An intrinsically compliant robotic orthosis for treadmill training
A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive...
Saved in:
Published in | Medical engineering & physics Vol. 34; no. 10; pp. 1448 - 1453 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2012.02.003 |
Cover
Abstract | A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training. |
---|---|
AbstractList | A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training. Abstract A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training. A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training. |
Author | Jamwal, Prashant K. Xie, Sheng Quan Hussain, Shahid Parsons, John |
Author_xml | – sequence: 1 givenname: Shahid surname: Hussain fullname: Hussain, Shahid email: shus045@aucklanduni.ac.nz organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand – sequence: 2 givenname: Sheng Quan surname: Xie fullname: Xie, Sheng Quan organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand – sequence: 3 givenname: Prashant K. surname: Jamwal fullname: Jamwal, Prashant K. organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand – sequence: 4 givenname: John surname: Parsons fullname: Parsons, John organization: School of Nursing, The University of Auckland, Auckland, New Zealand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26669021$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22421099$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl2L1DAULbLifuhf0L4IvnS8Sdp08qAyLusHLPigPoc0vd3NmCZj0hHm3-8tM6uwILNwIQmcc5Kcc86LkxADFsUrBgsGTL5dL0bsMdxsbncLDowvgAbEk-KMLVtR1SDghPaigapuhDgtznNeA0BdS_GsOOW85gyUOis-rkLpwpRcyM4a73eljePGOxOmMsUuTs6WMU23MbtcDjGVU0LTj8572hkXXLh5XjwdjM_44rBeFD8_Xf24_FJdf_v89XJ1XVnJ2FQZaWopmRR90wjDsTPAwfatAoV05DAo1XasRQUD9mCH5RJMh4K3cuh6O4iL4s1ed5Pi7y3mSY8uW_TeBIzbrJlQgtEPYXkcylveMiXIq6NQ1qpakW5D0JcH6LYj-_UmudGknb53kwCvDwCTycwhmWBd_oeTUirgjHDv9jibYs4JB23dZCYXw-yp1wz0nLJe678p6zllDTQgiN8-4N9fcZy52jORgvrjMOlsHQaLvUtoJ91H9wiN9w80rKci0Id_4Q7zOm5ToB5opjMR9Pe5hXMJGacCUpok8OH_Ao96wh1bTPA4 |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2017_08_006 crossref_primary_10_1016_j_matpr_2020_10_541 crossref_primary_10_1177_09544119211032010 crossref_primary_10_3390_act9040134 crossref_primary_10_1016_j_jocn_2021_08_013 crossref_primary_10_1051_matecconf_201710813003 crossref_primary_10_1007_s10846_022_01695_0 crossref_primary_10_1109_TIE_2016_2521600 crossref_primary_10_1016_j_future_2020_06_046 crossref_primary_10_1016_j_mechmachtheory_2016_04_012 crossref_primary_10_1177_0954406217735554 crossref_primary_10_1016_j_robot_2017_05_013 crossref_primary_10_1109_THMS_2020_2989688 crossref_primary_10_3901_CJME_2015_0525_075 crossref_primary_10_1109_RBME_2018_2886228 crossref_primary_10_1080_10255842_2017_1282471 crossref_primary_10_1109_ACCESS_2019_2928010 crossref_primary_10_1109_TMRB_2024_3504002 crossref_primary_10_3390_app8040499 crossref_primary_10_3109_17483107_2013_866986 crossref_primary_10_1080_15397734_2020_1746669 crossref_primary_10_1007_s10846_017_0466_0 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104994 crossref_primary_10_1515_bmt_2022_0262 crossref_primary_10_1109_TNSRE_2017_2774295 crossref_primary_10_3389_fnbot_2017_00064 crossref_primary_10_2174_0122127976270240231116110837 crossref_primary_10_1007_s10072_016_2474_4 crossref_primary_10_1016_j_robot_2013_01_007 crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_1177_1687814015590988 crossref_primary_10_1088_1741_2552_abf0d5 crossref_primary_10_1109_TIE_2016_2580123 crossref_primary_10_3233_JIFS_16030 crossref_primary_10_1016_j_medengphy_2014_08_005 crossref_primary_10_1177_0954411919898293 crossref_primary_10_1115_1_4055521 crossref_primary_10_1080_00207454_2019_1664519 crossref_primary_10_1080_17483107_2018_1493754 crossref_primary_10_1109_TCST_2017_2654424 crossref_primary_10_2147_JMDH_S285682 |
Cites_doi | 10.1038/sj.sc.3101518 10.1016/j.medengphy.2010.12.010 10.1109/TNSRE.2010.2047116 10.1109/TNSRE.2007.903903 10.1523/JNEUROSCI.2266-06.2006 10.1109/MRA.2008.927689 10.1109/TNSRE.2008.2008280 10.1109/TRO.2009.2019781 10.1161/01.STR.0000254607.48765.cb 10.1109/TBME.2007.901024 10.1109/70.481753 10.1016/j.gaitpost.2005.05.004 10.1109/TCST.2005.847333 10.1016/j.gaitpost.2010.11.016 10.1109/70.781963 10.1109/TNSRE.2005.848628 10.1177/0278364906063829 10.1109/TNSRE.2007.903919 10.1114/1.1554921 10.1109/TNSRE.2007.903922 10.1109/TNSRE.2007.903926 10.1109/TRO.2005.861481 |
ContentType | Journal Article |
Copyright | 2012 IPEM IPEM 2014 INIST-CNRS Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 IPEM – notice: IPEM – notice: 2014 INIST-CNRS – notice: Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1016/j.medengphy.2012.02.003 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry Applied Sciences |
EISSN | 1873-4030 |
EndPage | 1453 |
ExternalDocumentID | 22421099 26669021 10_1016_j_medengphy_2012_02_003 S1350453312000276 1_s2_0_S1350453312000276 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c611t-a6a466163d553a2eba020cd7909ea2e20f997b17e90fed0cf880abe3276fbdcf3 |
IEDL.DBID | AIKHN |
ISSN | 1350-4533 1873-4030 |
IngestDate | Thu Sep 04 17:38:17 EDT 2025 Thu Sep 04 21:34:18 EDT 2025 Fri Sep 05 03:39:04 EDT 2025 Mon Jul 21 06:01:02 EDT 2025 Mon Jul 21 09:16:52 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Tue Jul 01 04:24:46 EDT 2025 Fri Feb 23 02:29:20 EST 2024 Sun Feb 23 10:19:59 EST 2025 Tue Aug 26 16:32:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Gait rehabilitation Compliance Treadmill training Pneumatic muscle actuators Robotic orthosis Gait Orthosis Orthopedic treatment Robotics Moving way Muscle Actuator Biomedical engineering |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c611t-a6a466163d553a2eba020cd7909ea2e20f997b17e90fed0cf880abe3276fbdcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22421099 |
PQID | 1179491045 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1393104408 proquest_miscellaneous_1272719387 proquest_miscellaneous_1179491045 pubmed_primary_22421099 pascalfrancis_primary_26669021 crossref_citationtrail_10_1016_j_medengphy_2012_02_003 crossref_primary_10_1016_j_medengphy_2012_02_003 elsevier_sciencedirect_doi_10_1016_j_medengphy_2012_02_003 elsevier_clinicalkeyesjournals_1_s2_0_S1350453312000276 elsevier_clinicalkey_doi_10_1016_j_medengphy_2012_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Riener, Lunenburger, Jezernik, Anderschitz, Colombo, Dietz (bib0025) 2005; 13 Van Der Linde (bib0105) 1999; 15 Jezernik, Schärer, Colombo, Morari (bib0015) 2003; 41 Colombo, Joerg, Schreier, Dietz (bib0030) 2000; 37 Von Zitzewitz, Bernhardt, Riener (bib0120) 2007; 15 Vallery, Veneman, van Asseldonk, Ekkelenkamp, Buss, van Der Kooij (bib0065) 2008; 15 Delp, Anderson, Arnold, Loan, Habib, John (bib0100) 2007; 54 Wu, Hornby, Landry, Roth, Schmit (bib0055) 2011; 33 Winter (bib0095) 1991 Husemann, Müller, Krewer, Heller, Koenig (bib0005) 2007; 38 Daisuke Aoyagi, Susan, Harkema, David, Reinkensmeyer, James (bib0045) 2007; 15 Cai, Fong, Otoshi, Liang, Burdick, Roy (bib0020) 2006; 26 Ferris, Gordon, Sawicki, Peethambaran (bib0080) 2006; 23 Hussain, Xie, Liu (bib0050) 2011; 33 Chou, Hannaford (bib0070) 1996; 12 Emken, Wynne, Harkema, Reinkensmeyer (bib0035) 2006; 22 Sugar, He, Koeneman, Koeneman, Herman, Huang (bib0060) 2007; 15 Lilly, Yang (bib0115) 2005; 13 Veneman, Ekkelenkamp, Kruidhof, Van Der Helm, Van Der Kooij (bib0090) 2006; 25 Banala, Kim, Agrawal, Scholz (bib0010) 2009; 17 Campolo, Accoto, Formica, Guglielmelli (bib0085) 2009; 25 Reynolds, Repperger, Phillips, Bandry (bib0110) 2003; 31 Ueda, Ming, Krishnamoorthy, Shinohara, Ogasawara (bib0075) 2010; 18 Veneman, Kruidhof, Hekman, Ekkelenkamp, Van Asseldonk, Van Der Kooij (bib0040) 2007; 15 Riener (10.1016/j.medengphy.2012.02.003_bib0025) 2005; 13 Emken (10.1016/j.medengphy.2012.02.003_bib0035) 2006; 22 Hussain (10.1016/j.medengphy.2012.02.003_bib0050) 2011; 33 Ueda (10.1016/j.medengphy.2012.02.003_bib0075) 2010; 18 Delp (10.1016/j.medengphy.2012.02.003_bib0100) 2007; 54 Banala (10.1016/j.medengphy.2012.02.003_bib0010) 2009; 17 Sugar (10.1016/j.medengphy.2012.02.003_bib0060) 2007; 15 Reynolds (10.1016/j.medengphy.2012.02.003_bib0110) 2003; 31 Ferris (10.1016/j.medengphy.2012.02.003_bib0080) 2006; 23 Von Zitzewitz (10.1016/j.medengphy.2012.02.003_bib0120) 2007; 15 Vallery (10.1016/j.medengphy.2012.02.003_bib0065) 2008; 15 Veneman (10.1016/j.medengphy.2012.02.003_bib0040) 2007; 15 Veneman (10.1016/j.medengphy.2012.02.003_bib0090) 2006; 25 Van Der Linde (10.1016/j.medengphy.2012.02.003_bib0105) 1999; 15 Chou (10.1016/j.medengphy.2012.02.003_bib0070) 1996; 12 Lilly (10.1016/j.medengphy.2012.02.003_bib0115) 2005; 13 Cai (10.1016/j.medengphy.2012.02.003_bib0020) 2006; 26 Daisuke Aoyagi (10.1016/j.medengphy.2012.02.003_bib0045) 2007; 15 Wu (10.1016/j.medengphy.2012.02.003_bib0055) 2011; 33 Campolo (10.1016/j.medengphy.2012.02.003_bib0085) 2009; 25 Colombo (10.1016/j.medengphy.2012.02.003_bib0030) 2000; 37 Husemann (10.1016/j.medengphy.2012.02.003_bib0005) 2007; 38 Winter (10.1016/j.medengphy.2012.02.003_bib0095) 1991 Jezernik (10.1016/j.medengphy.2012.02.003_bib0015) 2003; 41 |
References_xml | – year: 1991 ident: bib0095 article-title: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological – volume: 25 start-page: 261 year: 2006 end-page: 281 ident: bib0090 article-title: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots publication-title: International Journal of Robotics Research – volume: 15 start-page: 401 year: 2007 end-page: 409 ident: bib0120 article-title: A novel method for automatic treadmill speed adaptation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 15 start-page: 379 year: 2007 end-page: 386 ident: bib0040 article-title: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 25 start-page: 492 year: 2009 end-page: 501 ident: bib0085 article-title: Intrinsic constraints of neural origin: assessment and application to rehabilitation robotics publication-title: IEEE Transactions on Robotics – volume: 41 start-page: 657 year: 2003 end-page: 666 ident: bib0015 article-title: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals publication-title: Spinal Cord – volume: 33 start-page: 256 year: 2011 end-page: 260 ident: bib0055 article-title: A cable-driven locomotor training system for restoration of gait in human SCI publication-title: Gait and Posture – volume: 23 start-page: 425 year: 2006 end-page: 428 ident: bib0080 article-title: An improved powered ankle–foot orthosis using proportional myoelectric control publication-title: Gait and Posture – volume: 37 start-page: 693 year: 2000 end-page: 700 ident: bib0030 article-title: Treadmill training of paraplegic patients using a robotic orthosis publication-title: Journal of Rehabilitation Research and Development – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib0100 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Transactions on Biomedical Engineering – volume: 15 start-page: 387 year: 2007 end-page: 400 ident: bib0045 article-title: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 13 start-page: 550 year: 2005 end-page: 558 ident: bib0115 article-title: Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration publication-title: IEEE Transactions on Control Systems Technology – volume: 17 start-page: 2 year: 2009 end-page: 8 ident: bib0010 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 33 start-page: 527 year: 2011 end-page: 533 ident: bib0050 article-title: Robot assisted treadmill training: mechanisms and training strategies publication-title: Medical Engineering & Physics – volume: 15 start-page: 60 year: 2008 end-page: 69 ident: bib0065 article-title: Compliant actuation of rehabilitation robots publication-title: IEEE Robotics and Automation Magazine – volume: 13 start-page: 380 year: 2005 end-page: 394 ident: bib0025 article-title: Patient-cooperative strategies for robot-aided treadmill training: first experimental results publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 22 start-page: 185 year: 2006 end-page: 189 ident: bib0035 article-title: A robotic device for manipulating human stepping publication-title: IEEE Transactions on Robotics – volume: 26 start-page: 10564 year: 2006 end-page: 10568 ident: bib0020 article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning publication-title: Journal of NeuroScience – volume: 15 start-page: 599 year: 1999 end-page: 604 ident: bib0105 article-title: Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles publication-title: IEEE Transactions on Robotics and Automation – volume: 31 start-page: 310 year: 2003 end-page: 317 ident: bib0110 article-title: Modeling the dynamic characteristics of pneumatic muscle publication-title: Annals of Biomedical Engineering – volume: 12 start-page: 90 year: 1996 end-page: 102 ident: bib0070 article-title: Measurement and modeling of McKibben pneumatic artificial muscles publication-title: IEEE Transactions on Robotics and Automation – volume: 15 start-page: 336 year: 2007 end-page: 346 ident: bib0060 article-title: Design and control of RUPERT: a device for robotic upper extremity repetitive therapy publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 38 start-page: 349 year: 2007 end-page: 354 ident: bib0005 article-title: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study publication-title: Stroke – volume: 18 start-page: 339 year: 2010 end-page: 350 ident: bib0075 article-title: Individual muscle control using an exoskeleton robot for muscle function testing publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 41 start-page: 657 year: 2003 ident: 10.1016/j.medengphy.2012.02.003_bib0015 article-title: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals publication-title: Spinal Cord doi: 10.1038/sj.sc.3101518 – volume: 33 start-page: 527 year: 2011 ident: 10.1016/j.medengphy.2012.02.003_bib0050 article-title: Robot assisted treadmill training: mechanisms and training strategies publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2010.12.010 – volume: 18 start-page: 339 year: 2010 ident: 10.1016/j.medengphy.2012.02.003_bib0075 article-title: Individual muscle control using an exoskeleton robot for muscle function testing publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2010.2047116 – volume: 15 start-page: 336 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0060 article-title: Design and control of RUPERT: a device for robotic upper extremity repetitive therapy publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.903903 – volume: 26 start-page: 10564 year: 2006 ident: 10.1016/j.medengphy.2012.02.003_bib0020 article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning publication-title: Journal of NeuroScience doi: 10.1523/JNEUROSCI.2266-06.2006 – volume: 15 start-page: 60 year: 2008 ident: 10.1016/j.medengphy.2012.02.003_bib0065 article-title: Compliant actuation of rehabilitation robots publication-title: IEEE Robotics and Automation Magazine doi: 10.1109/MRA.2008.927689 – volume: 17 start-page: 2 year: 2009 ident: 10.1016/j.medengphy.2012.02.003_bib0010 article-title: Robot assisted gait training with active leg exoskeleton (ALEX) publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2008.2008280 – volume: 25 start-page: 492 year: 2009 ident: 10.1016/j.medengphy.2012.02.003_bib0085 article-title: Intrinsic constraints of neural origin: assessment and application to rehabilitation robotics publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2009.2019781 – volume: 38 start-page: 349 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0005 article-title: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study publication-title: Stroke doi: 10.1161/01.STR.0000254607.48765.cb – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0100 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2007.901024 – volume: 12 start-page: 90 year: 1996 ident: 10.1016/j.medengphy.2012.02.003_bib0070 article-title: Measurement and modeling of McKibben pneumatic artificial muscles publication-title: IEEE Transactions on Robotics and Automation doi: 10.1109/70.481753 – volume: 23 start-page: 425 year: 2006 ident: 10.1016/j.medengphy.2012.02.003_bib0080 article-title: An improved powered ankle–foot orthosis using proportional myoelectric control publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2005.05.004 – volume: 13 start-page: 550 year: 2005 ident: 10.1016/j.medengphy.2012.02.003_bib0115 article-title: Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2005.847333 – volume: 37 start-page: 693 year: 2000 ident: 10.1016/j.medengphy.2012.02.003_bib0030 article-title: Treadmill training of paraplegic patients using a robotic orthosis publication-title: Journal of Rehabilitation Research and Development – volume: 33 start-page: 256 year: 2011 ident: 10.1016/j.medengphy.2012.02.003_bib0055 article-title: A cable-driven locomotor training system for restoration of gait in human SCI publication-title: Gait and Posture doi: 10.1016/j.gaitpost.2010.11.016 – volume: 15 start-page: 599 year: 1999 ident: 10.1016/j.medengphy.2012.02.003_bib0105 article-title: Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles publication-title: IEEE Transactions on Robotics and Automation doi: 10.1109/70.781963 – volume: 13 start-page: 380 year: 2005 ident: 10.1016/j.medengphy.2012.02.003_bib0025 article-title: Patient-cooperative strategies for robot-aided treadmill training: first experimental results publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2005.848628 – year: 1991 ident: 10.1016/j.medengphy.2012.02.003_bib0095 – volume: 25 start-page: 261 year: 2006 ident: 10.1016/j.medengphy.2012.02.003_bib0090 article-title: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots publication-title: International Journal of Robotics Research doi: 10.1177/0278364906063829 – volume: 15 start-page: 379 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0040 article-title: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.903919 – volume: 31 start-page: 310 year: 2003 ident: 10.1016/j.medengphy.2012.02.003_bib0110 article-title: Modeling the dynamic characteristics of pneumatic muscle publication-title: Annals of Biomedical Engineering doi: 10.1114/1.1554921 – volume: 15 start-page: 387 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0045 article-title: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.903922 – volume: 15 start-page: 401 year: 2007 ident: 10.1016/j.medengphy.2012.02.003_bib0120 article-title: A novel method for automatic treadmill speed adaptation publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2007.903926 – volume: 22 start-page: 185 year: 2006 ident: 10.1016/j.medengphy.2012.02.003_bib0035 article-title: A robotic device for manipulating human stepping publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2005.861481 |
SSID | ssj0004463 |
Score | 2.2695055 |
Snippet | A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired... Abstract A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1448 |
SubjectTerms | Applied sciences Biological and medical sciences Compliance Computer science; control theory; systems Control theory. Systems Diseases of the osteoarticular system. Orthopedic treatment Elasticity Electrical Equipment and Supplies Equipment Design Exact sciences and technology Feasibility Studies Feedback Foot Fundamental and applied biological sciences. Psychology Gait - physiology Gait rehabilitation Humans Mechanical Phenomena Medical sciences Muscle, Skeletal - physiology Nervous System Diseases - physiopathology Nervous System Diseases - rehabilitation Orthotic Devices Pneumatic muscle actuators Radiology Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Rehabilitation - instrumentation Robotic orthosis Robotics Robotics - instrumentation Treadmill training Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports |
Title | An intrinsically compliant robotic orthosis for treadmill training |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453312000276 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453312000276 https://dx.doi.org/10.1016/j.medengphy.2012.02.003 https://www.ncbi.nlm.nih.gov/pubmed/22421099 https://www.proquest.com/docview/1179491045 https://www.proquest.com/docview/1272719387 https://www.proquest.com/docview/1393104408 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W4mHEILlFQqrIHEN60fixL0tq1YLiF6gUm-W49jVoipZNdsDF34748TZdgVtkTjGmknsmbHni2Y8A_Bec1YWgpjE8LxM0AW4RBNmEpEaKbSjJnNdtc9jsThJP59mpzswH-7C-LTKcPb3Z3p3WoeRaZDmdLVcTr9RniEe4ZyyLn4mdmGPcSmyEezNPn1ZHF9dj0y7hmqePvEMW2le6HNsfYZL8mlerK_fyW9yUo9WukXRub7nxc2gtHNOR0_gcUCV8ayf-FPYsfUY7s-HZm5jeHit7uAY7n0NEfVn8HFWx8t6jeOdus5_xn2SOQo8vmjKBl8Y-9BO0y7bGAFu7DPTK9-rKB66SzyHk6PD7_NFEvoqJEZQuk600Cm6ZcGrLOOa2RK1Q0yVSyItPjLipMxLmltJnK2IcbjHdWk5ytiVlXH8BYzqpravICYp1ZXLaOGrvOcWwQ2XptCppJZIkuYRiEGQyoSi435252rILvuhNhpQXgOKMF-vNAKyYVz1dTfuZikGTanhWikehAp9w92s-d9YbRs2dKuoapFS_WF0ERxsOLfs9t8-O9kyqM1KETUJiegrgneDhSk0GB_L0bVtLlvVVfZDqJdmt9AwBKcI0Iv8FhouEeD7tuMRvOxN-GoWPl0A_yBe_88a9-GBf-ozgN7AaH1xad8ijluXE9j98ItOwm79DUnQRzE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTmIghKB8hY9hJF6j2nHixLyViqljW1_YpL1ZjmOjoimplu6B_55z4nRUsA2Jxzh3iX139v0sn-8APmqelIWgJjY8L2N0AS7WNDGxSI0U2jGTuS7b50LMz9Kv59n5DsyGuzA-rDKs_f2a3q3WoWUSpDlZLZeTb4xniEc4Z0l3fibuwW6a4W5vBLvTw6P54vp6ZNoVVPP0sWfYCvNCn2Pr7zgkH-aV9Pk7-U1O6tFKtyg619e8uBmUds7p4Ak8DqiSTPuOP4UdW49hbzYUcxvDw9_yDo7h_kk4UX8Gn6c1WdZrbO_UdfGT9EHmKHBy2ZQNfpD4o52mXbYEAS7xkemVr1VEhuoSz-Hs4MvpbB6HugqxEYytYy10im5Z8CrLuE5sidqhpsollRYfE-qkzEuWW0mdrahxOMd1aTnK2JWVcfwFjOqmtq-A0JTpymWs8Fnec4vghktT6FQySyVN8wjEIEhlQtJx37sLNUSX_VAbDSivAUUTn680ArphXPV5N-5mKQZNqeFaKS6ECn3D3az531htGyZ0q5hqkVL9YXQRfNpwbtntv_12f8ugNiNF1CQkoq8IPgwWptBg_FmOrm1z1aousx9CvTS7hSZBcIoAvchvoeESAb4vOx7By96Er3vhwwVwB_H6f8b4HvbmpyfH6vhwcfQGHvg3fTTQWxitL6_sO8R063I_zNlfGXZJIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intrinsically+compliant+robotic+orthosis+for+treadmill+training&rft.jtitle=Medical+engineering+%26+physics&rft.au=Hussain%2C+Shahid&rft.au=Xie%2C+Sheng+Quan&rft.au=Jamwal%2C+Prashant+K.&rft.au=Parsons%2C+John&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=34&rft.issue=10&rft.spage=1448&rft.epage=1453&rft_id=info:doi/10.1016%2Fj.medengphy.2012.02.003&rft.externalDocID=S1350453312000276 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453312X00109%2Fcov150h.gif |