Age differences in periventricular and deep white matter lesions
Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary arter...
Saved in:
Published in | Neurobiology of aging Vol. 36; no. 4; pp. 1653 - 1658 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p < 0.001) and female sex (p = 0.003). PV, adjusted for DWMH and ICV, was age associated (p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04–0.11); PV was 0.18 log units/decade greater (95% CI = 0.14–0.23); slope differences (p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. |
---|---|
AbstractList | Abstract Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age ( p < 0.001) and female sex ( p = 0.003). PV, adjusted for DWMH and ICV, was age associated ( p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04–0.11); PV was 0.18 log units/decade greater (95% CI = 0.14–0.23); slope differences ( p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. Deep white matter hyperintensity (DWMH) and periventricular white matter lesion volumes (PV) are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease (CAD) patients. Using 3T MRI, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV), and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p<0.001), and female sex (p = 0.003) . PV, adjusted for DWMH and ICV, was age associated (p<0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04-0.11); PV was 0.18 log units/decade greater (95% CI 0.14 – 0.23); slope differences (p < 0.001). In people with a family history of CAD, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p < 0.001) and female sex (p = 0.003). PV, adjusted for DWMH and ICV, was age associated (p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04–0.11); PV was 0.18 log units/decade greater (95% CI = 0.14–0.23); slope differences (p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p < 0.001) and female sex (p = 0.003). PV, adjusted for DWMH and ICV, was age associated (p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04-0.11); PV was 0.18 log units/decade greater (95% CI = 0.14-0.23); slope differences (p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors.Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p < 0.001) and female sex (p = 0.003). PV, adjusted for DWMH and ICV, was age associated (p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04-0.11); PV was 0.18 log units/decade greater (95% CI = 0.14-0.23); slope differences (p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age differences in these volumes accounting for collinearity and risk factors. Subjects were 563 healthy family members of early-onset coronary artery disease patients. Using 3T magnetic resonance imaging, lesions were classified as DWMH or PV. Age association with lesion classification was analyzed using random effects Tobit regression, adjusting for intracranial volume (ICV) and risk factors. Subjects were 60% women, 36% African-American, mean age 51 ± 11 years. In multivariable analysis adjusted for PV and ICV, DWMH was associated with age (p < 0.001) and female sex (p = 0.003). PV, adjusted for DWMH and ICV, was age associated (p < 0.001). For each age decade, DWMH showed 0.07 log units/decade greater volume (95% CI = 0.04-0.11); PV was 0.18 log units/decade greater (95% CI = 0.14-0.23); slope differences (p < 0.001). In people with a family history of coronary artery disease, PV and DWMH are independently and differentially associated with age controlling for traditional risk factors. |
Author | Moy, Taryn F. Yanek, Lisa R. Nyquist, Paul A. Becker, Lewis C. Cuzzocreo, Jennifer L. Prince, Jerry Becker, Diane M. Bilgel, Murat Yousem, David M. Kral, Brian G. Vaidya, Dhananjay Wasserman, Bruce A. Gottesman, Rebecca |
AuthorAffiliation | g Department of Radiology, Divisions of Diagnostic Radiology and Neuroradiology, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA e Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA d Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA c Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA b Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, 21287, USA a Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21287, USA f Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA |
AuthorAffiliation_xml | – name: d Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA – name: e Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA – name: c Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA – name: a Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21287, USA – name: b Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, 21287, USA – name: f Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA – name: g Department of Radiology, Divisions of Diagnostic Radiology and Neuroradiology, Johns Hopkins School of Medicine, Baltimore Maryland, 21287, USA |
Author_xml | – sequence: 1 givenname: Paul A. orcidid: 0000-0001-6078-3543 surname: Nyquist fullname: Nyquist, Paul A. email: pnyquis1@jhmi.edu organization: Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 2 givenname: Murat surname: Bilgel fullname: Bilgel, Murat organization: Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 3 givenname: Rebecca surname: Gottesman fullname: Gottesman, Rebecca organization: Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 4 givenname: Lisa R. surname: Yanek fullname: Yanek, Lisa R. organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 5 givenname: Taryn F. surname: Moy fullname: Moy, Taryn F. organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 6 givenname: Lewis C. surname: Becker fullname: Becker, Lewis C. organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 7 givenname: Jennifer L. surname: Cuzzocreo fullname: Cuzzocreo, Jennifer L. organization: Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 8 givenname: Jerry surname: Prince fullname: Prince, Jerry organization: Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 9 givenname: Bruce A. surname: Wasserman fullname: Wasserman, Bruce A. organization: Divisions of Diagnostic Radiology and Neuroradiology, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 10 givenname: David M. surname: Yousem fullname: Yousem, David M. organization: Divisions of Diagnostic Radiology and Neuroradiology, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 11 givenname: Diane M. surname: Becker fullname: Becker, Diane M. organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 12 givenname: Brian G. surname: Kral fullname: Kral, Brian G. organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA – sequence: 13 givenname: Dhananjay surname: Vaidya fullname: Vaidya, Dhananjay organization: Division of General Internal Medicine, Department of Medicine, GeneSTAR Research Program, Johns Hopkins School of Medicine, Baltimore, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25659858$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFv4By4MAlqSeJE0dCFaW0gFSJA3AeeZ3J1ovXXuxkUf89jrZFtBLSnuYwM98bvTcn7Mh5R4y9AV4Ah-ZsXTiagl8ab9XKuFVRchAFh4Jz8YwtQAiZQ921R2zBoWvzWkh-zE5iXHPO27ptXrDjUjSik0Iu2PuLFWW9GQYK5DTFzLhsS8HsyI3B6MmqkCnXZz3RNvt9a0bKNmocKWSWovEuvmTPB2Ujvbqvp-zH9dX3y8_5zddPXy4vbnLdAIx51XYaVNurrtR64LJZymqZ7lGiU3VNvahq4iCboR40CQmy1ySV1tD1wBstqlN2vudup-WGUjfdpyxug9mocIdeGXzcceYWV36HdSW5KGfA23tA8L8miiNuTNRkrXLkp4jQNG1Vt1U3j77-V-uvyINtaeDDfkAHH2OgAbUZ1Zj8SNLGInCcs8I1Ps4K56yQA6asEuTdE8iDzoHr1_t1Sq7vDAWM2swZ9iaQHrH35lDQ-ROQtsYZrexPuqO49lNwKVkEjCVy_DZ_1fxUINJDcQkJ8PH_gMPv-AOZeuh8 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2019_116158 crossref_primary_10_1212_WNL_0000000000013016 crossref_primary_10_3390_jpm13030525 crossref_primary_10_1016_j_brainres_2024_149288 crossref_primary_10_1159_000480238 crossref_primary_10_3389_fnagi_2025_1520069 crossref_primary_10_3389_fncel_2015_00406 crossref_primary_10_1007_s10278_024_01372_8 crossref_primary_10_1016_j_mad_2021_111575 crossref_primary_10_1161_STROKEAHA_120_032674 crossref_primary_10_1161_STROKEAHA_120_031641 crossref_primary_10_1371_journal_pone_0279257 crossref_primary_10_3389_fnagi_2016_00330 crossref_primary_10_1111_ggi_12671 crossref_primary_10_1371_journal_pone_0189611 crossref_primary_10_1007_s11682_022_00642_9 crossref_primary_10_1016_j_brain_2023_100072 crossref_primary_10_1016_j_jocn_2019_11_025 crossref_primary_10_1111_jon_12625 crossref_primary_10_1186_s40478_018_0632_z crossref_primary_10_1007_s00330_022_09070_1 crossref_primary_10_1093_brain_awae251 crossref_primary_10_1007_s00366_022_01700_y crossref_primary_10_1159_000516428 crossref_primary_10_1007_s11682_022_00751_5 crossref_primary_10_3390_brainsci11050600 crossref_primary_10_1111_ejn_15403 crossref_primary_10_20900_agmr20190009 crossref_primary_10_1016_j_clinimag_2021_03_027 crossref_primary_10_26599_1671_5411_2024_10_003 crossref_primary_10_1097_MD_0000000000018865 crossref_primary_10_1016_j_clineuro_2017_04_003 crossref_primary_10_1016_j_neurobiolaging_2024_11_006 crossref_primary_10_1016_j_neurobiolaging_2020_11_001 crossref_primary_10_3109_02699052_2016_1144894 crossref_primary_10_1089_neu_2018_6360 crossref_primary_10_1159_000511937 crossref_primary_10_1080_14017431_2019_1645352 crossref_primary_10_1016_j_jns_2020_117268 crossref_primary_10_3174_ajnr_A7165 |
Cites_doi | 10.1212/WNL.53.1.132 10.1159/000226774 10.1016/j.jneumeth.2007.05.024 10.1291/hypres.31.1703 10.1159/000334498 10.1097/YCO.0b013e3282f945d5 10.1001/jama.290.8.1049 10.1016/j.neuroimage.2009.09.005 10.1212/WNL.58.1.48 10.1161/01.STR.0000221308.94473.14 10.1016/j.neuroimage.2012.01.106 10.1212/WNL.0000000000000475 10.1212/01.wnl.0000251302.55202.73 10.1007/s00330-009-1620-2 10.1159/000358117 10.1093/ajcn/68.4.899 10.1093/clinchem/46.11.1762 10.1159/000215831 10.1002/hbm.20586 10.1212/01.WNL.0000143058.40388.44 10.1161/01.STR.0000068408.82115.D2 10.1016/j.neuroimage.2011.03.045 10.1093/brain/awg040 10.2174/1874609811205020157 10.1016/j.neuroimage.2010.09.013 10.1212/01.wnl.0000319691.50117.54 10.1016/j.amjcard.2007.06.031 10.1212/WNL.43.9.1683 10.1161/01.STR.0000185694.52347.6e 10.1016/j.jns.2007.12.007 10.1186/1471-2377-12-126 10.1016/j.neuroimage.2003.12.027 10.1016/S0002-9149(98)00553-0 10.1161/01.STR.0000150668.58689.f2 10.1002/jmri.10011 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Elsevier Inc. All rights reserved. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: 2015 Elsevier Inc. All rights reserved. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.neurobiolaging.2015.01.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 1658 |
ExternalDocumentID | PMC4380525 25659858 10_1016_j_neurobiolaging_2015_01_005 S0197458015000081 1_s2_0_S0197458015000081 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL088215 – fundername: NINDS NIH HHS grantid: NS062059 – fundername: NINDS NIH HHS grantid: 5R01NS056307 – fundername: NINDS NIH HHS grantid: 2R01NS055951 – fundername: NIBIB NIH HHS grantid: 5R21EB012765 – fundername: NINR NIH HHS grantid: NR010021 – fundername: NCI NIH HHS grantid: 5R01CA133015 – fundername: NINDS NIH HHS grantid: 5R01NS070906 – fundername: NINDS NIH HHS grantid: R01 NS062059 – fundername: NHLBI NIH HHS grantid: HL099747 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c611t-379c1a7da92ccf086b83b007a59a44ed534e0186f4fce5818dce8acc19d106c53 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Thu Aug 21 14:12:23 EDT 2025 Fri Jul 11 00:30:48 EDT 2025 Thu Apr 03 07:06:02 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Tue Jul 01 01:28:13 EDT 2025 Fri Feb 23 02:19:57 EST 2024 Sun Feb 23 10:19:38 EST 2025 Tue Aug 26 16:35:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | White matter disease Coronary Women and minorities Imaging Risk factors |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c611t-379c1a7da92ccf086b83b007a59a44ed534e0186f4fce5818dce8acc19d106c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6078-3543 |
OpenAccessLink | http://doi.org/10.1016/j.neurobiolaging.2015.01.005 |
PMID | 25659858 |
PQID | 1667347395 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4380525 proquest_miscellaneous_1667347395 pubmed_primary_25659858 crossref_citationtrail_10_1016_j_neurobiolaging_2015_01_005 crossref_primary_10_1016_j_neurobiolaging_2015_01_005 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2015_01_005 elsevier_clinicalkeyesjournals_1_s2_0_S0197458015000081 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2015_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Sachdev, Chen, Wen (bib37) 2008; 21 Wen, Sachdev, Li, Chen, Anstey (bib33) 2009; 30 Bazin, Cuzzocreo, Yassa, Gandler, McAuliffe, Bassett, Pham (bib2) 2007; 165 Spilt, Goekoop, Westendorp, Blauw, de Craen, van Buchem (bib26) 2006; 27 Ishimitsu, Nakano, Sudo, Akashiba, Takahashi, Ohta, Minami, Matsuoka (bib16) 2008; 31 Sachdev, Wen (bib22) 2005; 36 van den Heuvel, Admiraal-Behloul, ten Dam, Olofsen, Bollen, Murray, Blauw, Westendorp, de Craen, van Buchem (bib29) 2004; 63 Bolandzadeh, Davis, Tam, Handy, Liu-Ambrose (bib5) 2012; 12 Ramirez, Gibson, Quddus, Lobaugh, Feinstein, Levine, Scott, Levy-Cooperman, Gao, Black (bib36) 2011; 54 Nyquist, Bilgel, Gottesman, Yanek, Moy, Becker, Cuzzocreo, Prince, Yousem, Becker, Kral, Vaidya (bib19) 2014; 37 Inatomi, Yonehara, Hashimoto, Hirano, Uchino (bib15) 2008; 269 Henry-Feugeas, Koskas (bib14) 2012; 5 Rostrup, Gouw, Vrenken, van Straaten, Ropele, Pantoni, Inzitari, Barkhof, Waldemar (bib21) 2012; 60 Duering, Gesierich, Seiler, Pirpamer, Gonik, Hofer, Jouvent, Duchesnay, Chabriat, Ropele, Schmidt, Dichgans (bib8) 2014; 82 Wang, Massaro, Levy, Vasan, Wolf, D'Agostino, Larson, Kannel, Benjamin (bib31) 2003; 290 Benson, Guttmann, Wei, Warfield, Hall, Schmidt, Kikinis, Wolfson (bib4) 2002; 58 Schmidt, Fazekas, Kapeller, Schmidt, Hartung (bib24) 1999; 53 Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince (bib6) 2011; 56 Young, Halliday, Kril (bib34) 2008; 71 Vaidya, Yanek, Moy, Pearson, Becker, Becker (bib28) 2007; 100 Vermeer, Hollander, van Dijk, Hofman, Koudstaal, Breteler (bib30) 2003; 34 Appelman, Exalto, van der Graaf, Biessels, Mali, Geerlings (bib1) 2009; 28 Fazekas, Kleinert, Offenbacher, Schmidt, Kleinert, Payer, Radner, Lechner (bib11) 1993; 43 Hassan, Hunt, O'Sullivan, Parmar, Bamford, Briley, Brown, Thomas, Markus (bib13) 2003; 126 Fernando, Simpson, Matthews, Brayne, Lewis, Barber, Kalaria, Forster, Esteves, Wharton, Shaw, O'Brien, Ince (bib12) 2006; 37 Myers, Kimberly, Waymack, Smith, Cooper, Sampson (bib18) 2000; 46 The LADIS Study Group, Poggesi, Pantoni, Inzitari, Fazekas, Ferro, O'Brien, Hennerici, Scheltens, Erkinjuntti, Visser, Langhorne, Chabriat, Waldemar, Wallin, Wahlund (bib27) 2011; 32 Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bib25) 2010; 49 DeCarli, Fletcher, Ramey, Harvey, Jagust (bib7) 2005; 36 Jack, O'Brien, Rettman, Shiung, Xu, Muthupillai, Manduca, Avula, Erickson (bib17) 2001; 14 Zwanenburg, Hendrikse, Visser, Takahara, Luijten (bib35) 2010; 20 (bib10) 1998; 68 Becker, Yook, Moy, Blumenthal, Becker (bib3) 1998; 82 Wen, Sachdev (bib32) 2004; 22 Nyquist, Wityk, Yanek, Vaidya, Yousem, Becker, Becker (bib20) 2009; 33 Sachdev, Wen, Chen, Brodaty (bib23) 2007; 68 Enzinger, Smith, Fazekas, Drevin, Ropele, Nichols, Behrens, Schmidt, Matthews (bib9) 2006; 253 Myers (10.1016/j.neurobiolaging.2015.01.005_bib18) 2000; 46 Sachdev (10.1016/j.neurobiolaging.2015.01.005_bib37) 2008; 21 Schmidt (10.1016/j.neurobiolaging.2015.01.005_bib24) 1999; 53 Vaidya (10.1016/j.neurobiolaging.2015.01.005_bib28) 2007; 100 Young (10.1016/j.neurobiolaging.2015.01.005_bib34) 2008; 71 Ramirez (10.1016/j.neurobiolaging.2015.01.005_bib36) 2011; 54 Vermeer (10.1016/j.neurobiolaging.2015.01.005_bib30) 2003; 34 Wang (10.1016/j.neurobiolaging.2015.01.005_bib31) 2003; 290 Henry-Feugeas (10.1016/j.neurobiolaging.2015.01.005_bib14) 2012; 5 Bazin (10.1016/j.neurobiolaging.2015.01.005_bib2) 2007; 165 Inatomi (10.1016/j.neurobiolaging.2015.01.005_bib15) 2008; 269 DeCarli (10.1016/j.neurobiolaging.2015.01.005_bib7) 2005; 36 Bolandzadeh (10.1016/j.neurobiolaging.2015.01.005_bib5) 2012; 12 Sachdev (10.1016/j.neurobiolaging.2015.01.005_bib23) 2007; 68 van den Heuvel (10.1016/j.neurobiolaging.2015.01.005_bib29) 2004; 63 Fernando (10.1016/j.neurobiolaging.2015.01.005_bib12) 2006; 37 Benson (10.1016/j.neurobiolaging.2015.01.005_bib4) 2002; 58 Zwanenburg (10.1016/j.neurobiolaging.2015.01.005_bib35) 2010; 20 Appelman (10.1016/j.neurobiolaging.2015.01.005_bib1) 2009; 28 Fazekas (10.1016/j.neurobiolaging.2015.01.005_bib11) 1993; 43 Jack (10.1016/j.neurobiolaging.2015.01.005_bib17) 2001; 14 Wen (10.1016/j.neurobiolaging.2015.01.005_bib32) 2004; 22 Becker (10.1016/j.neurobiolaging.2015.01.005_bib3) 1998; 82 Nyquist (10.1016/j.neurobiolaging.2015.01.005_bib19) 2014; 37 Spilt (10.1016/j.neurobiolaging.2015.01.005_bib26) 2006; 27 Wen (10.1016/j.neurobiolaging.2015.01.005_bib33) 2009; 30 The LADIS Study Group (10.1016/j.neurobiolaging.2015.01.005_bib27) 2011; 32 Nyquist (10.1016/j.neurobiolaging.2015.01.005_bib20) 2009; 33 Shiee (10.1016/j.neurobiolaging.2015.01.005_bib25) 2010; 49 Sachdev (10.1016/j.neurobiolaging.2015.01.005_bib22) 2005; 36 (10.1016/j.neurobiolaging.2015.01.005_bib10) 1998; 68 Carass (10.1016/j.neurobiolaging.2015.01.005_bib6) 2011; 56 Ishimitsu (10.1016/j.neurobiolaging.2015.01.005_bib16) 2008; 31 Rostrup (10.1016/j.neurobiolaging.2015.01.005_bib21) 2012; 60 Hassan (10.1016/j.neurobiolaging.2015.01.005_bib13) 2003; 126 Duering (10.1016/j.neurobiolaging.2015.01.005_bib8) 2014; 82 Enzinger (10.1016/j.neurobiolaging.2015.01.005_bib9) 2006; 253 17032876 - AJNR Am J Neuroradiol. 2006 Oct;27(9):1964-8 17224576 - Neurology. 2007 Jan 16;68(3):214-22 19407462 - Neuroepidemiology. 2009;33(1):66-7 19766196 - Neuroimage. 2010 Jan 15;49(2):1524-35 21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92 11781405 - Neurology. 2002 Jan 8;58(1):48-55 15576652 - Stroke. 2005 Jan;36(1):50-5 17604116 - J Neurosci Methods. 2007 Sep 15;165(1):111-21 24793184 - Neurology. 2014 Jun 3;82(22):1946-50 16627790 - Stroke. 2006 Jun;37(6):1391-8 10408549 - Neurology. 1999 Jul 13;53(1):132-9 18685136 - Neurology. 2008 Sep 9;71(11):804-11 16607471 - J Neurol. 2006 Aug;253(8):1064-70 15110004 - Neuroimage. 2004 May;22(1):144-54 9817479 - Am J Cardiol. 1998 Nov 1;82(9):1046-51 18465744 - Hum Brain Mapp. 2009 Apr;30(4):1155-67 22277351 - Cerebrovasc Dis. 2011;32(6):577-588 11067811 - Clin Chem. 2000 Nov;46(11):1762-72 12941677 - JAMA. 2003 Aug 27;290(8):1049-56 18971548 - Hypertens Res. 2008 Sep;31(9):1703-9 8414012 - Neurology. 1993 Sep;43(9):1683-9 17950799 - Am J Cardiol. 2007 Nov 1;100(9):1410-5 23110387 - BMC Neurol. 2012;12:126 15534259 - Neurology. 2004 Nov 9;63(9):1699-701 19571536 - Cerebrovasc Dis. 2009;28(3):227-42 11747022 - J Magn Reson Imaging. 2001 Dec;14(6):668-76 22305990 - Neuroimage. 2012 Apr 15;60(3):1597-607 9771869 - Am J Clin Nutr. 1998 Oct;68(4):899-917 16239634 - Stroke. 2005 Nov;36(11):2342-3; author reply 2343-4 12538408 - Brain. 2003 Feb;126(Pt 2):424-32 19802613 - Eur Radiol. 2010 Apr;20(4):915-22 22894741 - Curr Aging Sci. 2012 Jul;5(2):157-67 18191949 - J Neurol Sci. 2008 Jun 15;269(1-2):12-7 12690219 - Stroke. 2003 May;34(5):1126-9 24686322 - Cerebrovasc Dis. 2014;37(4):244-50 |
References_xml | – volume: 290 start-page: 1049 year: 2003 end-page: 1056 ident: bib31 article-title: A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study publication-title: JAMA – volume: 253 start-page: 1064 year: 2006 end-page: 1070 ident: bib9 article-title: Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study publication-title: J. Neurol. – volume: 60 start-page: 1597 year: 2012 end-page: 1607 ident: bib21 article-title: The spatial distribution of age-related white matter changes as a function of vascular risk factors–results from the LADIS study publication-title: Neuroimage – volume: 46 start-page: 1762 year: 2000 end-page: 1772 ident: bib18 article-title: A reference method laboratory network for cholesterol: a model for standardization and improvement of clinical laboratory measurements publication-title: Clin. Chem. – volume: 63 start-page: 1699 year: 2004 end-page: 1701 ident: bib29 article-title: Different progression rates for deep white matter hyperintensities in elderly men and women publication-title: Neurology – volume: 20 start-page: 915 year: 2010 end-page: 922 ident: bib35 article-title: Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla publication-title: Eur. Radiol. – volume: 33 start-page: 66 year: 2009 end-page: 67 ident: bib20 article-title: Silent small-vessel cerebrovascular disease and silent myocardial ischemia in families with premature coronary disease publication-title: Neuroepidemiology – volume: 68 start-page: 899 year: 1998 end-page: 917 ident: bib10 article-title: Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert panel on the identification, evaluation, and treatment of overweight in adults publication-title: Am. J. Clin. Nutr. – volume: 14 start-page: 668 year: 2001 end-page: 676 ident: bib17 article-title: FLAIR histogram segmentation for measurement of leukoaraiosis volume publication-title: J. Magn. Reson. Imaging – volume: 56 start-page: 1982 year: 2011 end-page: 1992 ident: bib6 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: Neuroimage – volume: 269 start-page: 12 year: 2008 end-page: 17 ident: bib15 article-title: Correlation between ventricular enlargement and white matter changes publication-title: J. Neurol. Sci. – volume: 32 start-page: 577 year: 2011 end-page: 588 ident: bib27 article-title: 2001-2011: a decade of the LADIS (Leukoaraiosis and DISability) study: what have we learned about white matter changes and small-vessel disease? publication-title: Cerebrovasc. Dis. – volume: 37 start-page: 1391 year: 2006 end-page: 1398 ident: bib12 article-title: White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury publication-title: Stroke – volume: 100 start-page: 1410 year: 2007 end-page: 1415 ident: bib28 article-title: Incidence of coronary artery disease in siblings of patients with premature coronary artery disease: 10 years of follow-up publication-title: Am. J. Cardiol. – volume: 27 start-page: 1964 year: 2006 end-page: 1968 ident: bib26 article-title: Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study publication-title: AJNR Am. J. Neuroradiol. – volume: 28 start-page: 227 year: 2009 end-page: 242 ident: bib1 article-title: White matter lesions and brain atrophy: more than shared risk factors? A systematic review publication-title: Cerebrovasc. Dis. – volume: 54 start-page: 963 year: 2011 end-page: 973 ident: bib36 article-title: Lesion Explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue publication-title: Neuroimage – volume: 37 start-page: 244 year: 2014 end-page: 250 ident: bib19 article-title: Extreme deep white matter hyperintensity volumes are associated with African American race publication-title: Cerebrovasc. Dis. – volume: 71 start-page: 804 year: 2008 end-page: 811 ident: bib34 article-title: Neuropathologic correlates of white matter hyperintensities publication-title: Neurology – volume: 34 start-page: 1126 year: 2003 end-page: 1129 ident: bib30 article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study publication-title: Stroke – volume: 12 start-page: 126 year: 2012 ident: bib5 article-title: The association between cognitive function and white matter lesion location in older adults: a systematic review publication-title: BMC Neurol. – volume: 49 start-page: 1524 year: 2010 end-page: 1535 ident: bib25 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage – volume: 126 start-page: 424 year: 2003 end-page: 432 ident: bib13 article-title: Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis publication-title: Brain – volume: 5 start-page: 157 year: 2012 end-page: 167 ident: bib14 article-title: Cerebral vascular aging: extending the concept of pulse wave encephalopathy through capillaries to the cerebral veins publication-title: Curr. Aging Sci. – volume: 68 start-page: 214 year: 2007 end-page: 222 ident: bib23 article-title: Progression of white matter hyperintensities in elderly individuals over 3 years publication-title: Neurology – volume: 30 start-page: 1155 year: 2009 end-page: 1167 ident: bib33 article-title: White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44-48 publication-title: Hum. Brain Mapp. – volume: 43 start-page: 1683 year: 1993 end-page: 1689 ident: bib11 article-title: Pathologic correlates of incidental MRI white matter signal hyperintensities publication-title: Neurology – volume: 58 start-page: 48 year: 2002 end-page: 55 ident: bib4 article-title: Older people with impaired mobility have specific loci of periventricular abnormality on MRI publication-title: Neurology – volume: 165 start-page: 111 year: 2007 end-page: 121 ident: bib2 article-title: Volumetric neuroimage analysis extensions for the MIPAV software package publication-title: J. Neurosci. Methods – volume: 36 start-page: 50 year: 2005 end-page: 55 ident: bib7 article-title: Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden publication-title: Stroke – volume: 21 start-page: 268 year: 2008 end-page: 274 ident: bib37 article-title: White matter hyperintensities in mid-adult life publication-title: Curr. Opin. Psychiatry – volume: 82 start-page: 1046 year: 1998 end-page: 1051 ident: bib3 article-title: Markedly high prevalence of coronary risk factors in apparently healthy African-American and white siblings of persons with premature coronary heart disease publication-title: Am. J. Cardiol. – volume: 82 start-page: 1946 year: 2014 end-page: 1950 ident: bib8 article-title: Strategic white matter tracts for processing speed deficits in age-related small vessel disease publication-title: Neurology – volume: 36 start-page: 2342 year: 2005 end-page: 2343 ident: bib22 article-title: Should we distinguish between periventricular and deep white matter hyperintensities? publication-title: Stroke – volume: 22 start-page: 144 year: 2004 end-page: 154 ident: bib32 article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals publication-title: Neuroimage – volume: 53 start-page: 132 year: 1999 end-page: 139 ident: bib24 article-title: MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study publication-title: Neurology – volume: 31 start-page: 1703 year: 2008 end-page: 1709 ident: bib16 article-title: Predictive significance of blood pressure values for the incidence of cardiovascular events in chronic hemodialysis patients publication-title: Hypertens. Res. – volume: 53 start-page: 132 year: 1999 ident: 10.1016/j.neurobiolaging.2015.01.005_bib24 article-title: MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study publication-title: Neurology doi: 10.1212/WNL.53.1.132 – volume: 28 start-page: 227 year: 2009 ident: 10.1016/j.neurobiolaging.2015.01.005_bib1 article-title: White matter lesions and brain atrophy: more than shared risk factors? A systematic review publication-title: Cerebrovasc. Dis. doi: 10.1159/000226774 – volume: 165 start-page: 111 year: 2007 ident: 10.1016/j.neurobiolaging.2015.01.005_bib2 article-title: Volumetric neuroimage analysis extensions for the MIPAV software package publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.05.024 – volume: 31 start-page: 1703 year: 2008 ident: 10.1016/j.neurobiolaging.2015.01.005_bib16 article-title: Predictive significance of blood pressure values for the incidence of cardiovascular events in chronic hemodialysis patients publication-title: Hypertens. Res. doi: 10.1291/hypres.31.1703 – volume: 253 start-page: 1064 year: 2006 ident: 10.1016/j.neurobiolaging.2015.01.005_bib9 article-title: Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study publication-title: J. Neurol. – volume: 32 start-page: 577 year: 2011 ident: 10.1016/j.neurobiolaging.2015.01.005_bib27 article-title: 2001-2011: a decade of the LADIS (Leukoaraiosis and DISability) study: what have we learned about white matter changes and small-vessel disease? publication-title: Cerebrovasc. Dis. doi: 10.1159/000334498 – volume: 21 start-page: 268 year: 2008 ident: 10.1016/j.neurobiolaging.2015.01.005_bib37 article-title: White matter hyperintensities in mid-adult life publication-title: Curr. Opin. Psychiatry doi: 10.1097/YCO.0b013e3282f945d5 – volume: 290 start-page: 1049 year: 2003 ident: 10.1016/j.neurobiolaging.2015.01.005_bib31 article-title: A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study publication-title: JAMA doi: 10.1001/jama.290.8.1049 – volume: 49 start-page: 1524 year: 2010 ident: 10.1016/j.neurobiolaging.2015.01.005_bib25 article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.005 – volume: 58 start-page: 48 year: 2002 ident: 10.1016/j.neurobiolaging.2015.01.005_bib4 article-title: Older people with impaired mobility have specific loci of periventricular abnormality on MRI publication-title: Neurology doi: 10.1212/WNL.58.1.48 – volume: 37 start-page: 1391 year: 2006 ident: 10.1016/j.neurobiolaging.2015.01.005_bib12 article-title: White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury publication-title: Stroke doi: 10.1161/01.STR.0000221308.94473.14 – volume: 60 start-page: 1597 year: 2012 ident: 10.1016/j.neurobiolaging.2015.01.005_bib21 article-title: The spatial distribution of age-related white matter changes as a function of vascular risk factors–results from the LADIS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.106 – volume: 82 start-page: 1946 year: 2014 ident: 10.1016/j.neurobiolaging.2015.01.005_bib8 article-title: Strategic white matter tracts for processing speed deficits in age-related small vessel disease publication-title: Neurology doi: 10.1212/WNL.0000000000000475 – volume: 68 start-page: 214 year: 2007 ident: 10.1016/j.neurobiolaging.2015.01.005_bib23 article-title: Progression of white matter hyperintensities in elderly individuals over 3 years publication-title: Neurology doi: 10.1212/01.wnl.0000251302.55202.73 – volume: 20 start-page: 915 year: 2010 ident: 10.1016/j.neurobiolaging.2015.01.005_bib35 article-title: Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla publication-title: Eur. Radiol. doi: 10.1007/s00330-009-1620-2 – volume: 37 start-page: 244 year: 2014 ident: 10.1016/j.neurobiolaging.2015.01.005_bib19 article-title: Extreme deep white matter hyperintensity volumes are associated with African American race publication-title: Cerebrovasc. Dis. doi: 10.1159/000358117 – volume: 68 start-page: 899 year: 1998 ident: 10.1016/j.neurobiolaging.2015.01.005_bib10 article-title: Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert panel on the identification, evaluation, and treatment of overweight in adults publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/68.4.899 – volume: 46 start-page: 1762 year: 2000 ident: 10.1016/j.neurobiolaging.2015.01.005_bib18 article-title: A reference method laboratory network for cholesterol: a model for standardization and improvement of clinical laboratory measurements publication-title: Clin. Chem. doi: 10.1093/clinchem/46.11.1762 – volume: 27 start-page: 1964 year: 2006 ident: 10.1016/j.neurobiolaging.2015.01.005_bib26 article-title: Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study publication-title: AJNR Am. J. Neuroradiol. – volume: 33 start-page: 66 year: 2009 ident: 10.1016/j.neurobiolaging.2015.01.005_bib20 article-title: Silent small-vessel cerebrovascular disease and silent myocardial ischemia in families with premature coronary disease publication-title: Neuroepidemiology doi: 10.1159/000215831 – volume: 30 start-page: 1155 year: 2009 ident: 10.1016/j.neurobiolaging.2015.01.005_bib33 article-title: White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44-48 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20586 – volume: 63 start-page: 1699 year: 2004 ident: 10.1016/j.neurobiolaging.2015.01.005_bib29 article-title: Different progression rates for deep white matter hyperintensities in elderly men and women publication-title: Neurology doi: 10.1212/01.WNL.0000143058.40388.44 – volume: 34 start-page: 1126 year: 2003 ident: 10.1016/j.neurobiolaging.2015.01.005_bib30 article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study publication-title: Stroke doi: 10.1161/01.STR.0000068408.82115.D2 – volume: 56 start-page: 1982 year: 2011 ident: 10.1016/j.neurobiolaging.2015.01.005_bib6 article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.045 – volume: 126 start-page: 424 issue: Pt 2 year: 2003 ident: 10.1016/j.neurobiolaging.2015.01.005_bib13 article-title: Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis publication-title: Brain doi: 10.1093/brain/awg040 – volume: 5 start-page: 157 year: 2012 ident: 10.1016/j.neurobiolaging.2015.01.005_bib14 article-title: Cerebral vascular aging: extending the concept of pulse wave encephalopathy through capillaries to the cerebral veins publication-title: Curr. Aging Sci. doi: 10.2174/1874609811205020157 – volume: 54 start-page: 963 year: 2011 ident: 10.1016/j.neurobiolaging.2015.01.005_bib36 article-title: Lesion Explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.013 – volume: 71 start-page: 804 year: 2008 ident: 10.1016/j.neurobiolaging.2015.01.005_bib34 article-title: Neuropathologic correlates of white matter hyperintensities publication-title: Neurology doi: 10.1212/01.wnl.0000319691.50117.54 – volume: 100 start-page: 1410 year: 2007 ident: 10.1016/j.neurobiolaging.2015.01.005_bib28 article-title: Incidence of coronary artery disease in siblings of patients with premature coronary artery disease: 10 years of follow-up publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2007.06.031 – volume: 43 start-page: 1683 year: 1993 ident: 10.1016/j.neurobiolaging.2015.01.005_bib11 article-title: Pathologic correlates of incidental MRI white matter signal hyperintensities publication-title: Neurology doi: 10.1212/WNL.43.9.1683 – volume: 36 start-page: 2342 year: 2005 ident: 10.1016/j.neurobiolaging.2015.01.005_bib22 article-title: Should we distinguish between periventricular and deep white matter hyperintensities? publication-title: Stroke doi: 10.1161/01.STR.0000185694.52347.6e – volume: 269 start-page: 12 year: 2008 ident: 10.1016/j.neurobiolaging.2015.01.005_bib15 article-title: Correlation between ventricular enlargement and white matter changes publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2007.12.007 – volume: 12 start-page: 126 year: 2012 ident: 10.1016/j.neurobiolaging.2015.01.005_bib5 article-title: The association between cognitive function and white matter lesion location in older adults: a systematic review publication-title: BMC Neurol. doi: 10.1186/1471-2377-12-126 – volume: 22 start-page: 144 year: 2004 ident: 10.1016/j.neurobiolaging.2015.01.005_bib32 article-title: The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.027 – volume: 82 start-page: 1046 year: 1998 ident: 10.1016/j.neurobiolaging.2015.01.005_bib3 article-title: Markedly high prevalence of coronary risk factors in apparently healthy African-American and white siblings of persons with premature coronary heart disease publication-title: Am. J. Cardiol. doi: 10.1016/S0002-9149(98)00553-0 – volume: 36 start-page: 50 year: 2005 ident: 10.1016/j.neurobiolaging.2015.01.005_bib7 article-title: Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden publication-title: Stroke doi: 10.1161/01.STR.0000150668.58689.f2 – volume: 14 start-page: 668 year: 2001 ident: 10.1016/j.neurobiolaging.2015.01.005_bib17 article-title: FLAIR histogram segmentation for measurement of leukoaraiosis volume publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10011 – reference: 17224576 - Neurology. 2007 Jan 16;68(3):214-22 – reference: 16627790 - Stroke. 2006 Jun;37(6):1391-8 – reference: 15576652 - Stroke. 2005 Jan;36(1):50-5 – reference: 8414012 - Neurology. 1993 Sep;43(9):1683-9 – reference: 16239634 - Stroke. 2005 Nov;36(11):2342-3; author reply 2343-4 – reference: 18971548 - Hypertens Res. 2008 Sep;31(9):1703-9 – reference: 19407462 - Neuroepidemiology. 2009;33(1):66-7 – reference: 17604116 - J Neurosci Methods. 2007 Sep 15;165(1):111-21 – reference: 22894741 - Curr Aging Sci. 2012 Jul;5(2):157-67 – reference: 18685136 - Neurology. 2008 Sep 9;71(11):804-11 – reference: 19802613 - Eur Radiol. 2010 Apr;20(4):915-22 – reference: 11781405 - Neurology. 2002 Jan 8;58(1):48-55 – reference: 15110004 - Neuroimage. 2004 May;22(1):144-54 – reference: 24793184 - Neurology. 2014 Jun 3;82(22):1946-50 – reference: 18465744 - Hum Brain Mapp. 2009 Apr;30(4):1155-67 – reference: 9771869 - Am J Clin Nutr. 1998 Oct;68(4):899-917 – reference: 9817479 - Am J Cardiol. 1998 Nov 1;82(9):1046-51 – reference: 11747022 - J Magn Reson Imaging. 2001 Dec;14(6):668-76 – reference: 24686322 - Cerebrovasc Dis. 2014;37(4):244-50 – reference: 17032876 - AJNR Am J Neuroradiol. 2006 Oct;27(9):1964-8 – reference: 19766196 - Neuroimage. 2010 Jan 15;49(2):1524-35 – reference: 12690219 - Stroke. 2003 May;34(5):1126-9 – reference: 21458576 - Neuroimage. 2011 Jun 15;56(4):1982-92 – reference: 22277351 - Cerebrovasc Dis. 2011;32(6):577-588 – reference: 16607471 - J Neurol. 2006 Aug;253(8):1064-70 – reference: 18191949 - J Neurol Sci. 2008 Jun 15;269(1-2):12-7 – reference: 19571536 - Cerebrovasc Dis. 2009;28(3):227-42 – reference: 12538408 - Brain. 2003 Feb;126(Pt 2):424-32 – reference: 12941677 - JAMA. 2003 Aug 27;290(8):1049-56 – reference: 11067811 - Clin Chem. 2000 Nov;46(11):1762-72 – reference: 10408549 - Neurology. 1999 Jul 13;53(1):132-9 – reference: 17950799 - Am J Cardiol. 2007 Nov 1;100(9):1410-5 – reference: 23110387 - BMC Neurol. 2012;12:126 – reference: 15534259 - Neurology. 2004 Nov 9;63(9):1699-701 – reference: 22305990 - Neuroimage. 2012 Apr 15;60(3):1597-607 |
SSID | ssj0007476 |
Score | 2.3328788 |
Snippet | Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied age... Abstract Deep white matter hyperintensity (DWMH) and periventricular (PV) white matter lesion volumes are associated with age and subsequent stroke. We studied... Deep white matter hyperintensity (DWMH) and periventricular white matter lesion volumes (PV) are associated with age and subsequent stroke. We studied age... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1653 |
SubjectTerms | Adult Aged Aging - pathology Coronary Coronary Artery Disease Female Humans Imaging Internal Medicine Magnetic Resonance Imaging Male Middle Aged Multivariate Analysis Neurology Risk Factors Sex Factors White Matter - pathology White matter disease Women and minorities |
Title | Age differences in periventricular and deep white matter lesions |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458015000081 https://www.clinicalkey.es/playcontent/1-s2.0-S0197458015000081 https://dx.doi.org/10.1016/j.neurobiolaging.2015.01.005 https://www.ncbi.nlm.nih.gov/pubmed/25659858 https://www.proquest.com/docview/1667347395 https://pubmed.ncbi.nlm.nih.gov/PMC4380525 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5VrYS4IKA8wqMyUsVtye7G3rVVIYgqqgCiF6jUm-W1ZyGo3UZNqqqX_vbOeHdTQnso4pjHaJ3JeB72N98AbLvK1UVZY0LZMBUossJEa48Jau57TAMWsY_7234xOZBfDtXhGuz2vTAMq-x8f-vTo7fu3hl22hzOptPhd0pOSqk0l-wxsnEHuyzZyt9dXsM8KF0u2pZp5vfW6T3YvsZ4Rc5IZjuKE4EY6NWSePIwu9vD1M009G805R_hae8hPOjySjFul_4I1rB5DJvjhmrq4wvxVkSkZzxC34SP458o-sko5CfEtBFMeMzQx3ge6E6Fa4IIiDNxzvcM4jjScIoj5MO1-RM42Pv0Y3eSdJMUEl9k2YK8iPGZK4Mzufc1VTGVHtF-K50yTkoMaiQxzXRRy9qjohhOP0Y77zMTqGT0avQU1puTBp-DyLNaOxWCyameNWleKUoApctN8CNvajWAnV5x1nc04zzt4sj2eLLfdlXtltVu08yS2gegltKzlm7jjnLv-__I9i2l5AQtxYU7ype3yeO829Fzm9l5blN7w-oG8GEpuWK4__DsN71RWdrbfGHjGjw5o2fyTFbJV6kDeNYa2VIrlKoqo5Wmla-Y3_ILzBu--kkz_RX5w3nIgMrVi_9e-Uu4z69aINMrWF-cnuFrytEW1VbchFuwMf78dbJ_BY16QPM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ_gkagvRsSPU8GaEN82t7vX7rYhRi8Ecgjci5Dw1nTbrp6B5cIdMf73zHQ_9IAHiK_bnbQ7O52PduY3AFumMGWWlz5CbxgDFF74SErrIy-p7jF2Pgt13EeTbHzCv52K0xXYaWthKK2y0f21Tg_aunkyaLg5mE2ng-_onORcSArZg2V7BKuETiV6sDraPxhPOoWMHnNWV00TxLeMH8PW3zSvABtJgEehKRDletU4ntTP7m5LddsTvZlQ-Y-F2nsOzxrXko3q1a_Biq9ewPqowrD6_A_7xEKyZzhFX4evox-etc1RUFWwacUI85iyH8ORoLlkpnLMeT9jv-mqgZ0HJE525ul8bf4STvZ2j3fGUdNMIbJZkixQkSibmNwZlVpbYiBTyCFuudwIZTj3Tgy5jxOZlby0XqAZx4-RxtpEOYwarRi-gl51Ufk3wNKklEY4p1IMaVWcFgJ9QG5S5ezQqlL0YbtlnLYN0jg1vDjTbUrZL73Mdk1s13Gike19EB31rEbcuCfd5_Yf6baqFPWgRtNwT_r8Lno_bzb1XCd6nupY3xK8PnzpKJdk9wFzf2yFSuP2pjsbU_mLK5yT2rJyuk3tw-tayDquoLcqlBQSV74kft0LBB2-PFJNfwYIceozIFLx9r9X_gGejI-PDvXh_uTgHTylkTqv6T30FpdXfgNdtkWx2WzJa13BQ6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age+differences+in+periventricular+and+deep+white+matter+lesions&rft.jtitle=Neurobiology+of+aging&rft.au=Nyquist%2C+Paul+A.&rft.au=Bilgel%2C+Murat&rft.au=Gottesman%2C+Rebecca&rft.au=Yanek%2C+Lisa+R.&rft.date=2015-04-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.eissn=1558-1497&rft.volume=36&rft.issue=4&rft.spage=1653&rft.epage=1658&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2015.01.005&rft.externalDocID=S0197458015000081 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458014X00163%2Fcov150h.gif |