混合多机器学习的ICU病人生死预测框架

ICU病人生死预测一直都是医学界的研究热点和难点。数据挖掘的机器学习方法近年来在该领域取得了一定的进展,但依然有很大的发展空间。针对ICU时序数据的高维度和不确定间隔采样特性,提出了不确定间隔采样转化为确定间隔的空采样的思想和相应的处理策略;在此基础上将传统的时间序列聚类与机器学习方法相结合,提出了一个两阶段的混合多机器学习算法框架,使得数据集的高维和不确定性得到了约简,从而可以采用经典的机器学习方法挖掘病人生死知识。在一个公开数据集上的两组实验结果表明,基于该算法框架的ICU病人死亡预测方法对于少数样本的分类效果优于传统方法,弹性时间间隔下的预测效果更好,最优时间间隔的选取可以通过实验效果来...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 8; no. 11; pp. 1381 - 1390
Main Author 张远健 徐健锋 涂敏 黄学坚 刘清
Format Journal Article
LanguageChinese
Published 南昌大学 软件学院,南昌,330047%江西警察学院,南昌,330100%南昌大学 信息工程学院,南昌,330031 2014
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1406016

Cover

Abstract ICU病人生死预测一直都是医学界的研究热点和难点。数据挖掘的机器学习方法近年来在该领域取得了一定的进展,但依然有很大的发展空间。针对ICU时序数据的高维度和不确定间隔采样特性,提出了不确定间隔采样转化为确定间隔的空采样的思想和相应的处理策略;在此基础上将传统的时间序列聚类与机器学习方法相结合,提出了一个两阶段的混合多机器学习算法框架,使得数据集的高维和不确定性得到了约简,从而可以采用经典的机器学习方法挖掘病人生死知识。在一个公开数据集上的两组实验结果表明,基于该算法框架的ICU病人死亡预测方法对于少数样本的分类效果优于传统方法,弹性时间间隔下的预测效果更好,最优时间间隔的选取可以通过实验效果来验证。
AbstractList ICU病人生死预测一直都是医学界的研究热点和难点。数据挖掘的机器学习方法近年来在该领域取得了一定的进展,但依然有很大的发展空间。针对ICU时序数据的高维度和不确定间隔采样特性,提出了不确定间隔采样转化为确定间隔的空采样的思想和相应的处理策略;在此基础上将传统的时间序列聚类与机器学习方法相结合,提出了一个两阶段的混合多机器学习算法框架,使得数据集的高维和不确定性得到了约简,从而可以采用经典的机器学习方法挖掘病人生死知识。在一个公开数据集上的两组实验结果表明,基于该算法框架的ICU病人死亡预测方法对于少数样本的分类效果优于传统方法,弹性时间间隔下的预测效果更好,最优时间间隔的选取可以通过实验效果来验证。
TP391; ICU病人生死预测一直都是医学界的研究热点和难点。数据挖掘的机器学习方法近年来在该领域取得了一定的进展,但依然有很大的发展空间。针对ICU时序数据的高维度和不确定间隔采样特性,提出了不确定间隔采样转化为确定间隔的空采样的思想和相应的处理策略;在此基础上将传统的时间序列聚类与机器学习方法相结合,提出了一个两阶段的混合多机器学习算法框架,使得数据集的高维和不确定性得到了约简,从而可以采用经典的机器学习方法挖掘病人生死知识。在一个公开数据集上的两组实验结果表明,基于该算法框架的ICU病人死亡预测方法对于少数样本的分类效果优于传统方法,弹性时间间隔下的预测效果更好,最优时间间隔的选取可以通过实验效果来验证。
Abstract_FL The mortality prediction of ICU patient has been an active topic in the past decades. Machine learning algo-rithms have been proved to have preliminary effects in this domain and still have room for improvement. In order to deal with the ICU time series which is both high dimensional and uncertain sampling interval, this paper proposes the idea that the unequal sampling frequency phenomenon in time series can be transferred to the empty value under the regular sampling frequency and corresponding strategies. Then, this paper proposes a two-step hybrid framework which combines the time series clustering and machine learning algorithm. In the first step, the dimension and uncertainty are reduced;in the second step, classical machine learning algorithms are conducted for mortality prediction of ICU patient. The experiments on a public data set show that the results of classifying the minority death patients are more efficient than the traditional solutions and the elastic interval is better. The selection for best time interval is validated by the experiments meanwhile.
Author 张远健 徐健锋 涂敏 黄学坚 刘清
AuthorAffiliation 南昌大学软件学院,南昌330047 江西警察学院,南昌330100 南昌大学信息工程学院,南昌330031
AuthorAffiliation_xml – name: 南昌大学 软件学院,南昌,330047%江西警察学院,南昌,330100%南昌大学 信息工程学院,南昌,330031
Author_FL XU Jianfeng
ZHANG Yuanjian
LIU Qing
HUANG Xuejian
TU Min
Author_FL_xml – sequence: 1
  fullname: ZHANG Yuanjian
– sequence: 2
  fullname: XU Jianfeng
– sequence: 3
  fullname: TU Min
– sequence: 4
  fullname: HUANG Xuejian
– sequence: 5
  fullname: LIU Qing
Author_xml – sequence: 1
  fullname: 张远健 徐健锋 涂敏 黄学坚 刘清
BookMark eNo9zT1LAzEcBvAMFay130HcHO7MP0mT3CjFl0LBpc5HctfUOzXVRtHuVQQXB0Es4hsiLh21WL9O74rfwkLF6YGHH8-zgAq2bZsILQH2qRByNfUT56wPXFAvYCB9YJhj4AVU_O_mUdm5ROMKYwQEl0VE8-Ewu77MXvv5_Si7e88Gb-Ovp0m_V6vuTG7Px6PR5OYxH3z_vPTyj6v8-SJ_-FxEc0btu2b5L0uosbHeqG559e3NWnWt7kUciCcwFSoOpIlprLQSmEtlqDJCg-SUGFIBHGAtIh4pThgPtME6YCRgFGOqY1pCK7PZU2WNsq0wbZ907PQwTF26d9Y9dgQDA8BApnZ5ZqPdtm0dJVN92EkOVKcbck6EpJxQ-gtYI2cl
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1406016
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Hybrid Machine Learning Based Mortality Prediction Framework of ICU Patient
DocumentTitle_FL Hybrid Machine Learning Based Mortality Prediction Framework of ICU Patient
EndPage 1390
ExternalDocumentID jsjkxyts201411012
662783623
GrantInformation_xml – fundername: The National Natural Science Foundation of China under Grant No.61070139
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CQIGP
M~E
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c612-7037ad98fd3daba7068af3af7b18632f251090b7c6ca62469bf0b942943003bd3
ISSN 1673-9418
IngestDate Thu May 29 04:00:16 EDT 2025
Thu Nov 14 02:55:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords uncertain time series
不确定时间序列
机器学习
混合框架
预测
prediction
ICU
machine learning
hybrid framework
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c612-7037ad98fd3daba7068af3af7b18632f251090b7c6ca62469bf0b942943003bd3
Notes ZHANG Yuanjian, XU Jianfeng, TU Min, HUANG Xuejian, LIU Qing( 1. Software College, Nanchang University, Nanchang 330047, China ;2. Jiangxi Police Institute, Nanchang 330100, China ;3. Information Engineering College, Nanchang University, Nanchang 330031, China)
11-5602/TP
ICU; uncertain time series; prediction; machine learning; hybrid framework
The mortality prediction of ICU patient has been an active topic in the past decades. Machine learning algorithms have been proved to have preliminary effects in this domain and still have room for improvement. In order to deal with the ICU time series which is both high dimensional and uncertain sampling interval, this paper proposes the idea that the unequal sampling frequency phenomenon in time series can be transferred to the empty value under the regular sampling frequency and corresponding strategies. Then, this paper proposes a two-step hybrid framework which combines the time series clustering and machine learning algorithm. In the first step, the dimension and u
PageCount 10
ParticipantIDs wanfang_journals_jsjkxyts201411012
chongqing_primary_662783623
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitleAlternate Egamer
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2014
Publisher 南昌大学 软件学院,南昌,330047%江西警察学院,南昌,330100%南昌大学 信息工程学院,南昌,330031
Publisher_xml – name: 南昌大学 软件学院,南昌,330047%江西警察学院,南昌,330100%南昌大学 信息工程学院,南昌,330031
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 1.9411334
Snippet ...
TP391;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1381
SubjectTerms ICU
不确定时间序列
机器学习
混合框架
预测
Title 混合多机器学习的ICU病人生死预测框架
URI http://lib.cqvip.com/qk/93336B/201411/662783623.html
https://d.wanfangdata.com.cn/periodical/jsjkxyts201411012
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKj14kUUFWv9KOKcJDWTmczHMdnNUoV6aqG3JR-blgrbaregPXiqInjxIIhF_ELES49aXP9Od4v_wvcm2WSLFVphCS_zXt7HvGHee9nMDCG3klilHDJpRwgvd4TXEU4c51C15rmMdRoLyXCB8_x9Obco7i35SxOTN8a-WtrsJbPp1pHrSv7Hq9AGfsVVsifwbMUUGgAG_8IVPAzXY_mYRpKGCn-RT41LtUYgENQEiDINGgYWZWhQoJo0kDQSNIQWl0YKKbW421i0sKLat9jAPggtwKqFrODBMKQRPOUBvZXrUx1aFKNaWnERDeV4sksjTYMICYAVAMC_1gpagD87rJWmOkIauIIgoAkFAKNBgbRhwyquadhCTtCiGQ38QyQR9sUIg0qDGTqsSUB5EOFZZYCqVWMMWon2VUpB5zWhk8ZfjrD6taiV0hwZBto3SgcEquJx22oLUMuaGKLwmr-xzvFgpB_By2tw3KpMUc-3WjPrDY1WhQUwUhKYI-oEbBkez-0f0wCB8tCP0naqlQSjDntX4dDCkXASk8qQXARDqbhjRB0fN0drhMpox3hx3E6ZOUEx4R4VlblS2kZl5DpbcYUgbTcDqjOR6vvQ1Y3VB4-f9DbQpQx3oDtFTntKMfxmd_5pVOeXEILMeH2M9-LQQm1IyKuAg4clSL_O1-GWa1dW-bzPuML_Iat7mMCYKpbTjrQuvgZEk-78yyDcpmVlrbv8EJJPuxawm8fd5bG0deEcOVvWmzNBMXmcJxNbKxcIH-7tDV69GHzZGb7rD95-G-x-3f_58WBnGyaCgzfP9vv9g9cfhru_fn_eHn5_Ofz0fPj-x0Wy0IoWGnNOeXqKk0LV4kAkV3FmdJ7xLIYZ2ZU6znmcq4Rpyb0c6hrXuIlKZRpLT0iT5G5iIDsVOAqSjF8ik921bucymcmxjNJG5V7agepKG8j5szRjjHe0yWQyRaYre9vrxSY5bTxYQkN2zKfIzbIH2uXUudH-y79XjkM0Tc4gXLwAvUome482O9egJOgl1-2w-APM570M
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B7%E5%90%88%E5%A4%9A%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%9A%84ICU%E7%97%85%E4%BA%BA%E7%94%9F%E6%AD%BB%E9%A2%84%E6%B5%8B%E6%A1%86%E6%9E%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E5%BC%A0%E8%BF%9C%E5%81%A5&rft.au=%E5%BE%90%E5%81%A5%E9%94%8B&rft.au=%E6%B6%82%E6%95%8F&rft.au=%E9%BB%84%E5%AD%A6%E5%9D%9A&rft.date=2014&rft.pub=%E5%8D%97%E6%98%8C%E5%A4%A7%E5%AD%A6+%E8%BD%AF%E4%BB%B6%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E6%98%8C%2C330047%25%E6%B1%9F%E8%A5%BF%E8%AD%A6%E5%AF%9F%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E6%98%8C%2C330100%25%E5%8D%97%E6%98%8C%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E6%98%8C%2C330031&rft.issn=1673-9418&rft.issue=11&rft.spage=1381&rft.epage=1390&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1406016&rft.externalDocID=jsjkxyts201411012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93336B%2F93336B.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg