An intrinsically compliant robotic orthosis for treadmill training

A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 34; no. 10; pp. 1448 - 1453
Main Authors Hussain, Shahid, Xie, Sheng Quan, Jamwal, Prashant K., Parsons, John
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2012
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2012.02.003

Cover

Abstract A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.
AbstractList A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.
Abstract A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.
A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.
Author Jamwal, Prashant K.
Xie, Sheng Quan
Hussain, Shahid
Parsons, John
Author_xml – sequence: 1
  givenname: Shahid
  surname: Hussain
  fullname: Hussain, Shahid
  email: shus045@aucklanduni.ac.nz
  organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand
– sequence: 2
  givenname: Sheng Quan
  surname: Xie
  fullname: Xie, Sheng Quan
  organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Prashant K.
  surname: Jamwal
  fullname: Jamwal, Prashant K.
  organization: Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand
– sequence: 4
  givenname: John
  surname: Parsons
  fullname: Parsons, John
  organization: School of Nursing, The University of Auckland, Auckland, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26669021$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22421099$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAULbLifuhf0L4IvnS8Sdp08qAyLusHLPigPoc0vd3NmCZj0hHm3-8tM6uwILNwIQmcc5Kcc86LkxADFsUrBgsGTL5dL0bsMdxsbncLDowvgAbEk-KMLVtR1SDghPaigapuhDgtznNeA0BdS_GsOOW85gyUOis-rkLpwpRcyM4a73eljePGOxOmMsUuTs6WMU23MbtcDjGVU0LTj8572hkXXLh5XjwdjM_44rBeFD8_Xf24_FJdf_v89XJ1XVnJ2FQZaWopmRR90wjDsTPAwfatAoV05DAo1XasRQUD9mCH5RJMh4K3cuh6O4iL4s1ed5Pi7y3mSY8uW_TeBIzbrJlQgtEPYXkcylveMiXIq6NQ1qpakW5D0JcH6LYj-_UmudGknb53kwCvDwCTycwhmWBd_oeTUirgjHDv9jibYs4JB23dZCYXw-yp1wz0nLJe678p6zllDTQgiN8-4N9fcZy52jORgvrjMOlsHQaLvUtoJ91H9wiN9w80rKci0Id_4Q7zOm5ToB5opjMR9Pe5hXMJGacCUpok8OH_Ao96wh1bTPA4
CitedBy_id crossref_primary_10_1016_j_ymssp_2017_08_006
crossref_primary_10_1016_j_matpr_2020_10_541
crossref_primary_10_1177_09544119211032010
crossref_primary_10_3390_act9040134
crossref_primary_10_1016_j_jocn_2021_08_013
crossref_primary_10_1051_matecconf_201710813003
crossref_primary_10_1007_s10846_022_01695_0
crossref_primary_10_1109_TIE_2016_2521600
crossref_primary_10_1016_j_future_2020_06_046
crossref_primary_10_1016_j_mechmachtheory_2016_04_012
crossref_primary_10_1177_0954406217735554
crossref_primary_10_1016_j_robot_2017_05_013
crossref_primary_10_1109_THMS_2020_2989688
crossref_primary_10_3901_CJME_2015_0525_075
crossref_primary_10_1109_RBME_2018_2886228
crossref_primary_10_1080_10255842_2017_1282471
crossref_primary_10_1109_ACCESS_2019_2928010
crossref_primary_10_1109_TMRB_2024_3504002
crossref_primary_10_3390_app8040499
crossref_primary_10_3109_17483107_2013_866986
crossref_primary_10_1080_15397734_2020_1746669
crossref_primary_10_1007_s10846_017_0466_0
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_104994
crossref_primary_10_1515_bmt_2022_0262
crossref_primary_10_1109_TNSRE_2017_2774295
crossref_primary_10_3389_fnbot_2017_00064
crossref_primary_10_2174_0122127976270240231116110837
crossref_primary_10_1007_s10072_016_2474_4
crossref_primary_10_1016_j_robot_2013_01_007
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_1177_1687814015590988
crossref_primary_10_1088_1741_2552_abf0d5
crossref_primary_10_1109_TIE_2016_2580123
crossref_primary_10_3233_JIFS_16030
crossref_primary_10_1016_j_medengphy_2014_08_005
crossref_primary_10_1177_0954411919898293
crossref_primary_10_1115_1_4055521
crossref_primary_10_1080_00207454_2019_1664519
crossref_primary_10_1080_17483107_2018_1493754
crossref_primary_10_1109_TCST_2017_2654424
crossref_primary_10_2147_JMDH_S285682
Cites_doi 10.1038/sj.sc.3101518
10.1016/j.medengphy.2010.12.010
10.1109/TNSRE.2010.2047116
10.1109/TNSRE.2007.903903
10.1523/JNEUROSCI.2266-06.2006
10.1109/MRA.2008.927689
10.1109/TNSRE.2008.2008280
10.1109/TRO.2009.2019781
10.1161/01.STR.0000254607.48765.cb
10.1109/TBME.2007.901024
10.1109/70.481753
10.1016/j.gaitpost.2005.05.004
10.1109/TCST.2005.847333
10.1016/j.gaitpost.2010.11.016
10.1109/70.781963
10.1109/TNSRE.2005.848628
10.1177/0278364906063829
10.1109/TNSRE.2007.903919
10.1114/1.1554921
10.1109/TNSRE.2007.903922
10.1109/TNSRE.2007.903926
10.1109/TRO.2005.861481
ContentType Journal Article
Copyright 2012 IPEM
IPEM
2014 INIST-CNRS
Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 IPEM
– notice: IPEM
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1016/j.medengphy.2012.02.003
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Engineering Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
Applied Sciences
EISSN 1873-4030
EndPage 1453
ExternalDocumentID 22421099
26669021
10_1016_j_medengphy_2012_02_003
S1350453312000276
1_s2_0_S1350453312000276
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c611t-a6a466163d553a2eba020cd7909ea2e20f997b17e90fed0cf880abe3276fbdcf3
IEDL.DBID AIKHN
ISSN 1350-4533
1873-4030
IngestDate Thu Sep 04 17:38:17 EDT 2025
Thu Sep 04 21:34:18 EDT 2025
Fri Sep 05 03:39:04 EDT 2025
Mon Jul 21 06:01:02 EDT 2025
Mon Jul 21 09:16:52 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Tue Jul 01 04:24:46 EDT 2025
Fri Feb 23 02:29:20 EST 2024
Sun Feb 23 10:19:59 EST 2025
Tue Aug 26 16:32:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Gait rehabilitation
Compliance
Treadmill training
Pneumatic muscle actuators
Robotic orthosis
Gait
Orthosis
Orthopedic treatment
Robotics
Moving way
Muscle
Actuator
Biomedical engineering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-a6a466163d553a2eba020cd7909ea2e20f997b17e90fed0cf880abe3276fbdcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22421099
PQID 1179491045
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1393104408
proquest_miscellaneous_1272719387
proquest_miscellaneous_1179491045
pubmed_primary_22421099
pascalfrancis_primary_26669021
crossref_citationtrail_10_1016_j_medengphy_2012_02_003
crossref_primary_10_1016_j_medengphy_2012_02_003
elsevier_sciencedirect_doi_10_1016_j_medengphy_2012_02_003
elsevier_clinicalkeyesjournals_1_s2_0_S1350453312000276
elsevier_clinicalkey_doi_10_1016_j_medengphy_2012_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Riener, Lunenburger, Jezernik, Anderschitz, Colombo, Dietz (bib0025) 2005; 13
Van Der Linde (bib0105) 1999; 15
Jezernik, Schärer, Colombo, Morari (bib0015) 2003; 41
Colombo, Joerg, Schreier, Dietz (bib0030) 2000; 37
Von Zitzewitz, Bernhardt, Riener (bib0120) 2007; 15
Vallery, Veneman, van Asseldonk, Ekkelenkamp, Buss, van Der Kooij (bib0065) 2008; 15
Delp, Anderson, Arnold, Loan, Habib, John (bib0100) 2007; 54
Wu, Hornby, Landry, Roth, Schmit (bib0055) 2011; 33
Winter (bib0095) 1991
Husemann, Müller, Krewer, Heller, Koenig (bib0005) 2007; 38
Daisuke Aoyagi, Susan, Harkema, David, Reinkensmeyer, James (bib0045) 2007; 15
Cai, Fong, Otoshi, Liang, Burdick, Roy (bib0020) 2006; 26
Ferris, Gordon, Sawicki, Peethambaran (bib0080) 2006; 23
Hussain, Xie, Liu (bib0050) 2011; 33
Chou, Hannaford (bib0070) 1996; 12
Emken, Wynne, Harkema, Reinkensmeyer (bib0035) 2006; 22
Sugar, He, Koeneman, Koeneman, Herman, Huang (bib0060) 2007; 15
Lilly, Yang (bib0115) 2005; 13
Veneman, Ekkelenkamp, Kruidhof, Van Der Helm, Van Der Kooij (bib0090) 2006; 25
Banala, Kim, Agrawal, Scholz (bib0010) 2009; 17
Campolo, Accoto, Formica, Guglielmelli (bib0085) 2009; 25
Reynolds, Repperger, Phillips, Bandry (bib0110) 2003; 31
Ueda, Ming, Krishnamoorthy, Shinohara, Ogasawara (bib0075) 2010; 18
Veneman, Kruidhof, Hekman, Ekkelenkamp, Van Asseldonk, Van Der Kooij (bib0040) 2007; 15
Riener (10.1016/j.medengphy.2012.02.003_bib0025) 2005; 13
Emken (10.1016/j.medengphy.2012.02.003_bib0035) 2006; 22
Hussain (10.1016/j.medengphy.2012.02.003_bib0050) 2011; 33
Ueda (10.1016/j.medengphy.2012.02.003_bib0075) 2010; 18
Delp (10.1016/j.medengphy.2012.02.003_bib0100) 2007; 54
Banala (10.1016/j.medengphy.2012.02.003_bib0010) 2009; 17
Sugar (10.1016/j.medengphy.2012.02.003_bib0060) 2007; 15
Reynolds (10.1016/j.medengphy.2012.02.003_bib0110) 2003; 31
Ferris (10.1016/j.medengphy.2012.02.003_bib0080) 2006; 23
Von Zitzewitz (10.1016/j.medengphy.2012.02.003_bib0120) 2007; 15
Vallery (10.1016/j.medengphy.2012.02.003_bib0065) 2008; 15
Veneman (10.1016/j.medengphy.2012.02.003_bib0040) 2007; 15
Veneman (10.1016/j.medengphy.2012.02.003_bib0090) 2006; 25
Van Der Linde (10.1016/j.medengphy.2012.02.003_bib0105) 1999; 15
Chou (10.1016/j.medengphy.2012.02.003_bib0070) 1996; 12
Lilly (10.1016/j.medengphy.2012.02.003_bib0115) 2005; 13
Cai (10.1016/j.medengphy.2012.02.003_bib0020) 2006; 26
Daisuke Aoyagi (10.1016/j.medengphy.2012.02.003_bib0045) 2007; 15
Wu (10.1016/j.medengphy.2012.02.003_bib0055) 2011; 33
Campolo (10.1016/j.medengphy.2012.02.003_bib0085) 2009; 25
Colombo (10.1016/j.medengphy.2012.02.003_bib0030) 2000; 37
Husemann (10.1016/j.medengphy.2012.02.003_bib0005) 2007; 38
Winter (10.1016/j.medengphy.2012.02.003_bib0095) 1991
Jezernik (10.1016/j.medengphy.2012.02.003_bib0015) 2003; 41
References_xml – year: 1991
  ident: bib0095
  article-title: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
– volume: 25
  start-page: 261
  year: 2006
  end-page: 281
  ident: bib0090
  article-title: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots
  publication-title: International Journal of Robotics Research
– volume: 15
  start-page: 401
  year: 2007
  end-page: 409
  ident: bib0120
  article-title: A novel method for automatic treadmill speed adaptation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 15
  start-page: 379
  year: 2007
  end-page: 386
  ident: bib0040
  article-title: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 25
  start-page: 492
  year: 2009
  end-page: 501
  ident: bib0085
  article-title: Intrinsic constraints of neural origin: assessment and application to rehabilitation robotics
  publication-title: IEEE Transactions on Robotics
– volume: 41
  start-page: 657
  year: 2003
  end-page: 666
  ident: bib0015
  article-title: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals
  publication-title: Spinal Cord
– volume: 33
  start-page: 256
  year: 2011
  end-page: 260
  ident: bib0055
  article-title: A cable-driven locomotor training system for restoration of gait in human SCI
  publication-title: Gait and Posture
– volume: 23
  start-page: 425
  year: 2006
  end-page: 428
  ident: bib0080
  article-title: An improved powered ankle–foot orthosis using proportional myoelectric control
  publication-title: Gait and Posture
– volume: 37
  start-page: 693
  year: 2000
  end-page: 700
  ident: bib0030
  article-title: Treadmill training of paraplegic patients using a robotic orthosis
  publication-title: Journal of Rehabilitation Research and Development
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib0100
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 15
  start-page: 387
  year: 2007
  end-page: 400
  ident: bib0045
  article-title: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 13
  start-page: 550
  year: 2005
  end-page: 558
  ident: bib0115
  article-title: Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 17
  start-page: 2
  year: 2009
  end-page: 8
  ident: bib0010
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 33
  start-page: 527
  year: 2011
  end-page: 533
  ident: bib0050
  article-title: Robot assisted treadmill training: mechanisms and training strategies
  publication-title: Medical Engineering & Physics
– volume: 15
  start-page: 60
  year: 2008
  end-page: 69
  ident: bib0065
  article-title: Compliant actuation of rehabilitation robots
  publication-title: IEEE Robotics and Automation Magazine
– volume: 13
  start-page: 380
  year: 2005
  end-page: 394
  ident: bib0025
  article-title: Patient-cooperative strategies for robot-aided treadmill training: first experimental results
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 22
  start-page: 185
  year: 2006
  end-page: 189
  ident: bib0035
  article-title: A robotic device for manipulating human stepping
  publication-title: IEEE Transactions on Robotics
– volume: 26
  start-page: 10564
  year: 2006
  end-page: 10568
  ident: bib0020
  article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
  publication-title: Journal of NeuroScience
– volume: 15
  start-page: 599
  year: 1999
  end-page: 604
  ident: bib0105
  article-title: Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles
  publication-title: IEEE Transactions on Robotics and Automation
– volume: 31
  start-page: 310
  year: 2003
  end-page: 317
  ident: bib0110
  article-title: Modeling the dynamic characteristics of pneumatic muscle
  publication-title: Annals of Biomedical Engineering
– volume: 12
  start-page: 90
  year: 1996
  end-page: 102
  ident: bib0070
  article-title: Measurement and modeling of McKibben pneumatic artificial muscles
  publication-title: IEEE Transactions on Robotics and Automation
– volume: 15
  start-page: 336
  year: 2007
  end-page: 346
  ident: bib0060
  article-title: Design and control of RUPERT: a device for robotic upper extremity repetitive therapy
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 38
  start-page: 349
  year: 2007
  end-page: 354
  ident: bib0005
  article-title: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study
  publication-title: Stroke
– volume: 18
  start-page: 339
  year: 2010
  end-page: 350
  ident: bib0075
  article-title: Individual muscle control using an exoskeleton robot for muscle function testing
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 41
  start-page: 657
  year: 2003
  ident: 10.1016/j.medengphy.2012.02.003_bib0015
  article-title: Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101518
– volume: 33
  start-page: 527
  year: 2011
  ident: 10.1016/j.medengphy.2012.02.003_bib0050
  article-title: Robot assisted treadmill training: mechanisms and training strategies
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2010.12.010
– volume: 18
  start-page: 339
  year: 2010
  ident: 10.1016/j.medengphy.2012.02.003_bib0075
  article-title: Individual muscle control using an exoskeleton robot for muscle function testing
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2010.2047116
– volume: 15
  start-page: 336
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0060
  article-title: Design and control of RUPERT: a device for robotic upper extremity repetitive therapy
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.903903
– volume: 26
  start-page: 10564
  year: 2006
  ident: 10.1016/j.medengphy.2012.02.003_bib0020
  article-title: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning
  publication-title: Journal of NeuroScience
  doi: 10.1523/JNEUROSCI.2266-06.2006
– volume: 15
  start-page: 60
  year: 2008
  ident: 10.1016/j.medengphy.2012.02.003_bib0065
  article-title: Compliant actuation of rehabilitation robots
  publication-title: IEEE Robotics and Automation Magazine
  doi: 10.1109/MRA.2008.927689
– volume: 17
  start-page: 2
  year: 2009
  ident: 10.1016/j.medengphy.2012.02.003_bib0010
  article-title: Robot assisted gait training with active leg exoskeleton (ALEX)
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2008.2008280
– volume: 25
  start-page: 492
  year: 2009
  ident: 10.1016/j.medengphy.2012.02.003_bib0085
  article-title: Intrinsic constraints of neural origin: assessment and application to rehabilitation robotics
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2009.2019781
– volume: 38
  start-page: 349
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0005
  article-title: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study
  publication-title: Stroke
  doi: 10.1161/01.STR.0000254607.48765.cb
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0100
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2007.901024
– volume: 12
  start-page: 90
  year: 1996
  ident: 10.1016/j.medengphy.2012.02.003_bib0070
  article-title: Measurement and modeling of McKibben pneumatic artificial muscles
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/70.481753
– volume: 23
  start-page: 425
  year: 2006
  ident: 10.1016/j.medengphy.2012.02.003_bib0080
  article-title: An improved powered ankle–foot orthosis using proportional myoelectric control
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2005.05.004
– volume: 13
  start-page: 550
  year: 2005
  ident: 10.1016/j.medengphy.2012.02.003_bib0115
  article-title: Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2005.847333
– volume: 37
  start-page: 693
  year: 2000
  ident: 10.1016/j.medengphy.2012.02.003_bib0030
  article-title: Treadmill training of paraplegic patients using a robotic orthosis
  publication-title: Journal of Rehabilitation Research and Development
– volume: 33
  start-page: 256
  year: 2011
  ident: 10.1016/j.medengphy.2012.02.003_bib0055
  article-title: A cable-driven locomotor training system for restoration of gait in human SCI
  publication-title: Gait and Posture
  doi: 10.1016/j.gaitpost.2010.11.016
– volume: 15
  start-page: 599
  year: 1999
  ident: 10.1016/j.medengphy.2012.02.003_bib0105
  article-title: Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/70.781963
– volume: 13
  start-page: 380
  year: 2005
  ident: 10.1016/j.medengphy.2012.02.003_bib0025
  article-title: Patient-cooperative strategies for robot-aided treadmill training: first experimental results
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2005.848628
– year: 1991
  ident: 10.1016/j.medengphy.2012.02.003_bib0095
– volume: 25
  start-page: 261
  year: 2006
  ident: 10.1016/j.medengphy.2012.02.003_bib0090
  article-title: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364906063829
– volume: 15
  start-page: 379
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0040
  article-title: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.903919
– volume: 31
  start-page: 310
  year: 2003
  ident: 10.1016/j.medengphy.2012.02.003_bib0110
  article-title: Modeling the dynamic characteristics of pneumatic muscle
  publication-title: Annals of Biomedical Engineering
  doi: 10.1114/1.1554921
– volume: 15
  start-page: 387
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0045
  article-title: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.903922
– volume: 15
  start-page: 401
  year: 2007
  ident: 10.1016/j.medengphy.2012.02.003_bib0120
  article-title: A novel method for automatic treadmill speed adaptation
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.903926
– volume: 22
  start-page: 185
  year: 2006
  ident: 10.1016/j.medengphy.2012.02.003_bib0035
  article-title: A robotic device for manipulating human stepping
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2005.861481
SSID ssj0004463
Score 2.2695055
Snippet A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired...
Abstract A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1448
SubjectTerms Applied sciences
Biological and medical sciences
Compliance
Computer science; control theory; systems
Control theory. Systems
Diseases of the osteoarticular system. Orthopedic treatment
Elasticity
Electrical Equipment and Supplies
Equipment Design
Exact sciences and technology
Feasibility Studies
Feedback
Foot
Fundamental and applied biological sciences. Psychology
Gait - physiology
Gait rehabilitation
Humans
Mechanical Phenomena
Medical sciences
Muscle, Skeletal - physiology
Nervous System Diseases - physiopathology
Nervous System Diseases - rehabilitation
Orthotic Devices
Pneumatic muscle actuators
Radiology
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Rehabilitation - instrumentation
Robotic orthosis
Robotics
Robotics - instrumentation
Treadmill training
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Title An intrinsically compliant robotic orthosis for treadmill training
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453312000276
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453312000276
https://dx.doi.org/10.1016/j.medengphy.2012.02.003
https://www.ncbi.nlm.nih.gov/pubmed/22421099
https://www.proquest.com/docview/1179491045
https://www.proquest.com/docview/1272719387
https://www.proquest.com/docview/1393104408
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W4mHEILlFQqrIHEN60fixL0tq1YLiF6gUm-W49jVoipZNdsDF34748TZdgVtkTjGmknsmbHni2Y8A_Bec1YWgpjE8LxM0AW4RBNmEpEaKbSjJnNdtc9jsThJP59mpzswH-7C-LTKcPb3Z3p3WoeRaZDmdLVcTr9RniEe4ZyyLn4mdmGPcSmyEezNPn1ZHF9dj0y7hmqePvEMW2le6HNsfYZL8mlerK_fyW9yUo9WukXRub7nxc2gtHNOR0_gcUCV8ayf-FPYsfUY7s-HZm5jeHit7uAY7n0NEfVn8HFWx8t6jeOdus5_xn2SOQo8vmjKBl8Y-9BO0y7bGAFu7DPTK9-rKB66SzyHk6PD7_NFEvoqJEZQuk600Cm6ZcGrLOOa2RK1Q0yVSyItPjLipMxLmltJnK2IcbjHdWk5ytiVlXH8BYzqpravICYp1ZXLaOGrvOcWwQ2XptCppJZIkuYRiEGQyoSi435252rILvuhNhpQXgOKMF-vNAKyYVz1dTfuZikGTanhWikehAp9w92s-d9YbRs2dKuoapFS_WF0ERxsOLfs9t8-O9kyqM1KETUJiegrgneDhSk0GB_L0bVtLlvVVfZDqJdmt9AwBKcI0Iv8FhouEeD7tuMRvOxN-GoWPl0A_yBe_88a9-GBf-ozgN7AaH1xad8ijluXE9j98ItOwm79DUnQRzE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTmIghKB8hY9hJF6j2nHixLyViqljW1_YpL1ZjmOjoimplu6B_55z4nRUsA2Jxzh3iX139v0sn-8APmqelIWgJjY8L2N0AS7WNDGxSI0U2jGTuS7b50LMz9Kv59n5DsyGuzA-rDKs_f2a3q3WoWUSpDlZLZeTb4xniEc4Z0l3fibuwW6a4W5vBLvTw6P54vp6ZNoVVPP0sWfYCvNCn2Pr7zgkH-aV9Pk7-U1O6tFKtyg619e8uBmUds7p4Ak8DqiSTPuOP4UdW49hbzYUcxvDw9_yDo7h_kk4UX8Gn6c1WdZrbO_UdfGT9EHmKHBy2ZQNfpD4o52mXbYEAS7xkemVr1VEhuoSz-Hs4MvpbB6HugqxEYytYy10im5Z8CrLuE5sidqhpsollRYfE-qkzEuWW0mdrahxOMd1aTnK2JWVcfwFjOqmtq-A0JTpymWs8Fnec4vghktT6FQySyVN8wjEIEhlQtJx37sLNUSX_VAbDSivAUUTn680ArphXPV5N-5mKQZNqeFaKS6ECn3D3az531htGyZ0q5hqkVL9YXQRfNpwbtntv_12f8ugNiNF1CQkoq8IPgwWptBg_FmOrm1z1aousx9CvTS7hSZBcIoAvchvoeESAb4vOx7By96Er3vhwwVwB_H6f8b4HvbmpyfH6vhwcfQGHvg3fTTQWxitL6_sO8R063I_zNlfGXZJIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intrinsically+compliant+robotic+orthosis+for+treadmill+training&rft.jtitle=Medical+engineering+%26+physics&rft.au=Hussain%2C+Shahid&rft.au=Xie%2C+Sheng+Quan&rft.au=Jamwal%2C+Prashant+K.&rft.au=Parsons%2C+John&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=1350-4533&rft.eissn=1873-4030&rft.volume=34&rft.issue=10&rft.spage=1448&rft.epage=1453&rft_id=info:doi/10.1016%2Fj.medengphy.2012.02.003&rft.externalDocID=S1350453312000276
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453312X00109%2Fcov150h.gif