A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral...

Full description

Saved in:
Bibliographic Details
Published inDie Naturwissenschaften Vol. 105; no. 3-4; pp. 25 - 9
Main Authors Engel, Fabian, Farrell, Kaitlin J., McCullough, Ian M., Scordo, Facundo, Denfeld, Blaize A., Dugan, Hilary A., de Eyto, Elvira, Hanson, Paul C., McClure, Ryan P., Nõges, Peeter, Nõges, Tiina, Ryder, Elizabeth, Weathers, Kathleen C., Weyhenmeyer, Gesa A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70 − 0.31 + 0.27 to 1.52 − 0.90 + 1.09 Pg C yr −1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
AbstractList The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70(-0.31)(+0.27) 1.52(-0.90)(+1.09) Pg C yr(-1) depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70 − 0.31 + 0.27 to 1.52 − 0.90 + 1.09 Pg C yr −1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70(-0.31)(+0.27) 1.52(-0.90)(+1.09) Pg C yr(-1) depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70−0.31+0.27 to 1.52−0.90+1.09 Pg C yr−1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO production by mineralization as well as CO loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of [Formula: see text] to [Formula: see text] Pg C yr depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {0.70}_{-0.31}^{+0.27} $$\end{document} 0.70 − 0.31 + 0.27 to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {1.52}_{-0.90}^{+1.09} $$\end{document} 1.52 − 0.90 + 1.09 Pg C yr −1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.
ArticleNumber 25
Author Dugan, Hilary A.
Denfeld, Blaize A.
Weyhenmeyer, Gesa A.
Weathers, Kathleen C.
Hanson, Paul C.
Ryder, Elizabeth
de Eyto, Elvira
McCullough, Ian M.
Scordo, Facundo
McClure, Ryan P.
Nõges, Tiina
Farrell, Kaitlin J.
Nõges, Peeter
Engel, Fabian
Author_xml – sequence: 1
  givenname: Fabian
  orcidid: 0000-0002-7416-4206
  surname: Engel
  fullname: Engel, Fabian
  email: Fabian.Engel@ebc.uu.se
  organization: Department of Ecology and Genetics/Limnology, Uppsala University
– sequence: 2
  givenname: Kaitlin J.
  surname: Farrell
  fullname: Farrell, Kaitlin J.
  organization: Odum School of Ecology, University of Georgia, Department of Biological Sciences, Virginia Tech, Derring Hall
– sequence: 3
  givenname: Ian M.
  surname: McCullough
  fullname: McCullough, Ian M.
  organization: Bren School of Environmental Science and Management, University of California
– sequence: 4
  givenname: Facundo
  surname: Scordo
  fullname: Scordo, Facundo
  organization: Instituto Argentino de Oceanografía (UNS-CONICET)
– sequence: 5
  givenname: Blaize A.
  surname: Denfeld
  fullname: Denfeld, Blaize A.
  organization: Department of Ecology and Environmental Sciences, Umeå University
– sequence: 6
  givenname: Hilary A.
  surname: Dugan
  fullname: Dugan, Hilary A.
  organization: Center for Limnology, University of Wisconsin-Madison
– sequence: 7
  givenname: Elvira
  surname: de Eyto
  fullname: de Eyto, Elvira
  organization: Marine Institute
– sequence: 8
  givenname: Paul C.
  surname: Hanson
  fullname: Hanson, Paul C.
  organization: Center for Limnology, University of Wisconsin-Madison
– sequence: 9
  givenname: Ryan P.
  surname: McClure
  fullname: McClure, Ryan P.
  organization: Department of Biological Sciences, Virginia Tech, Derring Hall
– sequence: 10
  givenname: Peeter
  surname: Nõges
  fullname: Nõges, Peeter
  organization: Centre for Limnology, Estonian University of Life Sciences
– sequence: 11
  givenname: Tiina
  surname: Nõges
  fullname: Nõges, Tiina
  organization: Centre for Limnology, Estonian University of Life Sciences
– sequence: 12
  givenname: Elizabeth
  surname: Ryder
  fullname: Ryder, Elizabeth
  organization: Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology
– sequence: 13
  givenname: Kathleen C.
  surname: Weathers
  fullname: Weathers, Kathleen C.
  organization: Cary Institute of Ecosystem Studies
– sequence: 14
  givenname: Gesa A.
  surname: Weyhenmeyer
  fullname: Weyhenmeyer, Gesa A.
  organization: Department of Ecology and Genetics/Limnology, Uppsala University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29582138$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147833$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347136$$DView record from Swedish Publication Index
BookMark eNqNksluFDEQhi0URCYDD8AFWeJKg7defEGKwipF4gJcLbe7PHHotge7OyF5EV6XGs0QyAGJk2XV9_-1npCjmCIQ8pSzl5yx9lVhjHNVMd5VvFZtdfuArLiSouKaqSOyYkxghClxTE5KuURat7V-RI6FrjvBZbciP0_paL8BdaMtJfjg7BxSpC5FB9uZ-pSppVPKQK1zS7Yz0M2YejtSKHOYdv_k6XwBdAilpPEKBhpiyhsbg6PO5h7d4Mc2ZTTLaaIz5IzSHHYWLpWbMsNU6JxQNto40Gv0zOUxeejtWODJ4V2TL-_efj77UJ1_ev_x7PS8cg3ncwUgGtDCKjsMWnLdC954N3Ra-b7RXnZeOd5z4bzi4GXtO1u3zkorXMPaTss1ebH3LdewXXqzzdhUvjHJBvMmfD012IpZFiNVy2WDePUf-LQYrtpOSuRf73mEJxgcxDnb8Z7sfiSGC7NJV6buGq1rgQbPDwY5fV9wcOYyLTniSIzAve-KwkWuCd9TLqdSMvi7DJyZ3amY_akYlJjdqZhb1Dz7u7Q7xe_bQEAcesVQ3ED-k_rfrr8AiBbRbQ
CitedBy_id crossref_primary_10_1007_s00027_019_0631_6
crossref_primary_10_1029_2020JG005907
crossref_primary_10_1016_j_scitotenv_2019_05_396
crossref_primary_10_1088_1755_1315_1267_1_012025
crossref_primary_10_1088_1755_1315_535_1_012007
crossref_primary_10_1080_01431161_2021_1880661
crossref_primary_10_5194_bg_20_4359_2023
crossref_primary_10_1029_2021WR031094
crossref_primary_10_1016_j_scitotenv_2022_157485
crossref_primary_10_1111_fwb_13182
crossref_primary_10_5194_esd_12_1169_2021
crossref_primary_10_1007_s00114_020_01685_y
crossref_primary_10_1016_j_envpol_2022_119411
Cites_doi 10.1021/ez500169j
10.1023/B:HYDR.0000008582.61851.76
10.5194/bg-5-1259-2008
10.1002/2016JG003743
10.1146/annurev-environ-012913-093456
10.1038/nature12760
10.1126/science.290.5490.291
10.1007/BF01105015
10.1029/2017EO069751
10.1038/nature09186
10.1073/pnas.1512651112
10.1016/S0921-8181(01)00105-9
10.1038/ngeo2972
10.4319/lo.2001.46.7.1691
10.1139/f03-062
10.1002/2014GL060641
10.1017/CBO9781107415324
10.1029/2008jg000783
10.1093/acprof:oso/9780198527084.003.0007
10.1002/gbc.20032
10.1038/ngeo2720
10.1038/nature12857
10.1007/s10021-002-0200-y
10.1038/ngeo2582
10.1038/ngeo618
10.1007/s10021-006-9013-8
10.3389/fmicb.2016.00717
10.1046/j.1365-2486.2003.00620.x
10.4319/lo.2009.54.6_part_2.2298
10.4319/lo.1974.19.5.0743
10.5194/esd-7-559-2016
10.1111/j.1365-2486.1995.tb00008.x
10.1007/s00027-014-0377-0
10.1002/lol2.10055
10.1890/100014
10.1038/ngeo1830
10.1002/2014GB004941
10.5268/IW-1.1.384
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ACNBI
DF2
DOI 10.1007/s00114-018-1547-z
DatabaseName Springer Nature OA Free Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList



MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1432-1904
EndPage 9
ExternalDocumentID oai_DiVA_org_uu_347136
oai_DiVA_org_umu_147833
10_1007_s00114_018_1547_z
29582138
Genre Journal Article
GrantInformation_xml – fundername: Vetenskapsrådet
  grantid: 2016-04153
  funderid: http://dx.doi.org/10.13039/501100004359
– fundername: Vetenskapsrådet
  grantid: 2016-04153
– fundername: ;
  grantid: 2016-04153
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDEX
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABIWU
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMIJ
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
G8K
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HH5
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
KQ8
LAS
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
RZZ
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK6
WK8
X7J
YLTOR
YQT
Z45
Z5O
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z87
Z88
Z8M
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z91
ZGI
ZKB
ZMTXR
ZOVNA
ZXP
ZY4
~02
~EX
79B
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAEOY
AAQLM
AAYXX
ABDPE
ABQSL
CITATION
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ACNBI
DF2
ID FETCH-LOGICAL-c611t-ee26e92a4add9319b216fcd894fb69f38f4c1b12cf41ef35f8a57ca3a2c607893
IEDL.DBID AGYKE
ISSN 0028-1042
1432-1904
IngestDate Tue Oct 01 22:42:55 EDT 2024
Tue Oct 01 22:41:04 EDT 2024
Tue Sep 17 21:05:00 EDT 2024
Mon Nov 04 11:41:30 EST 2024
Fri Dec 06 05:06:31 EST 2024
Sat Nov 02 12:24:19 EDT 2024
Sat Dec 16 11:59:20 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3-4
Keywords Earth system models
Lake primary production
Global carbon cycle
Lake carbon cycling
transport
Hydrologic CO
Lake functioning
Hydrologic CO2 transport
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-ee26e92a4add9319b216fcd894fb69f38f4c1b12cf41ef35f8a57ca3a2c607893
Notes Communicated by: Sven Thatje
ORCID 0000-0002-7416-4206
OpenAccessLink https://proxy.k.utb.cz/login?url=http://link.springer.com/10.1007/s00114-018-1547-z
PMID 29582138
PQID 2018713621
PQPubID 2043578
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_347136
swepub_primary_oai_DiVA_org_umu_147833
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5869952
proquest_journals_2018713621
crossref_primary_10_1007_s00114_018_1547_z
pubmed_primary_29582138
springer_journals_10_1007_s00114_018_1547_z
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Naturwissenschaften
PublicationTitle Die Naturwissenschaften
PublicationTitleAbbrev Sci Nat
PublicationTitleAlternate Naturwissenschaften
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CatalánNMarcéRKothawalaDNTranvikLJOrganic carbon decomposition rates controlled by water retention time across inland watersNat Geosci2016950150410.1038/ngeo2720
EinseleGYanJHindererMAtmospheric carbon burial in modern lake basins and its significance for the global carbon budgetGlob Planet Chang20013016719510.1016/S0921-8181(01)00105-9
GudaszCBastvikenDStegerKPremkeKSobekSTranvikLJTemperature-controlled organic carbon mineralization in lake sedimentsNature20104664784811:CAS:528:DC%2BC3cXptFGqt7o%3D10.1038/nature0918620651689
PetterssonKGrustKWeyhenmeyerGBlencknerTSeasonality of chlorophyll and nutrients in Lake Erken—effects of weather conditionsHydrobiologia2003506758110.1023/B:HYDR.0000008582.61851.76
VerpoorterCKutserTSeekellDATranvikLJA global inventory of lakes based on high-resolution satellite imageryGeophys Res Lett2014416396640210.1002/2014GL060641
ButmanDStackpooleSStetsEMcDonaldCPClowDWStrieglRGAquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accountingProc Natl Acad Sci U S A201611358631:CAS:528:DC%2BC2MXitVylsrrP10.1073/pnas.151265111226699473
SchimelDSTerrestrial ecosystems and the carbon cycleGlob Chang Biol19951779110.1111/j.1365-2486.1995.tb00008.x
JonssonAKarlssonJJanssonMSources of carbon dioxide supersaturation in clearwater and humic lakes in northern SwedenEcosystems200362242351:CAS:528:DC%2BD3sXks1Wqu7k%3D10.1007/s10021-002-0200-y
TranvikLJDowningJACotnerJBLoiselleSAStrieglRGBallatoreTJDillonPFinlayKFortinoKKnollLBKortelainenPLKutserTLarsenSLaurionILeechDMMcCallisterSLMcKnightDMMelackJMOverholtEPorterJAPrairieYRenwickWHRolandFShermanBSSchindlerDWSobekSTremblayAVanniMJVerschoorAMvon WachenfeldtEWeyhenmeyerGALakes and reservoirs as regulators of carbon cycling and climateLimnol Oceanogr200954229823141:CAS:528:DC%2BD1MXhsFOlsrnP10.4319/lo.2009.54.6_part_2.2298
LiYZhangCWangNHanQZhangXLiuYXuLYeWSubstantial inorganic carbon sink in closed drainage basins globallyNat Geosci2017105015061:CAS:528:DC%2BC2sXhtVWmtL7F10.1038/ngeo2972
RegnierPFriedlingsteinPCiaisPMackenzieFTGruberNJanssensIALaruelleGGLauerwaldRLuyssaertSAnderssonAJArndtSArnostiCBorgesAVDaleAWGallego-SalaAGoddérisYGoossensNHartmannJHeinzeCIlyinaTJoosFLaRoweDELeifeldJMeysmanFJRMunhovenGRaymondPASpahniRSuntharalingamPThullnerMAnthropogenic perturbation of the carbon fluxes from land to oceanNat Geosci201365976071:CAS:528:DC%2BC3sXptVagsr0%3D10.1038/ngeo1830
LangerwischFWalzARammigATietjenBThonickeKCramerWClimate change increases riverine carbon outgassing, while export to the ocean remains uncertainEarth Syst Dyn2016755958210.5194/esd-7-559-2016
BattinTJLuyssaertSKaplanLAAufdenkampeAKRichterATranvikLJThe boundless carbon cycleNat Geosci200925986001:CAS:528:DC%2BD1MXhtVKktLbK10.1038/ngeo618
ColeJJPrairieYTCaracoNFMcDowellWHTranvikLJStrieglRGDuarteCMKortelainenPDowningJAMiddelburgJJMelackJPlumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budgetEcosystems2007101711841:CAS:528:DC%2BD2sXlslCmsbY%3D10.1007/s10021-006-9013-8
FalkowskiPScholesRJBoyleECanadellJCanfieldDElserJGruberNHibbardKHögbergPLinderSMackenzieFTMooreB3rdPedersenTRosenthalYSeitzingerSSmetacekVSteffenWThe global carbon cycle: a test of our knowledge of earth as a systemScience20002902912961:CAS:528:DC%2BD3cXnsVGisrg%3D10.1126/science.290.5490.29111030643
CiaisPBorgesAVAbrilGMeybeckMFolberthGHauglustaineDJanssensIAThe impact of lateral carbon fluxes on the European carbon balanceBiogeosciences20085125912711:CAS:528:DC%2BD1cXhsFWiu7vF10.5194/bg-5-1259-2008
McDonaldCPStetsEGStrieglRGButmanDInorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United StatesGlob Biogeochem Cycles2013272852951:CAS:528:DC%2BC3sXhtFOisb%2FF10.1002/gbc.20032
PaceMLPrairieYTRespiration in lakesRespiration in aquatic ecosystems200510312110.1093/acprof:oso/9780198527084.003.0007
FlanaganKMMcCauleyEWronaFProwseTClimate change: the potential for latitudinal effects on algal biomass in aquatic ecosystemsCan J Fish Aquat Sci2003606356391:CAS:528:DC%2BD3sXnt1Gisbc%3D10.1139/f03-062
Drake TW, Raymond PA, Spencer RGM (2017) Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol Oceanogr Lett. https://doi.org/10.1002/lol2.10055
AufdenkampeAKMayorgaERaymondPAMelackJMDoneySCAlinSRAaltoREYooKRiverine coupling of biogeochemical cycles between land, oceans, and atmosphereFront Ecol Environ20119536010.1890/100014
NakayamaTDevelopment of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycleJ Geophys Res Biogeosci20171229669881:CAS:528:DC%2BC2sXnslykurs%3D10.1002/2016JG003743
LauerwaldRLaruelleGGHartmannJCiaisPRegnierPASpatial patterns in CO2 evasion from the global river networkGlob Biogeochem Cycles2015295345541:CAS:528:DC%2BC2MXnvFSrur8%3D10.1002/2014GB004941
Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC (2009) Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets Journal of Geophysical Research-Biogeosciences 114. https://doi.org/10.1029/2008jg000783
MeybeckMRiverine transport of atmospheric carbon—sources, global typology and budgetWater Air Soil Pollut1993704434631:CAS:528:DyaK3sXmsFKjt7k%3D10.1007/BF01105015
RaymondPAHartmannJLauerwaldRSobekSMcDonaldCHooverMButmanDStrieglRMayorgaEHumborgCKortelainenPDürrHMeybeckMCiaisPGuthPGlobal carbon dioxide emissions from inland watersNature20135033553591:CAS:528:DC%2BC3sXhvVWntr7K10.1038/nature1276024256802
FisherJBHuntzingerDNSchwalmCRSitchSModeling the terrestrial biosphereAnnu Rev Environ Resour2014399112310.1146/annurev-environ-012913-093456
HoughtonRAWhy are estimates of the terrestrial carbon balance so different?Glob Chang Biol2003950050910.1046/j.1365-2486.2003.00620.x
MelackJMKilhamPPhotosynthetic rates of phytoplankton in East African alkaline, saline lakesLimnol Oceanogr1974197437551:CAS:528:DyaE2MXivVOhtQ%3D%3D10.4319/lo.1974.19.5.0743
Caraco N, Cole J (1999) Regional-scale export of C, N, P, and sediment: what river data tell us about key controlling variables. In: Biogeochemistry in complex landscapes Wiley, pp 233–244
Lewis Jr WM (2011) Global primary production of lakes: 19th Baldi Memorial Lecture Inland Waters 1:1–28
WeyhenmeyerGAKostenSWallinMBTranvikLJJeppesenERolandFSignificant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputsNat Geosci201589339381:CAS:528:DC%2BC2MXhvVWmsr7F10.1038/ngeo2582
ZarflCLumsdonAEBerlekampJTydecksLTocknerKA global boom in hydropower dam constructionAquat Sci20157716117010.1007/s00027-014-0377-0
Almeida RM, Nóbrega GN, Junger PC, Figueiredo AV, Andrade AS, de Moura CGB, Tonetta D, Oliveira ES, Araújo F, Rust F, Piñeiro-Guerra JM, Mendonça JR, Medeiros LR, Pinheiro L, Miranda M, Costa MRA, Melo ML, Nobre RLG, Benevides T, Roland F, de Klein J, Barros NO, Mendonça R, Becker V, Huszar VLM, Kosten S (2016) High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00717
JonssonAMeiliMBergstromAKJanssonMWhole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden)Limnol Oceanogr200146169117001:CAS:528:DC%2BD3MXovVGnt74%3D10.4319/lo.2001.46.7.1691
OquistMGThe full annual carbon balance of boreal forests is highly sensitive to precipitationEnviron Sci Technol Lett2014131531910.1021/ez500169j
IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/CBO9781107415324
Biddanda BA (2017) Global significance of the changing freshwater carbon cycle. Eos:98. https://doi.org/10.1029/2017EO069751
BauerJECaiW-JRaymondPABianchiTSHopkinsonCSRegnierPAThe changing carbon cycle of the coastal oceanNature201350461701:CAS:528:DC%2BC3sXhvVyis77O10.1038/nature1285724305149
N Catalán (1547_CR8) 2016; 9
F Langerwisch (1547_CR21) 2016; 7
PA Raymond (1547_CR32) 2013; 503
C Verpoorter (1547_CR37) 2014; 41
AK Aufdenkampe (1547_CR2) 2011; 9
P Regnier (1547_CR33) 2013; 6
G Einsele (1547_CR12) 2001; 30
RA Houghton (1547_CR17) 2003; 9
R Lauerwald (1547_CR22) 2015; 29
JM Melack (1547_CR26) 1974; 19
T Nakayama (1547_CR28) 2017; 122
A Jonsson (1547_CR20) 2001; 46
JE Bauer (1547_CR4) 2013; 504
1547_CR11
1547_CR35
C Zarfl (1547_CR39) 2015; 77
M Meybeck (1547_CR27) 1993; 70
1547_CR18
P Falkowski (1547_CR13) 2000; 290
DS Schimel (1547_CR34) 1995; 1
1547_CR7
CP McDonald (1547_CR25) 2013; 27
A Jonsson (1547_CR19) 2003; 6
C Gudasz (1547_CR16) 2010; 466
P Ciais (1547_CR9) 2008; 5
K Pettersson (1547_CR31) 2003; 506
D Butman (1547_CR6) 2016; 113
ML Pace (1547_CR30) 2005
Y Li (1547_CR24) 2017; 10
JJ Cole (1547_CR10) 2007; 10
1547_CR23
1547_CR1
TJ Battin (1547_CR3) 2009; 2
KM Flanagan (1547_CR15) 2003; 60
LJ Tranvik (1547_CR36) 2009; 54
GA Weyhenmeyer (1547_CR38) 2015; 8
MG Oquist (1547_CR29) 2014; 1
1547_CR5
JB Fisher (1547_CR14) 2014; 39
References_xml – volume: 1
  start-page: 315
  year: 2014
  ident: 1547_CR29
  publication-title: Environ Sci Technol Lett
  doi: 10.1021/ez500169j
  contributor:
    fullname: MG Oquist
– volume: 506
  start-page: 75
  year: 2003
  ident: 1547_CR31
  publication-title: Hydrobiologia
  doi: 10.1023/B:HYDR.0000008582.61851.76
  contributor:
    fullname: K Pettersson
– volume: 5
  start-page: 1259
  year: 2008
  ident: 1547_CR9
  publication-title: Biogeosciences
  doi: 10.5194/bg-5-1259-2008
  contributor:
    fullname: P Ciais
– volume: 122
  start-page: 966
  year: 2017
  ident: 1547_CR28
  publication-title: J Geophys Res Biogeosci
  doi: 10.1002/2016JG003743
  contributor:
    fullname: T Nakayama
– volume: 39
  start-page: 91
  year: 2014
  ident: 1547_CR14
  publication-title: Annu Rev Environ Resour
  doi: 10.1146/annurev-environ-012913-093456
  contributor:
    fullname: JB Fisher
– volume: 503
  start-page: 355
  year: 2013
  ident: 1547_CR32
  publication-title: Nature
  doi: 10.1038/nature12760
  contributor:
    fullname: PA Raymond
– volume: 290
  start-page: 291
  year: 2000
  ident: 1547_CR13
  publication-title: Science
  doi: 10.1126/science.290.5490.291
  contributor:
    fullname: P Falkowski
– volume: 70
  start-page: 443
  year: 1993
  ident: 1547_CR27
  publication-title: Water Air Soil Pollut
  doi: 10.1007/BF01105015
  contributor:
    fullname: M Meybeck
– ident: 1547_CR5
  doi: 10.1029/2017EO069751
– volume: 466
  start-page: 478
  year: 2010
  ident: 1547_CR16
  publication-title: Nature
  doi: 10.1038/nature09186
  contributor:
    fullname: C Gudasz
– volume: 113
  start-page: 58
  year: 2016
  ident: 1547_CR6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1512651112
  contributor:
    fullname: D Butman
– volume: 30
  start-page: 167
  year: 2001
  ident: 1547_CR12
  publication-title: Glob Planet Chang
  doi: 10.1016/S0921-8181(01)00105-9
  contributor:
    fullname: G Einsele
– volume: 10
  start-page: 501
  year: 2017
  ident: 1547_CR24
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2972
  contributor:
    fullname: Y Li
– volume: 46
  start-page: 1691
  year: 2001
  ident: 1547_CR20
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2001.46.7.1691
  contributor:
    fullname: A Jonsson
– volume: 60
  start-page: 635
  year: 2003
  ident: 1547_CR15
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f03-062
  contributor:
    fullname: KM Flanagan
– volume: 41
  start-page: 6396
  year: 2014
  ident: 1547_CR37
  publication-title: Geophys Res Lett
  doi: 10.1002/2014GL060641
  contributor:
    fullname: C Verpoorter
– ident: 1547_CR18
  doi: 10.1017/CBO9781107415324
– ident: 1547_CR35
  doi: 10.1029/2008jg000783
– start-page: 103
  volume-title: Respiration in aquatic ecosystems
  year: 2005
  ident: 1547_CR30
  doi: 10.1093/acprof:oso/9780198527084.003.0007
  contributor:
    fullname: ML Pace
– volume: 27
  start-page: 285
  year: 2013
  ident: 1547_CR25
  publication-title: Glob Biogeochem Cycles
  doi: 10.1002/gbc.20032
  contributor:
    fullname: CP McDonald
– volume: 9
  start-page: 501
  year: 2016
  ident: 1547_CR8
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2720
  contributor:
    fullname: N Catalán
– volume: 504
  start-page: 61
  year: 2013
  ident: 1547_CR4
  publication-title: Nature
  doi: 10.1038/nature12857
  contributor:
    fullname: JE Bauer
– volume: 6
  start-page: 224
  year: 2003
  ident: 1547_CR19
  publication-title: Ecosystems
  doi: 10.1007/s10021-002-0200-y
  contributor:
    fullname: A Jonsson
– volume: 8
  start-page: 933
  year: 2015
  ident: 1547_CR38
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2582
  contributor:
    fullname: GA Weyhenmeyer
– volume: 2
  start-page: 598
  year: 2009
  ident: 1547_CR3
  publication-title: Nat Geosci
  doi: 10.1038/ngeo618
  contributor:
    fullname: TJ Battin
– volume: 10
  start-page: 171
  year: 2007
  ident: 1547_CR10
  publication-title: Ecosystems
  doi: 10.1007/s10021-006-9013-8
  contributor:
    fullname: JJ Cole
– ident: 1547_CR1
  doi: 10.3389/fmicb.2016.00717
– volume: 9
  start-page: 500
  year: 2003
  ident: 1547_CR17
  publication-title: Glob Chang Biol
  doi: 10.1046/j.1365-2486.2003.00620.x
  contributor:
    fullname: RA Houghton
– volume: 54
  start-page: 2298
  year: 2009
  ident: 1547_CR36
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2009.54.6_part_2.2298
  contributor:
    fullname: LJ Tranvik
– volume: 19
  start-page: 743
  year: 1974
  ident: 1547_CR26
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1974.19.5.0743
  contributor:
    fullname: JM Melack
– volume: 7
  start-page: 559
  year: 2016
  ident: 1547_CR21
  publication-title: Earth Syst Dyn
  doi: 10.5194/esd-7-559-2016
  contributor:
    fullname: F Langerwisch
– volume: 1
  start-page: 77
  year: 1995
  ident: 1547_CR34
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.1995.tb00008.x
  contributor:
    fullname: DS Schimel
– volume: 77
  start-page: 161
  year: 2015
  ident: 1547_CR39
  publication-title: Aquat Sci
  doi: 10.1007/s00027-014-0377-0
  contributor:
    fullname: C Zarfl
– ident: 1547_CR11
  doi: 10.1002/lol2.10055
– volume: 9
  start-page: 53
  year: 2011
  ident: 1547_CR2
  publication-title: Front Ecol Environ
  doi: 10.1890/100014
  contributor:
    fullname: AK Aufdenkampe
– ident: 1547_CR7
– volume: 6
  start-page: 597
  year: 2013
  ident: 1547_CR33
  publication-title: Nat Geosci
  doi: 10.1038/ngeo1830
  contributor:
    fullname: P Regnier
– volume: 29
  start-page: 534
  year: 2015
  ident: 1547_CR22
  publication-title: Glob Biogeochem Cycles
  doi: 10.1002/2014GB004941
  contributor:
    fullname: R Lauerwald
– ident: 1547_CR23
  doi: 10.5268/IW-1.1.384
SSID ssj0019759
Score 1.9222128
Snippet The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25
SubjectTerms Activated carbon
Aquatic ecosystems
Biomedical and Life Sciences
Carbon - chemistry
Carbon cycle
Carbon dioxide
Carbon sources
Classification
Climate change
Concepts & Synthesis
Dissolved inorganic carbon
earth system dels
Earth system models
Ecology - methods
Ecosystem
Environment
Environmental changes
Exports
Global carbon cycle
Hydrologic CO2 transport
Inland waters
Lake carbon cycling
Lake classification
Lake functioning
Lake primary production
Lakes
Lakes - chemistry
Life Sciences
Mineralization
Models, Theoretical
Open channels
Primary production
Rainfall
Terrestrial ecosystems
Terrestrial environments
Title A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters
URI https://link.springer.com/article/10.1007/s00114-018-1547-z
https://www.ncbi.nlm.nih.gov/pubmed/29582138
https://www.proquest.com/docview/2018713621
https://pubmed.ncbi.nlm.nih.gov/PMC5869952
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147833
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347136
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ceECLM_AUs0BEA-l2thObB-zZcsKxJ4oWk6R49qi6m6Ktg2g_hH-Lp44CSpFK-0lUhTHTuZhz3hmPhPyXBrNqaA8ltTYmMsUVUrrmIvSaSG0tQb3IT-dZacT_uE8Pd8htN-6qObDLiLZTNR9rVtT9uk9X-_0pFzE612y75ceVMb9_P3Xjyd97ECJVHXYy97ZoF0s83-dbK5GWybmdqZkHy79B1q0WY7Gd0KJ4LJBMcQslPmwXpVDs97GeLzBn94lt1vrFPIgTgdkx1b3yEGr_0t41YJUv75PfudwoecWDFrfmG7UcBhMqIIEbwqDBkziBW1MjXgUELBHAGE9LvF-4cBbn4AZAYuLH3YKsyqcMWXA6KvS92Z_oXcAWAIDnv94jAjqC3iXOSBQL2G18K9hdib81AgU-oBMxiefR6dxe8hDbLIkWcXW0swqqrmfaJWfD0qaZM5MpeKuzJRj0nGTlAk1jifWsdRJnQqjmaYmQ6h89pDsVYvKPibAp0wfGWmdVpyzUmptbGmYZSJR8kjJiLzpmF18D1geRY_a3BC98EQvkOjFOiKHnTgUrVovC4pHGCZ-zU8i8ihIRt8TVVhzzPwoYkNm-gYI5L35pJp9awC9U5kpldKIvO0E4u-Q13zgyyCAGwO8m33JC8-sor6svVsnJGMReXFtw7pgHH_qyY2Gf0puITXCbtQh2Vtd1faZt89W5cAr5Pj4-GzQKuaA7I6ykb9OaP4HzzU7yw
link.rule.ids 230,314,780,784,885,4024,27923,27924,27925,41081,41120,41523,42150,42189,42592,51576,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOCCKM9AgTkA4qFI9SOxfVwB1QJtT13Um-V4bbGizaLuBlD_CH-XmbzQUlSJYxTHTvJ57BnPzDeMPTPBK6GFyo0IMVemIJHyPle6Sl5rH2Ogc8iDw3I6Ux-Pi-M-j3s1RLsPLsl2pR6T3dq8TzR90eoplM7Pr7JrOOEslS2YicnoOrC6sAP1MtoaYnBl_quLzc3ogoZ5MVBy9Jb-xSza7kZ7t9jNXo2ESYf7NrsS69tsuxfUFbzs2aRf3WG_JnDiv0YIpCZTXFALBYQuXRFQZwUPFG0LPoSGiCOgIwkB4t84petlAlQTgVz3y5PvcQ6LuisGFSD4swp7iz9JjQfKVQEEiup90MQGtG07qugVrJf4GIVRwg9PjJ532Wzv_dHbad5XY8hDyfk6j1GU0QqvcEW0KLiV4GUKc2NVqkqbpEkq8IqLkBSPSRbJ-EIHL70IJXHay3tsq17W8QEDNZd-N5iYvFVKVsb7EKsgo9Tcml1rMvZ6gMV960g33Eiv3GLoEENHGLrzjO0MwLle_lZOUK1Bjpszz9j9DsOxJ2EpOVjiKHoD3bEBMW5v3qkXX1rm7cKU1hYiY2-GefBnyEte8EU3VTYGeLf4PHEIlmtOG7S_tJEyY88vbdg4qeijHv7X8E_Z9enRwb7b_3D46RG7QX-mO0LaYVvrsyY-RqVqXT1pheg3JWofZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgLojzTFpgDIB6KWj8S28cVZVVeFQcW9WY5XlusaLNVNwHUP8LfxRMnQUtRJY5REjvJNxPPeGa-IeSJclYwyUSumPO5UAWqlLW5kFWwUlrvHe5DfjwsD2bi3VFx1Pc5XQ3Z7kNIMtU0IEtT3eyezsPuWPjW1YBGNzh6QIWQ-flVcg1XIhT0GZuMYQQtCz3QMEe_gw1hzX8Nsb4wXbA2LyZNjpHTv1hGu5Vpeovc7E1KmCQZ2CRXfH2bbPZKu4LnPbP0izvk1wSO7TcPDk1mzBHqYAGXShch2q9gATNvwTrXIokEJMIQQC6OEzxeBogmI2AYf3n83c9hUafGUA6cPaviaP4nmvSAdSsQQcPeHyjkEP3cRBu9gmYZb8OUSvhhkd3zLplN33x-fZD3nRlyV1La5N6z0mtmRfw76qjEFaNlcHOlRahKHbgKwtGKMhcE9YEXQdlCOsstcyXy2_N7ZKNe1v4BATHnds8pH6wWglfKWucrxz2XVKs9rTLycoDFnCYCDjNSLXcYmoihQQzNeUZ2BuBMr4srw7DvII0LNc3I_YThOBLTWCjM4yxyDd3xAmTfXj9TL752LNyFKrUuWEZeDXLwZ8pLHvBZEpW1CfYXXyYmgmXakzb6YlJxnpGnl17YGi7wpbb-a_rH5Pqn_an58Pbw_Ta5gR8m7SbtkI3mrPUPo33VVI86HfoN5d4joQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lake+classification+concept+for+a+more+accurate+global+estimate+of+the+dissolved+inorganic+carbon+export+from+terrestrial+ecosystems+to+inland+waters&rft.jtitle=Die+Naturwissenschaften&rft.au=Engel%2C+Fabian&rft.au=Farrell%2C+Kaitlin+J.&rft.au=McCullough%2C+Ian+M.&rft.au=Scordo%2C+Facundo&rft.date=2018&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0028-1042&rft.eissn=1432-1904&rft.volume=105&rft.issue=3-4&rft_id=info:doi/10.1007%2Fs00114-018-1547-z&rft.externalDocID=10_1007_s00114_018_1547_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-1042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-1042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-1042&client=summon