125
  start-page: 10753 10953
  year: 2013 2013
  end-page: 10757 10957
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 3714
  year: 2011
  end-page: 3719
  publication-title: Nano Lett.
– volume: 136
  start-page: 17530
  year: 2014
  end-page: 17536
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 10673 10849
  year: 2014 2014
  end-page: 10677 10853
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 397
  year: 2009
  end-page: 402
  publication-title: Nat. Chem.
– volume: 4
  start-page: 5130
  year: 2014
  publication-title: Sci. Rep.
– volume: 50 123
  start-page: 5339 5451
  year: 2011 2011
  end-page: 5343 5455
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 17505
  year: 2011
  end-page: 17510
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52 125
  start-page: 8349 8507
  year: 2013 2013
  end-page: 8353 8511
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  publication-title: Science
– volume: 9
  start-page: 305
  year: 2014
  end-page: 323
  publication-title: Nano Today
– volume: 10
  start-page: 2251
  year: 2014
  end-page: 2259
  publication-title: Small
– volume: 24
  start-page: 2072
  year: 2014
  end-page: 2078
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 1436
  year: 2015
  end-page: 1439
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 19
  year: 1989
  end-page: 27
  publication-title: J. Appl. Electrochem.
– volume: 5
  start-page: 306
  year: 2003
  end-page: 311
  publication-title: Electrochem. Commun.
– volume: 111
  start-page: 7625
  year: 2011
  end-page: 7651
  publication-title: Chem. Rev.
– volume: 127
  start-page: 357
  year: 2005
  end-page: 365
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1207
  year: 2015
  end-page: 1218
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5362
  year: 2011
  end-page: 5366
  publication-title: Nano Lett.
– volume: 15
  start-page: 953
  year: 1970
  end-page: 975
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 37
  year: 2009
  end-page: 46
  publication-title: Nat. Chem.
– volume: 7
  start-page: 1059
  year: 2014
  end-page: 1067
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 233
  year: 1978
  end-page: 240
  publication-title: J. Power Sources
– volume: 183
  start-page: 34
  year: 2008
  end-page: 42
  publication-title: J. Power Sources
– volume: 13
  start-page: 309
  year: 2013
  end-page: 321
  publication-title: Curr. Appl. Phys.
– volume: 44
  start-page: 2168
  year: 2015
  end-page: 2201
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 11151
  year: 2014
  end-page: 11153
  publication-title: Chem. Commun.
– volume: 53 126
  start-page: 8508 8648
  year: 2014 2014
  end-page: 8512 8652
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 82
  start-page: 9141
  year: 2010
  end-page: 9145
  publication-title: Anal. Chem.
– volume: 43
  start-page: 7067
  year: 2014
  end-page: 7098
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 5333
  year: 2012
  end-page: 5339
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1400337
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 143
  start-page: L266
  year: 1996
  end-page: L267
  publication-title: J. Electrochem. Soc.
– volume: 52 125
  start-page: 8526 8686
  year: 2013 2013
  end-page: 8544 8705
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 4102 4186
  year: 2014 2014
  end-page: 4106 4190
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 5442
  year: 2008
  end-page: 5450
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 7084
  year: 2012
  end-page: 7091
  publication-title: ACS Nano
– volume: 2
  start-page: 4085
  year: 2014
  end-page: 4110
  publication-title: J. Mater. Chem. A
– start-page: 157
  year: 2014
  end-page: 182
– volume: 136
  start-page: 13554
  year: 2014
  end-page: 13557
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 5496
  year: 2009
  end-page: 5502
  publication-title: Anal. Chem.
– volume: 52 125
  start-page: 3465 3549
  year: 2013 2013
  end-page: 3468 3552
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 1837
  year: 2015
  end-page: 1866
  publication-title: Energy Environ. Sci.
– volume: 51 124
  start-page: 11496 11664
  year: 2012 2012
  end-page: 11500 11668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 2897 2963
  year: 2006 2006
  end-page: 2901 2967
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 1015
  year: 2003
  end-page: 1021
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 4394
  year: 2014
  end-page: 4403
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 79
  year: 2011
  end-page: 84
  publication-title: Nat. Chem.
– volume: 4
  start-page: 183
  year: 1979
  end-page: 190
  publication-title: J. Power Sources
– volume: 135
  start-page: 7130
  year: 2013
  end-page: 7133
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 338
  year: 2014
  end-page: 342
  publication-title: ChemElectroChem
– start-page: 829
  year: 2005
  end-page: 841
  publication-title: Chem. Commun.
– volume: 46
  start-page: 1848
  year: 2013
  end-page: 1857
  publication-title: Acc. Chem. Res.
– volume: 660
  start-page: 254
  year: 2011
  end-page: 260
  publication-title: J. Electroanal. Chem.
– volume: 53 126
  start-page: 6905 7025
  year: 2014 2014
  end-page: 6909 7029
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 1888 1908
  year: 2015 2015
  end-page: 1892 1912
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 10804 10980
  year: 2014 2014
  end-page: 10808 10984
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 26
  start-page: 2295
  year: 2014
  end-page: 2318
  publication-title: Adv. Mater.
– volume: 54 127
  start-page: 588 598
  year: 2015 2015
  end-page: 593 603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 249
  year: 2013
  end-page: 257
  publication-title: Carbon
– volume: 150
  start-page: 205
  year: 2014
  end-page: 210
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 1905
  year: 2006
  end-page: 1916
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 4937
  year: 2008
  end-page: 4951
  publication-title: Electrochim. Acta
– volume: 135
  start-page: 7823
  year: 2013
  end-page: 7826
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 14385
  year: 2014
  end-page: 14388
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 81
  year: 2013
  end-page: 87
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1142
  year: 2015
  end-page: 1151
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 13179
  year: 2013
  end-page: 13185
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 4921
  year: 2014
  end-page: 4923
  publication-title: Chem. Commun.
– volume: 50 123
  start-page: 10969 11161
  year: 2011 2011
  end-page: 10972 11164
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 7281
  year: 2014
  end-page: 7287
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 546
  year: 2011
  end-page: 550
  publication-title: Nat. Chem.
– volume: 134
  start-page: 16127
  year: 2012
  end-page: 16130
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 6590
  year: 2014
  end-page: 6602
  publication-title: Nanoscale
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 7551
  year: 2014
  end-page: 7554
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1857
  year: 2015
  end-page: 1862
  publication-title: ACS Catal.
– volume: 128
  start-page: 7408
  year: 2006
  end-page: 7409
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1878
  year: 2013
  end-page: 1889
  publication-title: Acc. Chem. Res.
– volume: 24
  start-page: 1399
  year: 2012
  end-page: 1404
  publication-title: Adv. Mater.
– volume: 43
  start-page: 1107
  year: 2014
  end-page: 1117
  publication-title: Chem. Soc. Rev.
– volume: 354
  start-page: 56
  year: 1991
  end-page: 58
  publication-title: Nature
– volume: 7
  start-page: 394
  year: 2012
  end-page: 400
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1726
  year: 2013
  end-page: 1729
  publication-title: ACS Catal.
– volume: 6
  start-page: 3540
  year: 2014
  end-page: 3544
  publication-title: Nanoscale
– volume: 136
  start-page: 8879
  year: 2014
  end-page: 8882
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 3675 3749
  year: 2014 2014
  end-page: 3679 3753
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 371 389
  year: 2013 2013
  end-page: 375 393
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 2492
  year: 2007
  end-page: 2497
  publication-title: Electrochim. Acta
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  publication-title: Nature
– volume: 7
  start-page: 7056
  year: 2015
  end-page: 7064
  publication-title: Nanoscale
– volume: 10
  start-page: 159
  year: 2008
  end-page: 167
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  start-page: 1386
  year: 2013
  end-page: 1393
  publication-title: J. Am. Chem. Soc.
– volume: 75
  start-page: 381
  year: 2014
  end-page: 389
  publication-title: Carbon
– volume: 44
  start-page: 3295
  year: 2015
  end-page: 3346
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 501
  year: 2011
  end-page: 502
  publication-title: Nat. Chem.
– volume: 7
  start-page: 2535
  year: 2014
  end-page: 2558
  publication-title: Energy Environ. Sci.
– volume: 86
  start-page: 2
  year: 2014
  end-page: 14
  publication-title: Anal. Chem.
– volume: 348
  start-page: 1230
  year: 2015
  end-page: 1234
  publication-title: Science
– volume: 4
  start-page: 6013
  year: 2014
  publication-title: Sci. Rep.
– volume: 343
  start-page: 1339
  year: 2014
  end-page: 1343
  publication-title: Science
– volume: 13
  start-page: 2947
  year: 2013
  end-page: 2951
  publication-title: Nano Lett.
– volume: 53 126
  start-page: 2433 2465
  year: 2014 2014
  end-page: 2437 2469
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 108
  start-page: 404
  year: 2013
  end-page: 411
  publication-title: Electrochim. Acta
– year: 2003
– volume: 324
  start-page: 71
  year: 2009
  end-page: 74
  publication-title: Science
– volume: 53 126
  start-page: 6496 6614
  year: 2014 2014
  end-page: 6500 6618
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 13612
  year: 2010
  end-page: 13614
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 366
  year: 2011
  end-page: 380
  publication-title: Nano Today
– volume: 154
  start-page: 362
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 11606
  year: 2014
  end-page: 11613
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 5593
  year: 2012
  end-page: 5597
  publication-title: Adv. Mater.
– volume: 154
  start-page: 664
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 5229
  year: 2014
  end-page: 5232
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1913
  year: 2014
  end-page: 1918
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 570
  year: 2013
  end-page: 573
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 62
  year: 2014
  end-page: 65
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1400654
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 416
  year: 2011
  publication-title: Nat. Commun.
– volume: 92
  start-page: 383
  year: 2013
  end-page: 391
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 11252
  year: 2014
  end-page: 11255
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6744
  year: 2012
  end-page: 6762
  publication-title: Energy Environ. Sci.
– volume: 53 126
  start-page: 9503 9657
  year: 2014 2014
  end-page: 9507 9661
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 3987
  year: 2011
  end-page: 3992
  publication-title: Chem. Mater.
– volume: 53 126
  start-page: 102 104
  year: 2014 2014
  end-page: 121 124
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 998
  year: 2013
  end-page: 1003
  publication-title: Adv. Mater.
– volume: 134
  start-page: 15849
  year: 2012
  end-page: 15857
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 1201
  year: 2013
  end-page: 1204
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 4274
  year: 2015
  end-page: 4283
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 12000
  year: 2010
  end-page: 12007
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 3557
  year: 2010
  end-page: 3566
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 2603
  year: 2014
  end-page: 2607
  publication-title: Nanoscale
– volume: 134
  start-page: 9082
  year: 2012
  end-page: 9085
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 608
  year: 1974
  end-page: 611
  publication-title: Ber. Bunsen-Ges.
– volume: 32
  start-page: 276
  year: 2003
  end-page: 288
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 6316
  year: 2014
  end-page: 6319
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 7734
  year: 2014
  end-page: 7739
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1527
  year: 1984
  end-page: 1537
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 400
  year: 2005
  publication-title: Electrochem. Solid-State Lett.
– volume: 20
  start-page: 111
  year: 1975
  end-page: 117
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 3479
  year: 2004
  end-page: 3485
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 3167
  year: 2011
  end-page: 3192
  publication-title: Energy Environ. Sci.
– volume: 108
  start-page: 1
  year: 2002
  end-page: 7
  publication-title: J. Power Sources
– volume: 8
  start-page: 10837
  year: 2014
  end-page: 10843
  publication-title: ACS Nano
– volume: 51
  start-page: 572
  year: 2015
  end-page: 575
  publication-title: Chem. Commun.
– volume: 3
  start-page: 3200
  year: 2012
  end-page: 3205
  publication-title: Chem. Sci.
– volume: 91
  start-page: 3799
  year: 1987
  end-page: 3807
  publication-title: J. Phys. Chem.
– volume: 15
  start-page: 1399
  year: 2013
  end-page: 1407
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 1450
  year: 2014
  end-page: 1455
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3389
  year: 2011
  end-page: 3394
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 1469
  year: 2014
  end-page: 1471
  publication-title: Chem. Commun.
– volume: 7
  start-page: 237
  year: 2012
  end-page: 241
  publication-title: Nat. Nanotechnol.
– volume: 181
  start-page: 547
  year: 1973
  end-page: 549
  publication-title: Science
– volume: 7
  start-page: 668
  year: 2012
  end-page: 672
  publication-title: Nat. Nanotechnol.
– volume: 46
  start-page: 7492
  year: 2010
  end-page: 7494
  publication-title: Chem. Commun.
– volume: 51 124
  start-page: 11770 11940
  year: 2012 2012
  end-page: 11773 11943
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 2095
  year: 2007
  end-page: 2101
  publication-title: Chem. Mater.
– volume: 4
  start-page: 2998
  year: 2014
  end-page: 3001
  publication-title: ACS Catal.
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 130
  start-page: 5390
  year: 2008
  end-page: 5391
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2058
  year: 2011
  end-page: 2066
  publication-title: Langmuir
– volume: 19
  start-page: 14781
  year: 2013
  end-page: 14786
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 1301415
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 48
  start-page: 1892
  year: 2012
  end-page: 1894
  publication-title: Chem. Commun.
– volume: 2
  start-page: 11666
  year: 2014
  end-page: 11671
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1269
  year: 2012
  end-page: 1277
  publication-title: Adv. Energy Mater.
– volume: 341
  start-page: 1230444
  year: 2013
  publication-title: Science
– volume: 27
  start-page: 2521
  year: 2015
  end-page: 2527
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9764
  year: 2012
  end-page: 9776
  publication-title: ACS Nano
– volume: 133
  start-page: 20116
  year: 2011
  end-page: 20119
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 4584
  year: 2012
  end-page: 4591
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 15619
  year: 2014
  end-page: 15622
  publication-title: Chem. Commun.
– volume: 1
  start-page: 9992
  year: 2013
  end-page: 10001
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 582
  year: 2014
  end-page: 589
  publication-title: Chem. Sci.
– volume: 25
  start-page: 4932
  year: 2013
  end-page: 4937
  publication-title: Adv. Mater.
– volume: 287
  start-page: 1989
  year: 2000
  end-page: 1992
  publication-title: Science
– volume: 3
  start-page: 2771
  year: 2013
  publication-title: Sci. Rep.
– volume: 116
  start-page: 16001
  year: 2012
  end-page: 16013
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 668
  year: 2014
  end-page: 683
  publication-title: Nano Today
– volume: 135
  start-page: 13879
  year: 2013
  end-page: 13884
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 707
  year: 2006
  end-page: 712
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 9608
  year: 2014
  end-page: 9613
  publication-title: Nanoscale
– volume: 39
  start-page: 2184
  year: 2010
  end-page: 2202
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 201
  year: 2005
  publication-title: Electrochem. Solid-State Lett.
– volume: 3
  start-page: 1752
  year: 2015
  end-page: 1760
  publication-title: J. Mater. Chem. A
– volume: 127
  start-page: 162
  year: 2004
  end-page: 171
  publication-title: J. Power Sources
– volume: 24
  start-page: 5956
  year: 2014
  end-page: 5961
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 3517
  year: 2012
  end-page: 3523
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 2474 2534
  year: 2013 2013
  end-page: 2477 2537
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 590
  start-page: 152
  year: 2006
  end-page: 160
  publication-title: J. Electroanal. Chem.
– volume: 56
  start-page: 9
  year: 2005
  end-page: 35
  publication-title: Appl. Catal. B
– volume: 135
  start-page: 16002
  year: 2013
  end-page: 16005
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 7132 7270
  year: 2011 2011
  end-page: 7135 7273
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 9074
  year: 2012
  end-page: 9076
  publication-title: Chem. Commun.
– volume: 196
  start-page: 627
  year: 2011
  end-page: 635
  publication-title: J. Power Sources
– volume: 327
  start-page: 1363
  year: 2010
  end-page: 1366
  publication-title: Science
– volume: 50 123
  start-page: 636 662
  year: 2011 2011
  end-page: 639 665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1015
  start-page: 1
  year: 2013
  end-page: 7
  publication-title: Comput. Theor. Chem.
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  publication-title: Science
– volume: 8
  start-page: 3313
  year: 2014
  end-page: 3321
  publication-title: ACS Nano
– volume: 2
  start-page: 873
  year: 2009
  end-page: 899
  publication-title: Energies
– volume: 2
  start-page: 15704
  year: 2014
  end-page: 15716
  publication-title: J. Mater. Chem. A
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  publication-title: J. Phys. Chem. B
– volume: 138
  start-page: 318
  year: 2014
  end-page: 324
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 6138
  year: 2013
  end-page: 6145
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1301523
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 556
  year: 2010
  end-page: 577
  publication-title: Int. J. Electrochem. Sci.
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1950
  year: 2014
  end-page: 1958
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 148
  year: 2014
  end-page: 151
  publication-title: Electrochem. Commun.
– volume: 54 127
  start-page: 4646 4729
  year: 2015 2015
  end-page: 4650 4733
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 154
  start-page: 1
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 286
  year: 2012
  end-page: 289
  publication-title: Chem. Asian J.
– volume: 17
  start-page: 2063
  year: 2011
  end-page: 2067
  publication-title: Chem. Eur. J.
– volume: 136
  start-page: 6790
  year: 2014
  end-page: 6793
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 35
  year: 2011
  end-page: 38
  publication-title: Catal. Commun.
– volume: 7
  start-page: 609
  year: 2014
  end-page: 616
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 5951
  year: 2015
  end-page: 5954
  publication-title: Chem. Commun.
– volume: 45
  start-page: 71
  year: 2000
  end-page: 129
  publication-title: Adv. Catal.
– volume: 87
  start-page: 1066
  year: 2015
  end-page: 1074
  publication-title: Anal. Chem.
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  publication-title: Nat. Mater.
– volume: 2
  start-page: 88
  year: 2013
  end-page: 97
  publication-title: Nano Energy
– volume: 22
  start-page: 3634
  year: 2012
  end-page: 3640
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 2468
  year: 2015
  end-page: 2473
  publication-title: Nano Lett.
– volume: 55
  start-page: 2614
  year: 2010
  end-page: 2621
  publication-title: Electrochim. Acta
– volume: 165
  start-page: 191
  year: 2015
  end-page: 197
  publication-title: Electrochim. Acta
– volume: 110
  start-page: 847
  year: 1963
  end-page: 849
  publication-title: J. Electrochem. Soc.
– volume: 73
  start-page: 3
  year: 2004
  end-page: 14
  publication-title: Microporous Mesoporous Mater.
– volume: 30
  start-page: 9
  year: 2013
  end-page: 12
  publication-title: Electrochem. Commun.
– volume: 129
  start-page: 9610
  year: 2007
  end-page: 9612
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2128
  year: 2015
  end-page: 2136
  publication-title: Inorg. Chem.
– volume: 26
  start-page: 1378
  year: 2014
  end-page: 1386
  publication-title: Adv. Mater.
– volume: 2
  start-page: 20164
  year: 2014
  end-page: 20176
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 568
  year: 2015
  end-page: 576
  publication-title: Energy Environ. Sci.
– volume: 173
  start-page: 891
  year: 2007
  end-page: 908
  publication-title: J. Power Sources
– volume: 132
  start-page: 5622
  year: 2010
  end-page: 5624
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 219
  year: 1972
  end-page: 222
  publication-title: J. Electrochem. Soc.
– volume: 52 125
  start-page: 1026 1060
  year: 2013 2013
  end-page: 1030 1064
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 15306
  year: 2010
  end-page: 15314
  publication-title: J. Phys. Chem. C
– volume: 53 126
  start-page: 14120 14344
  year: 2014 2014
  end-page: 14123 14347
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 3558 3630
  year: 2014 2014
  end-page: 3586 3660
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 13629
  year: 2014
  end-page: 13640
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 1376
  year: 2003
  end-page: 1386
  publication-title: J. Phys. Chem. B
– volume: 133
  start-page: 14396
  year: 2011
  end-page: 14403
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1830
  year: 2015
  end-page: 1838
  publication-title: Nanoscale
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  publication-title: Science
– volume: 6
  start-page: 1204
  year: 2014
  end-page: 1209
  publication-title: ChemCatChem
– volume: 26
  start-page: 2408
  year: 2014
  end-page: 2412
  publication-title: Adv. Mater.
– ident: e_1_2_11_183_1
  doi: 10.1021/cs400374k
– ident: e_1_2_11_249_1
  doi: 10.1039/c3ee43648a
– ident: e_1_2_11_82_1
  doi: 10.1039/C4TA04189E
– ident: e_1_2_11_1_1
  doi: 10.1016/j.cap.2012.08.008
– ident: e_1_2_11_155_1
  doi: 10.1039/C5EE00762C
– ident: e_1_2_11_228_1
  doi: 10.1002/anie.201402574
– ident: e_1_2_11_12_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_11_51_1
  doi: 10.1002/adma.201500262
– ident: e_1_2_11_18_1
  doi: 10.1016/j.jelechem.2010.10.004
– ident: e_1_2_11_17_1
  doi: 10.1002/anie.201306588
– ident: e_1_2_11_94_1
  doi: 10.1021/cm062685t
– ident: e_1_2_11_242_1
  doi: 10.1039/C3CS60215J
– volume: 7
  start-page: 7056
  year: 2015
  ident: e_1_2_11_81_1
  publication-title: Nanoscale
– ident: e_1_2_11_154_1
  doi: 10.1126/science.1230444
– ident: e_1_2_11_158_1
  doi: 10.1002/anie.201005314
– ident: e_1_2_11_218_1
  doi: 10.1002/adma.201305254
– ident: e_1_2_11_175_2
  doi: 10.1002/ange.201404333
– ident: e_1_2_11_184_1
  doi: 10.1016/j.elecom.2013.01.023
– ident: e_1_2_11_250_1
  doi: 10.1021/ja502646c
– ident: e_1_2_11_90_1
  doi: 10.1002/adfm.201201244
– ident: e_1_2_11_49_1
  doi: 10.1021/jp302396g
– ident: e_1_2_11_151_1
  doi: 10.1002/anie.201302924
– ident: e_1_2_11_130_2
  doi: 10.1002/ange.201104004
– ident: e_1_2_11_163_1
  doi: 10.1039/C4CC06867J
– ident: e_1_2_11_135_1
  doi: 10.1016/0378-7753(78)85014-9
– ident: e_1_2_11_147_1
  doi: 10.1002/adma.201304147
– ident: e_1_2_11_191_1
  doi: 10.1002/anie.201407629
– ident: e_1_2_11_140_1
  doi: 10.1126/science.1200832
– ident: e_1_2_11_44_1
  doi: 10.1149/1.2425884
– ident: e_1_2_11_186_1
  doi: 10.1021/nn3021234
– ident: e_1_2_11_7_1
  doi: 10.1002/anie.200504386
– ident: e_1_2_11_46_1
  doi: 10.1016/j.electacta.2004.03.018
– ident: e_1_2_11_189_1
  doi: 10.1021/ja507463w
– ident: e_1_2_11_167_1
  doi: 10.1039/C3TA15335E
– ident: e_1_2_11_124_1
  doi: 10.1021/nl2029078
– ident: e_1_2_11_248_1
  doi: 10.1002/anie.201406695
– ident: e_1_2_11_95_2
  doi: 10.1002/ange.201208582
– ident: e_1_2_11_34_1
  doi: 10.1038/nchem.367
– ident: e_1_2_11_237_1
  doi: 10.1002/anie.201408408
– ident: e_1_2_11_29_1
  doi: 10.1016/j.apcatb.2004.06.021
– ident: e_1_2_11_71_1
  doi: 10.1039/C3TA13877A
– ident: e_1_2_11_9_1
  doi: 10.1039/b912552c
– ident: e_1_2_11_213_1
  doi: 10.1021/ja3091643
– ident: e_1_2_11_24_1
  doi: 10.1016/S0360-0564(02)45013-4
– ident: e_1_2_11_240_1
  doi: 10.1038/nnano.2012.134
– ident: e_1_2_11_8_2
  doi: 10.1002/ange.201207186
– ident: e_1_2_11_15_1
  doi: 10.1126/science.1135941
– ident: e_1_2_11_101_1
  doi: 10.1021/ja3030565
– ident: e_1_2_11_110_1
  doi: 10.1149/1.2734880
– ident: e_1_2_11_238_1
  doi: 10.1021/ac900777n
– ident: e_1_2_11_88_1
  doi: 10.1039/C3EE42696C
– ident: e_1_2_11_107_1
  doi: 10.1149/1.1943550
– ident: e_1_2_11_193_1
  doi: 10.1038/354056a0
– ident: e_1_2_11_72_1
  doi: 10.1016/j.electacta.2008.02.092
– ident: e_1_2_11_180_1
  doi: 10.1016/j.electacta.2014.10.138
– ident: e_1_2_11_55_2
  doi: 10.1002/ange.201400358
– ident: e_1_2_11_224_1
  doi: 10.1002/anie.201411125
– ident: e_1_2_11_230_1
  doi: 10.1002/anie.201403363
– ident: e_1_2_11_86_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_11_161_1
  doi: 10.1039/C4TA05342G
– ident: e_1_2_11_219_1
  doi: 10.1002/anie.201204958
– ident: e_1_2_11_205_1
  doi: 10.1002/adfm.201401264
– ident: e_1_2_11_211_1
  doi: 10.1039/C4CS00141A
– ident: e_1_2_11_222_1
  doi: 10.1021/nn504637y
– ident: e_1_2_11_36_1
  doi: 10.1038/nmat3458
– ident: e_1_2_11_25_1
  doi: 10.1038/nchem.121
– volume: 5
  start-page: 556
  year: 2010
  ident: e_1_2_11_117_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15306-5
– ident: e_1_2_11_160_1
  doi: 10.1002/chem.201003080
– ident: e_1_2_11_52_1
  doi: 10.1002/anie.201207193
– ident: e_1_2_11_70_1
  doi: 10.1002/chem.201302425
– ident: e_1_2_11_104_1
  doi: 10.1039/c3ta13299d
– ident: e_1_2_11_102_1
  doi: 10.1039/C4TA00029C
– ident: e_1_2_11_133_1
  doi: 10.1038/2011212a0
– ident: e_1_2_11_57_1
  doi: 10.1039/C4TA03986F
– ident: e_1_2_11_7_2
  doi: 10.1002/ange.200504386
– ident: e_1_2_11_67_1
  doi: 10.1021/cs502029h
– ident: e_1_2_11_21_1
  doi: 10.1016/0013-4686(70)80037-8
– ident: e_1_2_11_111_1
  doi: 10.1149/1.1837229
– ident: e_1_2_11_76_1
  doi: 10.1021/cs500741s
– ident: e_1_2_11_39_2
  doi: 10.1002/ange.201209871
– ident: e_1_2_11_120_1
  doi: 10.1038/nchem.931
– ident: e_1_2_11_40_1
  doi: 10.1021/ja403041g
– ident: e_1_2_11_201_1
  doi: 10.1002/anie.201101287
– ident: e_1_2_11_192_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_11_38_1
  doi: 10.1021/acs.nanolett.5b00320
– ident: e_1_2_11_228_2
  doi: 10.1002/ange.201402574
– ident: e_1_2_11_59_1
  doi: 10.3390/en20400873
– ident: e_1_2_11_3_1
  doi: 10.1021/ic9022486
– ident: e_1_2_11_234_1
  doi: 10.1021/ja310614x
– ident: e_1_2_11_127_1
  doi: 10.1002/bbpc.19740780616
– ident: e_1_2_11_187_1
  doi: 10.1016/j.electacta.2013.06.133
– ident: e_1_2_11_239_1
  doi: 10.1126/science.1186476
– ident: e_1_2_11_100_1
  doi: 10.1016/0378-7753(79)85009-0
– ident: e_1_2_11_227_2
  doi: 10.1002/ange.201100170
– ident: e_1_2_11_14_1
  doi: 10.1038/ncomms1427
– volume-title: Handbook of Fuel Cells: Fundamentals, Technology, Applications
  year: 2003
  ident: e_1_2_11_2_1
– ident: e_1_2_11_145_2
  doi: 10.1002/ange.201402710
– ident: e_1_2_11_235_1
  doi: 10.1021/ja503656a
– ident: e_1_2_11_63_1
  doi: 10.1021/ic5024778
– ident: e_1_2_11_158_2
  doi: 10.1002/ange.201005314
– ident: e_1_2_11_243_1
  doi: 10.1016/j.electacta.2013.01.074
– ident: e_1_2_11_241_1
  doi: 10.1038/nnano.2012.18
– ident: e_1_2_11_87_1
  doi: 10.1038/nmat3087
– ident: e_1_2_11_134_1
  doi: 10.1021/j100298a016
– ident: e_1_2_11_190_1
  doi: 10.1021/ja402450a
– ident: e_1_2_11_16_1
  doi: 10.1039/C2CP42369C
– ident: e_1_2_11_32_1
  doi: 10.1021/nl2017459
– ident: e_1_2_11_131_1
  doi: 10.1039/C3NR05885A
– ident: e_1_2_11_139_1
  doi: 10.1126/science.1170051
– ident: e_1_2_11_31_1
  doi: 10.1038/nchem.288
– ident: e_1_2_11_35_1
  doi: 10.1021/ja2047655
– ident: e_1_2_11_149_1
  doi: 10.1021/ja5129132
– ident: e_1_2_11_159_1
  doi: 10.1039/c2sc20657a
– ident: e_1_2_11_48_1
  doi: 10.1016/S0378-7753(01)01009-6
– ident: e_1_2_11_245_1
  doi: 10.1021/ja0449729
– ident: e_1_2_11_153_1
  doi: 10.1016/j.micromeso.2004.03.034
– ident: e_1_2_11_204_1
  doi: 10.1021/ja310566z
– ident: e_1_2_11_145_1
  doi: 10.1002/anie.201402710
– ident: e_1_2_11_178_1
  doi: 10.1039/c1ee01437d
– ident: e_1_2_11_225_1
  doi: 10.1021/ja209206c
– ident: e_1_2_11_191_2
  doi: 10.1002/ange.201407629
– ident: e_1_2_11_128_1
  doi: 10.1016/0013-4686(75)90047-X
– ident: e_1_2_11_171_1
  doi: 10.1021/ja5082553
– ident: e_1_2_11_231_2
  doi: 10.1002/ange.201306828
– ident: e_1_2_11_91_1
  doi: 10.1021/ja104587v
– ident: e_1_2_11_221_1
  doi: 10.1039/c3nr05578g
– ident: e_1_2_11_95_1
  doi: 10.1002/anie.201208582
– ident: e_1_2_11_77_1
  doi: 10.1039/C1EE01431E
– ident: e_1_2_11_210_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_11_150_2
  doi: 10.1002/ange.201308896
– ident: e_1_2_11_223_2
  doi: 10.1002/ange.201307203
– ident: e_1_2_11_52_2
  doi: 10.1002/ange.201207193
– ident: e_1_2_11_109_1
  doi: 10.1039/B709893F
– ident: e_1_2_11_4_1
  doi: 10.1002/9781118878330
– ident: e_1_2_11_62_1
  doi: 10.1039/c4cc00730a
– ident: e_1_2_11_203_1
  doi: 10.1016/j.electacta.2015.03.022
– ident: e_1_2_11_112_1
  doi: 10.1039/C3EE43886D
– ident: e_1_2_11_188_1
  doi: 10.1002/cctc.201301102
– ident: e_1_2_11_143_1
  doi: 10.1016/j.jpowsour.2008.05.020
– ident: e_1_2_11_39_1
  doi: 10.1002/anie.201209871
– ident: e_1_2_11_198_1
  doi: 10.1002/aenm.201301415
– ident: e_1_2_11_201_2
  doi: 10.1002/ange.201101287
– ident: e_1_2_11_170_1
  doi: 10.1021/ja5084128
– ident: e_1_2_11_129_1
  doi: 10.1002/chem.200903263
– ident: e_1_2_11_194_1
  doi: 10.1039/C4CS00492B
– ident: e_1_2_11_121_1
  doi: 10.1021/nl401325u
– ident: e_1_2_11_13_1
  doi: 10.1039/c0ee00558d
– ident: e_1_2_11_210_2
  doi: 10.1002/ange.201206720
– ident: e_1_2_11_150_1
  doi: 10.1002/anie.201308896
– ident: e_1_2_11_30_1
  doi: 10.1126/science.287.5460.1989
– ident: e_1_2_11_85_1
  doi: 10.1021/ja305623m
– ident: e_1_2_11_106_1
  doi: 10.1016/j.electacta.2010.05.019
– ident: e_1_2_11_113_1
  doi: 10.1038/nchem.1083
– ident: e_1_2_11_202_1
  doi: 10.1016/j.catcom.2011.08.038
– ident: e_1_2_11_227_1
  doi: 10.1002/anie.201100170
– ident: e_1_2_11_55_1
  doi: 10.1002/anie.201400358
– ident: e_1_2_11_97_1
  doi: 10.1016/S0013-4686(02)00815-0
– ident: e_1_2_11_79_2
  doi: 10.1002/ange.201206152
– ident: e_1_2_11_230_2
  doi: 10.1002/ange.201403363
– ident: e_1_2_11_20_1
  doi: 10.1021/jp047349j
– ident: e_1_2_11_96_1
  doi: 10.1002/aenm.201400654
– ident: e_1_2_11_185_1
  doi: 10.1021/ja306376s
– ident: e_1_2_11_103_1
  doi: 10.1039/c2cc17537a
– ident: e_1_2_11_56_1
  doi: 10.1039/C4CC03987D
– ident: e_1_2_11_47_1
  doi: 10.1149/1.2364836
– ident: e_1_2_11_108_1
  doi: 10.1039/c2cc34544g
– ident: e_1_2_11_137_1
  doi: 10.1007/BF01039385
– ident: e_1_2_11_28_1
  doi: 10.1039/C3TA14043A
– ident: e_1_2_11_114_1
  doi: 10.1002/celc.201300157
– ident: e_1_2_11_146_1
  doi: 10.1021/ar400011z
– ident: e_1_2_11_50_1
  doi: 10.1002/adma.201104392
– ident: e_1_2_11_68_1
  doi: 10.1016/j.electacta.2009.12.039
– ident: e_1_2_11_220_1
  doi: 10.1021/ja502532y
– ident: e_1_2_11_152_1
  doi: 10.1039/b200393g
– ident: e_1_2_11_253_1
  doi: 10.1039/C3SC52026A
– ident: e_1_2_11_182_1
  doi: 10.1021/jp104074t
– ident: e_1_2_11_27_1
  doi: 10.1002/aenm.201301523
– ident: e_1_2_11_246_1
  doi: 10.1021/ja505708y
– ident: e_1_2_11_138_1
  doi: 10.1016/j.electacta.2008.02.012
– ident: e_1_2_11_172_1
  doi: 10.1039/C4TA02790F
– ident: e_1_2_11_207_1
  doi: 10.1021/nn404927n
– ident: e_1_2_11_8_1
  doi: 10.1002/anie.201207186
– ident: e_1_2_11_169_1
  doi: 10.1002/adma.201304218
– ident: e_1_2_11_64_1
  doi: 10.1039/C4NR02646B
– ident: e_1_2_11_209_1
  doi: 10.1002/adfm.201200186
– ident: e_1_2_11_195_1
  doi: 10.1016/j.comptc.2013.04.003
– ident: e_1_2_11_65_1
  doi: 10.1039/C4CC07137A
– ident: e_1_2_11_212_1
  doi: 10.1021/cm201542m
– ident: e_1_2_11_223_1
  doi: 10.1002/anie.201307203
– ident: e_1_2_11_130_1
  doi: 10.1002/anie.201104004
– ident: e_1_2_11_200_1
  doi: 10.1038/nnano.2012.72
– ident: e_1_2_11_23_1
  doi: 10.1021/la1042475
– ident: e_1_2_11_151_2
  doi: 10.1002/ange.201302924
– ident: e_1_2_11_229_1
  doi: 10.1002/smll.201303715
– ident: e_1_2_11_199_1
  doi: 10.1126/science.1168049
– ident: e_1_2_11_142_2
  doi: 10.1002/ange.201405314
– ident: e_1_2_11_248_2
  doi: 10.1002/ange.201406695
– ident: e_1_2_11_84_1
  doi: 10.1039/C4NR05988C
– ident: e_1_2_11_166_1
  doi: 10.1039/C4TA00846D
– ident: e_1_2_11_144_1
  doi: 10.1021/nn303275d
– ident: e_1_2_11_197_1
  doi: 10.1016/j.electacta.2005.07.006
– ident: e_1_2_11_244_1
  doi: 10.1021/ac5039187
– ident: e_1_2_11_58_1
  doi: 10.1016/j.nantod.2011.06.002
– ident: e_1_2_11_41_1
  doi: 10.1126/science.1249061
– ident: e_1_2_11_247_1
  doi: 10.1021/ac102191u
– ident: e_1_2_11_22_1
  doi: 10.1021/ja061246s
– ident: e_1_2_11_179_1
  doi: 10.1038/srep02771
– ident: e_1_2_11_89_1
  doi: 10.1039/C5CC01152C
– ident: e_1_2_11_216_1
  doi: 10.1016/j.elecom.2014.07.002
– ident: e_1_2_11_236_1
  doi: 10.1021/ja100922h
– ident: e_1_2_11_251_1
  doi: 10.1039/c1cp21665a
– ident: e_1_2_11_61_1
  doi: 10.1002/asia.201100715
– ident: e_1_2_11_78_1
  doi: 10.1039/c3ta11917c
– ident: e_1_2_11_231_1
  doi: 10.1002/anie.201306828
– ident: e_1_2_11_217_1
  doi: 10.1039/c4ee00106k
– ident: e_1_2_11_6_1
  doi: 10.1021/cr100060r
– ident: e_1_2_11_75_1
  doi: 10.1002/anie.201303197
– ident: e_1_2_11_215_1
  doi: 10.1002/anie.201410258
– ident: e_1_2_11_42_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_11_99_1
  doi: 10.1016/j.jelechem.2006.02.029
– ident: e_1_2_11_148_1
  doi: 10.1021/ja407552k
– ident: e_1_2_11_118_1
  doi: 10.1002/adma.201304683
– ident: e_1_2_11_119_1
  doi: 10.1021/ja210924t
– ident: e_1_2_11_206_1
  doi: 10.1016/j.nantod.2014.09.002
– ident: e_1_2_11_80_1
  doi: 10.1039/C4EE02281E
– ident: e_1_2_11_252_1
  doi: 10.1039/b413177k
– ident: e_1_2_11_74_1
  doi: 10.1149/1.2432061
– ident: e_1_2_11_75_2
  doi: 10.1002/ange.201303197
– ident: e_1_2_11_219_2
  doi: 10.1002/ange.201204958
– ident: e_1_2_11_176_1
  doi: 10.1016/j.carbon.2012.11.036
– ident: e_1_2_11_215_2
  doi: 10.1002/ange.201410258
– ident: e_1_2_11_122_1
  doi: 10.1039/C4EE01760A
– ident: e_1_2_11_19_1
  doi: 10.1016/0013-4686(84)85006-9
– ident: e_1_2_11_54_1
  doi: 10.1002/adma.201203923
– ident: e_1_2_11_226_1
  doi: 10.1016/j.electacta.2014.06.120
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jpowsour.2003.09.013
– ident: e_1_2_11_157_1
  doi: 10.1039/C4NR00348A
– ident: e_1_2_11_53_1
  doi: 10.1016/j.carbon.2014.04.017
– ident: e_1_2_11_136_1
  doi: 10.1016/j.jpowsour.2007.08.028
– ident: e_1_2_11_17_2
  doi: 10.1002/ange.201306588
– ident: e_1_2_11_83_1
  doi: 10.1039/C4TA03850A
– ident: e_1_2_11_73_1
  doi: 10.1149/1.1865612
– ident: e_1_2_11_66_1
  doi: 10.1038/srep06013
– ident: e_1_2_11_93_1
  doi: 10.1002/adfm.201302940
– ident: e_1_2_11_10_1
  doi: 10.1039/c2ee03590a
– ident: e_1_2_11_175_1
  doi: 10.1002/anie.201404333
– ident: e_1_2_11_33_1
  doi: 10.1021/ja406091p
– ident: e_1_2_11_232_1
  doi: 10.1021/ac403890n
– ident: e_1_2_11_105_1
  doi: 10.1016/j.electacta.2006.08.059
– ident: e_1_2_11_162_1
  doi: 10.1002/aenm.201400337
– ident: e_1_2_11_116_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_11_123_1
  doi: 10.1016/S1388-2481(03)00053-5
– ident: e_1_2_11_233_1
  doi: 10.1021/ja072344w
– ident: e_1_2_11_165_1
  doi: 10.1021/ja7106146
– ident: e_1_2_11_177_1
  doi: 10.1039/C3CC48942F
– ident: e_1_2_11_224_2
  doi: 10.1002/ange.201411125
– ident: e_1_2_11_132_1
  doi: 10.1021/am507033x
– ident: e_1_2_11_126_1
  doi: 10.1002/9783527664900.ch4
– ident: e_1_2_11_37_1
  doi: 10.1021/ja5030172
– ident: e_1_2_11_156_1
  doi: 10.1039/C4TA01656D
– ident: e_1_2_11_69_1
  doi: 10.1039/c0cc02048f
– ident: e_1_2_11_45_1
  doi: 10.1149/1.2404164
– ident: e_1_2_11_237_2
  doi: 10.1002/ange.201408408
– ident: e_1_2_11_214_1
  doi: 10.1002/adma.201302753
– ident: e_1_2_11_141_1
  doi: 10.1021/jp021634q
– ident: e_1_2_11_92_1
  doi: 10.1002/aenm.201200230
– ident: e_1_2_11_181_1
  doi: 10.1016/j.nanoen.2012.07.021
– ident: e_1_2_11_196_1
  doi: 10.1039/C3EE43743D
– ident: e_1_2_11_173_1
  doi: 10.1016/j.nantod.2014.05.003
– ident: e_1_2_11_115_1
  doi: 10.1021/ja5009954
– ident: e_1_2_11_168_1
  doi: 10.1038/srep05130
– ident: e_1_2_11_26_1
  doi: 10.1021/ja500432h
– ident: e_1_2_11_60_1
  doi: 10.1016/j.elecom.2006.02.020
– ident: e_1_2_11_79_1
  doi: 10.1002/anie.201206152
– ident: e_1_2_11_125_1
  doi: 10.1021/ja509348t
– ident: e_1_2_11_174_1
  doi: 10.1002/adma.201202424
– ident: e_1_2_11_142_1
  doi: 10.1002/anie.201405314
– ident: e_1_2_11_164_1
  doi: 10.1021/ja5003907
– ident: e_1_2_11_43_1
  doi: 10.1126/science.181.4099.547
– ident: e_1_2_11_11_1
  doi: 10.1021/ar300359w
– ident: e_1_2_11_98_1
  doi: 10.1016/j.jpowsour.2010.07.082
– ident: e_1_2_11_208_1
  doi: 10.1002/adma.201301870
SSID ssj0028806
Score 2.6672103
SecondaryResourceType review_article
Snippet Replacing the rare and precious platinum (Pt) electrocatalysts with earth‐abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode...
Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2650
SubjectTerms Catalysis
Catalytic activity
Design engineering
Design optimization
Devices
Earth
Electrocatalysts
Energy
Fuel cells
Fuels
Mass transport
Nanomaterials
Nanostructure
Nanotechnology
Oxygen
oxygen reduction
Oxygen reduction reactions
Platinum
platinum-free catalysts
Renewable energy
Sustainable energy
Transport properties
Title Earth-Abundant Nanomaterials for Oxygen Reduction
URI https://api.istex.fr/ark:/67375/WNG-Q80DVQ1T-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201504830
https://www.ncbi.nlm.nih.gov/pubmed/26663778
https://www.proquest.com/docview/1765272844
https://www.proquest.com/docview/1908257566
https://www.proquest.com/docview/1765922376
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V5VAu_LRAUwoKEoJT2qwd28lxVba0SCxq1ULFxfJfVKlVFrW7UsuJR-AZeRJm4k3KoiIkuCWyHdmeGc9nZ_wNwEuJLs6ygJuckqms4L6kgyaXKYv-ThiPnacD_fdjuXdcvDsRJ7_c4o_8EP2BG1lGu16TgRt7uX1DGko3sCk0SxApOm3aKWCLUNFhzx_FUDnj9SLOM8pC37E25mx7sfmCV7pDE3x1G-RcRLCtC9q9D6brfIw8OduaTe2W-_obr-P_jO4B3Jvj03QYFeohLIVmFVZ2urRwa8BHqGynP759H1q6RNJMU1ygJ4h7oyqnCILTD1fXqJfpIdHCkuAfwfHu6GhnL5tnXsgcIp48cznnkoe6toPaMum5k15VXvpQW-e4CraoEVep0lemrox31uSGW1E7VQVEDPwxLDeTJqxDqoKQQai8Nrj_dUKWXgkWihDyUFJMaAJZN_PazWnJKTvGuY6EykzTVOh-KhJ43df_Egk5_ljzVSvIvpq5OKMwNiX0p_FbfVDmbz4eDI705wQ2O0nruQVf6oGSgil03sXtxZQqHqGulAm86ItRFPS_xTRhMoufqBiFHSXwJCpQ3xfERZIrVSbAWjX4y1j0cLw_6t82_qXRU7iLz23E-aDchOXpxSw8Q0A1tc9bo_kJ0WIVrg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V7aFceJRXSqFBQnBKm7VjOzmuyrZbaBe12gLiYsWPCKkoW5VdqXDiJ_Q39pcwE2-CtmqFBMfEdmR7xp7Pzsw3AK8kmjjDPB5ycqaSjLucLppsogzaO1E67Dxd6B-O5PAke_dZtN6EFAsT-CG6CzdaGc1-TQucLqS3_7CGUgg2-WYJYkXHU_sKpfVuTlXHHYMUQ_UMAUacJ5SHvuVtTNn2YvsFu7RCU3xxE-hcxLCNEdq9B6btfvA9Od2aTc2W_XmN2fG_xncf7s4hatwPOvUAlny9Bqs7bWa4h8AHqG9fr35d9g3FkdTTGPfoCULfoM0x4uD4w8UPVM34mJhhSfaP4GR3MN4ZJvPkC4lF0JMmNuVccl9VplcZJh230qnCSecrYy1X3mQVQiuVu6KsitJZU6YlN6KyqvAIGvhjWK4ntX8KsfJCeqHSqsQjsBUyd0own3mf-pzcQiNI2qnXds5MTgkyvunAqcw0TYXupiKCN139s8DJcWvN140ku2rl-Sl5simhP4329FGevv141BvrLxFstKLW80X8XfeUFEyh_c5uLqZs8Yh2pYzgZVeMoqBfLmXtJ7PwiYKR51EET4IGdX1BaCS5UnkErNGDv4xF90f7g-5p_V8abcLqcHx4oA_2R--fwR183zig9_INWJ6ez_xzxFdT86JZQb8BKGAZyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVgIutLxTCgQJwSlt1o7t5Ljq7tLyWGjVQtWLFb-E1CpbtbtS4cRP6G_klzCTbAKLipDgmNiObM-M57Mz_gbguUQXZ5jHTU7OVJJxl9NBk02UQX8nSoedpwP9d2O5fZC9PhSHv9zib_ghugM3sox6vSYDP3Vh8ydpKN3AptAsQaTouGlfzmSak14P9joCKYba2dwv4jyhNPQtbWPKNhfbL7ilZZrhi6sw5yKErX3QaAXKtvdN6MnxxmxqNuzX34gd_2d4q3BrDlDjfqNRt-Gar-7Aja02L9xd4EPUts_fv132Dd0iqaYxrtATBL6NLseIguP3F19QMeM94oUlyd-Dg9Fwf2s7madeSCxCnjSxKeeS-xBMLxgmHbfSqcJJ54OxlitvsoDASuWuKENROmvKtORGBKsKj5CB34elalL5hxArL6QXKg0lboCtkLlTgvnM-9TnFBQaQdLOvLZzXnJKj3GiG0ZlpmkqdDcVEbzs6p82jBx_rPmiFmRXrTw7pjg2JfSn8Su9m6eDj7u9fX0UwXoraT034XPdU1Iwhd47u7qYcsUj1pUygmddMYqCfriUlZ_Mmk8UjOKOInjQKFDXFwRGkiuVR8BqNfjLWHR_vDPsntb-pdFTuP5hMNJvd8ZvHsFNfF1Hn_fydVians38YwRXU_Oktp8f2tgYgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earth-Abundant+Nanomaterials+for+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xia%2C+Wei&rft.au=Mahmood%2C+Asif&rft.au=Liang%2C+Zibin&rft.au=Zou%2C+Ruqiang&rft.date=2016-02-18&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=55&rft.issue=8&rft.spage=2650&rft.epage=2676&rft_id=info:doi/10.1002%2Fanie.201504830&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Q80DVQ1T_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon