Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty
A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics re...
Saved in:
Published in | Human brain mapping Vol. 30; no. 9; pp. 2907 - 2926 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.09.2009
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between‐subject and between‐template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above‐chance clustering between foci, the revised algorithm assesses above‐chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null‐distribution of random spatial association between experiments. Critically, this modification entails a change from fixed‐ to random‐effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE‐algorithm overcomes conceptual problems of former meta‐analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate‐based meta‐analyses on functional imaging data. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data. Hum Brain Mapp 2009. A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between‐subject and between‐template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above‐chance clustering between foci, the revised algorithm assesses above‐chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null‐distribution of random spatial association between experiments. Critically, this modification entails a change from fixed‐ to random‐effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE‐algorithm overcomes conceptual problems of former meta‐analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate‐based meta‐analyses on functional imaging data. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc. A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data. A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data. |
Author | Wang, Ling E. Zilles, Karl Grefkes, Christian Eickhoff, Simon B. Laird, Angela R. Fox, Peter T. |
AuthorAffiliation | 1 Institut for Neuroscience and Biophysics—Medicine (INB 3), Research Center Jülich, Jülich, Germany 6 C. & O. Vogt Institute for Brain Research, Heinrich‐Heine‐University, Düsseldorf, Germany 4 Department of Neurology, University Hospital Cologne, Max Planck Institute for Neurological Research, Cologne, Germany 2 JARA—Translational Brain Medicine, Jülich, Germany 3 Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 5 Brain Imaging Center West (BICW), Jülich, Germany 7 International Consortium for Human Brain Mapping (ICBM), Jülich, Germany |
AuthorAffiliation_xml | – name: 1 Institut for Neuroscience and Biophysics—Medicine (INB 3), Research Center Jülich, Jülich, Germany – name: 2 JARA—Translational Brain Medicine, Jülich, Germany – name: 3 Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas – name: 6 C. & O. Vogt Institute for Brain Research, Heinrich‐Heine‐University, Düsseldorf, Germany – name: 5 Brain Imaging Center West (BICW), Jülich, Germany – name: 4 Department of Neurology, University Hospital Cologne, Max Planck Institute for Neurological Research, Cologne, Germany – name: 7 International Consortium for Human Brain Mapping (ICBM), Jülich, Germany |
Author_xml | – sequence: 1 givenname: Simon B. surname: Eickhoff fullname: Eickhoff, Simon B. email: s.eickhoff@fz-juelich.de organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany – sequence: 2 givenname: Angela R. surname: Laird fullname: Laird, Angela R. organization: Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas – sequence: 3 givenname: Christian surname: Grefkes fullname: Grefkes, Christian organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany – sequence: 4 givenname: Ling E. surname: Wang fullname: Wang, Ling E. organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany – sequence: 5 givenname: Karl surname: Zilles fullname: Zilles, Karl organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany – sequence: 6 givenname: Peter T. surname: Fox fullname: Fox, Peter T. organization: Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839352$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19172646$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttu1DAQhiNURA9wwQug3ADiIq3tJLbDBVLZ0hapgIQWuLS89mTXNLGD7W3Z5-FF8R45SJQrn77555_xHGZ71lnIsscYHWOEyMls0h8TxDC_lx1g1LAC4abcW-5pXTQVw_vZYQhfEcK4RvhBto8bzAit6EH2Y-Sc18bKCMVEBtC5VNHcyGiczTtzDZ2ZOadzCNH069seoiykld0imJC7Nrcw9y69To2d5lpG-TI_zb202vUFtC2oGHI5DN5JNcvXSZIM9IPxRsluqw0rsTCkLOlybhX4KI2Ni4fZ_VZ2AR5t1qPs0_mb8eiyuPpw8XZ0elUoijEvJk2qt6prVZNGA-JEU4Zp2yqqOeMESUWgnqBKS8rSiZQtqgjjTHNVlVpDeZS9WusO80kPWoGNXnZi8MmdXwgnjfjzxZqZmLobQThbtj8JPN8IePdtnsoSvQkKuk5acPMgWJ3sIY74_8mqbkqabCfy2Z0kZRRTwqsEPvnd_c729q8T8HQDyJDa3qYfUibsOIJ52ZQ1SdyLNae8C8FD-0sKieW8iTRvYjVviT35i1UmrsYkNch0d0Xcmg4W_5YWl6_fbSOKdYQJEb7vIqS_TsWXrBZf3l-Ij_VngsfjM3Fe_gRwBPke |
CitedBy_id | crossref_primary_10_1002_hbm_22160 crossref_primary_10_1007_s00213_023_06498_1 crossref_primary_10_1017_S0033291722003889 crossref_primary_10_1080_17470919_2023_2242095 crossref_primary_10_1002_hbm_23492 crossref_primary_10_1016_j_biopsych_2022_06_021 crossref_primary_10_3390_brainsci11121619 crossref_primary_10_1002_hbm_23014 crossref_primary_10_3758_s13415_019_00747_7 crossref_primary_10_3389_fneur_2020_00018 crossref_primary_10_1002_hipo_23632 crossref_primary_10_1007_s11065_023_09609_z crossref_primary_10_1007_s12021_023_09643_5 crossref_primary_10_1214_17_STS624 crossref_primary_10_1162_jocn_a_00077 crossref_primary_10_1016_j_jneumeth_2016_07_001 crossref_primary_10_1016_j_neubiorev_2014_11_003 crossref_primary_10_1007_s00429_024_02790_8 crossref_primary_10_1080_01690965_2011_613209 crossref_primary_10_1016_j_clineuro_2023_107710 crossref_primary_10_1016_j_neubiorev_2017_01_006 crossref_primary_10_3389_fnins_2024_1443578 crossref_primary_10_1016_j_neuroimage_2019_06_037 crossref_primary_10_1002_hbm_23488 crossref_primary_10_1002_hbm_24577 crossref_primary_10_1016_j_neuroimage_2020_117220 crossref_primary_10_1016_j_neubiorev_2014_03_016 crossref_primary_10_1016_j_neubiorev_2022_104721 crossref_primary_10_1016_j_neuroimage_2024_120986 crossref_primary_10_1016_j_schres_2016_11_043 crossref_primary_10_1093_scan_nsaa090 crossref_primary_10_1007_s12311_021_01261_8 crossref_primary_10_1016_j_jphysparis_2016_01_001 crossref_primary_10_1002_hbm_22392 crossref_primary_10_1007_s11757_022_00720_0 crossref_primary_10_3389_fnbeh_2019_00128 crossref_primary_10_1002_hbm_23002 crossref_primary_10_1002_hbm_24334 crossref_primary_10_1186_s40359_014_0052_1 crossref_primary_10_1002_hbm_22155 crossref_primary_10_1002_hbm_22397 crossref_primary_10_1002_da_22866 crossref_primary_10_1016_j_concog_2016_12_011 crossref_primary_10_1016_j_nicl_2017_03_016 crossref_primary_10_1016_j_psychres_2022_114598 crossref_primary_10_1007_s00115_009_2826_x crossref_primary_10_1016_j_neuroimage_2017_10_020 crossref_primary_10_1002_hbm_21058 crossref_primary_10_1002_hbm_21299 crossref_primary_10_3390_brainsci12070830 crossref_primary_10_1002_hbm_25898 crossref_primary_10_1016_j_bpsc_2024_01_009 crossref_primary_10_1016_j_cpr_2022_102189 crossref_primary_10_1093_scan_nss085 crossref_primary_10_1007_s11682_017_9736_5 crossref_primary_10_1093_brain_awz405 crossref_primary_10_1002_hbm_25452 crossref_primary_10_1038_srep25983 crossref_primary_10_1111_j_1749_6632_2010_05446_x crossref_primary_10_1017_S204579601300005X crossref_primary_10_1176_appi_ajp_2010_09101522 crossref_primary_10_1016_j_nicl_2017_12_029 crossref_primary_10_1016_j_neubiorev_2019_05_007 crossref_primary_10_1097_MNM_0000000000001343 crossref_primary_10_1016_j_neubiorev_2020_01_004 crossref_primary_10_1016_j_neuropsychologia_2020_107495 crossref_primary_10_1016_j_pscychresns_2021_111353 crossref_primary_10_1111_adb_12997 crossref_primary_10_1371_journal_pone_0208177 crossref_primary_10_1016_j_neuroimage_2021_117960 crossref_primary_10_1111_nan_12725 crossref_primary_10_1016_j_neubiorev_2017_02_020 crossref_primary_10_1016_j_neuroimage_2020_117444 crossref_primary_10_1002_hbm_23028 crossref_primary_10_1007_s11481_012_9422_8 crossref_primary_10_1016_j_bandl_2023_105347 crossref_primary_10_1016_j_biopsych_2014_12_021 crossref_primary_10_31083_j_jin2104107 crossref_primary_10_1016_j_orcp_2020_02_004 crossref_primary_10_1007_s00429_022_02493_y crossref_primary_10_1016_j_dcn_2017_05_003 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1007_s11065_021_09494_4 crossref_primary_10_1016_j_neuroimage_2024_120720 crossref_primary_10_1016_j_neuroimage_2024_120962 crossref_primary_10_1016_j_neuroimage_2014_05_062 crossref_primary_10_3758_s13415_019_00691_6 crossref_primary_10_1016_j_neubiorev_2016_07_032 crossref_primary_10_1093_jn_nxaa071 crossref_primary_10_1002_hbm_24348 crossref_primary_10_1016_j_neuropsychologia_2017_01_019 crossref_primary_10_3389_fnhum_2021_680933 crossref_primary_10_1016_j_neubiorev_2022_104971 crossref_primary_10_3390_jcm9061846 crossref_primary_10_1016_j_cortex_2023_01_013 crossref_primary_10_1002_hbm_22363 crossref_primary_10_1002_hbm_23451 crossref_primary_10_1002_hbm_22364 crossref_primary_10_1016_j_neuroimage_2011_05_028 crossref_primary_10_1016_j_neuroimage_2014_05_030 crossref_primary_10_3389_fnhum_2020_616054 crossref_primary_10_1016_j_brainresbull_2024_110933 crossref_primary_10_1016_j_neuroimage_2011_05_021 crossref_primary_10_1016_j_neuroimage_2020_117666 crossref_primary_10_1016_j_arr_2022_101760 crossref_primary_10_3389_fnins_2017_00320 crossref_primary_10_1111_adb_12976 crossref_primary_10_1016_j_bandc_2019_01_002 crossref_primary_10_1016_j_neubiorev_2016_08_038 crossref_primary_10_1016_j_jneuroling_2018_08_005 crossref_primary_10_1053_j_gastro_2010_07_053 crossref_primary_10_3389_fnins_2020_534671 crossref_primary_10_1155_2015_435265 crossref_primary_10_1016_j_actpsy_2025_104787 crossref_primary_10_1016_j_neuroimage_2017_02_050 crossref_primary_10_1136_bmjopen_2019_031672 crossref_primary_10_1016_j_yfrne_2016_10_001 crossref_primary_10_1016_j_brainres_2020_147049 crossref_primary_10_1016_j_neubiorev_2023_105077 crossref_primary_10_1007_s11682_019_00035_5 crossref_primary_10_1002_hbm_22354 crossref_primary_10_1007_s11682_012_9179_y crossref_primary_10_1016_j_neuroimage_2012_01_024 crossref_primary_10_1111_nmo_14484 crossref_primary_10_1016_j_neuropsychologia_2014_03_016 crossref_primary_10_1212_WNL_0000000000002274 crossref_primary_10_1093_cercor_bhs230 crossref_primary_10_1111_biom_12216 crossref_primary_10_1016_j_neuroimage_2020_117407 crossref_primary_10_1016_j_neubiorev_2019_04_006 crossref_primary_10_1016_j_neuroimage_2014_11_009 crossref_primary_10_1038_s41598_022_14959_4 crossref_primary_10_3389_fnhum_2018_00227 crossref_primary_10_1016_j_neubiorev_2022_104915 crossref_primary_10_1002_hbm_26702 crossref_primary_10_1016_j_neuroimage_2012_02_065 crossref_primary_10_1002_hbm_24523 crossref_primary_10_1007_s00429_017_1450_y crossref_primary_10_1016_j_jns_2012_02_010 crossref_primary_10_1111_j_1399_5618_2011_00893_x crossref_primary_10_1016_j_neuroimage_2012_02_037 crossref_primary_10_1038_s41467_021_27926_w crossref_primary_10_1002_cne_23368 crossref_primary_10_1111_cns_13775 crossref_primary_10_3389_fnins_2019_00646 crossref_primary_10_1007_s00429_022_02603_w crossref_primary_10_1016_j_heliyon_2022_e09702 crossref_primary_10_1016_j_exger_2025_112678 crossref_primary_10_1093_cercor_bhs256 crossref_primary_10_1007_s11682_024_00921_7 crossref_primary_10_1016_j_biopsycho_2018_08_018 crossref_primary_10_1002_hbm_22138 crossref_primary_10_1016_j_neuroimage_2020_116550 crossref_primary_10_1016_j_neuroimage_2023_120207 crossref_primary_10_1017_S0033291716000477 crossref_primary_10_1093_scan_nst124 crossref_primary_10_1038_s41598_021_88773_9 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1016_j_neubiorev_2014_04_003 crossref_primary_10_3389_fnbeh_2017_00064 crossref_primary_10_4103_0028_3886_355137 crossref_primary_10_1080_17470919_2022_2128868 crossref_primary_10_1007_s00429_016_1286_x crossref_primary_10_1007_s11682_018_9959_0 crossref_primary_10_1016_j_neuroimage_2014_12_056 crossref_primary_10_1162_jocn_a_01111 crossref_primary_10_1007_s00259_015_3039_0 crossref_primary_10_1186_2047_217X_3_29 crossref_primary_10_3389_fnhum_2021_744489 crossref_primary_10_1080_02687038_2019_1661956 crossref_primary_10_1093_cercor_bhs007 crossref_primary_10_1016_j_arr_2020_101133 crossref_primary_10_1002_hbm_22124 crossref_primary_10_1002_hbm_23216 crossref_primary_10_1002_hbm_25635 crossref_primary_10_1007_s12671_018_0884_5 crossref_primary_10_1016_j_neuroimage_2017_12_034 crossref_primary_10_1016_j_ynirp_2023_100173 crossref_primary_10_1109_TCBB_2015_2510007 crossref_primary_10_1016_j_nicl_2014_04_007 crossref_primary_10_1016_j_pscychresns_2015_01_001 crossref_primary_10_1007_s11910_019_0967_2 crossref_primary_10_1038_s41467_024_52186_9 crossref_primary_10_1002_ana_24642 crossref_primary_10_1017_S0142716411000075 crossref_primary_10_1002_hbm_21471 crossref_primary_10_1016_j_neuroimage_2011_12_024 crossref_primary_10_1016_j_neubiorev_2020_11_027 crossref_primary_10_1523_ENEURO_0374_22_2023 crossref_primary_10_7717_peerj_10861 crossref_primary_10_1002_hipo_22387 crossref_primary_10_1080_15622975_2017_1324176 crossref_primary_10_1016_j_inffus_2021_07_001 crossref_primary_10_1016_j_drugalcdep_2022_109625 crossref_primary_10_1016_j_neubiorev_2014_01_009 crossref_primary_10_3389_fpsyt_2014_00132 crossref_primary_10_1002_hbm_25828 crossref_primary_10_1093_scan_nst106 crossref_primary_10_1016_j_neuroimage_2021_118436 crossref_primary_10_1016_j_cortex_2022_07_003 crossref_primary_10_3109_15622975_2015_1102323 crossref_primary_10_1002_hbm_23886 crossref_primary_10_1002_hbm_21222 crossref_primary_10_1002_hbm_22313 crossref_primary_10_3390_ijerph192316277 crossref_primary_10_1111_joor_13526 crossref_primary_10_1016_j_neuroimage_2023_120088 crossref_primary_10_30773_pi_2021_0383 crossref_primary_10_1016_j_neubiorev_2018_08_003 crossref_primary_10_1016_j_jns_2020_116907 crossref_primary_10_1038_s41598_021_94506_9 crossref_primary_10_1016_j_clineuro_2024_108473 crossref_primary_10_1017_S1355617713000490 crossref_primary_10_1002_aur_3055 crossref_primary_10_3389_fpsyt_2014_00141 crossref_primary_10_1007_s00429_018_1644_y crossref_primary_10_1007_s11682_015_9429_x crossref_primary_10_1016_j_neuroimage_2021_118444 crossref_primary_10_1016_j_neubiorev_2016_05_012 crossref_primary_10_1176_appi_ajp_2019_18111271 crossref_primary_10_1186_s11689_019_9287_8 crossref_primary_10_1016_j_neubiorev_2022_104553 crossref_primary_10_1002_hbm_23636 crossref_primary_10_1007_s00406_011_0249_8 crossref_primary_10_1186_s12868_016_0257_8 crossref_primary_10_1016_j_jneuroling_2019_04_001 crossref_primary_10_1016_j_neubiorev_2011_07_004 crossref_primary_10_1016_j_neuropsychologia_2022_108273 crossref_primary_10_1038_s41380_018_0122_5 crossref_primary_10_1038_s42003_023_04787_1 crossref_primary_10_1016_j_neuroimage_2018_09_036 crossref_primary_10_1186_s12993_022_00196_2 crossref_primary_10_1038_s41366_020_0608_5 crossref_primary_10_1073_pnas_1113427109 crossref_primary_10_1016_j_bbr_2017_10_025 crossref_primary_10_3389_fnins_2017_00745 crossref_primary_10_1007_s11682_016_9592_8 crossref_primary_10_1016_j_neubiorev_2022_104588 crossref_primary_10_1016_j_agwat_2023_108620 crossref_primary_10_1016_j_neubiorev_2022_104589 crossref_primary_10_1016_j_eurpsy_2011_04_001 crossref_primary_10_1016_j_cortex_2020_04_031 crossref_primary_10_1002_hbm_22572 crossref_primary_10_1002_hbm_25840 crossref_primary_10_1093_scan_nsae068 crossref_primary_10_1016_j_neuroimage_2011_12_032 crossref_primary_10_1111_jon_12266 crossref_primary_10_1016_j_neuroimage_2011_09_077 crossref_primary_10_1038_s41598_021_96319_2 crossref_primary_10_1016_j_jad_2022_11_071 crossref_primary_10_1007_s00429_019_01870_4 crossref_primary_10_1016_j_biopsych_2011_05_025 crossref_primary_10_1016_j_neubiorev_2016_05_037 crossref_primary_10_1080_23273798_2021_1970200 crossref_primary_10_1162_jocn_a_01311 crossref_primary_10_1093_cercor_bhad337 crossref_primary_10_3389_fnhum_2019_00276 crossref_primary_10_1002_hbm_23895 crossref_primary_10_1016_j_cortex_2017_12_014 crossref_primary_10_1016_j_neuroimage_2024_120798 crossref_primary_10_1002_hbm_22326 crossref_primary_10_11922_11_6035_csd_2022_0047_zh crossref_primary_10_1002_hbm_24746 crossref_primary_10_1002_hbm_24747 crossref_primary_10_1016_j_bpsc_2024_12_001 crossref_primary_10_1093_braincomms_fcad172 crossref_primary_10_1044_2015_JSLHR_S_14_0193 crossref_primary_10_1111_ene_12902 crossref_primary_10_1016_j_neubiorev_2016_06_025 crossref_primary_10_1007_s11682_016_9606_6 crossref_primary_10_1016_j_neuroimage_2016_07_041 crossref_primary_10_1016_j_schres_2013_07_019 crossref_primary_10_3758_s13415_022_01039_3 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_1038_s41398_022_01809_0 crossref_primary_10_1016_j_biopsych_2024_07_021 crossref_primary_10_1007_s12021_013_9204_3 crossref_primary_10_1016_j_tics_2012_07_006 crossref_primary_10_1016_j_neuroimage_2020_117268 crossref_primary_10_1007_s11682_018_9885_1 crossref_primary_10_1016_j_neubiorev_2022_104768 crossref_primary_10_1177_1535370215603514 crossref_primary_10_1016_j_neuroimage_2020_117023 crossref_primary_10_1038_tp_2016_55 crossref_primary_10_1007_s11682_019_00099_3 crossref_primary_10_1016_j_neubiorev_2011_12_013 crossref_primary_10_1002_hbm_22991 crossref_primary_10_3390_brainsci10060353 crossref_primary_10_1002_hbm_22750 crossref_primary_10_1016_j_neubiorev_2016_06_011 crossref_primary_10_3389_fnins_2024_1392002 crossref_primary_10_3389_fpsyt_2019_00756 crossref_primary_10_1016_j_neuroimage_2011_07_022 crossref_primary_10_1016_j_neuropsychologia_2014_05_001 crossref_primary_10_3389_fpsyg_2022_781448 crossref_primary_10_1007_s00702_012_0813_z crossref_primary_10_1007_s11682_015_9471_8 crossref_primary_10_1002_brb3_2713 crossref_primary_10_1038_s41598_020_59490_6 crossref_primary_10_1016_j_neubiorev_2019_02_017 crossref_primary_10_1016_j_neuropsychologia_2010_09_014 crossref_primary_10_12688_f1000research_4734_1 crossref_primary_10_12688_f1000research_4734_2 crossref_primary_10_1093_cercor_bhac429 crossref_primary_10_1162_jocn_a_01531 crossref_primary_10_3389_fnins_2022_781099 crossref_primary_10_1586_ern_12_147 crossref_primary_10_12688_f1000research_4734_3 crossref_primary_10_1016_j_neuropsychologia_2011_02_031 crossref_primary_10_1002_hbm_22745 crossref_primary_10_1002_hbm_22987 crossref_primary_10_1007_s11682_022_00655_4 crossref_primary_10_1016_j_neubiorev_2022_104994 crossref_primary_10_1016_j_avb_2015_11_003 crossref_primary_10_1016_j_bandc_2015_05_004 crossref_primary_10_1016_j_neubiorev_2020_03_008 crossref_primary_10_1016_j_neuropsychologia_2015_08_007 crossref_primary_10_1038_s42003_022_03027_2 crossref_primary_10_1002_hbm_22781 crossref_primary_10_3758_s13415_015_0338_7 crossref_primary_10_3389_fnbeh_2016_00220 crossref_primary_10_1016_j_jad_2013_06_039 crossref_primary_10_1177_1367006912456617 crossref_primary_10_1007_s00429_017_1443_x crossref_primary_10_1162_nol_a_00097 crossref_primary_10_1186_s13229_019_0299_8 crossref_primary_10_1002_nau_23976 crossref_primary_10_1016_j_nicl_2018_09_018 crossref_primary_10_1093_schbul_sbv025 crossref_primary_10_1007_s10548_011_0171_4 crossref_primary_10_1080_17588928_2020_1806810 crossref_primary_10_1523_JNEUROSCI_3048_14_2014 crossref_primary_10_3390_brainsci12081112 crossref_primary_10_1016_j_neubiorev_2016_05_005 crossref_primary_10_1002_hbm_24716 crossref_primary_10_1002_hbm_22777 crossref_primary_10_1002_oby_20659 crossref_primary_10_1016_j_neuroimage_2011_06_012 crossref_primary_10_1016_j_neuroimage_2020_117481 crossref_primary_10_1093_ons_opy272 crossref_primary_10_1093_scan_nsz055 crossref_primary_10_1007_s00415_013_7174_x crossref_primary_10_1016_j_bandc_2012_09_009 crossref_primary_10_1016_j_neubiorev_2013_09_005 crossref_primary_10_1007_s40167_021_00102_z crossref_primary_10_1371_journal_pone_0106558 crossref_primary_10_1016_j_wneu_2019_01_159 crossref_primary_10_1038_s41398_019_0644_x crossref_primary_10_3389_fnagi_2016_00260 crossref_primary_10_1371_journal_pone_0169076 crossref_primary_10_1016_j_neuroimage_2021_117777 crossref_primary_10_1016_j_pnpbp_2011_09_014 crossref_primary_10_1002_hbm_23854 crossref_primary_10_1038_s41598_022_08909_3 crossref_primary_10_1016_j_cortex_2014_02_022 crossref_primary_10_1016_j_neuropsychologia_2014_12_005 crossref_primary_10_1093_cercor_bhac443 crossref_primary_10_1016_j_neuroimage_2016_12_016 crossref_primary_10_1016_j_bandl_2023_105377 crossref_primary_10_1016_j_neuroscience_2022_02_024 crossref_primary_10_1177_2398212818810591 crossref_primary_10_3389_fpsyg_2024_1400328 crossref_primary_10_1016_j_nicl_2017_07_025 crossref_primary_10_1016_j_biopsych_2010_01_020 crossref_primary_10_1016_j_neuroimage_2022_119764 crossref_primary_10_1080_17470919_2017_1357657 crossref_primary_10_1016_j_neuroimage_2011_03_066 crossref_primary_10_1016_j_neubiorev_2012_11_003 crossref_primary_10_3758_s13415_022_01030_y crossref_primary_10_1016_j_neubiorev_2012_11_002 crossref_primary_10_1007_s12311_015_0696_2 crossref_primary_10_1186_1756_0500_4_349 crossref_primary_10_1016_j_neucli_2022_02_001 crossref_primary_10_1016_j_nicl_2022_103241 crossref_primary_10_1016_j_neuroimage_2016_04_022 crossref_primary_10_1016_j_neuroimage_2019_116111 crossref_primary_10_1016_j_brainres_2014_10_008 crossref_primary_10_3390_brainsci11030399 crossref_primary_10_3724_SP_J_1042_2022_00536 crossref_primary_10_1016_j_neubiorev_2024_105712 crossref_primary_10_1002_jrsm_1448 crossref_primary_10_1016_j_neubiorev_2016_03_020 crossref_primary_10_1016_j_neuroimage_2019_03_074 crossref_primary_10_1016_j_neuroimage_2009_12_112 crossref_primary_10_1093_cercor_bhv024 crossref_primary_10_1016_j_drugalcdep_2013_03_019 crossref_primary_10_1016_j_neubiorev_2021_06_012 crossref_primary_10_1016_j_neubiorev_2012_11_015 crossref_primary_10_3389_fnhum_2017_00231 crossref_primary_10_1016_j_jpsychires_2016_08_001 crossref_primary_10_1016_j_nicl_2023_103532 crossref_primary_10_3389_fneur_2018_01129 crossref_primary_10_1016_j_neubiorev_2016_03_026 crossref_primary_10_1038_tp_2016_80 crossref_primary_10_1515_psych_2020_0114 crossref_primary_10_1016_j_dr_2022_101052 crossref_primary_10_3389_fncom_2024_1310013 crossref_primary_10_1016_j_cortex_2020_05_003 crossref_primary_10_1016_j_neuroscience_2023_11_003 crossref_primary_10_3389_fnins_2018_00686 crossref_primary_10_1016_j_neubiorev_2016_03_021 crossref_primary_10_1016_j_smrv_2018_07_004 crossref_primary_10_1093_scan_nsq105 crossref_primary_10_1016_j_cortex_2020_05_006 crossref_primary_10_1016_j_euroneuro_2025_01_009 crossref_primary_10_1016_j_neubiorev_2024_105960 crossref_primary_10_1093_cercor_bhae369 crossref_primary_10_1162_jocn_a_01616 crossref_primary_10_1016_j_neubiorev_2024_105720 crossref_primary_10_1016_j_neubiorev_2023_105423 crossref_primary_10_1162_imag_a_00098 crossref_primary_10_1080_01616412_2021_1902702 crossref_primary_10_3390_jcm8040516 crossref_primary_10_3390_biomedicines10071555 crossref_primary_10_1016_j_jneuroling_2014_04_003 crossref_primary_10_1016_j_neubiorev_2024_105727 crossref_primary_10_1016_j_neuroimage_2009_05_037 crossref_primary_10_1016_j_nicl_2019_102039 crossref_primary_10_1002_brb3_2945 crossref_primary_10_1002_brb3_1853 crossref_primary_10_1016_j_nicl_2022_103268 crossref_primary_10_1002_hbm_23706 crossref_primary_10_1093_brain_awab125 crossref_primary_10_1002_wcs_41 crossref_primary_10_1016_j_neubiorev_2015_09_009 crossref_primary_10_3390_healthcare12070711 crossref_primary_10_1016_j_neuropsychologia_2024_108904 crossref_primary_10_3389_fpsyg_2015_00191 crossref_primary_10_1016_j_neubiorev_2019_01_026 crossref_primary_10_3390_brainsci12081030 crossref_primary_10_1162_imag_a_00065 crossref_primary_10_1212_WNL_0b013e31821a44c1 crossref_primary_10_3233_JAD_142955 crossref_primary_10_3389_fnhum_2023_1077234 crossref_primary_10_1016_j_jad_2018_09_049 crossref_primary_10_1016_j_nicl_2019_102041 crossref_primary_10_1111_jcpp_12651 crossref_primary_10_3389_fnhum_2024_1418803 crossref_primary_10_1016_j_pscychresns_2019_111020 crossref_primary_10_7554_eLife_53385 crossref_primary_10_3389_fnins_2022_984647 crossref_primary_10_3233_JAD_160382 crossref_primary_10_1093_cercor_bhu198 crossref_primary_10_1016_j_clinph_2020_07_024 crossref_primary_10_5498_wjp_v14_i3_456 crossref_primary_10_1016_j_jad_2011_03_016 crossref_primary_10_1016_j_neuroimage_2019_116387 crossref_primary_10_1093_cercor_bhv073 crossref_primary_10_1176_appi_ajp_2017_16040400 crossref_primary_10_1093_cercor_bhad461 crossref_primary_10_1016_j_nicl_2019_102053 crossref_primary_10_1016_j_neubiorev_2024_105902 crossref_primary_10_3389_fnhum_2014_00830 crossref_primary_10_1111_nyas_12467 crossref_primary_10_1016_j_neubiorev_2018_06_024 crossref_primary_10_1093_psyrad_kkab020 crossref_primary_10_1177_1545968312461718 crossref_primary_10_1016_j_nicl_2022_103038 crossref_primary_10_1080_17470919_2016_1165285 crossref_primary_10_1523_JNEUROSCI_0663_23_2023 crossref_primary_10_1016_j_neuroimage_2012_11_018 crossref_primary_10_1038_s41598_023_46513_1 crossref_primary_10_3389_fnhum_2017_00022 crossref_primary_10_1016_j_neuropsychologia_2021_108002 crossref_primary_10_1016_j_pscychresns_2017_09_014 crossref_primary_10_1007_s00429_010_0255_z crossref_primary_10_1186_s12888_014_0321_9 crossref_primary_10_1155_2021_5596145 crossref_primary_10_1016_j_neuroimage_2010_10_047 crossref_primary_10_30773_pi_2021_0062 crossref_primary_10_1016_j_neubiorev_2016_04_020 crossref_primary_10_7717_peerj_14976 crossref_primary_10_1093_cercor_bhv068 crossref_primary_10_1016_j_neubiorev_2024_105918 crossref_primary_10_1016_j_nicl_2022_103029 crossref_primary_10_1002_cne_24804 crossref_primary_10_1162_imag_a_00295 crossref_primary_10_1016_j_psychres_2024_116338 crossref_primary_10_1111_dmcn_12618 crossref_primary_10_1016_j_neuropsychologia_2010_07_030 crossref_primary_10_3389_fpsyt_2022_779239 crossref_primary_10_1016_j_neubiorev_2020_12_029 crossref_primary_10_1016_j_nicl_2022_103031 crossref_primary_10_1093_braincomms_fcz006 crossref_primary_10_1007_s11682_022_00659_0 crossref_primary_10_1093_braincomms_fcad105 crossref_primary_10_1371_journal_pone_0070104 crossref_primary_10_1016_j_jvoice_2022_02_008 crossref_primary_10_1016_j_neuroimage_2019_116321 crossref_primary_10_1016_j_nicl_2015_02_018 crossref_primary_10_1080_00207454_2018_1508135 crossref_primary_10_1007_s11065_015_9315_8 crossref_primary_10_1016_j_neuroimage_2009_06_047 crossref_primary_10_1016_j_neuroimage_2025_121008 crossref_primary_10_1093_cercor_bhac394 crossref_primary_10_1371_journal_pone_0030920 crossref_primary_10_1016_j_jad_2013_07_002 crossref_primary_10_1038_s41598_017_02266_2 crossref_primary_10_1111_j_1460_9568_2010_07590_x crossref_primary_10_3389_fnint_2020_00043 crossref_primary_10_1016_j_neuroimage_2022_119500 crossref_primary_10_1016_j_neubiorev_2018_06_009 crossref_primary_10_1016_j_pscychresns_2013_02_005 crossref_primary_10_1038_s42003_024_06969_x crossref_primary_10_3389_fphar_2019_00969 crossref_primary_10_3389_fneur_2015_00219 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1007_s11682_020_00303_9 crossref_primary_10_1111_obr_13643 crossref_primary_10_1007_s12311_015_0706_4 crossref_primary_10_1016_j_brainres_2018_01_022 crossref_primary_10_1002_hbm_22818 crossref_primary_10_1016_j_neubiorev_2018_07_019 crossref_primary_10_1016_j_eplepsyres_2011_10_002 crossref_primary_10_1016_j_neubiorev_2018_07_017 crossref_primary_10_1002_hbm_70098 crossref_primary_10_1371_journal_pone_0059595 crossref_primary_10_1016_j_euroneuro_2016_06_013 crossref_primary_10_1016_j_neubiorev_2019_10_023 crossref_primary_10_3389_fnhum_2022_921523 crossref_primary_10_3389_fneur_2022_923310 crossref_primary_10_1073_pnas_1814117115 crossref_primary_10_1093_cercor_bhad013 crossref_primary_10_1097_j_pain_0000000000000517 crossref_primary_10_1371_journal_pone_0083668 crossref_primary_10_1007_s00429_013_0549_z crossref_primary_10_1016_j_cortex_2019_08_018 crossref_primary_10_1016_j_cortex_2021_02_023 crossref_primary_10_1080_13554794_2022_2160262 crossref_primary_10_3390_brainsci14010101 crossref_primary_10_1002_hbm_25085 crossref_primary_10_1038_mp_2014_24 crossref_primary_10_1192_bjp_2021_16 crossref_primary_10_1016_j_neuroimage_2021_118109 crossref_primary_10_1371_journal_pone_0207213 crossref_primary_10_1002_erv_2915 crossref_primary_10_1016_j_clineuro_2020_106279 crossref_primary_10_1016_j_brainres_2018_01_014 crossref_primary_10_1038_s41598_022_15195_6 crossref_primary_10_1002_hbm_22801 crossref_primary_10_1162_imag_a_00277 crossref_primary_10_1016_j_bandl_2014_10_002 crossref_primary_10_1016_j_neubiorev_2016_03_009 crossref_primary_10_1017_S1368980020003122 crossref_primary_10_1016_j_neubiorev_2021_09_053 crossref_primary_10_1002_hbm_24184 crossref_primary_10_1111_pcn_13442 crossref_primary_10_3389_fpsyg_2014_00353 crossref_primary_10_1016_j_jadohealth_2017_08_006 crossref_primary_10_1093_scan_nsx142 crossref_primary_10_1017_S136672892000070X crossref_primary_10_3389_fnhum_2024_1493677 crossref_primary_10_1016_j_nicl_2021_102700 crossref_primary_10_1007_s11682_020_00369_5 crossref_primary_10_1007_s11682_021_00507_7 crossref_primary_10_1016_j_nicl_2020_102420 crossref_primary_10_1093_scan_nsab105 crossref_primary_10_1016_j_neubiorev_2017_11_010 crossref_primary_10_1016_j_neubiorev_2017_11_012 crossref_primary_10_1016_j_jad_2020_06_072 crossref_primary_10_1016_j_pnpbp_2013_09_001 crossref_primary_10_1093_schbul_sbae020 crossref_primary_10_1016_j_neubiorev_2021_08_010 crossref_primary_10_1017_S0033291721001525 crossref_primary_10_1016_j_neubiorev_2013_03_017 crossref_primary_10_1093_scan_nsx143 crossref_primary_10_1073_pnas_2105730118 crossref_primary_10_3389_fnut_2022_1056692 crossref_primary_10_1016_j_neubiorev_2021_09_041 crossref_primary_10_1016_j_biopsych_2016_06_014 crossref_primary_10_1038_s42003_022_04084_3 crossref_primary_10_3390_math10030356 crossref_primary_10_1002_hbm_25025 crossref_primary_10_1016_j_eurpsy_2017_08_001 crossref_primary_10_3389_fnhum_2015_00693 crossref_primary_10_3389_fpsyg_2016_01633 crossref_primary_10_1007_s10072_013_1512_8 crossref_primary_10_1111_jpr_12018 crossref_primary_10_3758_s13415_021_00870_4 crossref_primary_10_1016_j_neuroimage_2011_05_073 crossref_primary_10_1111_ejn_15240 crossref_primary_10_1007_s11682_020_00291_w crossref_primary_10_3389_fneur_2022_823882 crossref_primary_10_3389_fnhum_2020_00146 crossref_primary_10_3390_brainsci13040559 crossref_primary_10_1007_s10548_015_0427_5 crossref_primary_10_3389_fpsyt_2022_785547 crossref_primary_10_3758_s13428_023_02185_3 crossref_primary_10_1016_j_neuropsychologia_2020_107404 crossref_primary_10_1016_j_conb_2013_02_017 crossref_primary_10_1111_j_1369_1600_2012_00464_x crossref_primary_10_1371_journal_pone_0070143 crossref_primary_10_1007_s00429_014_0744_6 crossref_primary_10_1016_j_heares_2011_09_008 crossref_primary_10_1016_j_neubiorev_2015_07_007 crossref_primary_10_1016_j_neubiorev_2023_105285 crossref_primary_10_1016_j_neuroscience_2016_02_022 crossref_primary_10_1107_S2052252521007715 crossref_primary_10_1038_s41562_016_0039 crossref_primary_10_1016_j_neubiorev_2016_02_024 crossref_primary_10_1016_j_bpsc_2019_03_005 crossref_primary_10_1016_j_neuroimage_2011_05_089 crossref_primary_10_1016_j_neuroimage_2013_05_052 crossref_primary_10_1016_j_nicl_2017_01_019 crossref_primary_10_1007_s11682_019_00071_1 crossref_primary_10_1080_1750984X_2025_2457062 crossref_primary_10_1016_j_pnpbp_2011_05_009 crossref_primary_10_1016_j_neubiorev_2018_05_006 crossref_primary_10_1016_j_jad_2024_01_118 crossref_primary_10_1007_s00429_018_1727_9 crossref_primary_10_1016_j_neuroimage_2015_08_027 crossref_primary_10_1016_j_neuroimage_2015_08_024 crossref_primary_10_4236_jbbs_2012_22028 crossref_primary_10_1002_erv_2967 crossref_primary_10_1016_j_bandl_2010_03_008 crossref_primary_10_1002_brb3_655 crossref_primary_10_1016_j_neuroimage_2013_04_014 crossref_primary_10_1038_s44220_023_00105_0 crossref_primary_10_1016_j_cortex_2017_01_006 crossref_primary_10_1523_JNEUROSCI_4004_09_2009 crossref_primary_10_1016_j_neubiorev_2015_07_016 crossref_primary_10_1002_hbm_25289 crossref_primary_10_1089_brain_2018_0592 crossref_primary_10_1007_s11930_017_0123_4 crossref_primary_10_1073_pnas_2201445119 crossref_primary_10_1176_appi_ajp_2019_19050560 crossref_primary_10_3174_ajnr_A7619 crossref_primary_10_1016_j_bbr_2017_02_032 crossref_primary_10_1146_annurev_psych_120709_145406 crossref_primary_10_1007_s00429_021_02389_3 crossref_primary_10_1016_j_neuroimage_2016_04_072 crossref_primary_10_1016_j_neubiorev_2021_08_024 crossref_primary_10_1016_j_neuroimage_2013_05_046 crossref_primary_10_1093_schbul_sbr151 crossref_primary_10_1016_j_neuroimage_2012_11_020 crossref_primary_10_1093_brain_awu132 crossref_primary_10_1016_j_neuroimage_2023_120413 crossref_primary_10_1007_s11682_019_00084_w crossref_primary_10_1016_j_neubiorev_2024_105584 crossref_primary_10_1093_brain_aws199 crossref_primary_10_1016_j_neuroimage_2024_120950 crossref_primary_10_1016_j_neuroimage_2012_10_056 crossref_primary_10_3389_fnins_2014_00289 crossref_primary_10_1016_j_cortex_2019_05_016 crossref_primary_10_1007_s00429_024_02867_4 crossref_primary_10_1002_hbm_23050 crossref_primary_10_1093_arclin_acv081 crossref_primary_10_1111_cdev_13080 crossref_primary_10_1016_j_drugalcdep_2020_107884 crossref_primary_10_1016_j_schres_2009_12_022 crossref_primary_10_1007_s11065_014_9247_8 crossref_primary_10_1007_s10792_015_0159_2 crossref_primary_10_1016_j_arr_2016_12_001 crossref_primary_10_1016_j_neuroimage_2024_120707 crossref_primary_10_1016_j_brainres_2024_148947 crossref_primary_10_1007_s11910_015_0579_4 crossref_primary_10_1017_prp_2020_1 crossref_primary_10_3389_fnins_2018_00495 crossref_primary_10_1016_j_neubiorev_2019_12_014 crossref_primary_10_1007_s00429_022_02473_2 crossref_primary_10_1016_j_cortex_2019_05_001 crossref_primary_10_1002_hbm_23288 crossref_primary_10_1007_s11065_024_09647_1 crossref_primary_10_1002_hbm_26312 crossref_primary_10_1016_j_cortex_2017_03_016 crossref_primary_10_1016_j_neubiorev_2018_04_023 crossref_primary_10_1002_hbm_22199 crossref_primary_10_1016_j_neubiorev_2018_04_022 crossref_primary_10_1007_s00429_013_0698_0 crossref_primary_10_1016_j_neuropsychologia_2012_07_026 crossref_primary_10_1016_j_neuroimage_2020_116956 crossref_primary_10_1371_journal_pone_0060393 crossref_primary_10_1017_S0033291724003088 crossref_primary_10_1007_s11682_019_00080_0 crossref_primary_10_1002_wcs_1546 crossref_primary_10_1162_imag_a_00457 crossref_primary_10_1016_j_media_2023_102864 crossref_primary_10_1002_hbm_70023 crossref_primary_10_1002_mds_28468 crossref_primary_10_1038_s41531_017_0012_6 crossref_primary_10_1016_j_biopsych_2010_12_011 crossref_primary_10_1016_j_neubiorev_2023_105468 crossref_primary_10_1002_brb3_203 crossref_primary_10_1002_hbm_25254 crossref_primary_10_1016_j_jpsychires_2020_05_013 crossref_primary_10_1016_j_neuropsychologia_2019_107284 crossref_primary_10_3389_fnint_2021_793634 crossref_primary_10_1002_hbm_26340 crossref_primary_10_1002_brb3_683 crossref_primary_10_1093_scan_nsaa073 crossref_primary_10_1002_brb3_2065 crossref_primary_10_1002_hbm_25014 crossref_primary_10_1016_j_jaac_2012_12_012 crossref_primary_10_1016_j_jneuroling_2017_04_001 crossref_primary_10_1016_j_pnpbp_2017_11_007 crossref_primary_10_1093_scan_nsac010 crossref_primary_10_1162_imag_a_00425 crossref_primary_10_1016_j_neuroimage_2012_10_030 crossref_primary_10_1016_j_jns_2014_05_066 crossref_primary_10_1002_nau_23058 crossref_primary_10_1093_cercor_bhu167 crossref_primary_10_1093_schbul_sbae003 crossref_primary_10_1016_j_neuropsychologia_2019_107286 crossref_primary_10_1016_j_neuropsychologia_2020_107694 crossref_primary_10_3390_cancers13051116 crossref_primary_10_1007_s11682_021_00453_4 crossref_primary_10_1155_2022_9448620 crossref_primary_10_1016_j_jpain_2012_11_011 crossref_primary_10_1016_j_janxdis_2023_102773 crossref_primary_10_1162_imag_a_00423 crossref_primary_10_3389_fnhum_2017_00645 crossref_primary_10_3389_fpsyg_2025_1557796 crossref_primary_10_1002_ana_26551 crossref_primary_10_3233_JAD_215316 crossref_primary_10_3390_brainsci12101367 crossref_primary_10_1016_j_cortex_2023_03_005 crossref_primary_10_1093_texcom_tgab002 crossref_primary_10_3389_fnins_2022_850245 crossref_primary_10_1007_s00429_021_02247_2 crossref_primary_10_1186_s13195_018_0366_y crossref_primary_10_1016_j_neubiorev_2024_105779 crossref_primary_10_1002_hbm_25004 crossref_primary_10_3389_fnhum_2014_00445 crossref_primary_10_1016_j_schres_2014_05_023 crossref_primary_10_1093_cercor_bhu158 crossref_primary_10_1016_j_neuroimage_2020_116939 crossref_primary_10_1007_s10902_019_00195_7 crossref_primary_10_1016_j_jns_2012_01_032 crossref_primary_10_1016_j_neubiorev_2015_08_006 crossref_primary_10_1016_j_neuroimage_2009_09_056 crossref_primary_10_1155_2024_6673522 crossref_primary_10_1007_s12035_020_02195_8 crossref_primary_10_1016_j_physbeh_2012_03_009 crossref_primary_10_1371_journal_pone_0032960 crossref_primary_10_22172_cogbio_2013_25_3_006 crossref_primary_10_1002_hbm_70000 crossref_primary_10_3390_jpm13091384 crossref_primary_10_1016_j_neuroimage_2013_06_041 crossref_primary_10_1097_QAD_0000000000000151 crossref_primary_10_1016_j_neubiorev_2024_105544 crossref_primary_10_1177_2167702614542463 crossref_primary_10_3389_fnhum_2014_00692 crossref_primary_10_1007_s40519_022_01390_x crossref_primary_10_3389_fnhum_2014_01045 crossref_primary_10_3934_Neuroscience_2016_3_306 crossref_primary_10_3724_SP_J_1042_2021_01783 crossref_primary_10_1016_j_intell_2017_04_008 crossref_primary_10_1038_s41380_024_02520_w crossref_primary_10_1002_hbm_23132 crossref_primary_10_1016_j_nicl_2018_05_013 crossref_primary_10_1016_j_tics_2010_08_004 crossref_primary_10_1186_1471_244X_12_104 crossref_primary_10_1016_j_neuroimage_2015_07_083 crossref_primary_10_1017_S0033291719001387 crossref_primary_10_1093_scan_nsad003 crossref_primary_10_1002_da_22977 crossref_primary_10_1038_s41598_023_43057_2 crossref_primary_10_1016_j_neubiorev_2021_11_020 crossref_primary_10_1176_appi_ajp_2012_11101521 crossref_primary_10_1007_s00259_016_3335_3 crossref_primary_10_1038_s41398_022_01792_6 crossref_primary_10_1038_s41598_021_95603_5 crossref_primary_10_1016_j_nicl_2025_103759 crossref_primary_10_1016_j_biopsych_2024_10_013 crossref_primary_10_1016_j_neubiorev_2022_104603 crossref_primary_10_1016_j_neuroimage_2020_117582 crossref_primary_10_1111_j_1749_6632_2011_05958_x crossref_primary_10_1002_hbm_24459 crossref_primary_10_1016_j_neubiorev_2022_104846 crossref_primary_10_1111_bdi_12488 crossref_primary_10_1038_s41598_020_58255_5 crossref_primary_10_1002_hbm_23368 crossref_primary_10_1016_j_neubiorev_2018_03_019 crossref_primary_10_1016_j_neuroimage_2023_120363 crossref_primary_10_1002_hbm_24693 crossref_primary_10_1186_s40035_018_0114_z crossref_primary_10_1002_hbm_21186 crossref_primary_10_1111_bdi_13341 crossref_primary_10_1002_hbm_21188 crossref_primary_10_1016_j_nicl_2025_103770 crossref_primary_10_1093_cercor_bhz182 crossref_primary_10_1016_j_pnpbp_2013_04_019 crossref_primary_10_1080_00952990_2018_1557675 crossref_primary_10_1038_npp_2015_185 crossref_primary_10_1016_j_euroneuro_2011_07_003 crossref_primary_10_1016_j_neubiorev_2018_11_003 crossref_primary_10_1111_cns_70218 crossref_primary_10_1007_s11682_016_9669_4 crossref_primary_10_1016_j_jad_2022_06_014 crossref_primary_10_1016_j_neubiorev_2018_11_005 crossref_primary_10_1146_annurev_neuro_062012_170320 crossref_primary_10_1176_appi_ajp_2021_21010088 crossref_primary_10_1016_j_psiq_2011_05_002 crossref_primary_10_1016_j_neuropsychologia_2015_12_006 crossref_primary_10_1093_cercor_bhs308 crossref_primary_10_1016_j_neubiorev_2021_03_025 crossref_primary_10_1016_j_neuroimage_2015_06_059 crossref_primary_10_1007_s11682_020_00442_z crossref_primary_10_1002_hbm_25570 crossref_primary_10_1007_s12311_023_01596_4 crossref_primary_10_1007_s00429_023_02652_9 crossref_primary_10_1016_j_neuroimage_2015_07_060 crossref_primary_10_3758_s13415_020_00836_y crossref_primary_10_1016_j_neuron_2018_07_002 crossref_primary_10_3389_fnagi_2022_1009632 crossref_primary_10_1016_j_neubiorev_2012_06_003 crossref_primary_10_1016_j_neuropsychologia_2015_05_029 crossref_primary_10_1002_hbm_23149 crossref_primary_10_3171_2021_9_JNS211069 crossref_primary_10_1016_j_neuroimage_2023_120383 crossref_primary_10_1038_s41380_021_01315_7 crossref_primary_10_1016_j_concog_2011_09_019 crossref_primary_10_1002_hbm_24232 crossref_primary_10_1016_j_jpsychires_2014_08_018 crossref_primary_10_1080_02643294_2016_1188798 crossref_primary_10_3758_s13415_015_0392_1 crossref_primary_10_1016_j_neuroimage_2015_07_070 crossref_primary_10_1093_scan_nsab079 crossref_primary_10_1016_j_neuroimage_2015_07_072 crossref_primary_10_1007_s11682_013_9266_8 crossref_primary_10_3389_fnins_2020_00427 crossref_primary_10_1007_s11682_015_9457_6 crossref_primary_10_1016_j_neuroimage_2010_05_076 crossref_primary_10_1016_j_neuroimage_2015_05_008 crossref_primary_10_1007_s40889_016_0016_9 crossref_primary_10_1016_j_neuroimage_2021_118702 crossref_primary_10_1523_ENEURO_0255_20_2020 crossref_primary_10_1523_JNEUROSCI_3083_15_2016 crossref_primary_10_1111_bph_13812 crossref_primary_10_1016_j_neuroimage_2023_120138 crossref_primary_10_1007_s13311_019_00817_1 crossref_primary_10_1016_j_jad_2016_09_005 crossref_primary_10_1016_j_neuroimage_2015_06_044 crossref_primary_10_1016_j_media_2022_102540 crossref_primary_10_1016_j_neubiorev_2022_104851 crossref_primary_10_1016_j_neubiorev_2013_02_002 crossref_primary_10_1016_j_tree_2015_10_004 crossref_primary_10_1016_j_biopsych_2024_01_003 crossref_primary_10_1016_j_nicl_2013_12_009 crossref_primary_10_1038_s41598_019_40427_7 crossref_primary_10_1016_j_neuropsychologia_2015_11_006 crossref_primary_10_1016_j_biopsych_2022_02_960 crossref_primary_10_1186_1471_244X_13_342 crossref_primary_10_3389_fncom_2017_00005 crossref_primary_10_3390_jpm13030405 crossref_primary_10_1016_j_concog_2015_01_019 crossref_primary_10_1007_s11682_017_9813_9 crossref_primary_10_1080_17588928_2020_1867084 crossref_primary_10_1016_j_neubiorev_2010_12_012 crossref_primary_10_1016_j_neuroimage_2018_04_065 crossref_primary_10_1016_j_jid_2019_04_007 crossref_primary_10_1038_s41398_021_01446_z crossref_primary_10_1002_hbm_23566 crossref_primary_10_1093_scan_nsu110 crossref_primary_10_1002_hbm_22239 crossref_primary_10_1093_brain_awx316 crossref_primary_10_1007_s40120_021_00318_4 crossref_primary_10_1016_j_neubiorev_2018_12_013 crossref_primary_10_3988_jcn_2024_0176 crossref_primary_10_1002_wics_1609 crossref_primary_10_1002_hbm_24893 crossref_primary_10_1007_s12021_022_09612_4 crossref_primary_10_3389_fnhum_2022_854692 crossref_primary_10_1016_j_neuroimage_2012_07_045 crossref_primary_10_1007_s00429_015_1009_8 crossref_primary_10_1007_s11065_020_09432_w crossref_primary_10_1111_ner_13119 crossref_primary_10_1016_j_neuroimage_2021_117833 crossref_primary_10_1016_j_cortex_2016_10_021 crossref_primary_10_1002_aur_1599 crossref_primary_10_1016_j_biopsych_2012_07_014 crossref_primary_10_1016_j_neuroimage_2013_04_073 crossref_primary_10_1007_s11682_016_9505_x crossref_primary_10_1111_desc_13379 crossref_primary_10_1093_schbul_sbz130 crossref_primary_10_3390_jcm9030828 crossref_primary_10_3758_s13415_021_00964_z crossref_primary_10_1002_hbm_24681 crossref_primary_10_1002_hbm_22262 crossref_primary_10_1002_hipo_22482 crossref_primary_10_3389_fnhum_2020_565114 crossref_primary_10_1016_j_npbr_2019_06_002 crossref_primary_10_1016_j_jad_2011_08_001 crossref_primary_10_1016_j_crad_2017_11_007 crossref_primary_10_1016_j_pscychresns_2021_111272 crossref_primary_10_3758_s13415_023_01140_1 crossref_primary_10_1192_bjo_2019_102 crossref_primary_10_1007_s13365_022_01071_6 crossref_primary_10_1016_j_neubiorev_2022_104826 crossref_primary_10_1155_2016_7296125 crossref_primary_10_1016_j_neubiorev_2014_09_008 crossref_primary_10_1016_j_bpsc_2019_04_007 crossref_primary_10_1002_hbm_23103 crossref_primary_10_1002_hbm_23588 crossref_primary_10_1002_hbm_23109 crossref_primary_10_1038_s41562_022_01501_9 crossref_primary_10_1016_j_neuroimage_2024_120641 crossref_primary_10_1515_revneuro_2022_0023 crossref_primary_10_1523_JNEUROSCI_4931_13_2014 crossref_primary_10_1016_j_neuroimage_2024_120885 crossref_primary_10_1016_j_nicl_2016_03_016 crossref_primary_10_1002_hbm_23342 crossref_primary_10_1016_j_pnpbp_2021_110322 crossref_primary_10_1073_pnas_1414715112 crossref_primary_10_1002_brb3_1365 crossref_primary_10_1177_21677026241305377 crossref_primary_10_1016_j_nicl_2021_102583 crossref_primary_10_1016_j_brainres_2024_148794 crossref_primary_10_1186_s13293_024_00621_3 crossref_primary_10_1016_j_neubiorev_2013_03_023 crossref_primary_10_1016_j_neuropsychologia_2015_06_034 crossref_primary_10_1016_j_neuroimage_2012_06_025 crossref_primary_10_1016_j_pnpbp_2018_05_011 crossref_primary_10_1038_s41380_023_01974_8 crossref_primary_10_1016_j_neuroimage_2023_120335 crossref_primary_10_1002_hbm_22008 crossref_primary_10_1016_j_euroneuro_2023_10_003 crossref_primary_10_1016_j_cofs_2014_11_001 crossref_primary_10_1016_j_neubiorev_2015_12_003 crossref_primary_10_1016_j_neuroimage_2012_06_022 crossref_primary_10_1016_j_neuroimage_2016_10_028 crossref_primary_10_1016_j_neuropsychologia_2015_06_033 crossref_primary_10_1111_desc_13111 crossref_primary_10_1007_s11682_022_00634_9 crossref_primary_10_1016_j_brainres_2009_09_052 crossref_primary_10_1016_j_neubiorev_2018_01_002 crossref_primary_10_5498_wjp_v15_i4_102215 crossref_primary_10_1016_j_neuroimage_2010_10_014 crossref_primary_10_1002_hbm_23772 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_1007_s11682_020_00384_6 crossref_primary_10_1038_s41398_018_0170_2 crossref_primary_10_1111_ejn_12765 crossref_primary_10_1007_s00406_022_01541_2 crossref_primary_10_1007_s11682_023_00762_w crossref_primary_10_1016_j_heliyon_2024_e38084 crossref_primary_10_1016_j_brainresrev_2010_05_005 crossref_primary_10_1016_j_neuroimage_2010_11_055 crossref_primary_10_1002_hbm_25702 crossref_primary_10_1016_j_bandc_2024_106201 crossref_primary_10_3390_brainsci11121587 crossref_primary_10_1007_s11682_023_00797_z crossref_primary_10_1002_hbm_25948 crossref_primary_10_1002_hbm_23767 crossref_primary_10_1111_jnc_16104 crossref_primary_10_1016_j_neubiorev_2022_104686 crossref_primary_10_3389_fnins_2023_1243409 crossref_primary_10_1016_j_neuroimage_2013_01_046 crossref_primary_10_1093_scan_nsad077 crossref_primary_10_1016_j_bandc_2013_09_007 crossref_primary_10_1016_j_jpsychires_2023_11_013 crossref_primary_10_3758_s13415_020_00827_z crossref_primary_10_1016_j_neubiorev_2015_03_002 crossref_primary_10_1162_jocn_a_01459 crossref_primary_10_1016_j_neuroimage_2015_05_069 crossref_primary_10_1016_j_neuroimage_2018_02_023 crossref_primary_10_1186_2045_5380_2_6 crossref_primary_10_1162_jocn_a_01455 crossref_primary_10_1177_155005941104200211 crossref_primary_10_1509_jmr_13_0611 crossref_primary_10_1111_desc_12400 crossref_primary_10_1186_s12888_016_0890_x crossref_primary_10_1016_j_neubiorev_2015_03_009 crossref_primary_10_1016_j_pnpbp_2009_08_020 crossref_primary_10_1007_s00429_015_0994_y crossref_primary_10_1016_j_heares_2013_08_001 crossref_primary_10_1093_braincomms_fcac140 crossref_primary_10_1093_cercor_bhy049 crossref_primary_10_1002_hbm_23311 crossref_primary_10_1016_j_parkreldis_2019_02_015 crossref_primary_10_1002_hbm_21132 crossref_primary_10_1016_j_nicl_2017_08_004 crossref_primary_10_3389_fnins_2022_868366 crossref_primary_10_1162_jocn_a_01661 crossref_primary_10_1162_jocn_a_00572 crossref_primary_10_1016_j_neuroimage_2010_07_058 crossref_primary_10_1038_s41467_019_12764_8 crossref_primary_10_3390_brainsci12010032 crossref_primary_10_1007_s12311_022_01459_4 crossref_primary_10_3389_fpsyg_2017_01253 crossref_primary_10_1016_j_jad_2012_03_024 crossref_primary_10_1002_hbm_24633 crossref_primary_10_1002_hbm_26817 crossref_primary_10_1136_bmjopen_2019_030061 crossref_primary_10_1016_j_bja_2023_03_008 crossref_primary_10_1523_JNEUROSCI_3135_12_2013 crossref_primary_10_1016_j_jaacop_2023_08_006 crossref_primary_10_1016_j_neubiorev_2017_06_011 crossref_primary_10_1515_revneuro_2022_0065 crossref_primary_10_1186_1471_2202_15_19 crossref_primary_10_1016_j_pscychresns_2016_04_009 crossref_primary_10_1073_pnas_1706587115 crossref_primary_10_1007_s11682_022_00754_2 crossref_primary_10_21501_16920945_4054 crossref_primary_10_1162_jocn_a_00340 crossref_primary_10_1016_j_jpain_2013_03_001 crossref_primary_10_3389_fnins_2024_1349512 crossref_primary_10_1016_j_heares_2020_108078 crossref_primary_10_1186_1471_244X_14_99 crossref_primary_10_1007_s00429_018_1765_3 crossref_primary_10_1093_brain_awy292 crossref_primary_10_1176_appi_ajp_20230270 crossref_primary_10_4103_0366_6999_176983 crossref_primary_10_1016_j_neuroimage_2021_118301 crossref_primary_10_1002_hbm_26802 crossref_primary_10_3389_fnhum_2019_00154 crossref_primary_10_1002_hbm_24627 crossref_primary_10_1007_s11682_018_9893_1 crossref_primary_10_1016_j_intell_2017_03_004 crossref_primary_10_1016_j_neuroimage_2015_04_053 crossref_primary_10_1016_j_neuroimage_2019_02_061 crossref_primary_10_1002_erv_2197 crossref_primary_10_1016_j_neubiorev_2022_104650 crossref_primary_10_1016_j_bandc_2014_03_013 crossref_primary_10_1371_journal_pone_0234321 crossref_primary_10_1016_j_eclinm_2019_01_012 crossref_primary_10_1176_appi_focus_19206 crossref_primary_10_3389_fnagi_2017_00014 crossref_primary_10_3389_fnins_2021_693242 crossref_primary_10_1016_j_bandl_2023_105287 crossref_primary_10_1007_s12078_022_09299_6 crossref_primary_10_1016_j_neubiorev_2021_12_035 crossref_primary_10_1016_j_neubiorev_2022_104643 crossref_primary_10_1016_j_addicn_2023_100089 crossref_primary_10_3389_fnagi_2023_1181558 crossref_primary_10_1002_eat_23160 crossref_primary_10_1016_j_neuropsychologia_2012_03_011 crossref_primary_10_1016_j_bandc_2020_105660 crossref_primary_10_1002_hbm_22629 crossref_primary_10_1016_j_fertnstert_2013_05_041 crossref_primary_10_1002_hbm_23952 crossref_primary_10_1016_j_pscychresns_2018_09_009 crossref_primary_10_3389_fmed_2024_1505440 crossref_primary_10_1002_hbm_22626 crossref_primary_10_1146_annurev_statistics_022513_115611 crossref_primary_10_1007_s00406_014_0516_6 crossref_primary_10_1176_appi_ajp_2020_20091340 crossref_primary_10_1371_journal_pone_0248909 crossref_primary_10_1016_j_neubiorev_2021_04_014 crossref_primary_10_1016_j_schres_2023_12_003 crossref_primary_10_1177_0301006621991953 crossref_primary_10_1016_j_biopsych_2012_06_029 crossref_primary_10_1038_pr_2014_31 crossref_primary_10_1016_j_pneurobio_2015_03_001 crossref_primary_10_1007_s12311_024_01660_7 crossref_primary_10_1192_bjp_197_1_76a crossref_primary_10_1016_j_neuroimage_2021_118732 crossref_primary_10_1007_s00429_024_02795_3 crossref_primary_10_1016_j_jad_2023_03_005 crossref_primary_10_1016_j_neuroimage_2021_118731 crossref_primary_10_1093_schbul_sbv146 crossref_primary_10_1016_j_neulet_2016_07_043 crossref_primary_10_1093_braincomms_fcae128 crossref_primary_10_1002_hbm_22417 crossref_primary_10_1016_j_pneurobio_2019_101718 crossref_primary_10_1371_journal_pone_0276140 crossref_primary_10_1016_j_neuropsychologia_2024_108947 crossref_primary_10_1177_20592043221109958 crossref_primary_10_1016_j_bandl_2014_06_003 crossref_primary_10_1111_biom_12713 crossref_primary_10_1016_j_neubiorev_2021_04_007 crossref_primary_10_1002_hbm_22649 crossref_primary_10_1016_j_clinph_2012_10_007 crossref_primary_10_3389_fpsyg_2015_01195 crossref_primary_10_1016_j_bandc_2016_07_007 crossref_primary_10_1016_j_jad_2023_04_028 crossref_primary_10_1016_j_neurobiolaging_2022_03_019 crossref_primary_10_1016_j_neuroimage_2020_117114 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1016_j_neubiorev_2022_104659 crossref_primary_10_1016_j_neuroimage_2020_117350 crossref_primary_10_1002_ejp_2251 crossref_primary_10_3233_JAD_191292 crossref_primary_10_1016_j_neuroimage_2013_02_063 crossref_primary_10_1016_j_biopsycho_2014_08_003 crossref_primary_10_1016_j_intell_2015_04_009 crossref_primary_10_1016_j_neuroimage_2011_10_012 crossref_primary_10_2967_jnumed_112_102939 crossref_primary_10_1198_jasa_2011_ap09735 crossref_primary_10_1097_j_pain_0000000000001519 crossref_primary_10_3389_fpsyg_2015_01138 crossref_primary_10_1016_j_neubiorev_2016_11_014 crossref_primary_10_1016_j_neuropsychologia_2018_06_023 crossref_primary_10_1016_j_neubiorev_2017_05_027 crossref_primary_10_1016_j_jad_2010_09_032 crossref_primary_10_1016_j_concog_2017_10_019 crossref_primary_10_1016_j_cortex_2022_02_010 crossref_primary_10_1002_bsl_2539 crossref_primary_10_1016_j_neuroimage_2016_12_023 crossref_primary_10_1007_s00429_014_0791_z crossref_primary_10_1109_TMI_2011_2122341 crossref_primary_10_1016_j_neuroimage_2011_11_050 crossref_primary_10_1016_j_neuropsychologia_2011_08_010 crossref_primary_10_1093_schbul_sbt063 crossref_primary_10_3389_fneur_2017_00739 crossref_primary_10_3389_fpsyt_2021_634015 crossref_primary_10_1016_j_neuroimage_2011_10_023 crossref_primary_10_3389_fnagi_2014_00231 crossref_primary_10_1016_j_neurobiolaging_2014_04_013 crossref_primary_10_1016_j_neuroimage_2011_09_017 crossref_primary_10_3389_fnbeh_2018_00270 crossref_primary_10_1523_JNEUROSCI_0003_10_2010 crossref_primary_10_1016_j_neuropsychologia_2012_02_007 crossref_primary_10_1176_appi_neuropsych_12060143 crossref_primary_10_1371_journal_pone_0106735 crossref_primary_10_1016_j_neuroimage_2015_03_072 crossref_primary_10_1111_ejn_14430 crossref_primary_10_1016_j_neuroimage_2023_119929 crossref_primary_10_1162_jocn_a_00401 crossref_primary_10_1016_j_nicl_2018_01_002 crossref_primary_10_1016_j_bpsc_2022_01_007 crossref_primary_10_1016_j_neuroimage_2016_12_037 crossref_primary_10_1002_hbm_22703 crossref_primary_10_1007_s00429_012_0380_y crossref_primary_10_1007_s11065_019_09414_7 crossref_primary_10_1016_j_neuroimage_2019_116259 crossref_primary_10_1192_bjp_bp_114_154393 crossref_primary_10_1093_cercor_bhae493 crossref_primary_10_1111_pcn_12055 crossref_primary_10_1016_j_neuroimage_2012_04_005 crossref_primary_10_1016_j_neubiorev_2024_105607 crossref_primary_10_1016_j_neuroimage_2022_119665 crossref_primary_10_1093_scan_nsx085 crossref_primary_10_3389_fpsyg_2023_1187092 crossref_primary_10_1016_j_neubiorev_2020_04_011 crossref_primary_10_1111_ejn_15534 crossref_primary_10_1002_brb3_1976 crossref_primary_10_1007_s00429_014_0803_z crossref_primary_10_1080_17470919_2023_2208879 crossref_primary_10_1002_nau_24221 crossref_primary_10_1016_j_brainres_2022_148200 crossref_primary_10_1016_j_neuroimage_2014_09_069 crossref_primary_10_1038_s42003_022_04028_x crossref_primary_10_1038_s41398_020_01128_2 crossref_primary_10_1007_s00429_016_1215_z crossref_primary_10_1016_j_plrev_2013_07_020 crossref_primary_10_1016_j_crneur_2022_100070 crossref_primary_10_1093_schbul_sbv221 crossref_primary_10_1007_s11682_025_00966_2 crossref_primary_10_3758_s13415_019_00763_7 crossref_primary_10_1162_jocn_2011_21624 crossref_primary_10_1016_j_neubiorev_2019_09_004 crossref_primary_10_1016_j_neubiorev_2019_09_003 crossref_primary_10_1016_j_neubiorev_2020_04_028 crossref_primary_10_1038_s41467_019_12756_8 crossref_primary_10_1161_STROKEAHA_114_008194 crossref_primary_10_1007_s00702_021_02352_w crossref_primary_10_1016_j_schres_2019_12_023 crossref_primary_10_1002_hbm_22727 crossref_primary_10_3389_fnagi_2021_693890 crossref_primary_10_1016_j_mri_2012_06_007 crossref_primary_10_1016_j_bandc_2015_04_006 crossref_primary_10_1016_j_neuroimage_2016_12_052 crossref_primary_10_1371_journal_pone_0128765 crossref_primary_10_1016_j_nicl_2016_04_001 crossref_primary_10_1016_j_nicl_2018_01_020 crossref_primary_10_1016_j_neuroimage_2021_118264 crossref_primary_10_3389_fpsyg_2018_01073 crossref_primary_10_1016_j_neubiorev_2013_12_004 crossref_primary_10_1016_j_neurobiolaging_2011_06_005 crossref_primary_10_1016_j_neubiorev_2015_02_007 crossref_primary_10_1007_s12021_023_09626_6 crossref_primary_10_1155_2015_204628 crossref_primary_10_3389_fpsyg_2022_853804 crossref_primary_10_1002_hbm_25191 crossref_primary_10_3389_fnins_2019_01037 crossref_primary_10_1002_hbm_26041 crossref_primary_10_1007_s11427_020_1822_4 crossref_primary_10_1038_tp_2016_218 crossref_primary_10_5665_sleep_3330 crossref_primary_10_1111_obr_12697 crossref_primary_10_1016_j_drugalcdep_2017_12_009 crossref_primary_10_1016_j_neubiorev_2011_10_008 crossref_primary_10_1016_j_pnpbp_2014_08_011 crossref_primary_10_1162_jocn_a_00838 crossref_primary_10_1016_j_psyneuen_2018_05_031 crossref_primary_10_1016_j_neubiorev_2020_05_004 crossref_primary_10_1016_j_schres_2013_01_004 crossref_primary_10_1093_cercor_bhab174 crossref_primary_10_1016_j_jsxm_2020_03_007 crossref_primary_10_1016_j_neuroimage_2011_12_051 crossref_primary_10_1111_bjop_12595 crossref_primary_10_3389_fpsyt_2016_00125 crossref_primary_10_1111_jon_13176 crossref_primary_10_3390_brainsci11111468 crossref_primary_10_1093_cercor_bhx121 crossref_primary_10_1186_1471_2202_13_119 crossref_primary_10_1016_j_cortex_2022_03_019 crossref_primary_10_3389_fnhum_2017_00154 crossref_primary_10_1111_adb_13257 crossref_primary_10_1016_j_smrv_2019_03_008 crossref_primary_10_1038_s41598_021_00139_3 crossref_primary_10_1002_hbm_26029 crossref_primary_10_1177_0269881117744995 crossref_primary_10_1002_jnr_25191 crossref_primary_10_1093_cercor_bhad121 crossref_primary_10_1093_cercor_bhz332 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1016_j_jns_2019_116548 crossref_primary_10_1093_cercor_bhy245 crossref_primary_10_1016_j_neubiorev_2019_08_012 crossref_primary_10_1016_j_neubiorev_2011_08_005 crossref_primary_10_1016_j_aip_2020_101690 crossref_primary_10_1016_j_neuroimage_2015_02_039 crossref_primary_10_1371_journal_pone_0231669 crossref_primary_10_1523_JNEUROSCI_5664_09_2010 crossref_primary_10_1016_j_jaac_2020_08_014 crossref_primary_10_1016_j_neuroimage_2018_10_077 crossref_primary_10_1097_WCO_0b013e3283532ca3 crossref_primary_10_1016_j_jalz_2011_12_006 crossref_primary_10_5665_sleep_4404 crossref_primary_10_3389_fnagi_2021_627919 crossref_primary_10_1016_j_neubiorev_2016_10_020 crossref_primary_10_3389_fnhum_2021_666179 crossref_primary_10_1002_hbm_22933 crossref_primary_10_1007_s11682_015_9387_3 crossref_primary_10_5498_wjp_v14_i7_1106 crossref_primary_10_1016_j_neubiorev_2020_05_008 crossref_primary_10_1038_s42003_022_03073_w crossref_primary_10_1016_j_biopsycho_2014_06_008 crossref_primary_10_1016_j_neuropsychologia_2017_11_033 crossref_primary_10_3389_fnint_2022_931292 crossref_primary_10_1007_s10803_020_04461_z crossref_primary_10_1016_j_neubiorev_2019_09_041 crossref_primary_10_1007_s00702_011_0606_9 crossref_primary_10_1017_S0033291715002895 crossref_primary_10_1192_j_eurpsy_2020_57 crossref_primary_10_1016_j_neuroimage_2021_118468 crossref_primary_10_1016_j_jneumeth_2022_109556 crossref_primary_10_1162_netn_a_00050 crossref_primary_10_3389_fnhum_2017_00375 crossref_primary_10_1016_j_jns_2021_117322 crossref_primary_10_1007_s00415_022_11363_w crossref_primary_10_1016_j_pscychresns_2012_05_006 crossref_primary_10_3389_fnbeh_2018_00289 crossref_primary_10_1016_j_neubiorev_2020_05_015 crossref_primary_10_3389_fpsyg_2015_00687 crossref_primary_10_1016_j_neuroimage_2013_12_024 crossref_primary_10_3389_fnhum_2015_00567 crossref_primary_10_1016_j_nicl_2013_05_010 crossref_primary_10_1097_MD_0000000000031206 crossref_primary_10_1016_j_cortex_2018_06_015 crossref_primary_10_1016_j_neuroimage_2019_07_001 crossref_primary_10_3389_fnhum_2020_00028 crossref_primary_10_1002_hbm_26240 crossref_primary_10_1007_s11065_023_09593_4 crossref_primary_10_1016_j_neubiorev_2012_01_003 crossref_primary_10_1016_j_neuroimage_2017_04_020 crossref_primary_10_3389_fnhum_2020_00276 crossref_primary_10_1093_cercor_bhs278 crossref_primary_10_1016_j_nicl_2012_11_004 crossref_primary_10_3389_fnins_2018_01021 crossref_primary_10_1016_j_neubiorev_2010_01_009 crossref_primary_10_1097_j_pain_0000000000002681 crossref_primary_10_1016_j_nicl_2014_11_004 crossref_primary_10_1016_j_neuroimage_2022_119473 crossref_primary_10_1080_14616734_2018_1465105 crossref_primary_10_3389_fnhum_2014_00344 crossref_primary_10_1002_brb3_3046 crossref_primary_10_1073_pnas_1904975116 crossref_primary_10_1002_brb3_3286 crossref_primary_10_1515_tnsci_2022_0299 crossref_primary_10_1016_j_neubiorev_2023_105393 crossref_primary_10_1038_s41598_019_40188_3 crossref_primary_10_1016_j_neuroimage_2019_116409 crossref_primary_10_1017_S0033291710001972 crossref_primary_10_1155_2015_419808 crossref_primary_10_1007_s00429_010_0298_1 crossref_primary_10_1016_j_neubiorev_2014_08_003 crossref_primary_10_1371_journal_pone_0058150 crossref_primary_10_1093_schbul_sbad044 crossref_primary_10_3758_s13415_011_0083_5 crossref_primary_10_1002_hbm_24049 crossref_primary_10_1016_j_neuroimage_2012_06_047 crossref_primary_10_1371_journal_pone_0167276 crossref_primary_10_1016_j_neuroimage_2013_12_019 crossref_primary_10_1002_ca_23244 crossref_primary_10_1016_j_neubiorev_2023_105165 crossref_primary_10_1371_journal_pone_0136553 crossref_primary_10_1093_scan_nsab003 crossref_primary_10_1007_s00259_021_05568_w crossref_primary_10_1159_000339528 crossref_primary_10_3389_fpsyt_2022_957685 crossref_primary_10_1007_s00429_010_0287_4 crossref_primary_10_1002_hbm_25170 crossref_primary_10_1093_scan_nsab007 crossref_primary_10_1098_rstb_2016_0018 crossref_primary_10_1016_j_neuroimage_2017_04_002 crossref_primary_10_1038_s41562_022_01371_1 crossref_primary_10_1371_journal_pone_0074657 crossref_primary_10_1007_s00429_018_1670_9 crossref_primary_10_14232_jeny_2024_1_6 crossref_primary_10_1007_s00429_015_1060_5 crossref_primary_10_1017_S0029665112000808 crossref_primary_10_1038_nrn3665 crossref_primary_10_1016_j_neubiorev_2021_01_001 crossref_primary_10_1016_j_neuroimage_2014_06_010 crossref_primary_10_1038_nrn3666 crossref_primary_10_1016_j_cortex_2023_10_008 crossref_primary_10_1016_j_neubiorev_2017_04_027 crossref_primary_10_1016_j_concog_2022_103307 crossref_primary_10_1007_s00429_011_0333_x crossref_primary_10_1016_j_cortex_2018_03_011 crossref_primary_10_1111_pcn_13530 crossref_primary_10_1016_j_neubiorev_2012_04_002 crossref_primary_10_1016_j_neubiorev_2023_105171 crossref_primary_10_1016_j_scib_2021_06_007 crossref_primary_10_1111_jsr_12857 crossref_primary_10_3758_s13415_014_0329_0 crossref_primary_10_1007_s00429_012_0467_5 crossref_primary_10_1016_j_neuroimage_2020_116858 crossref_primary_10_1016_j_crad_2019_07_005 crossref_primary_10_3389_fpsyg_2019_00804 crossref_primary_10_1016_j_neurobiolaging_2022_06_009 crossref_primary_10_1016_j_biopsycho_2019_04_006 crossref_primary_10_1016_j_neuroimage_2015_02_069 crossref_primary_10_1111_sjop_12023 crossref_primary_10_1162_imag_a_00116 crossref_primary_10_1162_imag_a_00358 crossref_primary_10_1093_schizbullopen_sgaa016 crossref_primary_10_1162_imag_a_00355 crossref_primary_10_1007_s11682_019_00215_3 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_1523_JNEUROSCI_1616_13_2013 crossref_primary_10_1007_s11682_023_00846_7 crossref_primary_10_1016_j_neubiorev_2020_07_001 crossref_primary_10_1111_jcpp_13412 crossref_primary_10_1016_j_neubiorev_2019_06_027 crossref_primary_10_1002_brb3_540 crossref_primary_10_1002_hbm_26444 crossref_primary_10_1177_0269881116668592 crossref_primary_10_1186_s12993_016_0100_5 crossref_primary_10_2147_PRBM_S453035 crossref_primary_10_1016_j_neuroimage_2022_119204 crossref_primary_10_1080_17588928_2011_604717 crossref_primary_10_3389_fnhum_2016_00333 crossref_primary_10_1176_appi_ajp_2021_21100987 crossref_primary_10_1007_s00429_012_0476_4 crossref_primary_10_1016_j_cortex_2013_05_011 crossref_primary_10_1093_schbul_sbq152 crossref_primary_10_1016_j_neulet_2014_12_007 crossref_primary_10_1016_j_neuroimage_2011_11_095 crossref_primary_10_1007_s00406_015_0631_z crossref_primary_10_1016_j_neubiorev_2013_10_008 crossref_primary_10_1002_hbm_24018 crossref_primary_10_1016_j_jelekin_2017_12_005 crossref_primary_10_1016_j_neuroimage_2024_120824 crossref_primary_10_1016_j_neubiorev_2018_10_003 crossref_primary_10_3389_fnbeh_2024_1457663 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1016_j_neuroimage_2012_04_060 crossref_primary_10_1016_j_neubiorev_2013_10_002 crossref_primary_10_1162_imag_a_00321 crossref_primary_10_1016_j_neubiorev_2023_105355 crossref_primary_10_1111_1460_6984_12987 crossref_primary_10_1002_hbm_24492 crossref_primary_10_1016_j_neubiorev_2018_10_016 crossref_primary_10_1002_hbm_25103 crossref_primary_10_1002_hbm_24496 crossref_primary_10_1016_j_dib_2018_10_142 crossref_primary_10_3389_fnana_2020_00002 crossref_primary_10_1016_j_neuroimage_2014_06_007 crossref_primary_10_1016_j_neuroimage_2020_116834 crossref_primary_10_1038_s41598_021_84804_7 crossref_primary_10_1007_s11682_015_9456_7 crossref_primary_10_1093_cercor_bhu250 crossref_primary_10_3233_JIN_170015 crossref_primary_10_1016_j_neurobiolaging_2009_11_008 crossref_primary_10_1002_aur_235 crossref_primary_10_1007_s00737_018_0878_2 crossref_primary_10_1016_j_neubiorev_2014_06_010 crossref_primary_10_1007_s10803_020_04794_9 crossref_primary_10_1016_j_neuroscience_2012_03_028 crossref_primary_10_1523_JNEUROSCI_1748_17_2017 crossref_primary_10_1016_j_schres_2019_11_029 crossref_primary_10_1002_brb3_3272 crossref_primary_10_1002_hbm_24047 crossref_primary_10_1007_s11682_017_9756_1 crossref_primary_10_1016_j_nicl_2021_102605 crossref_primary_10_1080_10400419_2023_2269356 crossref_primary_10_1214_14_AOAS757 crossref_primary_10_1016_j_neuropsychologia_2024_109003 crossref_primary_10_1016_j_physbeh_2024_114481 crossref_primary_10_1111_odi_12819 crossref_primary_10_1016_j_nicl_2019_102114 crossref_primary_10_1007_s00429_022_02572_0 crossref_primary_10_1093_chemse_bjaa067 crossref_primary_10_1038_s41398_020_01115_7 crossref_primary_10_1093_cercor_bhu044 crossref_primary_10_1002_da_22478 crossref_primary_10_1016_j_neuron_2011_12_027 crossref_primary_10_1111_jnc_15990 crossref_primary_10_1016_j_cortex_2024_05_015 crossref_primary_10_1016_j_neubiorev_2014_06_006 crossref_primary_10_1016_j_neuroimage_2012_05_058 crossref_primary_10_1038_s41598_024_69973_5 crossref_primary_10_1007_s00429_016_1239_4 crossref_primary_10_1007_s11682_022_00680_3 crossref_primary_10_1016_j_bandc_2012_05_004 crossref_primary_10_1016_j_bandl_2016_05_013 crossref_primary_10_1016_j_dcn_2017_08_002 crossref_primary_10_1016_j_jfludis_2017_02_003 crossref_primary_10_1016_j_pscychresns_2022_111516 crossref_primary_10_1007_s13596_017_0266_x crossref_primary_10_3724_SP_J_1042_2022_00255 crossref_primary_10_1016_j_jpsychires_2019_10_018 crossref_primary_10_1002_hbm_24031 crossref_primary_10_1371_journal_pone_0113885 crossref_primary_10_1016_j_neubiorev_2019_06_012 crossref_primary_10_1016_j_biopsycho_2016_07_015 crossref_primary_10_1016_j_neuropsychologia_2016_05_025 crossref_primary_10_3389_fpsyg_2023_1136983 crossref_primary_10_1016_j_nicl_2019_102129 crossref_primary_10_1371_journal_pone_0286969 crossref_primary_10_1007_s00429_019_02007_3 crossref_primary_10_3389_fpsyt_2022_969206 crossref_primary_10_1111_joor_13397 crossref_primary_10_1016_j_neuroimage_2013_11_001 crossref_primary_10_1111_j_1743_6109_2011_02322_x crossref_primary_10_1002_brb3_329 crossref_primary_10_1016_j_neubiorev_2020_07_006 |
Cites_doi | 10.1111/j.1460-9568.2003.03066.x 10.1006/nimg.2000.0659 10.1080/00207450490512650 10.1073/pnas.83.4.1140 10.1073/pnas.221462998 10.1093/cercor/bhi105 10.1007/s10548-007-0037-y 10.1016/S0987-7053(00)00227-6 10.1016/S0278-5846(01)00271-8 10.1002/hbm.20006 10.1006/nimg.1999.0482 10.1523/JNEUROSCI.23-10-03963.2003 10.1007/s00429-008-0195-z 10.1016/S0306-4522(98)00744-1 10.1002/hbm.20132 10.1016/S0925-4927(98)00023-7 10.1097/00004647-199609000-00001 10.1152/jn.1998.79.2.1070 10.1002/hbm.10016 10.1007/s00221-005-0059-1 10.1016/j.jneumeth.2004.07.014 10.1093/cercor/bhi089 10.1212/WNL.48.4.1056 10.1002/(SICI)1097-0193(1999)8:2/3<143::AID-HBM12>3.0.CO;2-9 10.1152/jn.00132.2002 10.1093/brain/122.3.483 10.1093/cercor/bhi106 10.1002/ana.21228 10.1093/scan/nsm015 10.1016/j.neuroimage.2006.12.029 10.1007/s002210000402 10.1097/00001756-199601310-00021 10.1016/j.neuroimage.2008.01.065 10.1016/j.neuroimage.2003.12.031 10.1016/j.brainres.2006.11.074 10.1006/nimg.2002.1131 10.1016/j.neuroimage.2007.07.005 10.1162/089892905774589190 10.1093/cercor/bhj181 10.1002/hbm.20267 10.1093/cercor/bhj075 10.1016/j.neuroimage.2004.03.052 10.1006/nimg.1999.0483 10.1002/hbm.20125 10.1006/nimg.1998.0397 10.1007/s00221-004-2008-9 10.1006/nimg.1996.0025 10.1006/nimg.1998.0426 10.1097/00004647-199609000-00004 10.1006/nimg.2000.0621 10.1007/s002210100796 10.1002/hbm.20053 10.1097/00001756-200004270-00031 10.1002/hbm.1058 10.1007/978-1-4615-2546-2_48 10.1152/jn.1991.65.6.1392 10.1016/j.neuroimage.2004.07.013 10.1093/brain/121.2.253 10.1006/nimg.2001.1037 10.1161/01.STR.32.1.139 10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0.CO;2-7 10.1016/S0028-3932(99)00062-7 10.1016/j.neuroimage.2007.03.061 10.1016/j.neuroimage.2003.10.019 10.1523/JNEUROSCI.17-24-09667.1997 10.1109/TMI.2003.816961 10.1016/j.neuroimage.2004.12.034 10.1093/cercor/10.11.1093 10.1016/S0926-6410(00)00022-7 10.1152/jn.2000.83.2.1079 10.1037/0894-4105.19.4.484 10.1016/S0896-6273(01)00423-8 10.1038/nn1263 10.1016/j.biopsych.2004.12.017 10.1002/hbm.20136 10.1016/j.neuroimage.2008.03.048 10.1006/nimg.1998.0333 10.3758/CABN.1.2.119 10.1016/j.neuroimage.2005.01.037 10.1006/nimg.2001.0858 10.3758/CABN.3.4.255 10.1523/JNEUROSCI.16-08-02691.1996 10.1097/00006534-200110000-00005 10.1093/cercor/bhm116 10.1016/j.neuroimage.2006.05.021 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. 2009 INIST-CNRS 2009 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2009 INIST-CNRS – notice: 2009 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 5PM |
DOI | 10.1002/hbm.20718 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | ALE Meta‐Analysis Based on Spatial Uncertainty |
EISSN | 1097-0193 |
EndPage | 2926 |
ExternalDocumentID | PMC2872071 19172646 21839352 10_1002_hbm_20718 HBM20718 ark_67375_WNG_R5V21TTD_F |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Mental Health – fundername: National Institute of Neurological Disorders and Stroke – fundername: National Institute of Biomedical Imaging and Bioengineering – fundername: Human Brain Project of the NIMH funderid: R01‐MH074457‐01A1 – fundername: Deutsche Forschungsgemeinschaft funderid: KFO‐112 – fundername: NIMH NIH HHS grantid: R01 MH074457 – fundername: NIMH NIH HHS grantid: R01-MH074457-01A1 – fundername: NIMH NIH HHS grantid: R56 MH074457 – fundername: Human Brain Project of the NIMH grantid: R01‐MH074457‐01A1 – fundername: Deutsche Forschungsgemeinschaft grantid: KFO‐112 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION 7X7 8FI 8FJ AAMMB ABEML ABJNI ABUWG ACCMX ACSCC AEFGJ AFKRA AGXDD AIDQK AIDYY BENPR CCPQU EBD EMOBN FYUFA GAKWD HMCUK IAO IHR IQODW ITC M6M PHGZM PHGZT PIMPY RIWAO RJQFR SAMSI SV3 UKHRP WXSBR CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c6118-b9106455c529de082d6716ffc6d87820ac2e5b04da6720a23f042787d8c43dde3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:09:24 EDT 2025 Fri Jul 11 03:28:05 EDT 2025 Fri Jul 11 16:25:50 EDT 2025 Fri Jul 11 03:07:05 EDT 2025 Mon Jul 21 06:06:08 EDT 2025 Mon Jul 21 09:14:19 EDT 2025 Tue Jul 01 04:25:56 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Wed Jan 22 16:26:30 EST 2025 Wed Oct 30 09:50:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Human Data analysis Uncertainty Nervous system diseases Radiodiagnosis Estimation Variability random-effects Nuclear magnetic resonance imaging Variance fMRI Random effect Surgical approach between-subject variability Positron emission tomography Activation analysis PET Emission tomography permutation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2009 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6118-b9106455c529de082d6716ffc6d87820ac2e5b04da6720a23f042787d8c43dde3 |
Notes | National Institute of Neurological Disorders and Stroke Deutsche Forschungsgemeinschaft - No. KFO-112 ArticleID:HBM20718 National Institute of Mental Health Human Brain Project of the NIMH - No. R01-MH074457-01A1 istex:17BE230EE65D397C194C7EB7F1A1DAF9956FF63E National Institute of Biomedical Imaging and Bioengineering ark:/67375/WNG-R5V21TTD-F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2872071 |
PMID | 19172646 |
PQID | 67616284 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2872071 proquest_miscellaneous_754550808 proquest_miscellaneous_745936878 proquest_miscellaneous_67616284 pubmed_primary_19172646 pascalfrancis_primary_21839352 crossref_primary_10_1002_hbm_20718 crossref_citationtrail_10_1002_hbm_20718 wiley_primary_10_1002_hbm_20718_HBM20718 istex_primary_ark_67375_WNG_R5V21TTD_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2009 |
PublicationDateYYYYMMDD | 2009-09-15 |
PublicationDate_xml | – month: 09 year: 2009 text: 15 September 2009 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Jancke L,Specht K,Mirzazade S,Peters M ( 1999): The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study. Neuroimage 9: 497-507. Walters NB,Eickhoff SB,Schleicher A,Zilles K,Amunts K,Egan GF,Watson JDG: Observer independent analysis of high-resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas. Hum Brain Mapp 2007; 28: 1-8. Eickhoff SB,Amunts K,Mohlberg H,Zilles K ( 2006a): The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex 16: 268-279. Fox PT,Raichle ME ( 1986): Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140-1144. Joliot M,Crivello F,Badier JM,Diallo B,Tzourio N,Mazoyer B ( 1998): Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. Neuroimage 7: 337-351. Kawashima R,Inoue K,Sugiura M,Okada K,Ogawa A,Fukuda H ( 1999): A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92: 107-112. Heim S,Eickhoff SB,Ischebeck AK,Friederici AD,Stephan KE,Amunts K: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp [Epub ahead of print] DOI.10.1002/hbm.20512 Mattay VS,Callicott JH,Bertolino A,Santha AK,Van Horn JD,Tallent KA,Frank JA,Weinberger DR ( 1998): Hemispheric control of motor function: A whole brain echo planar fMRI study. Psychiatry Res 83: 7-22. Kuhtz-Buschbeck JP,Mahnkopf C,Holzknecht C,Siebner H,Ulmer S,Jansen O ( 2003): Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387. Eickhoff SB,Schleicher A,Zilles K,Amunts K ( 2006b): The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex 16: 254-267. Seghier ML,Lazeyras F,Pegna AJ,Annoni JM,Zimine I,Mayer E,Michel CM,Khateb A ( 2004): Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp 23: 140-155. Xiong J,Rao S,Jerabek P,Zamarripa F,Woldorff M,Lancaster J,Fox PT ( 2000): Intersubject variability in cortical activations during a complex language task. Neuroimage 12: 326-339. Scheperjans F,Hermann K,Eickhoff SB,Amunts K,Schleicher A,Zilles K ( 2007): Observer-Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex. Cerebral Cortex.2008; 18: 846-867. Gosain AK,Birn RM,Hyde JS ( 2001): Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging. Plast Reconstr Surg 108: 1136-1144. Ramsey NF,Kirkby BS,Van GP,Berman KF,Duyn JH,Frank JA,Mattay VS,Van Horn JD,Esposito G,Moonen CT,Weinberger DR ( 1996): Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab 16: 755-764. Blinkenberg M,Bonde C,Holm S,Svarer C,Andersen J,Paulson OB,Law I ( 1996): Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study. J Cereb Blood Flow Metab 16: 794-803. Larsson J,Gulyas B,Roland PE ( 1996): Cortical representation of self-paced finger movement. Neuroreport 7: 463-468. Ardekani BA,Guckemus S,Bachman A,Hoptman MJ,Wojtaszek M,Nierenberg J ( 2005): Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67-76. Hellier P,Barillot C,Corouge I,Gibaud B,Le GG,Collins DL,Evans A,Malandain G,Ayache N,Christensen GE,Johnson HJ ( 2003): Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22: 1120-1130. Wager TD,Lindquist M,Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158. Malikovic A,Amunts K,Schleicher A,Mohlberg H,Eickhoff SB,Wilms M,Palomero-Gallagher N,Armstrong E,Zilles K ( 2007): Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cerebral Cortex 17: 562-574. Colebatch JG,Deiber MP,Passingham RE,Friston KJ,Frackowiak RS ( 1991): Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392-1401. Fox PT,Huang AY,Parsons LM,Xiong JH,Rainey L,Lancaster JL ( 1999): Functional volumes modeling: Scaling for group size in averaged images. Hum Brain Mapp 8: 143-150. Feredoes E,Postle BR ( 2007): Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single-subject and group-averaged approaches to fMRI group analysis. Neuroimage 35: 881-903. Vogt S,Buccino G,Wohlschlager AM,Canessa N,Shah NJ,Zilles K,Eickhoff SB,Freund HJ,Rizzolatti G,Fink GR ( 2007): Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 37: 1371-1383. Caspers S,Eickhoff SB,Geyer S,Scheperjans F,Mohlberg H,Zilles K,Amunts K ( 2008): The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212: 481-495. Sadato N,Campbell G,Ibanez V,Deiber M,Hallett M ( 1996): Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16: 2691-2700. Grefkes C,Nowak DA,Eickhoff SB,Dafotakis M,Kust J,Karbe H,Fink GR ( 2008b): Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236-246. Booth JR,Wood L,Lu D,Houk JC,Bitan T ( 2007): The role of the basal ganglia and cerebellum in language processing. Brain Res 1133: 136-144. la-Justina HM,Pastorello BF,Santos-Pontelli TE,Pontes-Neto OM,Santos AC,Baffa O,Colafemina JF,Leite JP,de Araujo DB ( 2008): Human variability of FMRI brain activation in response to oculomotor stimuli. Brain Topogr 20: 113-121. Lutz K,Specht K,Shah NJ,Jancke L ( 2000): Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11: 1301-1306. Stark CE,Squire LR ( 2001): When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA 98: 12760-12766. Clark VP,Keil K,Maisog JM,Courtney S,Ungerleider LG,Haxby JV ( 1996): Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography. Neuroimage 4: 1-15. Nichols TE,Holmes AP ( 2002): Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp 15: 1-25. Rizzolatti G,Luppino G ( 2001): The cortical motor system. Neuron 31: 889-901. Fox PT,Huang A,Parsons LM,Xiong JH,Zamarippa F,Rainey L,Lancaster JL ( 2001): Location-probability profiles for the mouth region of human primary motor-sensory cortex: Model and validation. Neuroimage 13: 196-209. Aoki T,Tsuda H,Takasawa M,Osaki Y,Oku N,Hatazawa J,Kinoshita H ( 2005): The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study. Exp Brain Res 160: 375-383. Genovese CR,Lazar NA,Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. Indovina I,Sanes JN ( 2001): Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 140: 265-279. Catalan MJ,Honda M,Weeks RA,Cohen LG,Hallett M ( 1998): The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(Pt 2): 253-264. Jancke L,Loose R,Lutz K,Specht K,Shah NJ ( 2000a): Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 10: 51-66. Laird AR,Fox PM,Price CJ,Glahn DC,Uecker AM,Lancaster JL,Turkeltaub PE,Kochunov P,Fox PT ( 2005): ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164. Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233. Raemaekers M,Vink M,Zandbelt B,van Wezel RJ,Kahn RS,Ramsey NF ( 2007): Test-retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage.2007; 36: 532-542. Wilson SM,Saygin AP,Sereno MI,Iacoboni M ( 2004): Listening to speech activates motor areas involved in speech production. Nat Neurosci 7: 701-702. Joseph JE ( 2001): Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cogn Affect Behav Neurosci 1: 119-136. Wager TD,Smith EE ( 2003): Neuroimaging studies of working memory: A meta-analysis. Cogn Affect Behav Neurosci 3: 255-274. Hasnain MK,Fox PT,Woldorff MG ( 1998): Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp 6: 301-315. Aramaki Y,Honda M,Okada T,Sadato N ( 2006): Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex 16: 1338-1348. Laird AR,Robbins JM,Li K,Price LR,Cykowski MD,Narayana S,Laird RW,Franklin C,Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. Neuroimage 41: 424-436. Joliot M,Papathanassiou D,Mellet E,Quinton O,Mazoyer N,Courtheoux P,Mazoyer B ( 1999): FMRI and PET of self-paced finger movement: Comparison of intersubject stereotaxic averaged data. Neuroimage 10: 430-447. Hanakawa T,Immisch I,Toma K,Dimyan MA,Van GP,Hallett M ( 2003): Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002. Calautti C,Serrati C,Baron JC ( 2001): Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study. Stroke 32: 139-146. Boecker H,Dagher A,Ceballos-Baumann AO,Passingham RE,Samuel M,Friston KJ,Poline J,Dettmers C,Conr 2004; 21 2002; 16 2004; 22 2002; 15 2001; 140 2006; 32 1997; 48 2004; 7 2004; 23 2003; 18 1999; 122 1998; 83 2000; 133 2001; 108 2005; 26 2003; 93 2000a; 10 2007; 35 2007; 36 2006a; 16 2007; 37 2005; 25 2008a; 41 2007; 28 2007; 212 1986; 83 2005; 142 2007; 1133 2000; 12 2000; 10 2000; 11 2006b; 16 2003; 3 1997; 17 1999; 10 2007; 2 2008; 20 1996; 4 1998; 121 1999; 92 2001; 13 2001; 14 2003; 89 1996; 7 2001; 98 2007; 17 2007; 18 2006; 16 2005; 115 2008b; 63 1994 2003 1999; 8 1996; 16 1999; 9 2005; 160 2002; 26 2000b; 38 2005; 19 1991; 65 2005; 167 2000; 30 2000; 83 2001; 1 2008; 41 2008; 212 1998; 7 1998; 6 2005; 17 2005; 57 2003; 22 2001; 31 1998; 79 2001; 32 2003; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Penny WD (e_1_2_7_68_1) 2003 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 Rottschy C (e_1_2_7_75_1) 2007; 212 Zilles K (e_1_2_7_92_1) 2003; 93 e_1_2_7_49_1 e_1_2_7_28_1 Kiebel S (e_1_2_7_52_1) 2003 Sadato N (e_1_2_7_77_1) 1996; 16 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Heim S (e_1_2_7_41_1) e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Ashburner J (e_1_2_7_6_1) 2003 |
References_xml | – reference: Yoo SS,Wei X,Dickey CC,Guttmann CR,Panych LP ( 2005): Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci 115: 55-77. – reference: Wager TD,Jonides J,Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. Neuroimage 22: 1679-1693. – reference: Laird AR,Fox PM,Price CJ,Glahn DC,Uecker AM,Lancaster JL,Turkeltaub PE,Kochunov P,Fox PT ( 2005): ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164. – reference: Peyron R,Laurent B,Garcia-Larrea L ( 2000): Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30: 263-288. – reference: Mechelli A,Crinion JT,Long S,Friston KJ,Lambon Ralph MA,Patterson K,McClelland JL,Price CJ ( 2005): Dissociating reading processes on the basis of neuronal interactions. J Cogn Neurosci 17: 1753-1765. – reference: Otzenberger H,Gounot D,Marrer C,Namer IJ,Metz-Lutz MN ( 2005): Reliability of individual functional MRI brain mapping of language. Neuropsychology 19: 484-493. – reference: Wager TD,Lindquist M,Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158. – reference: Scheperjans F,Hermann K,Eickhoff SB,Amunts K,Schleicher A,Zilles K ( 2007): Observer-Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex. Cerebral Cortex.2008; 18: 846-867. – reference: Ramsey NF,Kirkby BS,Van GP,Berman KF,Duyn JH,Frank JA,Mattay VS,Van Horn JD,Esposito G,Moonen CT,Weinberger DR ( 1996): Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab 16: 755-764. – reference: Sadato N,Campbell G,Ibanez V,Deiber M,Hallett M ( 1996): Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16: 2691-2700. – reference: Joliot M,Papathanassiou D,Mellet E,Quinton O,Mazoyer N,Courtheoux P,Mazoyer B ( 1999): FMRI and PET of self-paced finger movement: Comparison of intersubject stereotaxic averaged data. Neuroimage 10: 430-447. – reference: Nichols TE,Holmes AP ( 2002): Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp 15: 1-25. – reference: Catalan MJ,Honda M,Weeks RA,Cohen LG,Hallett M ( 1998): The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(Pt 2): 253-264. – reference: Wager TD,Smith EE ( 2003): Neuroimaging studies of working memory: A meta-analysis. Cogn Affect Behav Neurosci 3: 255-274. – reference: Feredoes E,Postle BR ( 2007): Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single-subject and group-averaged approaches to fMRI group analysis. Neuroimage 35: 881-903. – reference: Rottschy C,Eickhoff SB,Schleicher A,Mohlberg H,Kujovic M,Zilles K,Amunts K ( 2007): The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 212: 255-267. – reference: Joseph JE ( 2001): Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cogn Affect Behav Neurosci 1: 119-136. – reference: Larsson J,Gulyas B,Roland PE ( 1996): Cortical representation of self-paced finger movement. Neuroreport 7: 463-468. – reference: Lehericy S,Bardinet E,Tremblay L,Van de Moortele PF,Pochon JB,Dormont D,Kim DS,Yelnik J,Ugurbil K ( 2006): Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex 16: 149-161. – reference: Eickhoff SB,Schleicher A,Zilles K,Amunts K ( 2006b): The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex 16: 254-267. – reference: la-Justina HM,Pastorello BF,Santos-Pontelli TE,Pontes-Neto OM,Santos AC,Baffa O,Colafemina JF,Leite JP,de Araujo DB ( 2008): Human variability of FMRI brain activation in response to oculomotor stimuli. Brain Topogr 20: 113-121. – reference: Zilles K,Eickhoff S,Palomero-Gallagher N ( 2003): The human parietal cortex: A novel approach to its architectonic mapping. Adv Neurol 93: 1-21. – reference: De Luca M,Smith S,De Stefano N,Federico A,Matthews PM ( 2005): Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167: 587-594. – reference: Seitz RJ,Stephan KM,Binkofski F ( 2000): Control of action as mediated by the human frontal lobe. Exp Brain Res 133: 71-80. – reference: Colebatch JG,Deiber MP,Passingham RE,Friston KJ,Frackowiak RS ( 1991): Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392-1401. – reference: Genovese CR,Lazar NA,Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. – reference: Price CJ,Devlin JT,Moore CJ,Morton C,Laird AR ( 2005): Meta-analyses of object naming: Effect of baseline. Hum Brain Mapp 25: 70-82. – reference: Jancke L,Specht K,Mirzazade S,Peters M ( 1999): The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study. Neuroimage 9: 497-507. – reference: Raemaekers M,Vink M,Zandbelt B,van Wezel RJ,Kahn RS,Ramsey NF ( 2007): Test-retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage.2007; 36: 532-542. – reference: Indovina I,Sanes JN ( 2001): Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 140: 265-279. – reference: Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233. – reference: Calautti C,Serrati C,Baron JC ( 2001): Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study. Stroke 32: 139-146. – reference: Jancke L,Peters M,Himmelbach M,Nosselt T,Shah J,Steinmetz H ( 2000b): fMRI study of bimanual coordination. Neuropsychologia 38: 164-174. – reference: Gelnar PA,Krauss BR,Sheehe PR,Szeverenyi NM,Apkarian AV ( 1999): A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10: 460-482. – reference: Joliot M,Crivello F,Badier JM,Diallo B,Tzourio N,Mazoyer B ( 1998): Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. Neuroimage 7: 337-351. – reference: Laird AR,Robbins JM,Li K,Price LR,Cykowski MD,Narayana S,Laird RW,Franklin C,Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. Neuroimage 41: 424-436. – reference: Denslow S,Lomarev M,George MS,Bohning DE ( 2005): Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: An interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57: 752-760. – reference: Fox PT,Huang AY,Parsons LM,Xiong JH,Rainey L,Lancaster JL ( 1999): Functional volumes modeling: Scaling for group size in averaged images. Hum Brain Mapp 8: 143-150. – reference: Sadato N,Yonekura Y,Waki A,Yamada H,Ishii Y ( 1997): Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17: 9667-9674. – reference: Farrell MJ,Laird AR,Egan GF ( 2005): Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. Hum Brain Mapp 25: 129-139. – reference: Rounis E,Lee L,Siebner HR,Rowe JB,Friston KJ,Rothwell JC,Frackowiak RS ( 2005): Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage 26: 164-176. – reference: Walters NB,Eickhoff SB,Schleicher A,Zilles K,Amunts K,Egan GF,Watson JDG: Observer independent analysis of high-resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas. Hum Brain Mapp 2007; 28: 1-8. – reference: Caspers S,Eickhoff SB,Geyer S,Scheperjans F,Mohlberg H,Zilles K,Amunts K ( 2008): The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212: 481-495. – reference: Malikovic A,Amunts K,Schleicher A,Mohlberg H,Eickhoff SB,Wilms M,Palomero-Gallagher N,Armstrong E,Zilles K ( 2007): Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cerebral Cortex 17: 562-574. – reference: Jancke L,Loose R,Lutz K,Specht K,Shah NJ ( 2000a): Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 10: 51-66. – reference: Gerardin E,Sirigu A,Lehericy S,Poline JB,Gaymard B,Marsault C,Agid Y,Le BD ( 2000): Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10: 1093-1104. – reference: Seghier ML,Lazeyras F,Pegna AJ,Annoni JM,Zimine I,Mayer E,Michel CM,Khateb A ( 2004): Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp 23: 140-155. – reference: Aoki T,Tsuda H,Takasawa M,Osaki Y,Oku N,Hatazawa J,Kinoshita H ( 2005): The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study. Exp Brain Res 160: 375-383. – reference: Xiong J,Rao S,Jerabek P,Zamarripa F,Woldorff M,Lancaster J,Fox PT ( 2000): Intersubject variability in cortical activations during a complex language task. Neuroimage 12: 326-339. – reference: Rizzolatti G,Luppino G ( 2001): The cortical motor system. Neuron 31: 889-901. – reference: Boecker H,Dagher A,Ceballos-Baumann AO,Passingham RE,Samuel M,Friston KJ,Poline J,Dettmers C,Conrad B,Brooks DJ ( 1998): Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H2 15O PET. J Neurophysiol 79: 1070-1080. – reference: Eickhoff SB,Amunts K,Mohlberg H,Zilles K ( 2006a): The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex 16: 268-279. – reference: Muller JL,Roder CH,Schuierer G,Klein H ( 2002): Motor-induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study. Prog Neuropsychopharmacol Biol Psychiatry 26: 421-426. – reference: Amunts K,Weiss PH,Mohlberg H,Pieperhoff P,Eickhoff S,Gurd J,Marshall JC,Shah NJ,Fink GR,Zilles K ( 2004): Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space-The roles of Brodmann areas 44 and 45. Neuroimage 22: 42-56. – reference: Hammers A,Koepp MJ,Free SL,Brett M,Richardson MP,Labbe C,Cunningham VJ,Brooks DJ,Duncan J ( 2002): Implementation and application of a brain template for multiple volumes of interest. Hum Brain Mapp 15: 165-174. – reference: Aramaki Y,Honda M,Okada T,Sadato N ( 2006): Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex 16: 1338-1348. – reference: Fox PT,Huang A,Parsons LM,Xiong JH,Zamarippa F,Rainey L,Lancaster JL ( 2001): Location-probability profiles for the mouth region of human primary motor-sensory cortex: Model and validation. Neuroimage 13: 196-209. – reference: Catalan MJ,Ishii K,Honda M,Samii A,Hallett M ( 1999): A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain 122 (Pt 3): 483-495. – reference: Clark VP,Keil K,Maisog JM,Courtney S,Ungerleider LG,Haxby JV ( 1996): Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography. Neuroimage 4: 1-15. – reference: Grefkes C,Nowak DA,Eickhoff SB,Dafotakis M,Kust J,Karbe H,Fink GR ( 2008b): Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236-246. – reference: Hanakawa T,Immisch I,Toma K,Dimyan MA,Van GP,Hallett M ( 2003): Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002. – reference: Eickhoff SB,Stephan KE,Mohlberg H,Grefkes C,Fink GR,Amunts K,Zilles K ( 2005): A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25: 1325-1335. – reference: Hellier P,Barillot C,Corouge I,Gibaud B,Le GG,Collins DL,Evans A,Malandain G,Ayache N,Christensen GE,Johnson HJ ( 2003): Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22: 1120-1130. – reference: Stark CE,Squire LR ( 2001): When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA 98: 12760-12766. – reference: Grefkes C,Eickhoff SB,Nowak DA,Dafotakis M,Fink GR ( 2008a): Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41: 1382-1394. – reference: Hasnain MK,Fox PT,Woldorff MG ( 1998): Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp 6: 301-315. – reference: Kawashima R,Okuda J,Umetsu A,Sugiura M,Inoue K,Suzuki K,Tabuchi M,Tsukiura T,Narayan SL,Nagasaka T,Yanagawa I,Fujii T,Takahashi S,Fukuda H,Yamadori A ( 2000): Human cerebellum plays an important role in memory-timed finger movement: An fMRI study. J Neurophysiol 83: 1079-1087. – reference: Grachev ID,Berdichevsky D,Rauch SL,Heckers S,Kennedy DN,Caviness VS,Alpert NM ( 1999): A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. Neuroimage 9: 250-268. – reference: Grefkes C,Geyer S,Schormann T,Roland P,Zilles K ( 2001): Human somatosensory area 2: Observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14: 617-631. – reference: Bookheimer SY,Zeffiro TA,Blaxton T,Malow BA,Gaillard WD,Sato S,Kufta C,Fedio P,Theodore WH ( 1997): A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology 48: 1056-1065. – reference: Booth JR,Wood L,Lu D,Houk JC,Bitan T ( 2007): The role of the basal ganglia and cerebellum in language processing. Brain Res 1133: 136-144. – reference: Blinkenberg M,Bonde C,Holm S,Svarer C,Andersen J,Paulson OB,Law I ( 1996): Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study. J Cereb Blood Flow Metab 16: 794-803. – reference: Fox PT,Narayana S,Tandon N,Sandoval H,Fox SP,Kochunov P,Lancaster JL ( 2004): Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22: 1-14. – reference: Logothetis NK ( 2003): The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23: 3963-3971. – reference: Mattay VS,Callicott JH,Bertolino A,Santha AK,Van Horn JD,Tallent KA,Frank JA,Weinberger DR ( 1998): Hemispheric control of motor function: A whole brain echo planar fMRI study. Psychiatry Res 83: 7-22. – reference: Gosain AK,Birn RM,Hyde JS ( 2001): Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging. Plast Reconstr Surg 108: 1136-1144. – reference: Heim S,Eickhoff SB,Ischebeck AK,Friederici AD,Stephan KE,Amunts K: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp [Epub ahead of print] DOI.10.1002/hbm.20512 – reference: Wilson SM,Saygin AP,Sereno MI,Iacoboni M ( 2004): Listening to speech activates motor areas involved in speech production. Nat Neurosci 7: 701-702. – reference: Kuhtz-Buschbeck JP,Mahnkopf C,Holzknecht C,Siebner H,Ulmer S,Jansen O ( 2003): Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387. – reference: Turkeltaub PE,Eden GF,Jones KM,Zeffiro TA ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16: 765-780. – reference: Fox PT,Raichle ME ( 1986): Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140-1144. – reference: Riecker A,Groschel K,Ackermann H,Steinbrink C,Witte O,Kastrup A ( 2006): Functional significance of age-related differences in motor activation patterns. Neuroimage 32: 1345-1354. – reference: Ardekani BA,Guckemus S,Bachman A,Hoptman MJ,Wojtaszek M,Nierenberg J ( 2005): Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67-76. – reference: Vogt S,Buccino G,Wohlschlager AM,Canessa N,Shah NJ,Zilles K,Eickhoff SB,Freund HJ,Rizzolatti G,Fink GR ( 2007): Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 37: 1371-1383. – reference: Kawashima R,Inoue K,Sugiura M,Okada K,Ogawa A,Fukuda H ( 1999): A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92: 107-112. – reference: Lutz K,Specht K,Shah NJ,Jancke L ( 2000): Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11: 1301-1306. – reference: Lerner A,Shill H,Hanakawa T,Bushara K,Goldfine A,Hallett M ( 2004): Regional cerebral blood flow correlates of the severity of writer's cramp symptoms. Neuroimage 21: 904-913. – volume: 16 start-page: 149 year: 2006 end-page: 161 article-title: Motor control in basal ganglia circuits using fMRI and brain atlas approaches publication-title: Cerebral Cortex – volume: 11 start-page: 1301 year: 2000 end-page: 1306 article-title: Tapping movements according to regular and irregular visual timing signals investigated with fMRI publication-title: Neuroreport – volume: 31 start-page: 889 year: 2001 end-page: 901 article-title: The cortical motor system publication-title: Neuron – volume: 26 start-page: 164 year: 2005 end-page: 176 article-title: Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex publication-title: Neuroimage – volume: 18 start-page: 3375 year: 2003 end-page: 3387 article-title: Effector‐independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study publication-title: Eur J Neurosci – volume: 57 start-page: 752 year: 2005 end-page: 760 article-title: Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)‐induced movement: An interleaved TMS/functional magnetic resonance imaging study publication-title: Biol Psychiatry – volume: 9 start-page: 497 year: 1999 end-page: 507 article-title: The effect of finger‐movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study publication-title: Neuroimage – volume: 17 start-page: 562 year: 2007 end-page: 574 article-title: Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5 publication-title: Cerebral Cortex – volume: 23 start-page: S220 issue: Suppl 1 year: 2004 end-page: S233 article-title: Modeling the hemodynamic response to brain activation publication-title: Neuroimage – volume: 16 start-page: 2691 year: 1996 end-page: 2700 article-title: Complexity affects regional cerebral blood flow change during sequential finger movements publication-title: J Neurosci – volume: 25 start-page: 70 year: 2005 end-page: 82 article-title: Meta‐analyses of object naming: Effect of baseline publication-title: Hum Brain Mapp – article-title: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM publication-title: Hum Brain Mapp – volume: 25 start-page: 155 year: 2005 end-page: 164 article-title: ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts publication-title: Hum Brain Mapp – start-page: 263 year: 1994 end-page: 274 – volume: 17 start-page: 9667 year: 1997 end-page: 9674 article-title: Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements publication-title: J Neurosci – volume: 7 start-page: 463 year: 1996 end-page: 468 article-title: Cortical representation of self‐paced finger movement publication-title: Neuroreport – volume: 115 start-page: 55 year: 2005 end-page: 77 article-title: Long‐term reproducibility analysis of fMRI using hand motor task publication-title: Int J Neurosci – start-page: 635 year: 2003 end-page: 655 – volume: 6 start-page: 301 year: 1998 end-page: 315 article-title: Intersubject variability of functional areas in the human visual cortex publication-title: Hum Brain Mapp – volume: 16 start-page: 765 year: 2002 end-page: 780 article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation publication-title: Neuroimage – volume: 89 start-page: 989 year: 2003 end-page: 1002 article-title: Functional properties of brain areas associated with motor execution and imagery publication-title: J Neurophysiol – volume: 41 start-page: 424 year: 2008 end-page: 436 article-title: Modeling motor connectivity using TMS/PET and structural equation modeling publication-title: Neuroimage – volume: 108 start-page: 1136 year: 2001 end-page: 1144 article-title: Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging publication-title: Plast Reconstr Surg – volume: 37 start-page: 1371 year: 2007 end-page: 1383 article-title: Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise publication-title: Neuroimage – volume: 25 start-page: 129 year: 2005 end-page: 139 article-title: Brain activity associated with painfully hot stimuli applied to the upper limb: A meta‐analysis publication-title: Hum Brain Mapp – volume: 22 start-page: 1 year: 2004 end-page: 14 article-title: Column‐based model of electric field excitation of cerebral cortex publication-title: Hum Brain Mapp – volume: 167 start-page: 587 year: 2005 end-page: 594 article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system publication-title: Exp Brain Res – volume: 21 start-page: 904 year: 2004 end-page: 913 article-title: Regional cerebral blood flow correlates of the severity of writer's cramp symptoms publication-title: Neuroimage – volume: 17 start-page: 1753 year: 2005 end-page: 1765 article-title: Dissociating reading processes on the basis of neuronal interactions publication-title: J Cogn Neurosci – volume: 14 start-page: 617 year: 2001 end-page: 631 article-title: Human somatosensory area 2: Observer‐independent cytoarchitectonic mapping, interindividual variability, and population map publication-title: Neuroimage – volume: 15 start-page: 165 year: 2002 end-page: 174 article-title: Implementation and application of a brain template for multiple volumes of interest publication-title: Hum Brain Mapp – volume: 26 start-page: 421 year: 2002 end-page: 426 article-title: Motor‐induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 22 start-page: 1679 year: 2004 end-page: 1693 article-title: Neuroimaging studies of shifting attention: A meta‐analysis publication-title: Neuroimage – volume: 7 start-page: 701 year: 2004 end-page: 702 article-title: Listening to speech activates motor areas involved in speech production publication-title: Nat Neurosci – volume: 16 start-page: 268 year: 2006a end-page: 279 article-title: The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results publication-title: Cerebral Cortex – volume: 23 start-page: 3963 year: 2003 end-page: 3971 article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal publication-title: J Neurosci – volume: 36 start-page: 532 year: 2007 end-page: 542 article-title: Test–retest reliability of fMRI activation during prosaccades and antisaccades publication-title: Neuroimage – volume: 63 start-page: 236 year: 2008b end-page: 246 article-title: Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging publication-title: Ann Neurol – volume: 32 start-page: 139 year: 2001 end-page: 146 article-title: Effects of age on brain activation during auditory‐cued thumb‐to‐index opposition: A positron emission tomography study publication-title: Stroke – volume: 32 start-page: 1345 year: 2006 end-page: 1354 article-title: Functional significance of age‐related differences in motor activation patterns publication-title: Neuroimage – volume: 10 start-page: 430 year: 1999 end-page: 447 article-title: FMRI and PET of self‐paced finger movement: Comparison of intersubject stereotaxic averaged data publication-title: Neuroimage – volume: 98 start-page: 12760 year: 2001 end-page: 12766 article-title: When zero is not zero: The problem of ambiguous baseline conditions in fMRI publication-title: Proc Natl Acad Sci USA – volume: 142 start-page: 67 year: 2005 end-page: 76 article-title: Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans publication-title: J Neurosci Methods – volume: 93 start-page: 1 year: 2003 end-page: 21 article-title: The human parietal cortex: A novel approach to its architectonic mapping publication-title: Adv Neurol – volume: 1133 start-page: 136 year: 2007 end-page: 144 article-title: The role of the basal ganglia and cerebellum in language processing publication-title: Brain Res – volume: 30 start-page: 263 year: 2000 end-page: 288 article-title: Functional imaging of brain responses to pain. A review and meta‐analysis (2000) publication-title: Neurophysiol Clin – volume: 16 start-page: 755 year: 1996 end-page: 764 article-title: Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF publication-title: J Cereb Blood Flow Metab – volume: 28 start-page: 1 year: 2007 end-page: 8 article-title: Observer independent analysis of high‐resolution MR images of the human cerebral cortex: delineation of cortical areas publication-title: Hum Brain Mapp – volume: 4 start-page: 1 year: 1996 end-page: 15 article-title: Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography publication-title: Neuroimage – volume: 140 start-page: 265 year: 2001 end-page: 279 article-title: Combined visual attention and finger movement effects on human brain representations publication-title: Exp Brain Res – volume: 22 start-page: 42 year: 2004 end-page: 56 article-title: Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 publication-title: Neuroimage – volume: 121 start-page: 253 issue: Pt 2 year: 1998 end-page: 264 article-title: The functional neuroanatomy of simple and complex sequential finger movements: A PET study publication-title: Brain – volume: 10 start-page: 51 year: 2000a end-page: 66 article-title: Cortical activations during paced finger‐tapping applying visual and auditory pacing stimuli publication-title: Brain Res Cogn Brain Res – volume: 9 start-page: 250 year: 1999 end-page: 268 article-title: A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks publication-title: Neuroimage – volume: 10 start-page: 460 year: 1999 end-page: 482 article-title: A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks publication-title: Neuroimage – volume: 133 start-page: 71 year: 2000 end-page: 80 article-title: Control of action as mediated by the human frontal lobe publication-title: Exp Brain Res – volume: 2 start-page: 150 year: 2007 end-page: 158 article-title: Meta‐analysis of functional neuroimaging data: Current and future directions publication-title: Social Cogn Affect Neurosci – volume: 35 start-page: 881 year: 2007 end-page: 903 article-title: Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single‐subject and group‐averaged approaches to fMRI group analysis publication-title: Neuroimage – volume: 16 start-page: 1338 year: 2006 end-page: 1348 article-title: Neural correlates of the spontaneous phase transition during bimanual coordination publication-title: Cerebral Cortex – volume: 7 start-page: 337 year: 1998 end-page: 351 article-title: Anatomical congruence of metabolic and electromagnetic activation signals during a self‐paced motor task: A combined PET‐MEG study publication-title: Neuroimage – volume: 20 start-page: 113 year: 2008 end-page: 121 article-title: Human variability of FMRI brain activation in response to oculomotor stimuli publication-title: Brain Topogr – volume: 18 start-page: 846 year: 2007 end-page: 867 article-title: Observer‐Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex publication-title: Cerebral Cortex – volume: 23 start-page: 140 year: 2004 end-page: 155 article-title: Variability of fMRI activation during a phonological and semantic language task in healthy subjects publication-title: Hum Brain Mapp – volume: 160 start-page: 375 year: 2005 end-page: 383 article-title: The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study publication-title: Exp Brain Res – volume: 38 start-page: 164 year: 2000b end-page: 174 article-title: fMRI study of bimanual coordination publication-title: Neuropsychologia – volume: 212 start-page: 481 year: 2008 end-page: 495 article-title: The human inferior parietal lobule in stereotaxic space publication-title: Brain Struct Funct – volume: 65 start-page: 1392 year: 1991 end-page: 1401 article-title: Regional cerebral blood flow during voluntary arm and hand movements in human subjects publication-title: J Neurophysiol – volume: 15 start-page: 870 year: 2002 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 83 start-page: 1079 year: 2000 end-page: 1087 article-title: Human cerebellum plays an important role in memory‐timed finger movement: An fMRI study publication-title: J Neurophysiol – volume: 15 start-page: 1 year: 2002 end-page: 25 article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples publication-title: Hum Brain Mapp – volume: 3 start-page: 255 year: 2003 end-page: 274 article-title: Neuroimaging studies of working memory: A meta‐analysis publication-title: Cogn Affect Behav Neurosci – start-page: 725 year: 2003 end-page: 760 – volume: 25 start-page: 1325 year: 2005 end-page: 1335 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: Neuroimage – volume: 1 start-page: 119 year: 2001 end-page: 136 article-title: Functional neuroimaging studies of category specificity in object recognition: A critical review and meta‐analysis publication-title: Cogn Affect Behav Neurosci – volume: 122 start-page: 483 issue: Pt 3 year: 1999 end-page: 495 article-title: A PET study of sequential finger movements of varying length in patients with Parkinson's disease publication-title: Brain – volume: 16 start-page: 254 year: 2006b end-page: 267 article-title: The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions publication-title: Cerebral Cortex – volume: 19 start-page: 484 year: 2005 end-page: 493 article-title: Reliability of individual functional MRI brain mapping of language publication-title: Neuropsychology – volume: 48 start-page: 1056 year: 1997 end-page: 1065 article-title: A direct comparison of PET activation and electrocortical stimulation mapping for language localization publication-title: Neurology – volume: 13 start-page: 196 year: 2001 end-page: 209 article-title: Location‐probability profiles for the mouth region of human primary motor‐sensory cortex: Model and validation publication-title: Neuroimage – volume: 79 start-page: 1070 year: 1998 end-page: 1080 article-title: Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H2 15O PET publication-title: J Neurophysiol – volume: 10 start-page: 1093 year: 2000 end-page: 1104 article-title: Partially overlapping neural networks for real and imagined hand movements publication-title: Cerebral Cortex – start-page: 843 year: 2003 end-page: 850 – volume: 83 start-page: 1140 year: 1986 end-page: 1144 article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1120 year: 2003 end-page: 1130 article-title: Retrospective evaluation of intersubject brain registration publication-title: IEEE Trans Med Imaging – volume: 92 start-page: 107 year: 1999 end-page: 112 article-title: A positron emission tomography study of self‐paced finger movements at different frequencies publication-title: Neuroscience – volume: 16 start-page: 794 year: 1996 end-page: 803 article-title: Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study publication-title: J Cereb Blood Flow Metab – volume: 8 start-page: 143 year: 1999 end-page: 150 article-title: Functional volumes modeling: Scaling for group size in averaged images publication-title: Hum Brain Mapp – volume: 12 start-page: 326 year: 2000 end-page: 339 article-title: Intersubject variability in cortical activations during a complex language task publication-title: Neuroimage – volume: 41 start-page: 1382 year: 2008a end-page: 1394 article-title: Dynamic intra‐ and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM publication-title: Neuroimage – volume: 212 start-page: 255 year: 2007 end-page: 267 article-title: The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas publication-title: Hum Brain Mapp – volume: 83 start-page: 7 year: 1998 end-page: 22 article-title: Hemispheric control of motor function: A whole brain echo planar fMRI study publication-title: Psychiatry Res – ident: e_1_2_7_53_1 doi: 10.1111/j.1460-9568.2003.03066.x – ident: e_1_2_7_28_1 doi: 10.1006/nimg.2000.0659 – ident: e_1_2_7_91_1 doi: 10.1080/00207450490512650 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.83.4.1140 – ident: e_1_2_7_82_1 doi: 10.1073/pnas.221462998 – ident: e_1_2_7_22_1 doi: 10.1093/cercor/bhi105 – ident: e_1_2_7_54_1 doi: 10.1007/s10548-007-0037-y – ident: e_1_2_7_69_1 doi: 10.1016/S0987-7053(00)00227-6 – ident: e_1_2_7_65_1 doi: 10.1016/S0278-5846(01)00271-8 – volume: 93 start-page: 1 year: 2003 ident: e_1_2_7_92_1 article-title: The human parietal cortex: A novel approach to its architectonic mapping publication-title: Adv Neurol – ident: e_1_2_7_29_1 doi: 10.1002/hbm.20006 – ident: e_1_2_7_30_1 doi: 10.1006/nimg.1999.0482 – ident: e_1_2_7_60_1 doi: 10.1523/JNEUROSCI.23-10-03963.2003 – ident: e_1_2_7_13_1 doi: 10.1007/s00429-008-0195-z – ident: e_1_2_7_50_1 doi: 10.1016/S0306-4522(98)00744-1 – ident: e_1_2_7_70_1 doi: 10.1002/hbm.20132 – ident: e_1_2_7_63_1 doi: 10.1016/S0925-4927(98)00023-7 – ident: e_1_2_7_72_1 doi: 10.1097/00004647-199609000-00001 – ident: e_1_2_7_8_1 doi: 10.1152/jn.1998.79.2.1070 – ident: e_1_2_7_38_1 doi: 10.1002/hbm.10016 – ident: e_1_2_7_18_1 doi: 10.1007/s00221-005-0059-1 – ident: e_1_2_7_5_1 doi: 10.1016/j.jneumeth.2004.07.014 – ident: e_1_2_7_58_1 doi: 10.1093/cercor/bhi089 – ident: e_1_2_7_9_1 doi: 10.1212/WNL.48.4.1056 – start-page: 725 volume-title: Human Brain Function year: 2003 ident: e_1_2_7_52_1 – ident: e_1_2_7_41_1 article-title: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM publication-title: Hum Brain Mapp – ident: e_1_2_7_27_1 doi: 10.1002/(SICI)1097-0193(1999)8:2/3<143::AID-HBM12>3.0.CO;2-9 – ident: e_1_2_7_39_1 doi: 10.1152/jn.00132.2002 – ident: e_1_2_7_15_1 doi: 10.1093/brain/122.3.483 – ident: e_1_2_7_21_1 doi: 10.1093/cercor/bhi106 – ident: e_1_2_7_37_1 doi: 10.1002/ana.21228 – ident: e_1_2_7_87_1 doi: 10.1093/scan/nsm015 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2006.12.029 – ident: e_1_2_7_81_1 doi: 10.1007/s002210000402 – ident: e_1_2_7_57_1 doi: 10.1097/00001756-199601310-00021 – ident: e_1_2_7_56_1 doi: 10.1016/j.neuroimage.2008.01.065 – ident: e_1_2_7_2_1 doi: 10.1016/j.neuroimage.2003.12.031 – ident: e_1_2_7_10_1 doi: 10.1016/j.brainres.2006.11.074 – ident: e_1_2_7_83_1 doi: 10.1006/nimg.2002.1131 – ident: e_1_2_7_84_1 doi: 10.1016/j.neuroimage.2007.07.005 – ident: e_1_2_7_64_1 doi: 10.1162/089892905774589190 – ident: e_1_2_7_62_1 doi: 10.1093/cercor/bhj181 – ident: e_1_2_7_88_1 doi: 10.1002/hbm.20267 – ident: e_1_2_7_4_1 doi: 10.1093/cercor/bhj075 – volume: 212 start-page: 255 year: 2007 ident: e_1_2_7_75_1 article-title: The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas publication-title: Hum Brain Mapp – ident: e_1_2_7_86_1 doi: 10.1016/j.neuroimage.2004.03.052 – ident: e_1_2_7_48_1 doi: 10.1006/nimg.1999.0483 – ident: e_1_2_7_24_1 doi: 10.1002/hbm.20125 – ident: e_1_2_7_34_1 doi: 10.1006/nimg.1998.0397 – ident: e_1_2_7_3_1 doi: 10.1007/s00221-004-2008-9 – ident: e_1_2_7_16_1 doi: 10.1006/nimg.1996.0025 – ident: e_1_2_7_44_1 doi: 10.1006/nimg.1998.0426 – ident: e_1_2_7_7_1 doi: 10.1097/00004647-199609000-00004 – ident: e_1_2_7_90_1 doi: 10.1006/nimg.2000.0621 – ident: e_1_2_7_43_1 doi: 10.1007/s002210100796 – ident: e_1_2_7_80_1 doi: 10.1002/hbm.20053 – ident: e_1_2_7_61_1 doi: 10.1097/00001756-200004270-00031 – ident: e_1_2_7_66_1 doi: 10.1002/hbm.1058 – ident: e_1_2_7_23_1 doi: 10.1007/978-1-4615-2546-2_48 – ident: e_1_2_7_17_1 doi: 10.1152/jn.1991.65.6.1392 – start-page: 843 volume-title: Human Brain Function year: 2003 ident: e_1_2_7_68_1 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2004.07.013 – ident: e_1_2_7_14_1 doi: 10.1093/brain/121.2.253 – start-page: 635 volume-title: Human Brain Function year: 2003 ident: e_1_2_7_6_1 – ident: e_1_2_7_31_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_7_12_1 doi: 10.1161/01.STR.32.1.139 – ident: e_1_2_7_40_1 doi: 10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0.CO;2-7 – ident: e_1_2_7_46_1 doi: 10.1016/S0028-3932(99)00062-7 – ident: e_1_2_7_71_1 doi: 10.1016/j.neuroimage.2007.03.061 – ident: e_1_2_7_59_1 doi: 10.1016/j.neuroimage.2003.10.019 – ident: e_1_2_7_78_1 doi: 10.1523/JNEUROSCI.17-24-09667.1997 – ident: e_1_2_7_42_1 doi: 10.1109/TMI.2003.816961 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2004.12.034 – ident: e_1_2_7_32_1 doi: 10.1093/cercor/10.11.1093 – ident: e_1_2_7_45_1 doi: 10.1016/S0926-6410(00)00022-7 – ident: e_1_2_7_51_1 doi: 10.1152/jn.2000.83.2.1079 – ident: e_1_2_7_67_1 doi: 10.1037/0894-4105.19.4.484 – ident: e_1_2_7_74_1 doi: 10.1016/S0896-6273(01)00423-8 – ident: e_1_2_7_89_1 doi: 10.1038/nn1263 – ident: e_1_2_7_19_1 doi: 10.1016/j.biopsych.2004.12.017 – ident: e_1_2_7_55_1 doi: 10.1002/hbm.20136 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2008.03.048 – ident: e_1_2_7_47_1 doi: 10.1006/nimg.1998.0333 – ident: e_1_2_7_49_1 doi: 10.3758/CABN.1.2.119 – ident: e_1_2_7_76_1 doi: 10.1016/j.neuroimage.2005.01.037 – ident: e_1_2_7_35_1 doi: 10.1006/nimg.2001.0858 – ident: e_1_2_7_85_1 doi: 10.3758/CABN.3.4.255 – volume: 16 start-page: 2691 year: 1996 ident: e_1_2_7_77_1 article-title: Complexity affects regional cerebral blood flow change during sequential finger movements publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-08-02691.1996 – ident: e_1_2_7_33_1 doi: 10.1097/00006534-200110000-00005 – ident: e_1_2_7_79_1 doi: 10.1093/cercor/bhm116 – ident: e_1_2_7_73_1 doi: 10.1016/j.neuroimage.2006.05.021 |
SSID | ssj0011501 |
Score | 2.551045 |
Snippet | A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between... A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2907 |
SubjectTerms | Adult Algorithms between-subject variability Biological and medical sciences Brain - anatomy & histology Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Computational Biology - methods Computer Simulation Data Interpretation, Statistical Female fMRI Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Meta-Analysis as Topic Middle Aged Models, Neurological Nervous system Nervous system involvement in other diseases. Miscellaneous Neurology permutation PET Positron-Emission Tomography - methods Probability Psychomotor Performance - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry random-effects Uncertainty variance |
Title | Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty |
URI | https://api.istex.fr/ark:/67375/WNG-R5V21TTD-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20718 https://www.ncbi.nlm.nih.gov/pubmed/19172646 https://www.proquest.com/docview/67616284 https://www.proquest.com/docview/745936878 https://www.proquest.com/docview/754550808 https://pubmed.ncbi.nlm.nih.gov/PMC2872071 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRUJc-Gn5MT9lhVDFxa1je9c2nEIhREjpoUqhByRr17tWozR21SQS5cQj8Bq8Fk_CzK7tEmgR4pbE43V2PDvzze7stwDPQxWpMNORr-Mi8GOphS95mfixwehSmiBQijY4j_bF8DB-f8SP1uBVuxfG8UN0E240Mqy_pgEu1Xz3gjT0WNFGcnSt6H-pVosA0UFHHUVAxyZbGGL9DD1wyyoUhLvdnSux6Bqp9TPVRso5qqd051pcBjz_rJ_8FdfawDS4BZ_aLrl6lOnOcqF2ii-_sT3-Z59vw80GsLK-s7A7sGaqDdjsV5isz87ZNrMlpHZufgOuj5qV-k34vldjWjtBMfPj6zeKlZrRHgo3A8xOJlP8K0SpzIjmw-2fZDOzkCgtG6IUVpfM8m3idTpLiVE560vWZ6g0Xc9QsqlGYS0zOnMPwqbM7HRi2U_a9o1tbk4F5PgjRnNXC7E4vwuHg7fjvaHfHAvhFwLTIV8hwhEx5wVHIzMIYbTApK8sC6FTYv-TRWi4CmItRYLfwqi054kkOi3iCL15dA_Wq7oyD4D1TKK0NJyrNIy1EmnMM46INMW0LjOy9OBFayB50XCm09EdJ7ljew5zfCO5fSMePOtETx1RyGVC29bKOgl5NqXKuoTnH_ff5Qf8Q9gbj9_kAw-2Vsywu8EiWgTNHjxt7TJHh0CrPLIy9XKOzYmeQNDhAbtCIonpGEfU1V9EOO12TwMUue9s_aJTmOAjihYeJCujoBMgwvLVK9Xk2BKXY3ZOakCtWiO_Wk_58PXIfnj476KP4IZb6cv8Hn8M64uzpXmCgHGhtqxn-AmEem8C |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVgIuPFoe5tGuEKq4uHUc79pBXEJLCNDkUKW0F2TtetdqlMapmkSinPgJ_A3-Fr-EmV3bJdAixC2Jx-vseHYeuzPfADwPVVOFLd30dZQFfiS18CXPYz8yaF1yEwRKUYFzry-6B9H7I360BK-qWhiHD1FvuNHKsPqaFjhtSG9foIYeK6okR916DVaoozch5-_u1-BR5OrYcAuNrN9CHVzhCgXhdn3rgjVaIcZ-puxIOUUG5a6zxWWu558ZlL96ttY0dW7Dp2pSLiNltDWfqa3sy294j_876ztwq_RZWdsJ2V1YMsUqrLULjNfH52yT2SxSuz2_Ctd75WH9GnzfmWBkO0Qy8-PrNzKXmlEZhdsEZifDEf4XQlVmhPThSijZ2MwkUssSK4VNcmYhN_E6tVNilNH6krUZck1PxkhZJqSwChyduQfhUGZ8OrQAKNX4xg43pRxy_BENukuHmJ3fg4POm8FO1y87Q_iZwIjIV-jkiIjzjKOcGfRitMC4L88zoRMCAJRZaLgKIi1FjN_CZm5bisQ6yaImKvTmfVguJoV5CKxhYqWl4VwlYaSVSCLe4uiUJhjZtYzMPXhRSUialbDp1L3jJHWAz2GKbyS1b8SDZzXpqcMKuYxo04pZTSHPRpRcF_P0sP823ecfw8ZgsJt2PFhfkMP6BuvUot_swUYlmCnqBDrokYWZzKc4nGgI9Ds8YFdQxBF1ckRe_YWEU8F7EiDJAyfsF5PCGB8daeFBvLAMagLCLF-8UgyPLXY5BujEBuSqlfKr-ZR2X_fsh0f_TroBN7qD3l66967_4THcdAd_Lb_Bn8Dy7GxunqL_OFPrVk38BBpxcx4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cNm4hMtmITTxki1NbSeBp7JSyqUVmjq2B6TIjh2t6ppWaysxnvgJ_A3-Fr-Ec-wko7AhxFvbnDj1yfG52Od8h5CnoWqqMNFNX7Ms8JnUwpc8j3xmwLrkJgiUwgLnXl90D9nbY368Ql5UtTAOH6LecMOVYfU1LvCpzvcuQENPFBaSg2q9RtaYCBLs29A-qLGj0NOx0RbYWD8BFVzBCgXhXn3rkjFaQ75-xuRIOQP-5K6xxWWe558JlL86ttYydW6ST9WcXELKaHcxV7vZl9_gHv9z0rfIjdJjpS0nYrfJiik2yGargGh9fE53qM0htZvzG2S9Vx7Vb5Lv-xOIa4dAZn58_YbGUlMsonBbwPR0OIK_gpjKFHE-XAElHZu5BGpZIqXQSU4t4CZcx2ZKFPNZn9MWBabpyRgoy3QUWkGjU_cgGMqMp0MLf1KNb-xwM8wghx_BnLtkiPn5HXLYeTXY7_plXwg_ExAP-QpcHME4zzhImQEfRguI-vI8EzpG-D-ZhYargGkpIvgWNnPbUCTSccaaoM6bd8lqMSnMfUIbJlJaGs5VHDKtRMx4wsEljSGuS4zMPfKsEpA0K0HTsXfHaergnsMU3khq34hHntSkU4cUchnRjpWymkKejTC1LuLpUf91esA_ho3BoJ12PLK1JIb1DdalBa_ZI9uVXKagEfCYRxZmspjBcKIhwOvwCL2CImLYxxF49RcSjuXucQAk95ysX0wKInxwo4VHoqVVUBMgYvnylWJ4YpHLITxHNgBXrZBfzae0-7JnPzz4d9Jtsv6h3Unfv-m_e0iuu1O_xG_wR2R1frYwj8F5nKstqyR-AoAEcc0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinate-based+activation+likelihood+estimation+meta-analysis+of+neuroimaging+data%3A+A+random-effects+approach+based+on+empirical+estimates+of+spatial+uncertainty&rft.jtitle=Human+brain+mapping&rft.au=Eickhoff%2C+Simon+B&rft.au=Laird%2C+Angela+R&rft.au=Grefkes%2C+Christian&rft.au=Wang%2C+Ling+E&rft.date=2009-09-15&rft.issn=1065-9471&rft.volume=30&rft.issue=9&rft.spage=2907&rft.epage=2926&rft_id=info:doi/10.1002%2Fhbm.20718&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |