Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty

A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics re...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 30; no. 9; pp. 2907 - 2926
Main Authors Eickhoff, Simon B., Laird, Angela R., Grefkes, Christian, Wang, Ling E., Zilles, Karl, Fox, Peter T.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.09.2009
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between‐subject and between‐template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above‐chance clustering between foci, the revised algorithm assesses above‐chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null‐distribution of random spatial association between experiments. Critically, this modification entails a change from fixed‐ to random‐effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE‐algorithm overcomes conceptual problems of former meta‐analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate‐based meta‐analyses on functional imaging data. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.
AbstractList A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data. Hum Brain Mapp 2009.
A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between‐subject and between‐template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above‐chance clustering between foci, the revised algorithm assesses above‐chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null‐distribution of random spatial association between experiments. Critically, this modification entails a change from fixed‐ to random‐effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE‐algorithm overcomes conceptual problems of former meta‐analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate‐based meta‐analyses on functional imaging data. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.
Author Wang, Ling E.
Zilles, Karl
Grefkes, Christian
Eickhoff, Simon B.
Laird, Angela R.
Fox, Peter T.
AuthorAffiliation 1 Institut for Neuroscience and Biophysics—Medicine (INB 3), Research Center Jülich, Jülich, Germany
6 C. & O. Vogt Institute for Brain Research, Heinrich‐Heine‐University, Düsseldorf, Germany
4 Department of Neurology, University Hospital Cologne, Max Planck Institute for Neurological Research, Cologne, Germany
2 JARA—Translational Brain Medicine, Jülich, Germany
3 Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
5 Brain Imaging Center West (BICW), Jülich, Germany
7 International Consortium for Human Brain Mapping (ICBM), Jülich, Germany
AuthorAffiliation_xml – name: 1 Institut for Neuroscience and Biophysics—Medicine (INB 3), Research Center Jülich, Jülich, Germany
– name: 2 JARA—Translational Brain Medicine, Jülich, Germany
– name: 3 Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
– name: 6 C. & O. Vogt Institute for Brain Research, Heinrich‐Heine‐University, Düsseldorf, Germany
– name: 5 Brain Imaging Center West (BICW), Jülich, Germany
– name: 4 Department of Neurology, University Hospital Cologne, Max Planck Institute for Neurological Research, Cologne, Germany
– name: 7 International Consortium for Human Brain Mapping (ICBM), Jülich, Germany
Author_xml – sequence: 1
  givenname: Simon B.
  surname: Eickhoff
  fullname: Eickhoff, Simon B.
  email: s.eickhoff@fz-juelich.de
  organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany
– sequence: 2
  givenname: Angela R.
  surname: Laird
  fullname: Laird, Angela R.
  organization: Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
– sequence: 3
  givenname: Christian
  surname: Grefkes
  fullname: Grefkes, Christian
  organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany
– sequence: 4
  givenname: Ling E.
  surname: Wang
  fullname: Wang, Ling E.
  organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany
– sequence: 5
  givenname: Karl
  surname: Zilles
  fullname: Zilles, Karl
  organization: Institut for Neuroscience and Biophysics-Medicine (INB 3), Research Center Jülich, Jülich, Germany
– sequence: 6
  givenname: Peter T.
  surname: Fox
  fullname: Fox, Peter T.
  organization: Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839352$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19172646$$D View this record in MEDLINE/PubMed
BookMark eNqFkttu1DAQhiNURA9wwQug3ADiIq3tJLbDBVLZ0hapgIQWuLS89mTXNLGD7W3Z5-FF8R45SJQrn77555_xHGZ71lnIsscYHWOEyMls0h8TxDC_lx1g1LAC4abcW-5pXTQVw_vZYQhfEcK4RvhBto8bzAit6EH2Y-Sc18bKCMVEBtC5VNHcyGiczTtzDZ2ZOadzCNH069seoiykld0imJC7Nrcw9y69To2d5lpG-TI_zb202vUFtC2oGHI5DN5JNcvXSZIM9IPxRsluqw0rsTCkLOlybhX4KI2Ni4fZ_VZ2AR5t1qPs0_mb8eiyuPpw8XZ0elUoijEvJk2qt6prVZNGA-JEU4Zp2yqqOeMESUWgnqBKS8rSiZQtqgjjTHNVlVpDeZS9WusO80kPWoGNXnZi8MmdXwgnjfjzxZqZmLobQThbtj8JPN8IePdtnsoSvQkKuk5acPMgWJ3sIY74_8mqbkqabCfy2Z0kZRRTwqsEPvnd_c729q8T8HQDyJDa3qYfUibsOIJ52ZQ1SdyLNae8C8FD-0sKieW8iTRvYjVviT35i1UmrsYkNch0d0Xcmg4W_5YWl6_fbSOKdYQJEb7vIqS_TsWXrBZf3l-Ij_VngsfjM3Fe_gRwBPke
CitedBy_id crossref_primary_10_1002_hbm_22160
crossref_primary_10_1007_s00213_023_06498_1
crossref_primary_10_1017_S0033291722003889
crossref_primary_10_1080_17470919_2023_2242095
crossref_primary_10_1002_hbm_23492
crossref_primary_10_1016_j_biopsych_2022_06_021
crossref_primary_10_3390_brainsci11121619
crossref_primary_10_1002_hbm_23014
crossref_primary_10_3758_s13415_019_00747_7
crossref_primary_10_3389_fneur_2020_00018
crossref_primary_10_1002_hipo_23632
crossref_primary_10_1007_s11065_023_09609_z
crossref_primary_10_1007_s12021_023_09643_5
crossref_primary_10_1214_17_STS624
crossref_primary_10_1162_jocn_a_00077
crossref_primary_10_1016_j_jneumeth_2016_07_001
crossref_primary_10_1016_j_neubiorev_2014_11_003
crossref_primary_10_1007_s00429_024_02790_8
crossref_primary_10_1080_01690965_2011_613209
crossref_primary_10_1016_j_clineuro_2023_107710
crossref_primary_10_1016_j_neubiorev_2017_01_006
crossref_primary_10_3389_fnins_2024_1443578
crossref_primary_10_1016_j_neuroimage_2019_06_037
crossref_primary_10_1002_hbm_23488
crossref_primary_10_1002_hbm_24577
crossref_primary_10_1016_j_neuroimage_2020_117220
crossref_primary_10_1016_j_neubiorev_2014_03_016
crossref_primary_10_1016_j_neubiorev_2022_104721
crossref_primary_10_1016_j_neuroimage_2024_120986
crossref_primary_10_1016_j_schres_2016_11_043
crossref_primary_10_1093_scan_nsaa090
crossref_primary_10_1007_s12311_021_01261_8
crossref_primary_10_1016_j_jphysparis_2016_01_001
crossref_primary_10_1002_hbm_22392
crossref_primary_10_1007_s11757_022_00720_0
crossref_primary_10_3389_fnbeh_2019_00128
crossref_primary_10_1002_hbm_23002
crossref_primary_10_1002_hbm_24334
crossref_primary_10_1186_s40359_014_0052_1
crossref_primary_10_1002_hbm_22155
crossref_primary_10_1002_hbm_22397
crossref_primary_10_1002_da_22866
crossref_primary_10_1016_j_concog_2016_12_011
crossref_primary_10_1016_j_nicl_2017_03_016
crossref_primary_10_1016_j_psychres_2022_114598
crossref_primary_10_1007_s00115_009_2826_x
crossref_primary_10_1016_j_neuroimage_2017_10_020
crossref_primary_10_1002_hbm_21058
crossref_primary_10_1002_hbm_21299
crossref_primary_10_3390_brainsci12070830
crossref_primary_10_1002_hbm_25898
crossref_primary_10_1016_j_bpsc_2024_01_009
crossref_primary_10_1016_j_cpr_2022_102189
crossref_primary_10_1093_scan_nss085
crossref_primary_10_1007_s11682_017_9736_5
crossref_primary_10_1093_brain_awz405
crossref_primary_10_1002_hbm_25452
crossref_primary_10_1038_srep25983
crossref_primary_10_1111_j_1749_6632_2010_05446_x
crossref_primary_10_1017_S204579601300005X
crossref_primary_10_1176_appi_ajp_2010_09101522
crossref_primary_10_1016_j_nicl_2017_12_029
crossref_primary_10_1016_j_neubiorev_2019_05_007
crossref_primary_10_1097_MNM_0000000000001343
crossref_primary_10_1016_j_neubiorev_2020_01_004
crossref_primary_10_1016_j_neuropsychologia_2020_107495
crossref_primary_10_1016_j_pscychresns_2021_111353
crossref_primary_10_1111_adb_12997
crossref_primary_10_1371_journal_pone_0208177
crossref_primary_10_1016_j_neuroimage_2021_117960
crossref_primary_10_1111_nan_12725
crossref_primary_10_1016_j_neubiorev_2017_02_020
crossref_primary_10_1016_j_neuroimage_2020_117444
crossref_primary_10_1002_hbm_23028
crossref_primary_10_1007_s11481_012_9422_8
crossref_primary_10_1016_j_bandl_2023_105347
crossref_primary_10_1016_j_biopsych_2014_12_021
crossref_primary_10_31083_j_jin2104107
crossref_primary_10_1016_j_orcp_2020_02_004
crossref_primary_10_1007_s00429_022_02493_y
crossref_primary_10_1016_j_dcn_2017_05_003
crossref_primary_10_1007_s00429_016_1264_3
crossref_primary_10_1007_s11065_021_09494_4
crossref_primary_10_1016_j_neuroimage_2024_120720
crossref_primary_10_1016_j_neuroimage_2024_120962
crossref_primary_10_1016_j_neuroimage_2014_05_062
crossref_primary_10_3758_s13415_019_00691_6
crossref_primary_10_1016_j_neubiorev_2016_07_032
crossref_primary_10_1093_jn_nxaa071
crossref_primary_10_1002_hbm_24348
crossref_primary_10_1016_j_neuropsychologia_2017_01_019
crossref_primary_10_3389_fnhum_2021_680933
crossref_primary_10_1016_j_neubiorev_2022_104971
crossref_primary_10_3390_jcm9061846
crossref_primary_10_1016_j_cortex_2023_01_013
crossref_primary_10_1002_hbm_22363
crossref_primary_10_1002_hbm_23451
crossref_primary_10_1002_hbm_22364
crossref_primary_10_1016_j_neuroimage_2011_05_028
crossref_primary_10_1016_j_neuroimage_2014_05_030
crossref_primary_10_3389_fnhum_2020_616054
crossref_primary_10_1016_j_brainresbull_2024_110933
crossref_primary_10_1016_j_neuroimage_2011_05_021
crossref_primary_10_1016_j_neuroimage_2020_117666
crossref_primary_10_1016_j_arr_2022_101760
crossref_primary_10_3389_fnins_2017_00320
crossref_primary_10_1111_adb_12976
crossref_primary_10_1016_j_bandc_2019_01_002
crossref_primary_10_1016_j_neubiorev_2016_08_038
crossref_primary_10_1016_j_jneuroling_2018_08_005
crossref_primary_10_1053_j_gastro_2010_07_053
crossref_primary_10_3389_fnins_2020_534671
crossref_primary_10_1155_2015_435265
crossref_primary_10_1016_j_actpsy_2025_104787
crossref_primary_10_1016_j_neuroimage_2017_02_050
crossref_primary_10_1136_bmjopen_2019_031672
crossref_primary_10_1016_j_yfrne_2016_10_001
crossref_primary_10_1016_j_brainres_2020_147049
crossref_primary_10_1016_j_neubiorev_2023_105077
crossref_primary_10_1007_s11682_019_00035_5
crossref_primary_10_1002_hbm_22354
crossref_primary_10_1007_s11682_012_9179_y
crossref_primary_10_1016_j_neuroimage_2012_01_024
crossref_primary_10_1111_nmo_14484
crossref_primary_10_1016_j_neuropsychologia_2014_03_016
crossref_primary_10_1212_WNL_0000000000002274
crossref_primary_10_1093_cercor_bhs230
crossref_primary_10_1111_biom_12216
crossref_primary_10_1016_j_neuroimage_2020_117407
crossref_primary_10_1016_j_neubiorev_2019_04_006
crossref_primary_10_1016_j_neuroimage_2014_11_009
crossref_primary_10_1038_s41598_022_14959_4
crossref_primary_10_3389_fnhum_2018_00227
crossref_primary_10_1016_j_neubiorev_2022_104915
crossref_primary_10_1002_hbm_26702
crossref_primary_10_1016_j_neuroimage_2012_02_065
crossref_primary_10_1002_hbm_24523
crossref_primary_10_1007_s00429_017_1450_y
crossref_primary_10_1016_j_jns_2012_02_010
crossref_primary_10_1111_j_1399_5618_2011_00893_x
crossref_primary_10_1016_j_neuroimage_2012_02_037
crossref_primary_10_1038_s41467_021_27926_w
crossref_primary_10_1002_cne_23368
crossref_primary_10_1111_cns_13775
crossref_primary_10_3389_fnins_2019_00646
crossref_primary_10_1007_s00429_022_02603_w
crossref_primary_10_1016_j_heliyon_2022_e09702
crossref_primary_10_1016_j_exger_2025_112678
crossref_primary_10_1093_cercor_bhs256
crossref_primary_10_1007_s11682_024_00921_7
crossref_primary_10_1016_j_biopsycho_2018_08_018
crossref_primary_10_1002_hbm_22138
crossref_primary_10_1016_j_neuroimage_2020_116550
crossref_primary_10_1016_j_neuroimage_2023_120207
crossref_primary_10_1017_S0033291716000477
crossref_primary_10_1093_scan_nst124
crossref_primary_10_1038_s41598_021_88773_9
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1016_j_neubiorev_2014_04_003
crossref_primary_10_3389_fnbeh_2017_00064
crossref_primary_10_4103_0028_3886_355137
crossref_primary_10_1080_17470919_2022_2128868
crossref_primary_10_1007_s00429_016_1286_x
crossref_primary_10_1007_s11682_018_9959_0
crossref_primary_10_1016_j_neuroimage_2014_12_056
crossref_primary_10_1162_jocn_a_01111
crossref_primary_10_1007_s00259_015_3039_0
crossref_primary_10_1186_2047_217X_3_29
crossref_primary_10_3389_fnhum_2021_744489
crossref_primary_10_1080_02687038_2019_1661956
crossref_primary_10_1093_cercor_bhs007
crossref_primary_10_1016_j_arr_2020_101133
crossref_primary_10_1002_hbm_22124
crossref_primary_10_1002_hbm_23216
crossref_primary_10_1002_hbm_25635
crossref_primary_10_1007_s12671_018_0884_5
crossref_primary_10_1016_j_neuroimage_2017_12_034
crossref_primary_10_1016_j_ynirp_2023_100173
crossref_primary_10_1109_TCBB_2015_2510007
crossref_primary_10_1016_j_nicl_2014_04_007
crossref_primary_10_1016_j_pscychresns_2015_01_001
crossref_primary_10_1007_s11910_019_0967_2
crossref_primary_10_1038_s41467_024_52186_9
crossref_primary_10_1002_ana_24642
crossref_primary_10_1017_S0142716411000075
crossref_primary_10_1002_hbm_21471
crossref_primary_10_1016_j_neuroimage_2011_12_024
crossref_primary_10_1016_j_neubiorev_2020_11_027
crossref_primary_10_1523_ENEURO_0374_22_2023
crossref_primary_10_7717_peerj_10861
crossref_primary_10_1002_hipo_22387
crossref_primary_10_1080_15622975_2017_1324176
crossref_primary_10_1016_j_inffus_2021_07_001
crossref_primary_10_1016_j_drugalcdep_2022_109625
crossref_primary_10_1016_j_neubiorev_2014_01_009
crossref_primary_10_3389_fpsyt_2014_00132
crossref_primary_10_1002_hbm_25828
crossref_primary_10_1093_scan_nst106
crossref_primary_10_1016_j_neuroimage_2021_118436
crossref_primary_10_1016_j_cortex_2022_07_003
crossref_primary_10_3109_15622975_2015_1102323
crossref_primary_10_1002_hbm_23886
crossref_primary_10_1002_hbm_21222
crossref_primary_10_1002_hbm_22313
crossref_primary_10_3390_ijerph192316277
crossref_primary_10_1111_joor_13526
crossref_primary_10_1016_j_neuroimage_2023_120088
crossref_primary_10_30773_pi_2021_0383
crossref_primary_10_1016_j_neubiorev_2018_08_003
crossref_primary_10_1016_j_jns_2020_116907
crossref_primary_10_1038_s41598_021_94506_9
crossref_primary_10_1016_j_clineuro_2024_108473
crossref_primary_10_1017_S1355617713000490
crossref_primary_10_1002_aur_3055
crossref_primary_10_3389_fpsyt_2014_00141
crossref_primary_10_1007_s00429_018_1644_y
crossref_primary_10_1007_s11682_015_9429_x
crossref_primary_10_1016_j_neuroimage_2021_118444
crossref_primary_10_1016_j_neubiorev_2016_05_012
crossref_primary_10_1176_appi_ajp_2019_18111271
crossref_primary_10_1186_s11689_019_9287_8
crossref_primary_10_1016_j_neubiorev_2022_104553
crossref_primary_10_1002_hbm_23636
crossref_primary_10_1007_s00406_011_0249_8
crossref_primary_10_1186_s12868_016_0257_8
crossref_primary_10_1016_j_jneuroling_2019_04_001
crossref_primary_10_1016_j_neubiorev_2011_07_004
crossref_primary_10_1016_j_neuropsychologia_2022_108273
crossref_primary_10_1038_s41380_018_0122_5
crossref_primary_10_1038_s42003_023_04787_1
crossref_primary_10_1016_j_neuroimage_2018_09_036
crossref_primary_10_1186_s12993_022_00196_2
crossref_primary_10_1038_s41366_020_0608_5
crossref_primary_10_1073_pnas_1113427109
crossref_primary_10_1016_j_bbr_2017_10_025
crossref_primary_10_3389_fnins_2017_00745
crossref_primary_10_1007_s11682_016_9592_8
crossref_primary_10_1016_j_neubiorev_2022_104588
crossref_primary_10_1016_j_agwat_2023_108620
crossref_primary_10_1016_j_neubiorev_2022_104589
crossref_primary_10_1016_j_eurpsy_2011_04_001
crossref_primary_10_1016_j_cortex_2020_04_031
crossref_primary_10_1002_hbm_22572
crossref_primary_10_1002_hbm_25840
crossref_primary_10_1093_scan_nsae068
crossref_primary_10_1016_j_neuroimage_2011_12_032
crossref_primary_10_1111_jon_12266
crossref_primary_10_1016_j_neuroimage_2011_09_077
crossref_primary_10_1038_s41598_021_96319_2
crossref_primary_10_1016_j_jad_2022_11_071
crossref_primary_10_1007_s00429_019_01870_4
crossref_primary_10_1016_j_biopsych_2011_05_025
crossref_primary_10_1016_j_neubiorev_2016_05_037
crossref_primary_10_1080_23273798_2021_1970200
crossref_primary_10_1162_jocn_a_01311
crossref_primary_10_1093_cercor_bhad337
crossref_primary_10_3389_fnhum_2019_00276
crossref_primary_10_1002_hbm_23895
crossref_primary_10_1016_j_cortex_2017_12_014
crossref_primary_10_1016_j_neuroimage_2024_120798
crossref_primary_10_1002_hbm_22326
crossref_primary_10_11922_11_6035_csd_2022_0047_zh
crossref_primary_10_1002_hbm_24746
crossref_primary_10_1002_hbm_24747
crossref_primary_10_1016_j_bpsc_2024_12_001
crossref_primary_10_1093_braincomms_fcad172
crossref_primary_10_1044_2015_JSLHR_S_14_0193
crossref_primary_10_1111_ene_12902
crossref_primary_10_1016_j_neubiorev_2016_06_025
crossref_primary_10_1007_s11682_016_9606_6
crossref_primary_10_1016_j_neuroimage_2016_07_041
crossref_primary_10_1016_j_schres_2013_07_019
crossref_primary_10_3758_s13415_022_01039_3
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_1038_s41398_022_01809_0
crossref_primary_10_1016_j_biopsych_2024_07_021
crossref_primary_10_1007_s12021_013_9204_3
crossref_primary_10_1016_j_tics_2012_07_006
crossref_primary_10_1016_j_neuroimage_2020_117268
crossref_primary_10_1007_s11682_018_9885_1
crossref_primary_10_1016_j_neubiorev_2022_104768
crossref_primary_10_1177_1535370215603514
crossref_primary_10_1016_j_neuroimage_2020_117023
crossref_primary_10_1038_tp_2016_55
crossref_primary_10_1007_s11682_019_00099_3
crossref_primary_10_1016_j_neubiorev_2011_12_013
crossref_primary_10_1002_hbm_22991
crossref_primary_10_3390_brainsci10060353
crossref_primary_10_1002_hbm_22750
crossref_primary_10_1016_j_neubiorev_2016_06_011
crossref_primary_10_3389_fnins_2024_1392002
crossref_primary_10_3389_fpsyt_2019_00756
crossref_primary_10_1016_j_neuroimage_2011_07_022
crossref_primary_10_1016_j_neuropsychologia_2014_05_001
crossref_primary_10_3389_fpsyg_2022_781448
crossref_primary_10_1007_s00702_012_0813_z
crossref_primary_10_1007_s11682_015_9471_8
crossref_primary_10_1002_brb3_2713
crossref_primary_10_1038_s41598_020_59490_6
crossref_primary_10_1016_j_neubiorev_2019_02_017
crossref_primary_10_1016_j_neuropsychologia_2010_09_014
crossref_primary_10_12688_f1000research_4734_1
crossref_primary_10_12688_f1000research_4734_2
crossref_primary_10_1093_cercor_bhac429
crossref_primary_10_1162_jocn_a_01531
crossref_primary_10_3389_fnins_2022_781099
crossref_primary_10_1586_ern_12_147
crossref_primary_10_12688_f1000research_4734_3
crossref_primary_10_1016_j_neuropsychologia_2011_02_031
crossref_primary_10_1002_hbm_22745
crossref_primary_10_1002_hbm_22987
crossref_primary_10_1007_s11682_022_00655_4
crossref_primary_10_1016_j_neubiorev_2022_104994
crossref_primary_10_1016_j_avb_2015_11_003
crossref_primary_10_1016_j_bandc_2015_05_004
crossref_primary_10_1016_j_neubiorev_2020_03_008
crossref_primary_10_1016_j_neuropsychologia_2015_08_007
crossref_primary_10_1038_s42003_022_03027_2
crossref_primary_10_1002_hbm_22781
crossref_primary_10_3758_s13415_015_0338_7
crossref_primary_10_3389_fnbeh_2016_00220
crossref_primary_10_1016_j_jad_2013_06_039
crossref_primary_10_1177_1367006912456617
crossref_primary_10_1007_s00429_017_1443_x
crossref_primary_10_1162_nol_a_00097
crossref_primary_10_1186_s13229_019_0299_8
crossref_primary_10_1002_nau_23976
crossref_primary_10_1016_j_nicl_2018_09_018
crossref_primary_10_1093_schbul_sbv025
crossref_primary_10_1007_s10548_011_0171_4
crossref_primary_10_1080_17588928_2020_1806810
crossref_primary_10_1523_JNEUROSCI_3048_14_2014
crossref_primary_10_3390_brainsci12081112
crossref_primary_10_1016_j_neubiorev_2016_05_005
crossref_primary_10_1002_hbm_24716
crossref_primary_10_1002_hbm_22777
crossref_primary_10_1002_oby_20659
crossref_primary_10_1016_j_neuroimage_2011_06_012
crossref_primary_10_1016_j_neuroimage_2020_117481
crossref_primary_10_1093_ons_opy272
crossref_primary_10_1093_scan_nsz055
crossref_primary_10_1007_s00415_013_7174_x
crossref_primary_10_1016_j_bandc_2012_09_009
crossref_primary_10_1016_j_neubiorev_2013_09_005
crossref_primary_10_1007_s40167_021_00102_z
crossref_primary_10_1371_journal_pone_0106558
crossref_primary_10_1016_j_wneu_2019_01_159
crossref_primary_10_1038_s41398_019_0644_x
crossref_primary_10_3389_fnagi_2016_00260
crossref_primary_10_1371_journal_pone_0169076
crossref_primary_10_1016_j_neuroimage_2021_117777
crossref_primary_10_1016_j_pnpbp_2011_09_014
crossref_primary_10_1002_hbm_23854
crossref_primary_10_1038_s41598_022_08909_3
crossref_primary_10_1016_j_cortex_2014_02_022
crossref_primary_10_1016_j_neuropsychologia_2014_12_005
crossref_primary_10_1093_cercor_bhac443
crossref_primary_10_1016_j_neuroimage_2016_12_016
crossref_primary_10_1016_j_bandl_2023_105377
crossref_primary_10_1016_j_neuroscience_2022_02_024
crossref_primary_10_1177_2398212818810591
crossref_primary_10_3389_fpsyg_2024_1400328
crossref_primary_10_1016_j_nicl_2017_07_025
crossref_primary_10_1016_j_biopsych_2010_01_020
crossref_primary_10_1016_j_neuroimage_2022_119764
crossref_primary_10_1080_17470919_2017_1357657
crossref_primary_10_1016_j_neuroimage_2011_03_066
crossref_primary_10_1016_j_neubiorev_2012_11_003
crossref_primary_10_3758_s13415_022_01030_y
crossref_primary_10_1016_j_neubiorev_2012_11_002
crossref_primary_10_1007_s12311_015_0696_2
crossref_primary_10_1186_1756_0500_4_349
crossref_primary_10_1016_j_neucli_2022_02_001
crossref_primary_10_1016_j_nicl_2022_103241
crossref_primary_10_1016_j_neuroimage_2016_04_022
crossref_primary_10_1016_j_neuroimage_2019_116111
crossref_primary_10_1016_j_brainres_2014_10_008
crossref_primary_10_3390_brainsci11030399
crossref_primary_10_3724_SP_J_1042_2022_00536
crossref_primary_10_1016_j_neubiorev_2024_105712
crossref_primary_10_1002_jrsm_1448
crossref_primary_10_1016_j_neubiorev_2016_03_020
crossref_primary_10_1016_j_neuroimage_2019_03_074
crossref_primary_10_1016_j_neuroimage_2009_12_112
crossref_primary_10_1093_cercor_bhv024
crossref_primary_10_1016_j_drugalcdep_2013_03_019
crossref_primary_10_1016_j_neubiorev_2021_06_012
crossref_primary_10_1016_j_neubiorev_2012_11_015
crossref_primary_10_3389_fnhum_2017_00231
crossref_primary_10_1016_j_jpsychires_2016_08_001
crossref_primary_10_1016_j_nicl_2023_103532
crossref_primary_10_3389_fneur_2018_01129
crossref_primary_10_1016_j_neubiorev_2016_03_026
crossref_primary_10_1038_tp_2016_80
crossref_primary_10_1515_psych_2020_0114
crossref_primary_10_1016_j_dr_2022_101052
crossref_primary_10_3389_fncom_2024_1310013
crossref_primary_10_1016_j_cortex_2020_05_003
crossref_primary_10_1016_j_neuroscience_2023_11_003
crossref_primary_10_3389_fnins_2018_00686
crossref_primary_10_1016_j_neubiorev_2016_03_021
crossref_primary_10_1016_j_smrv_2018_07_004
crossref_primary_10_1093_scan_nsq105
crossref_primary_10_1016_j_cortex_2020_05_006
crossref_primary_10_1016_j_euroneuro_2025_01_009
crossref_primary_10_1016_j_neubiorev_2024_105960
crossref_primary_10_1093_cercor_bhae369
crossref_primary_10_1162_jocn_a_01616
crossref_primary_10_1016_j_neubiorev_2024_105720
crossref_primary_10_1016_j_neubiorev_2023_105423
crossref_primary_10_1162_imag_a_00098
crossref_primary_10_1080_01616412_2021_1902702
crossref_primary_10_3390_jcm8040516
crossref_primary_10_3390_biomedicines10071555
crossref_primary_10_1016_j_jneuroling_2014_04_003
crossref_primary_10_1016_j_neubiorev_2024_105727
crossref_primary_10_1016_j_neuroimage_2009_05_037
crossref_primary_10_1016_j_nicl_2019_102039
crossref_primary_10_1002_brb3_2945
crossref_primary_10_1002_brb3_1853
crossref_primary_10_1016_j_nicl_2022_103268
crossref_primary_10_1002_hbm_23706
crossref_primary_10_1093_brain_awab125
crossref_primary_10_1002_wcs_41
crossref_primary_10_1016_j_neubiorev_2015_09_009
crossref_primary_10_3390_healthcare12070711
crossref_primary_10_1016_j_neuropsychologia_2024_108904
crossref_primary_10_3389_fpsyg_2015_00191
crossref_primary_10_1016_j_neubiorev_2019_01_026
crossref_primary_10_3390_brainsci12081030
crossref_primary_10_1162_imag_a_00065
crossref_primary_10_1212_WNL_0b013e31821a44c1
crossref_primary_10_3233_JAD_142955
crossref_primary_10_3389_fnhum_2023_1077234
crossref_primary_10_1016_j_jad_2018_09_049
crossref_primary_10_1016_j_nicl_2019_102041
crossref_primary_10_1111_jcpp_12651
crossref_primary_10_3389_fnhum_2024_1418803
crossref_primary_10_1016_j_pscychresns_2019_111020
crossref_primary_10_7554_eLife_53385
crossref_primary_10_3389_fnins_2022_984647
crossref_primary_10_3233_JAD_160382
crossref_primary_10_1093_cercor_bhu198
crossref_primary_10_1016_j_clinph_2020_07_024
crossref_primary_10_5498_wjp_v14_i3_456
crossref_primary_10_1016_j_jad_2011_03_016
crossref_primary_10_1016_j_neuroimage_2019_116387
crossref_primary_10_1093_cercor_bhv073
crossref_primary_10_1176_appi_ajp_2017_16040400
crossref_primary_10_1093_cercor_bhad461
crossref_primary_10_1016_j_nicl_2019_102053
crossref_primary_10_1016_j_neubiorev_2024_105902
crossref_primary_10_3389_fnhum_2014_00830
crossref_primary_10_1111_nyas_12467
crossref_primary_10_1016_j_neubiorev_2018_06_024
crossref_primary_10_1093_psyrad_kkab020
crossref_primary_10_1177_1545968312461718
crossref_primary_10_1016_j_nicl_2022_103038
crossref_primary_10_1080_17470919_2016_1165285
crossref_primary_10_1523_JNEUROSCI_0663_23_2023
crossref_primary_10_1016_j_neuroimage_2012_11_018
crossref_primary_10_1038_s41598_023_46513_1
crossref_primary_10_3389_fnhum_2017_00022
crossref_primary_10_1016_j_neuropsychologia_2021_108002
crossref_primary_10_1016_j_pscychresns_2017_09_014
crossref_primary_10_1007_s00429_010_0255_z
crossref_primary_10_1186_s12888_014_0321_9
crossref_primary_10_1155_2021_5596145
crossref_primary_10_1016_j_neuroimage_2010_10_047
crossref_primary_10_30773_pi_2021_0062
crossref_primary_10_1016_j_neubiorev_2016_04_020
crossref_primary_10_7717_peerj_14976
crossref_primary_10_1093_cercor_bhv068
crossref_primary_10_1016_j_neubiorev_2024_105918
crossref_primary_10_1016_j_nicl_2022_103029
crossref_primary_10_1002_cne_24804
crossref_primary_10_1162_imag_a_00295
crossref_primary_10_1016_j_psychres_2024_116338
crossref_primary_10_1111_dmcn_12618
crossref_primary_10_1016_j_neuropsychologia_2010_07_030
crossref_primary_10_3389_fpsyt_2022_779239
crossref_primary_10_1016_j_neubiorev_2020_12_029
crossref_primary_10_1016_j_nicl_2022_103031
crossref_primary_10_1093_braincomms_fcz006
crossref_primary_10_1007_s11682_022_00659_0
crossref_primary_10_1093_braincomms_fcad105
crossref_primary_10_1371_journal_pone_0070104
crossref_primary_10_1016_j_jvoice_2022_02_008
crossref_primary_10_1016_j_neuroimage_2019_116321
crossref_primary_10_1016_j_nicl_2015_02_018
crossref_primary_10_1080_00207454_2018_1508135
crossref_primary_10_1007_s11065_015_9315_8
crossref_primary_10_1016_j_neuroimage_2009_06_047
crossref_primary_10_1016_j_neuroimage_2025_121008
crossref_primary_10_1093_cercor_bhac394
crossref_primary_10_1371_journal_pone_0030920
crossref_primary_10_1016_j_jad_2013_07_002
crossref_primary_10_1038_s41598_017_02266_2
crossref_primary_10_1111_j_1460_9568_2010_07590_x
crossref_primary_10_3389_fnint_2020_00043
crossref_primary_10_1016_j_neuroimage_2022_119500
crossref_primary_10_1016_j_neubiorev_2018_06_009
crossref_primary_10_1016_j_pscychresns_2013_02_005
crossref_primary_10_1038_s42003_024_06969_x
crossref_primary_10_3389_fphar_2019_00969
crossref_primary_10_3389_fneur_2015_00219
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1007_s11682_020_00303_9
crossref_primary_10_1111_obr_13643
crossref_primary_10_1007_s12311_015_0706_4
crossref_primary_10_1016_j_brainres_2018_01_022
crossref_primary_10_1002_hbm_22818
crossref_primary_10_1016_j_neubiorev_2018_07_019
crossref_primary_10_1016_j_eplepsyres_2011_10_002
crossref_primary_10_1016_j_neubiorev_2018_07_017
crossref_primary_10_1002_hbm_70098
crossref_primary_10_1371_journal_pone_0059595
crossref_primary_10_1016_j_euroneuro_2016_06_013
crossref_primary_10_1016_j_neubiorev_2019_10_023
crossref_primary_10_3389_fnhum_2022_921523
crossref_primary_10_3389_fneur_2022_923310
crossref_primary_10_1073_pnas_1814117115
crossref_primary_10_1093_cercor_bhad013
crossref_primary_10_1097_j_pain_0000000000000517
crossref_primary_10_1371_journal_pone_0083668
crossref_primary_10_1007_s00429_013_0549_z
crossref_primary_10_1016_j_cortex_2019_08_018
crossref_primary_10_1016_j_cortex_2021_02_023
crossref_primary_10_1080_13554794_2022_2160262
crossref_primary_10_3390_brainsci14010101
crossref_primary_10_1002_hbm_25085
crossref_primary_10_1038_mp_2014_24
crossref_primary_10_1192_bjp_2021_16
crossref_primary_10_1016_j_neuroimage_2021_118109
crossref_primary_10_1371_journal_pone_0207213
crossref_primary_10_1002_erv_2915
crossref_primary_10_1016_j_clineuro_2020_106279
crossref_primary_10_1016_j_brainres_2018_01_014
crossref_primary_10_1038_s41598_022_15195_6
crossref_primary_10_1002_hbm_22801
crossref_primary_10_1162_imag_a_00277
crossref_primary_10_1016_j_bandl_2014_10_002
crossref_primary_10_1016_j_neubiorev_2016_03_009
crossref_primary_10_1017_S1368980020003122
crossref_primary_10_1016_j_neubiorev_2021_09_053
crossref_primary_10_1002_hbm_24184
crossref_primary_10_1111_pcn_13442
crossref_primary_10_3389_fpsyg_2014_00353
crossref_primary_10_1016_j_jadohealth_2017_08_006
crossref_primary_10_1093_scan_nsx142
crossref_primary_10_1017_S136672892000070X
crossref_primary_10_3389_fnhum_2024_1493677
crossref_primary_10_1016_j_nicl_2021_102700
crossref_primary_10_1007_s11682_020_00369_5
crossref_primary_10_1007_s11682_021_00507_7
crossref_primary_10_1016_j_nicl_2020_102420
crossref_primary_10_1093_scan_nsab105
crossref_primary_10_1016_j_neubiorev_2017_11_010
crossref_primary_10_1016_j_neubiorev_2017_11_012
crossref_primary_10_1016_j_jad_2020_06_072
crossref_primary_10_1016_j_pnpbp_2013_09_001
crossref_primary_10_1093_schbul_sbae020
crossref_primary_10_1016_j_neubiorev_2021_08_010
crossref_primary_10_1017_S0033291721001525
crossref_primary_10_1016_j_neubiorev_2013_03_017
crossref_primary_10_1093_scan_nsx143
crossref_primary_10_1073_pnas_2105730118
crossref_primary_10_3389_fnut_2022_1056692
crossref_primary_10_1016_j_neubiorev_2021_09_041
crossref_primary_10_1016_j_biopsych_2016_06_014
crossref_primary_10_1038_s42003_022_04084_3
crossref_primary_10_3390_math10030356
crossref_primary_10_1002_hbm_25025
crossref_primary_10_1016_j_eurpsy_2017_08_001
crossref_primary_10_3389_fnhum_2015_00693
crossref_primary_10_3389_fpsyg_2016_01633
crossref_primary_10_1007_s10072_013_1512_8
crossref_primary_10_1111_jpr_12018
crossref_primary_10_3758_s13415_021_00870_4
crossref_primary_10_1016_j_neuroimage_2011_05_073
crossref_primary_10_1111_ejn_15240
crossref_primary_10_1007_s11682_020_00291_w
crossref_primary_10_3389_fneur_2022_823882
crossref_primary_10_3389_fnhum_2020_00146
crossref_primary_10_3390_brainsci13040559
crossref_primary_10_1007_s10548_015_0427_5
crossref_primary_10_3389_fpsyt_2022_785547
crossref_primary_10_3758_s13428_023_02185_3
crossref_primary_10_1016_j_neuropsychologia_2020_107404
crossref_primary_10_1016_j_conb_2013_02_017
crossref_primary_10_1111_j_1369_1600_2012_00464_x
crossref_primary_10_1371_journal_pone_0070143
crossref_primary_10_1007_s00429_014_0744_6
crossref_primary_10_1016_j_heares_2011_09_008
crossref_primary_10_1016_j_neubiorev_2015_07_007
crossref_primary_10_1016_j_neubiorev_2023_105285
crossref_primary_10_1016_j_neuroscience_2016_02_022
crossref_primary_10_1107_S2052252521007715
crossref_primary_10_1038_s41562_016_0039
crossref_primary_10_1016_j_neubiorev_2016_02_024
crossref_primary_10_1016_j_bpsc_2019_03_005
crossref_primary_10_1016_j_neuroimage_2011_05_089
crossref_primary_10_1016_j_neuroimage_2013_05_052
crossref_primary_10_1016_j_nicl_2017_01_019
crossref_primary_10_1007_s11682_019_00071_1
crossref_primary_10_1080_1750984X_2025_2457062
crossref_primary_10_1016_j_pnpbp_2011_05_009
crossref_primary_10_1016_j_neubiorev_2018_05_006
crossref_primary_10_1016_j_jad_2024_01_118
crossref_primary_10_1007_s00429_018_1727_9
crossref_primary_10_1016_j_neuroimage_2015_08_027
crossref_primary_10_1016_j_neuroimage_2015_08_024
crossref_primary_10_4236_jbbs_2012_22028
crossref_primary_10_1002_erv_2967
crossref_primary_10_1016_j_bandl_2010_03_008
crossref_primary_10_1002_brb3_655
crossref_primary_10_1016_j_neuroimage_2013_04_014
crossref_primary_10_1038_s44220_023_00105_0
crossref_primary_10_1016_j_cortex_2017_01_006
crossref_primary_10_1523_JNEUROSCI_4004_09_2009
crossref_primary_10_1016_j_neubiorev_2015_07_016
crossref_primary_10_1002_hbm_25289
crossref_primary_10_1089_brain_2018_0592
crossref_primary_10_1007_s11930_017_0123_4
crossref_primary_10_1073_pnas_2201445119
crossref_primary_10_1176_appi_ajp_2019_19050560
crossref_primary_10_3174_ajnr_A7619
crossref_primary_10_1016_j_bbr_2017_02_032
crossref_primary_10_1146_annurev_psych_120709_145406
crossref_primary_10_1007_s00429_021_02389_3
crossref_primary_10_1016_j_neuroimage_2016_04_072
crossref_primary_10_1016_j_neubiorev_2021_08_024
crossref_primary_10_1016_j_neuroimage_2013_05_046
crossref_primary_10_1093_schbul_sbr151
crossref_primary_10_1016_j_neuroimage_2012_11_020
crossref_primary_10_1093_brain_awu132
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1007_s11682_019_00084_w
crossref_primary_10_1016_j_neubiorev_2024_105584
crossref_primary_10_1093_brain_aws199
crossref_primary_10_1016_j_neuroimage_2024_120950
crossref_primary_10_1016_j_neuroimage_2012_10_056
crossref_primary_10_3389_fnins_2014_00289
crossref_primary_10_1016_j_cortex_2019_05_016
crossref_primary_10_1007_s00429_024_02867_4
crossref_primary_10_1002_hbm_23050
crossref_primary_10_1093_arclin_acv081
crossref_primary_10_1111_cdev_13080
crossref_primary_10_1016_j_drugalcdep_2020_107884
crossref_primary_10_1016_j_schres_2009_12_022
crossref_primary_10_1007_s11065_014_9247_8
crossref_primary_10_1007_s10792_015_0159_2
crossref_primary_10_1016_j_arr_2016_12_001
crossref_primary_10_1016_j_neuroimage_2024_120707
crossref_primary_10_1016_j_brainres_2024_148947
crossref_primary_10_1007_s11910_015_0579_4
crossref_primary_10_1017_prp_2020_1
crossref_primary_10_3389_fnins_2018_00495
crossref_primary_10_1016_j_neubiorev_2019_12_014
crossref_primary_10_1007_s00429_022_02473_2
crossref_primary_10_1016_j_cortex_2019_05_001
crossref_primary_10_1002_hbm_23288
crossref_primary_10_1007_s11065_024_09647_1
crossref_primary_10_1002_hbm_26312
crossref_primary_10_1016_j_cortex_2017_03_016
crossref_primary_10_1016_j_neubiorev_2018_04_023
crossref_primary_10_1002_hbm_22199
crossref_primary_10_1016_j_neubiorev_2018_04_022
crossref_primary_10_1007_s00429_013_0698_0
crossref_primary_10_1016_j_neuropsychologia_2012_07_026
crossref_primary_10_1016_j_neuroimage_2020_116956
crossref_primary_10_1371_journal_pone_0060393
crossref_primary_10_1017_S0033291724003088
crossref_primary_10_1007_s11682_019_00080_0
crossref_primary_10_1002_wcs_1546
crossref_primary_10_1162_imag_a_00457
crossref_primary_10_1016_j_media_2023_102864
crossref_primary_10_1002_hbm_70023
crossref_primary_10_1002_mds_28468
crossref_primary_10_1038_s41531_017_0012_6
crossref_primary_10_1016_j_biopsych_2010_12_011
crossref_primary_10_1016_j_neubiorev_2023_105468
crossref_primary_10_1002_brb3_203
crossref_primary_10_1002_hbm_25254
crossref_primary_10_1016_j_jpsychires_2020_05_013
crossref_primary_10_1016_j_neuropsychologia_2019_107284
crossref_primary_10_3389_fnint_2021_793634
crossref_primary_10_1002_hbm_26340
crossref_primary_10_1002_brb3_683
crossref_primary_10_1093_scan_nsaa073
crossref_primary_10_1002_brb3_2065
crossref_primary_10_1002_hbm_25014
crossref_primary_10_1016_j_jaac_2012_12_012
crossref_primary_10_1016_j_jneuroling_2017_04_001
crossref_primary_10_1016_j_pnpbp_2017_11_007
crossref_primary_10_1093_scan_nsac010
crossref_primary_10_1162_imag_a_00425
crossref_primary_10_1016_j_neuroimage_2012_10_030
crossref_primary_10_1016_j_jns_2014_05_066
crossref_primary_10_1002_nau_23058
crossref_primary_10_1093_cercor_bhu167
crossref_primary_10_1093_schbul_sbae003
crossref_primary_10_1016_j_neuropsychologia_2019_107286
crossref_primary_10_1016_j_neuropsychologia_2020_107694
crossref_primary_10_3390_cancers13051116
crossref_primary_10_1007_s11682_021_00453_4
crossref_primary_10_1155_2022_9448620
crossref_primary_10_1016_j_jpain_2012_11_011
crossref_primary_10_1016_j_janxdis_2023_102773
crossref_primary_10_1162_imag_a_00423
crossref_primary_10_3389_fnhum_2017_00645
crossref_primary_10_3389_fpsyg_2025_1557796
crossref_primary_10_1002_ana_26551
crossref_primary_10_3233_JAD_215316
crossref_primary_10_3390_brainsci12101367
crossref_primary_10_1016_j_cortex_2023_03_005
crossref_primary_10_1093_texcom_tgab002
crossref_primary_10_3389_fnins_2022_850245
crossref_primary_10_1007_s00429_021_02247_2
crossref_primary_10_1186_s13195_018_0366_y
crossref_primary_10_1016_j_neubiorev_2024_105779
crossref_primary_10_1002_hbm_25004
crossref_primary_10_3389_fnhum_2014_00445
crossref_primary_10_1016_j_schres_2014_05_023
crossref_primary_10_1093_cercor_bhu158
crossref_primary_10_1016_j_neuroimage_2020_116939
crossref_primary_10_1007_s10902_019_00195_7
crossref_primary_10_1016_j_jns_2012_01_032
crossref_primary_10_1016_j_neubiorev_2015_08_006
crossref_primary_10_1016_j_neuroimage_2009_09_056
crossref_primary_10_1155_2024_6673522
crossref_primary_10_1007_s12035_020_02195_8
crossref_primary_10_1016_j_physbeh_2012_03_009
crossref_primary_10_1371_journal_pone_0032960
crossref_primary_10_22172_cogbio_2013_25_3_006
crossref_primary_10_1002_hbm_70000
crossref_primary_10_3390_jpm13091384
crossref_primary_10_1016_j_neuroimage_2013_06_041
crossref_primary_10_1097_QAD_0000000000000151
crossref_primary_10_1016_j_neubiorev_2024_105544
crossref_primary_10_1177_2167702614542463
crossref_primary_10_3389_fnhum_2014_00692
crossref_primary_10_1007_s40519_022_01390_x
crossref_primary_10_3389_fnhum_2014_01045
crossref_primary_10_3934_Neuroscience_2016_3_306
crossref_primary_10_3724_SP_J_1042_2021_01783
crossref_primary_10_1016_j_intell_2017_04_008
crossref_primary_10_1038_s41380_024_02520_w
crossref_primary_10_1002_hbm_23132
crossref_primary_10_1016_j_nicl_2018_05_013
crossref_primary_10_1016_j_tics_2010_08_004
crossref_primary_10_1186_1471_244X_12_104
crossref_primary_10_1016_j_neuroimage_2015_07_083
crossref_primary_10_1017_S0033291719001387
crossref_primary_10_1093_scan_nsad003
crossref_primary_10_1002_da_22977
crossref_primary_10_1038_s41598_023_43057_2
crossref_primary_10_1016_j_neubiorev_2021_11_020
crossref_primary_10_1176_appi_ajp_2012_11101521
crossref_primary_10_1007_s00259_016_3335_3
crossref_primary_10_1038_s41398_022_01792_6
crossref_primary_10_1038_s41598_021_95603_5
crossref_primary_10_1016_j_nicl_2025_103759
crossref_primary_10_1016_j_biopsych_2024_10_013
crossref_primary_10_1016_j_neubiorev_2022_104603
crossref_primary_10_1016_j_neuroimage_2020_117582
crossref_primary_10_1111_j_1749_6632_2011_05958_x
crossref_primary_10_1002_hbm_24459
crossref_primary_10_1016_j_neubiorev_2022_104846
crossref_primary_10_1111_bdi_12488
crossref_primary_10_1038_s41598_020_58255_5
crossref_primary_10_1002_hbm_23368
crossref_primary_10_1016_j_neubiorev_2018_03_019
crossref_primary_10_1016_j_neuroimage_2023_120363
crossref_primary_10_1002_hbm_24693
crossref_primary_10_1186_s40035_018_0114_z
crossref_primary_10_1002_hbm_21186
crossref_primary_10_1111_bdi_13341
crossref_primary_10_1002_hbm_21188
crossref_primary_10_1016_j_nicl_2025_103770
crossref_primary_10_1093_cercor_bhz182
crossref_primary_10_1016_j_pnpbp_2013_04_019
crossref_primary_10_1080_00952990_2018_1557675
crossref_primary_10_1038_npp_2015_185
crossref_primary_10_1016_j_euroneuro_2011_07_003
crossref_primary_10_1016_j_neubiorev_2018_11_003
crossref_primary_10_1111_cns_70218
crossref_primary_10_1007_s11682_016_9669_4
crossref_primary_10_1016_j_jad_2022_06_014
crossref_primary_10_1016_j_neubiorev_2018_11_005
crossref_primary_10_1146_annurev_neuro_062012_170320
crossref_primary_10_1176_appi_ajp_2021_21010088
crossref_primary_10_1016_j_psiq_2011_05_002
crossref_primary_10_1016_j_neuropsychologia_2015_12_006
crossref_primary_10_1093_cercor_bhs308
crossref_primary_10_1016_j_neubiorev_2021_03_025
crossref_primary_10_1016_j_neuroimage_2015_06_059
crossref_primary_10_1007_s11682_020_00442_z
crossref_primary_10_1002_hbm_25570
crossref_primary_10_1007_s12311_023_01596_4
crossref_primary_10_1007_s00429_023_02652_9
crossref_primary_10_1016_j_neuroimage_2015_07_060
crossref_primary_10_3758_s13415_020_00836_y
crossref_primary_10_1016_j_neuron_2018_07_002
crossref_primary_10_3389_fnagi_2022_1009632
crossref_primary_10_1016_j_neubiorev_2012_06_003
crossref_primary_10_1016_j_neuropsychologia_2015_05_029
crossref_primary_10_1002_hbm_23149
crossref_primary_10_3171_2021_9_JNS211069
crossref_primary_10_1016_j_neuroimage_2023_120383
crossref_primary_10_1038_s41380_021_01315_7
crossref_primary_10_1016_j_concog_2011_09_019
crossref_primary_10_1002_hbm_24232
crossref_primary_10_1016_j_jpsychires_2014_08_018
crossref_primary_10_1080_02643294_2016_1188798
crossref_primary_10_3758_s13415_015_0392_1
crossref_primary_10_1016_j_neuroimage_2015_07_070
crossref_primary_10_1093_scan_nsab079
crossref_primary_10_1016_j_neuroimage_2015_07_072
crossref_primary_10_1007_s11682_013_9266_8
crossref_primary_10_3389_fnins_2020_00427
crossref_primary_10_1007_s11682_015_9457_6
crossref_primary_10_1016_j_neuroimage_2010_05_076
crossref_primary_10_1016_j_neuroimage_2015_05_008
crossref_primary_10_1007_s40889_016_0016_9
crossref_primary_10_1016_j_neuroimage_2021_118702
crossref_primary_10_1523_ENEURO_0255_20_2020
crossref_primary_10_1523_JNEUROSCI_3083_15_2016
crossref_primary_10_1111_bph_13812
crossref_primary_10_1016_j_neuroimage_2023_120138
crossref_primary_10_1007_s13311_019_00817_1
crossref_primary_10_1016_j_jad_2016_09_005
crossref_primary_10_1016_j_neuroimage_2015_06_044
crossref_primary_10_1016_j_media_2022_102540
crossref_primary_10_1016_j_neubiorev_2022_104851
crossref_primary_10_1016_j_neubiorev_2013_02_002
crossref_primary_10_1016_j_tree_2015_10_004
crossref_primary_10_1016_j_biopsych_2024_01_003
crossref_primary_10_1016_j_nicl_2013_12_009
crossref_primary_10_1038_s41598_019_40427_7
crossref_primary_10_1016_j_neuropsychologia_2015_11_006
crossref_primary_10_1016_j_biopsych_2022_02_960
crossref_primary_10_1186_1471_244X_13_342
crossref_primary_10_3389_fncom_2017_00005
crossref_primary_10_3390_jpm13030405
crossref_primary_10_1016_j_concog_2015_01_019
crossref_primary_10_1007_s11682_017_9813_9
crossref_primary_10_1080_17588928_2020_1867084
crossref_primary_10_1016_j_neubiorev_2010_12_012
crossref_primary_10_1016_j_neuroimage_2018_04_065
crossref_primary_10_1016_j_jid_2019_04_007
crossref_primary_10_1038_s41398_021_01446_z
crossref_primary_10_1002_hbm_23566
crossref_primary_10_1093_scan_nsu110
crossref_primary_10_1002_hbm_22239
crossref_primary_10_1093_brain_awx316
crossref_primary_10_1007_s40120_021_00318_4
crossref_primary_10_1016_j_neubiorev_2018_12_013
crossref_primary_10_3988_jcn_2024_0176
crossref_primary_10_1002_wics_1609
crossref_primary_10_1002_hbm_24893
crossref_primary_10_1007_s12021_022_09612_4
crossref_primary_10_3389_fnhum_2022_854692
crossref_primary_10_1016_j_neuroimage_2012_07_045
crossref_primary_10_1007_s00429_015_1009_8
crossref_primary_10_1007_s11065_020_09432_w
crossref_primary_10_1111_ner_13119
crossref_primary_10_1016_j_neuroimage_2021_117833
crossref_primary_10_1016_j_cortex_2016_10_021
crossref_primary_10_1002_aur_1599
crossref_primary_10_1016_j_biopsych_2012_07_014
crossref_primary_10_1016_j_neuroimage_2013_04_073
crossref_primary_10_1007_s11682_016_9505_x
crossref_primary_10_1111_desc_13379
crossref_primary_10_1093_schbul_sbz130
crossref_primary_10_3390_jcm9030828
crossref_primary_10_3758_s13415_021_00964_z
crossref_primary_10_1002_hbm_24681
crossref_primary_10_1002_hbm_22262
crossref_primary_10_1002_hipo_22482
crossref_primary_10_3389_fnhum_2020_565114
crossref_primary_10_1016_j_npbr_2019_06_002
crossref_primary_10_1016_j_jad_2011_08_001
crossref_primary_10_1016_j_crad_2017_11_007
crossref_primary_10_1016_j_pscychresns_2021_111272
crossref_primary_10_3758_s13415_023_01140_1
crossref_primary_10_1192_bjo_2019_102
crossref_primary_10_1007_s13365_022_01071_6
crossref_primary_10_1016_j_neubiorev_2022_104826
crossref_primary_10_1155_2016_7296125
crossref_primary_10_1016_j_neubiorev_2014_09_008
crossref_primary_10_1016_j_bpsc_2019_04_007
crossref_primary_10_1002_hbm_23103
crossref_primary_10_1002_hbm_23588
crossref_primary_10_1002_hbm_23109
crossref_primary_10_1038_s41562_022_01501_9
crossref_primary_10_1016_j_neuroimage_2024_120641
crossref_primary_10_1515_revneuro_2022_0023
crossref_primary_10_1523_JNEUROSCI_4931_13_2014
crossref_primary_10_1016_j_neuroimage_2024_120885
crossref_primary_10_1016_j_nicl_2016_03_016
crossref_primary_10_1002_hbm_23342
crossref_primary_10_1016_j_pnpbp_2021_110322
crossref_primary_10_1073_pnas_1414715112
crossref_primary_10_1002_brb3_1365
crossref_primary_10_1177_21677026241305377
crossref_primary_10_1016_j_nicl_2021_102583
crossref_primary_10_1016_j_brainres_2024_148794
crossref_primary_10_1186_s13293_024_00621_3
crossref_primary_10_1016_j_neubiorev_2013_03_023
crossref_primary_10_1016_j_neuropsychologia_2015_06_034
crossref_primary_10_1016_j_neuroimage_2012_06_025
crossref_primary_10_1016_j_pnpbp_2018_05_011
crossref_primary_10_1038_s41380_023_01974_8
crossref_primary_10_1016_j_neuroimage_2023_120335
crossref_primary_10_1002_hbm_22008
crossref_primary_10_1016_j_euroneuro_2023_10_003
crossref_primary_10_1016_j_cofs_2014_11_001
crossref_primary_10_1016_j_neubiorev_2015_12_003
crossref_primary_10_1016_j_neuroimage_2012_06_022
crossref_primary_10_1016_j_neuroimage_2016_10_028
crossref_primary_10_1016_j_neuropsychologia_2015_06_033
crossref_primary_10_1111_desc_13111
crossref_primary_10_1007_s11682_022_00634_9
crossref_primary_10_1016_j_brainres_2009_09_052
crossref_primary_10_1016_j_neubiorev_2018_01_002
crossref_primary_10_5498_wjp_v15_i4_102215
crossref_primary_10_1016_j_neuroimage_2010_10_014
crossref_primary_10_1002_hbm_23772
crossref_primary_10_1007_s00429_021_02318_4
crossref_primary_10_1007_s11682_020_00384_6
crossref_primary_10_1038_s41398_018_0170_2
crossref_primary_10_1111_ejn_12765
crossref_primary_10_1007_s00406_022_01541_2
crossref_primary_10_1007_s11682_023_00762_w
crossref_primary_10_1016_j_heliyon_2024_e38084
crossref_primary_10_1016_j_brainresrev_2010_05_005
crossref_primary_10_1016_j_neuroimage_2010_11_055
crossref_primary_10_1002_hbm_25702
crossref_primary_10_1016_j_bandc_2024_106201
crossref_primary_10_3390_brainsci11121587
crossref_primary_10_1007_s11682_023_00797_z
crossref_primary_10_1002_hbm_25948
crossref_primary_10_1002_hbm_23767
crossref_primary_10_1111_jnc_16104
crossref_primary_10_1016_j_neubiorev_2022_104686
crossref_primary_10_3389_fnins_2023_1243409
crossref_primary_10_1016_j_neuroimage_2013_01_046
crossref_primary_10_1093_scan_nsad077
crossref_primary_10_1016_j_bandc_2013_09_007
crossref_primary_10_1016_j_jpsychires_2023_11_013
crossref_primary_10_3758_s13415_020_00827_z
crossref_primary_10_1016_j_neubiorev_2015_03_002
crossref_primary_10_1162_jocn_a_01459
crossref_primary_10_1016_j_neuroimage_2015_05_069
crossref_primary_10_1016_j_neuroimage_2018_02_023
crossref_primary_10_1186_2045_5380_2_6
crossref_primary_10_1162_jocn_a_01455
crossref_primary_10_1177_155005941104200211
crossref_primary_10_1509_jmr_13_0611
crossref_primary_10_1111_desc_12400
crossref_primary_10_1186_s12888_016_0890_x
crossref_primary_10_1016_j_neubiorev_2015_03_009
crossref_primary_10_1016_j_pnpbp_2009_08_020
crossref_primary_10_1007_s00429_015_0994_y
crossref_primary_10_1016_j_heares_2013_08_001
crossref_primary_10_1093_braincomms_fcac140
crossref_primary_10_1093_cercor_bhy049
crossref_primary_10_1002_hbm_23311
crossref_primary_10_1016_j_parkreldis_2019_02_015
crossref_primary_10_1002_hbm_21132
crossref_primary_10_1016_j_nicl_2017_08_004
crossref_primary_10_3389_fnins_2022_868366
crossref_primary_10_1162_jocn_a_01661
crossref_primary_10_1162_jocn_a_00572
crossref_primary_10_1016_j_neuroimage_2010_07_058
crossref_primary_10_1038_s41467_019_12764_8
crossref_primary_10_3390_brainsci12010032
crossref_primary_10_1007_s12311_022_01459_4
crossref_primary_10_3389_fpsyg_2017_01253
crossref_primary_10_1016_j_jad_2012_03_024
crossref_primary_10_1002_hbm_24633
crossref_primary_10_1002_hbm_26817
crossref_primary_10_1136_bmjopen_2019_030061
crossref_primary_10_1016_j_bja_2023_03_008
crossref_primary_10_1523_JNEUROSCI_3135_12_2013
crossref_primary_10_1016_j_jaacop_2023_08_006
crossref_primary_10_1016_j_neubiorev_2017_06_011
crossref_primary_10_1515_revneuro_2022_0065
crossref_primary_10_1186_1471_2202_15_19
crossref_primary_10_1016_j_pscychresns_2016_04_009
crossref_primary_10_1073_pnas_1706587115
crossref_primary_10_1007_s11682_022_00754_2
crossref_primary_10_21501_16920945_4054
crossref_primary_10_1162_jocn_a_00340
crossref_primary_10_1016_j_jpain_2013_03_001
crossref_primary_10_3389_fnins_2024_1349512
crossref_primary_10_1016_j_heares_2020_108078
crossref_primary_10_1186_1471_244X_14_99
crossref_primary_10_1007_s00429_018_1765_3
crossref_primary_10_1093_brain_awy292
crossref_primary_10_1176_appi_ajp_20230270
crossref_primary_10_4103_0366_6999_176983
crossref_primary_10_1016_j_neuroimage_2021_118301
crossref_primary_10_1002_hbm_26802
crossref_primary_10_3389_fnhum_2019_00154
crossref_primary_10_1002_hbm_24627
crossref_primary_10_1007_s11682_018_9893_1
crossref_primary_10_1016_j_intell_2017_03_004
crossref_primary_10_1016_j_neuroimage_2015_04_053
crossref_primary_10_1016_j_neuroimage_2019_02_061
crossref_primary_10_1002_erv_2197
crossref_primary_10_1016_j_neubiorev_2022_104650
crossref_primary_10_1016_j_bandc_2014_03_013
crossref_primary_10_1371_journal_pone_0234321
crossref_primary_10_1016_j_eclinm_2019_01_012
crossref_primary_10_1176_appi_focus_19206
crossref_primary_10_3389_fnagi_2017_00014
crossref_primary_10_3389_fnins_2021_693242
crossref_primary_10_1016_j_bandl_2023_105287
crossref_primary_10_1007_s12078_022_09299_6
crossref_primary_10_1016_j_neubiorev_2021_12_035
crossref_primary_10_1016_j_neubiorev_2022_104643
crossref_primary_10_1016_j_addicn_2023_100089
crossref_primary_10_3389_fnagi_2023_1181558
crossref_primary_10_1002_eat_23160
crossref_primary_10_1016_j_neuropsychologia_2012_03_011
crossref_primary_10_1016_j_bandc_2020_105660
crossref_primary_10_1002_hbm_22629
crossref_primary_10_1016_j_fertnstert_2013_05_041
crossref_primary_10_1002_hbm_23952
crossref_primary_10_1016_j_pscychresns_2018_09_009
crossref_primary_10_3389_fmed_2024_1505440
crossref_primary_10_1002_hbm_22626
crossref_primary_10_1146_annurev_statistics_022513_115611
crossref_primary_10_1007_s00406_014_0516_6
crossref_primary_10_1176_appi_ajp_2020_20091340
crossref_primary_10_1371_journal_pone_0248909
crossref_primary_10_1016_j_neubiorev_2021_04_014
crossref_primary_10_1016_j_schres_2023_12_003
crossref_primary_10_1177_0301006621991953
crossref_primary_10_1016_j_biopsych_2012_06_029
crossref_primary_10_1038_pr_2014_31
crossref_primary_10_1016_j_pneurobio_2015_03_001
crossref_primary_10_1007_s12311_024_01660_7
crossref_primary_10_1192_bjp_197_1_76a
crossref_primary_10_1016_j_neuroimage_2021_118732
crossref_primary_10_1007_s00429_024_02795_3
crossref_primary_10_1016_j_jad_2023_03_005
crossref_primary_10_1016_j_neuroimage_2021_118731
crossref_primary_10_1093_schbul_sbv146
crossref_primary_10_1016_j_neulet_2016_07_043
crossref_primary_10_1093_braincomms_fcae128
crossref_primary_10_1002_hbm_22417
crossref_primary_10_1016_j_pneurobio_2019_101718
crossref_primary_10_1371_journal_pone_0276140
crossref_primary_10_1016_j_neuropsychologia_2024_108947
crossref_primary_10_1177_20592043221109958
crossref_primary_10_1016_j_bandl_2014_06_003
crossref_primary_10_1111_biom_12713
crossref_primary_10_1016_j_neubiorev_2021_04_007
crossref_primary_10_1002_hbm_22649
crossref_primary_10_1016_j_clinph_2012_10_007
crossref_primary_10_3389_fpsyg_2015_01195
crossref_primary_10_1016_j_bandc_2016_07_007
crossref_primary_10_1016_j_jad_2023_04_028
crossref_primary_10_1016_j_neurobiolaging_2022_03_019
crossref_primary_10_1016_j_neuroimage_2020_117114
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1016_j_neubiorev_2022_104659
crossref_primary_10_1016_j_neuroimage_2020_117350
crossref_primary_10_1002_ejp_2251
crossref_primary_10_3233_JAD_191292
crossref_primary_10_1016_j_neuroimage_2013_02_063
crossref_primary_10_1016_j_biopsycho_2014_08_003
crossref_primary_10_1016_j_intell_2015_04_009
crossref_primary_10_1016_j_neuroimage_2011_10_012
crossref_primary_10_2967_jnumed_112_102939
crossref_primary_10_1198_jasa_2011_ap09735
crossref_primary_10_1097_j_pain_0000000000001519
crossref_primary_10_3389_fpsyg_2015_01138
crossref_primary_10_1016_j_neubiorev_2016_11_014
crossref_primary_10_1016_j_neuropsychologia_2018_06_023
crossref_primary_10_1016_j_neubiorev_2017_05_027
crossref_primary_10_1016_j_jad_2010_09_032
crossref_primary_10_1016_j_concog_2017_10_019
crossref_primary_10_1016_j_cortex_2022_02_010
crossref_primary_10_1002_bsl_2539
crossref_primary_10_1016_j_neuroimage_2016_12_023
crossref_primary_10_1007_s00429_014_0791_z
crossref_primary_10_1109_TMI_2011_2122341
crossref_primary_10_1016_j_neuroimage_2011_11_050
crossref_primary_10_1016_j_neuropsychologia_2011_08_010
crossref_primary_10_1093_schbul_sbt063
crossref_primary_10_3389_fneur_2017_00739
crossref_primary_10_3389_fpsyt_2021_634015
crossref_primary_10_1016_j_neuroimage_2011_10_023
crossref_primary_10_3389_fnagi_2014_00231
crossref_primary_10_1016_j_neurobiolaging_2014_04_013
crossref_primary_10_1016_j_neuroimage_2011_09_017
crossref_primary_10_3389_fnbeh_2018_00270
crossref_primary_10_1523_JNEUROSCI_0003_10_2010
crossref_primary_10_1016_j_neuropsychologia_2012_02_007
crossref_primary_10_1176_appi_neuropsych_12060143
crossref_primary_10_1371_journal_pone_0106735
crossref_primary_10_1016_j_neuroimage_2015_03_072
crossref_primary_10_1111_ejn_14430
crossref_primary_10_1016_j_neuroimage_2023_119929
crossref_primary_10_1162_jocn_a_00401
crossref_primary_10_1016_j_nicl_2018_01_002
crossref_primary_10_1016_j_bpsc_2022_01_007
crossref_primary_10_1016_j_neuroimage_2016_12_037
crossref_primary_10_1002_hbm_22703
crossref_primary_10_1007_s00429_012_0380_y
crossref_primary_10_1007_s11065_019_09414_7
crossref_primary_10_1016_j_neuroimage_2019_116259
crossref_primary_10_1192_bjp_bp_114_154393
crossref_primary_10_1093_cercor_bhae493
crossref_primary_10_1111_pcn_12055
crossref_primary_10_1016_j_neuroimage_2012_04_005
crossref_primary_10_1016_j_neubiorev_2024_105607
crossref_primary_10_1016_j_neuroimage_2022_119665
crossref_primary_10_1093_scan_nsx085
crossref_primary_10_3389_fpsyg_2023_1187092
crossref_primary_10_1016_j_neubiorev_2020_04_011
crossref_primary_10_1111_ejn_15534
crossref_primary_10_1002_brb3_1976
crossref_primary_10_1007_s00429_014_0803_z
crossref_primary_10_1080_17470919_2023_2208879
crossref_primary_10_1002_nau_24221
crossref_primary_10_1016_j_brainres_2022_148200
crossref_primary_10_1016_j_neuroimage_2014_09_069
crossref_primary_10_1038_s42003_022_04028_x
crossref_primary_10_1038_s41398_020_01128_2
crossref_primary_10_1007_s00429_016_1215_z
crossref_primary_10_1016_j_plrev_2013_07_020
crossref_primary_10_1016_j_crneur_2022_100070
crossref_primary_10_1093_schbul_sbv221
crossref_primary_10_1007_s11682_025_00966_2
crossref_primary_10_3758_s13415_019_00763_7
crossref_primary_10_1162_jocn_2011_21624
crossref_primary_10_1016_j_neubiorev_2019_09_004
crossref_primary_10_1016_j_neubiorev_2019_09_003
crossref_primary_10_1016_j_neubiorev_2020_04_028
crossref_primary_10_1038_s41467_019_12756_8
crossref_primary_10_1161_STROKEAHA_114_008194
crossref_primary_10_1007_s00702_021_02352_w
crossref_primary_10_1016_j_schres_2019_12_023
crossref_primary_10_1002_hbm_22727
crossref_primary_10_3389_fnagi_2021_693890
crossref_primary_10_1016_j_mri_2012_06_007
crossref_primary_10_1016_j_bandc_2015_04_006
crossref_primary_10_1016_j_neuroimage_2016_12_052
crossref_primary_10_1371_journal_pone_0128765
crossref_primary_10_1016_j_nicl_2016_04_001
crossref_primary_10_1016_j_nicl_2018_01_020
crossref_primary_10_1016_j_neuroimage_2021_118264
crossref_primary_10_3389_fpsyg_2018_01073
crossref_primary_10_1016_j_neubiorev_2013_12_004
crossref_primary_10_1016_j_neurobiolaging_2011_06_005
crossref_primary_10_1016_j_neubiorev_2015_02_007
crossref_primary_10_1007_s12021_023_09626_6
crossref_primary_10_1155_2015_204628
crossref_primary_10_3389_fpsyg_2022_853804
crossref_primary_10_1002_hbm_25191
crossref_primary_10_3389_fnins_2019_01037
crossref_primary_10_1002_hbm_26041
crossref_primary_10_1007_s11427_020_1822_4
crossref_primary_10_1038_tp_2016_218
crossref_primary_10_5665_sleep_3330
crossref_primary_10_1111_obr_12697
crossref_primary_10_1016_j_drugalcdep_2017_12_009
crossref_primary_10_1016_j_neubiorev_2011_10_008
crossref_primary_10_1016_j_pnpbp_2014_08_011
crossref_primary_10_1162_jocn_a_00838
crossref_primary_10_1016_j_psyneuen_2018_05_031
crossref_primary_10_1016_j_neubiorev_2020_05_004
crossref_primary_10_1016_j_schres_2013_01_004
crossref_primary_10_1093_cercor_bhab174
crossref_primary_10_1016_j_jsxm_2020_03_007
crossref_primary_10_1016_j_neuroimage_2011_12_051
crossref_primary_10_1111_bjop_12595
crossref_primary_10_3389_fpsyt_2016_00125
crossref_primary_10_1111_jon_13176
crossref_primary_10_3390_brainsci11111468
crossref_primary_10_1093_cercor_bhx121
crossref_primary_10_1186_1471_2202_13_119
crossref_primary_10_1016_j_cortex_2022_03_019
crossref_primary_10_3389_fnhum_2017_00154
crossref_primary_10_1111_adb_13257
crossref_primary_10_1016_j_smrv_2019_03_008
crossref_primary_10_1038_s41598_021_00139_3
crossref_primary_10_1002_hbm_26029
crossref_primary_10_1177_0269881117744995
crossref_primary_10_1002_jnr_25191
crossref_primary_10_1093_cercor_bhad121
crossref_primary_10_1093_cercor_bhz332
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1016_j_jns_2019_116548
crossref_primary_10_1093_cercor_bhy245
crossref_primary_10_1016_j_neubiorev_2019_08_012
crossref_primary_10_1016_j_neubiorev_2011_08_005
crossref_primary_10_1016_j_aip_2020_101690
crossref_primary_10_1016_j_neuroimage_2015_02_039
crossref_primary_10_1371_journal_pone_0231669
crossref_primary_10_1523_JNEUROSCI_5664_09_2010
crossref_primary_10_1016_j_jaac_2020_08_014
crossref_primary_10_1016_j_neuroimage_2018_10_077
crossref_primary_10_1097_WCO_0b013e3283532ca3
crossref_primary_10_1016_j_jalz_2011_12_006
crossref_primary_10_5665_sleep_4404
crossref_primary_10_3389_fnagi_2021_627919
crossref_primary_10_1016_j_neubiorev_2016_10_020
crossref_primary_10_3389_fnhum_2021_666179
crossref_primary_10_1002_hbm_22933
crossref_primary_10_1007_s11682_015_9387_3
crossref_primary_10_5498_wjp_v14_i7_1106
crossref_primary_10_1016_j_neubiorev_2020_05_008
crossref_primary_10_1038_s42003_022_03073_w
crossref_primary_10_1016_j_biopsycho_2014_06_008
crossref_primary_10_1016_j_neuropsychologia_2017_11_033
crossref_primary_10_3389_fnint_2022_931292
crossref_primary_10_1007_s10803_020_04461_z
crossref_primary_10_1016_j_neubiorev_2019_09_041
crossref_primary_10_1007_s00702_011_0606_9
crossref_primary_10_1017_S0033291715002895
crossref_primary_10_1192_j_eurpsy_2020_57
crossref_primary_10_1016_j_neuroimage_2021_118468
crossref_primary_10_1016_j_jneumeth_2022_109556
crossref_primary_10_1162_netn_a_00050
crossref_primary_10_3389_fnhum_2017_00375
crossref_primary_10_1016_j_jns_2021_117322
crossref_primary_10_1007_s00415_022_11363_w
crossref_primary_10_1016_j_pscychresns_2012_05_006
crossref_primary_10_3389_fnbeh_2018_00289
crossref_primary_10_1016_j_neubiorev_2020_05_015
crossref_primary_10_3389_fpsyg_2015_00687
crossref_primary_10_1016_j_neuroimage_2013_12_024
crossref_primary_10_3389_fnhum_2015_00567
crossref_primary_10_1016_j_nicl_2013_05_010
crossref_primary_10_1097_MD_0000000000031206
crossref_primary_10_1016_j_cortex_2018_06_015
crossref_primary_10_1016_j_neuroimage_2019_07_001
crossref_primary_10_3389_fnhum_2020_00028
crossref_primary_10_1002_hbm_26240
crossref_primary_10_1007_s11065_023_09593_4
crossref_primary_10_1016_j_neubiorev_2012_01_003
crossref_primary_10_1016_j_neuroimage_2017_04_020
crossref_primary_10_3389_fnhum_2020_00276
crossref_primary_10_1093_cercor_bhs278
crossref_primary_10_1016_j_nicl_2012_11_004
crossref_primary_10_3389_fnins_2018_01021
crossref_primary_10_1016_j_neubiorev_2010_01_009
crossref_primary_10_1097_j_pain_0000000000002681
crossref_primary_10_1016_j_nicl_2014_11_004
crossref_primary_10_1016_j_neuroimage_2022_119473
crossref_primary_10_1080_14616734_2018_1465105
crossref_primary_10_3389_fnhum_2014_00344
crossref_primary_10_1002_brb3_3046
crossref_primary_10_1073_pnas_1904975116
crossref_primary_10_1002_brb3_3286
crossref_primary_10_1515_tnsci_2022_0299
crossref_primary_10_1016_j_neubiorev_2023_105393
crossref_primary_10_1038_s41598_019_40188_3
crossref_primary_10_1016_j_neuroimage_2019_116409
crossref_primary_10_1017_S0033291710001972
crossref_primary_10_1155_2015_419808
crossref_primary_10_1007_s00429_010_0298_1
crossref_primary_10_1016_j_neubiorev_2014_08_003
crossref_primary_10_1371_journal_pone_0058150
crossref_primary_10_1093_schbul_sbad044
crossref_primary_10_3758_s13415_011_0083_5
crossref_primary_10_1002_hbm_24049
crossref_primary_10_1016_j_neuroimage_2012_06_047
crossref_primary_10_1371_journal_pone_0167276
crossref_primary_10_1016_j_neuroimage_2013_12_019
crossref_primary_10_1002_ca_23244
crossref_primary_10_1016_j_neubiorev_2023_105165
crossref_primary_10_1371_journal_pone_0136553
crossref_primary_10_1093_scan_nsab003
crossref_primary_10_1007_s00259_021_05568_w
crossref_primary_10_1159_000339528
crossref_primary_10_3389_fpsyt_2022_957685
crossref_primary_10_1007_s00429_010_0287_4
crossref_primary_10_1002_hbm_25170
crossref_primary_10_1093_scan_nsab007
crossref_primary_10_1098_rstb_2016_0018
crossref_primary_10_1016_j_neuroimage_2017_04_002
crossref_primary_10_1038_s41562_022_01371_1
crossref_primary_10_1371_journal_pone_0074657
crossref_primary_10_1007_s00429_018_1670_9
crossref_primary_10_14232_jeny_2024_1_6
crossref_primary_10_1007_s00429_015_1060_5
crossref_primary_10_1017_S0029665112000808
crossref_primary_10_1038_nrn3665
crossref_primary_10_1016_j_neubiorev_2021_01_001
crossref_primary_10_1016_j_neuroimage_2014_06_010
crossref_primary_10_1038_nrn3666
crossref_primary_10_1016_j_cortex_2023_10_008
crossref_primary_10_1016_j_neubiorev_2017_04_027
crossref_primary_10_1016_j_concog_2022_103307
crossref_primary_10_1007_s00429_011_0333_x
crossref_primary_10_1016_j_cortex_2018_03_011
crossref_primary_10_1111_pcn_13530
crossref_primary_10_1016_j_neubiorev_2012_04_002
crossref_primary_10_1016_j_neubiorev_2023_105171
crossref_primary_10_1016_j_scib_2021_06_007
crossref_primary_10_1111_jsr_12857
crossref_primary_10_3758_s13415_014_0329_0
crossref_primary_10_1007_s00429_012_0467_5
crossref_primary_10_1016_j_neuroimage_2020_116858
crossref_primary_10_1016_j_crad_2019_07_005
crossref_primary_10_3389_fpsyg_2019_00804
crossref_primary_10_1016_j_neurobiolaging_2022_06_009
crossref_primary_10_1016_j_biopsycho_2019_04_006
crossref_primary_10_1016_j_neuroimage_2015_02_069
crossref_primary_10_1111_sjop_12023
crossref_primary_10_1162_imag_a_00116
crossref_primary_10_1162_imag_a_00358
crossref_primary_10_1093_schizbullopen_sgaa016
crossref_primary_10_1162_imag_a_00355
crossref_primary_10_1007_s11682_019_00215_3
crossref_primary_10_1016_j_neubiorev_2021_01_010
crossref_primary_10_1523_JNEUROSCI_1616_13_2013
crossref_primary_10_1007_s11682_023_00846_7
crossref_primary_10_1016_j_neubiorev_2020_07_001
crossref_primary_10_1111_jcpp_13412
crossref_primary_10_1016_j_neubiorev_2019_06_027
crossref_primary_10_1002_brb3_540
crossref_primary_10_1002_hbm_26444
crossref_primary_10_1177_0269881116668592
crossref_primary_10_1186_s12993_016_0100_5
crossref_primary_10_2147_PRBM_S453035
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_1080_17588928_2011_604717
crossref_primary_10_3389_fnhum_2016_00333
crossref_primary_10_1176_appi_ajp_2021_21100987
crossref_primary_10_1007_s00429_012_0476_4
crossref_primary_10_1016_j_cortex_2013_05_011
crossref_primary_10_1093_schbul_sbq152
crossref_primary_10_1016_j_neulet_2014_12_007
crossref_primary_10_1016_j_neuroimage_2011_11_095
crossref_primary_10_1007_s00406_015_0631_z
crossref_primary_10_1016_j_neubiorev_2013_10_008
crossref_primary_10_1002_hbm_24018
crossref_primary_10_1016_j_jelekin_2017_12_005
crossref_primary_10_1016_j_neuroimage_2024_120824
crossref_primary_10_1016_j_neubiorev_2018_10_003
crossref_primary_10_3389_fnbeh_2024_1457663
crossref_primary_10_1002_hbm_25105
crossref_primary_10_1016_j_neuroimage_2012_04_060
crossref_primary_10_1016_j_neubiorev_2013_10_002
crossref_primary_10_1162_imag_a_00321
crossref_primary_10_1016_j_neubiorev_2023_105355
crossref_primary_10_1111_1460_6984_12987
crossref_primary_10_1002_hbm_24492
crossref_primary_10_1016_j_neubiorev_2018_10_016
crossref_primary_10_1002_hbm_25103
crossref_primary_10_1002_hbm_24496
crossref_primary_10_1016_j_dib_2018_10_142
crossref_primary_10_3389_fnana_2020_00002
crossref_primary_10_1016_j_neuroimage_2014_06_007
crossref_primary_10_1016_j_neuroimage_2020_116834
crossref_primary_10_1038_s41598_021_84804_7
crossref_primary_10_1007_s11682_015_9456_7
crossref_primary_10_1093_cercor_bhu250
crossref_primary_10_3233_JIN_170015
crossref_primary_10_1016_j_neurobiolaging_2009_11_008
crossref_primary_10_1002_aur_235
crossref_primary_10_1007_s00737_018_0878_2
crossref_primary_10_1016_j_neubiorev_2014_06_010
crossref_primary_10_1007_s10803_020_04794_9
crossref_primary_10_1016_j_neuroscience_2012_03_028
crossref_primary_10_1523_JNEUROSCI_1748_17_2017
crossref_primary_10_1016_j_schres_2019_11_029
crossref_primary_10_1002_brb3_3272
crossref_primary_10_1002_hbm_24047
crossref_primary_10_1007_s11682_017_9756_1
crossref_primary_10_1016_j_nicl_2021_102605
crossref_primary_10_1080_10400419_2023_2269356
crossref_primary_10_1214_14_AOAS757
crossref_primary_10_1016_j_neuropsychologia_2024_109003
crossref_primary_10_1016_j_physbeh_2024_114481
crossref_primary_10_1111_odi_12819
crossref_primary_10_1016_j_nicl_2019_102114
crossref_primary_10_1007_s00429_022_02572_0
crossref_primary_10_1093_chemse_bjaa067
crossref_primary_10_1038_s41398_020_01115_7
crossref_primary_10_1093_cercor_bhu044
crossref_primary_10_1002_da_22478
crossref_primary_10_1016_j_neuron_2011_12_027
crossref_primary_10_1111_jnc_15990
crossref_primary_10_1016_j_cortex_2024_05_015
crossref_primary_10_1016_j_neubiorev_2014_06_006
crossref_primary_10_1016_j_neuroimage_2012_05_058
crossref_primary_10_1038_s41598_024_69973_5
crossref_primary_10_1007_s00429_016_1239_4
crossref_primary_10_1007_s11682_022_00680_3
crossref_primary_10_1016_j_bandc_2012_05_004
crossref_primary_10_1016_j_bandl_2016_05_013
crossref_primary_10_1016_j_dcn_2017_08_002
crossref_primary_10_1016_j_jfludis_2017_02_003
crossref_primary_10_1016_j_pscychresns_2022_111516
crossref_primary_10_1007_s13596_017_0266_x
crossref_primary_10_3724_SP_J_1042_2022_00255
crossref_primary_10_1016_j_jpsychires_2019_10_018
crossref_primary_10_1002_hbm_24031
crossref_primary_10_1371_journal_pone_0113885
crossref_primary_10_1016_j_neubiorev_2019_06_012
crossref_primary_10_1016_j_biopsycho_2016_07_015
crossref_primary_10_1016_j_neuropsychologia_2016_05_025
crossref_primary_10_3389_fpsyg_2023_1136983
crossref_primary_10_1016_j_nicl_2019_102129
crossref_primary_10_1371_journal_pone_0286969
crossref_primary_10_1007_s00429_019_02007_3
crossref_primary_10_3389_fpsyt_2022_969206
crossref_primary_10_1111_joor_13397
crossref_primary_10_1016_j_neuroimage_2013_11_001
crossref_primary_10_1111_j_1743_6109_2011_02322_x
crossref_primary_10_1002_brb3_329
crossref_primary_10_1016_j_neubiorev_2020_07_006
Cites_doi 10.1111/j.1460-9568.2003.03066.x
10.1006/nimg.2000.0659
10.1080/00207450490512650
10.1073/pnas.83.4.1140
10.1073/pnas.221462998
10.1093/cercor/bhi105
10.1007/s10548-007-0037-y
10.1016/S0987-7053(00)00227-6
10.1016/S0278-5846(01)00271-8
10.1002/hbm.20006
10.1006/nimg.1999.0482
10.1523/JNEUROSCI.23-10-03963.2003
10.1007/s00429-008-0195-z
10.1016/S0306-4522(98)00744-1
10.1002/hbm.20132
10.1016/S0925-4927(98)00023-7
10.1097/00004647-199609000-00001
10.1152/jn.1998.79.2.1070
10.1002/hbm.10016
10.1007/s00221-005-0059-1
10.1016/j.jneumeth.2004.07.014
10.1093/cercor/bhi089
10.1212/WNL.48.4.1056
10.1002/(SICI)1097-0193(1999)8:2/3<143::AID-HBM12>3.0.CO;2-9
10.1152/jn.00132.2002
10.1093/brain/122.3.483
10.1093/cercor/bhi106
10.1002/ana.21228
10.1093/scan/nsm015
10.1016/j.neuroimage.2006.12.029
10.1007/s002210000402
10.1097/00001756-199601310-00021
10.1016/j.neuroimage.2008.01.065
10.1016/j.neuroimage.2003.12.031
10.1016/j.brainres.2006.11.074
10.1006/nimg.2002.1131
10.1016/j.neuroimage.2007.07.005
10.1162/089892905774589190
10.1093/cercor/bhj181
10.1002/hbm.20267
10.1093/cercor/bhj075
10.1016/j.neuroimage.2004.03.052
10.1006/nimg.1999.0483
10.1002/hbm.20125
10.1006/nimg.1998.0397
10.1007/s00221-004-2008-9
10.1006/nimg.1996.0025
10.1006/nimg.1998.0426
10.1097/00004647-199609000-00004
10.1006/nimg.2000.0621
10.1007/s002210100796
10.1002/hbm.20053
10.1097/00001756-200004270-00031
10.1002/hbm.1058
10.1007/978-1-4615-2546-2_48
10.1152/jn.1991.65.6.1392
10.1016/j.neuroimage.2004.07.013
10.1093/brain/121.2.253
10.1006/nimg.2001.1037
10.1161/01.STR.32.1.139
10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0.CO;2-7
10.1016/S0028-3932(99)00062-7
10.1016/j.neuroimage.2007.03.061
10.1016/j.neuroimage.2003.10.019
10.1523/JNEUROSCI.17-24-09667.1997
10.1109/TMI.2003.816961
10.1016/j.neuroimage.2004.12.034
10.1093/cercor/10.11.1093
10.1016/S0926-6410(00)00022-7
10.1152/jn.2000.83.2.1079
10.1037/0894-4105.19.4.484
10.1016/S0896-6273(01)00423-8
10.1038/nn1263
10.1016/j.biopsych.2004.12.017
10.1002/hbm.20136
10.1016/j.neuroimage.2008.03.048
10.1006/nimg.1998.0333
10.3758/CABN.1.2.119
10.1016/j.neuroimage.2005.01.037
10.1006/nimg.2001.0858
10.3758/CABN.3.4.255
10.1523/JNEUROSCI.16-08-02691.1996
10.1097/00006534-200110000-00005
10.1093/cercor/bhm116
10.1016/j.neuroimage.2006.05.021
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 INIST-CNRS
2009 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 INIST-CNRS
– notice: 2009 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
5PM
DOI 10.1002/hbm.20718
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
CrossRef
Engineering Research Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate ALE Meta‐Analysis Based on Spatial Uncertainty
EISSN 1097-0193
EndPage 2926
ExternalDocumentID PMC2872071
19172646
21839352
10_1002_hbm_20718
HBM20718
ark_67375_WNG_R5V21TTD_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: National Institute of Biomedical Imaging and Bioengineering
– fundername: Human Brain Project of the NIMH
  funderid: R01‐MH074457‐01A1
– fundername: Deutsche Forschungsgemeinschaft
  funderid: KFO‐112
– fundername: NIMH NIH HHS
  grantid: R01 MH074457
– fundername: NIMH NIH HHS
  grantid: R01-MH074457-01A1
– fundername: NIMH NIH HHS
  grantid: R56 MH074457
– fundername: Human Brain Project of the NIMH
  grantid: R01‐MH074457‐01A1
– fundername: Deutsche Forschungsgemeinschaft
  grantid: KFO‐112
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
7X7
8FI
8FJ
AAMMB
ABEML
ABJNI
ABUWG
ACCMX
ACSCC
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
BENPR
CCPQU
EBD
EMOBN
FYUFA
GAKWD
HMCUK
IAO
IHR
IQODW
ITC
M6M
PHGZM
PHGZT
PIMPY
RIWAO
RJQFR
SAMSI
SV3
UKHRP
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c6118-b9106455c529de082d6716ffc6d87820ac2e5b04da6720a23f042787d8c43dde3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:09:24 EDT 2025
Fri Jul 11 03:28:05 EDT 2025
Fri Jul 11 16:25:50 EDT 2025
Fri Jul 11 03:07:05 EDT 2025
Mon Jul 21 06:06:08 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Tue Jul 01 04:25:56 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Wed Jan 22 16:26:30 EST 2025
Wed Oct 30 09:50:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Human
Data analysis
Uncertainty
Nervous system diseases
Radiodiagnosis
Estimation
Variability
random-effects
Nuclear magnetic resonance imaging
Variance
fMRI
Random effect
Surgical approach
between-subject variability
Positron emission tomography
Activation analysis
PET
Emission tomography
permutation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2009 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6118-b9106455c529de082d6716ffc6d87820ac2e5b04da6720a23f042787d8c43dde3
Notes National Institute of Neurological Disorders and Stroke
Deutsche Forschungsgemeinschaft - No. KFO-112
ArticleID:HBM20718
National Institute of Mental Health
Human Brain Project of the NIMH - No. R01-MH074457-01A1
istex:17BE230EE65D397C194C7EB7F1A1DAF9956FF63E
National Institute of Biomedical Imaging and Bioengineering
ark:/67375/WNG-R5V21TTD-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2872071
PMID 19172646
PQID 67616284
PQPubID 23462
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2872071
proquest_miscellaneous_754550808
proquest_miscellaneous_745936878
proquest_miscellaneous_67616284
pubmed_primary_19172646
pascalfrancis_primary_21839352
crossref_primary_10_1002_hbm_20718
crossref_citationtrail_10_1002_hbm_20718
wiley_primary_10_1002_hbm_20718_HBM20718
istex_primary_ark_67375_WNG_R5V21TTD_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2009
PublicationDateYYYYMMDD 2009-09-15
PublicationDate_xml – month: 09
  year: 2009
  text: 15 September 2009
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Jancke L,Specht K,Mirzazade S,Peters M ( 1999): The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study. Neuroimage 9: 497-507.
Walters NB,Eickhoff SB,Schleicher A,Zilles K,Amunts K,Egan GF,Watson JDG: Observer independent analysis of high-resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas. Hum Brain Mapp 2007; 28: 1-8.
Eickhoff SB,Amunts K,Mohlberg H,Zilles K ( 2006a): The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex 16: 268-279.
Fox PT,Raichle ME ( 1986): Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140-1144.
Joliot M,Crivello F,Badier JM,Diallo B,Tzourio N,Mazoyer B ( 1998): Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. Neuroimage 7: 337-351.
Kawashima R,Inoue K,Sugiura M,Okada K,Ogawa A,Fukuda H ( 1999): A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92: 107-112.
Heim S,Eickhoff SB,Ischebeck AK,Friederici AD,Stephan KE,Amunts K: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp [Epub ahead of print] DOI.10.1002/hbm.20512
Mattay VS,Callicott JH,Bertolino A,Santha AK,Van Horn JD,Tallent KA,Frank JA,Weinberger DR ( 1998): Hemispheric control of motor function: A whole brain echo planar fMRI study. Psychiatry Res 83: 7-22.
Kuhtz-Buschbeck JP,Mahnkopf C,Holzknecht C,Siebner H,Ulmer S,Jansen O ( 2003): Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387.
Eickhoff SB,Schleicher A,Zilles K,Amunts K ( 2006b): The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex 16: 254-267.
Seghier ML,Lazeyras F,Pegna AJ,Annoni JM,Zimine I,Mayer E,Michel CM,Khateb A ( 2004): Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp 23: 140-155.
Xiong J,Rao S,Jerabek P,Zamarripa F,Woldorff M,Lancaster J,Fox PT ( 2000): Intersubject variability in cortical activations during a complex language task. Neuroimage 12: 326-339.
Scheperjans F,Hermann K,Eickhoff SB,Amunts K,Schleicher A,Zilles K ( 2007): Observer-Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex. Cerebral Cortex.2008; 18: 846-867.
Gosain AK,Birn RM,Hyde JS ( 2001): Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging. Plast Reconstr Surg 108: 1136-1144.
Ramsey NF,Kirkby BS,Van GP,Berman KF,Duyn JH,Frank JA,Mattay VS,Van Horn JD,Esposito G,Moonen CT,Weinberger DR ( 1996): Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab 16: 755-764.
Blinkenberg M,Bonde C,Holm S,Svarer C,Andersen J,Paulson OB,Law I ( 1996): Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study. J Cereb Blood Flow Metab 16: 794-803.
Larsson J,Gulyas B,Roland PE ( 1996): Cortical representation of self-paced finger movement. Neuroreport 7: 463-468.
Ardekani BA,Guckemus S,Bachman A,Hoptman MJ,Wojtaszek M,Nierenberg J ( 2005): Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67-76.
Hellier P,Barillot C,Corouge I,Gibaud B,Le GG,Collins DL,Evans A,Malandain G,Ayache N,Christensen GE,Johnson HJ ( 2003): Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22: 1120-1130.
Wager TD,Lindquist M,Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158.
Malikovic A,Amunts K,Schleicher A,Mohlberg H,Eickhoff SB,Wilms M,Palomero-Gallagher N,Armstrong E,Zilles K ( 2007): Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cerebral Cortex 17: 562-574.
Colebatch JG,Deiber MP,Passingham RE,Friston KJ,Frackowiak RS ( 1991): Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392-1401.
Fox PT,Huang AY,Parsons LM,Xiong JH,Rainey L,Lancaster JL ( 1999): Functional volumes modeling: Scaling for group size in averaged images. Hum Brain Mapp 8: 143-150.
Feredoes E,Postle BR ( 2007): Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single-subject and group-averaged approaches to fMRI group analysis. Neuroimage 35: 881-903.
Vogt S,Buccino G,Wohlschlager AM,Canessa N,Shah NJ,Zilles K,Eickhoff SB,Freund HJ,Rizzolatti G,Fink GR ( 2007): Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 37: 1371-1383.
Caspers S,Eickhoff SB,Geyer S,Scheperjans F,Mohlberg H,Zilles K,Amunts K ( 2008): The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212: 481-495.
Sadato N,Campbell G,Ibanez V,Deiber M,Hallett M ( 1996): Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16: 2691-2700.
Grefkes C,Nowak DA,Eickhoff SB,Dafotakis M,Kust J,Karbe H,Fink GR ( 2008b): Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236-246.
Booth JR,Wood L,Lu D,Houk JC,Bitan T ( 2007): The role of the basal ganglia and cerebellum in language processing. Brain Res 1133: 136-144.
la-Justina HM,Pastorello BF,Santos-Pontelli TE,Pontes-Neto OM,Santos AC,Baffa O,Colafemina JF,Leite JP,de Araujo DB ( 2008): Human variability of FMRI brain activation in response to oculomotor stimuli. Brain Topogr 20: 113-121.
Lutz K,Specht K,Shah NJ,Jancke L ( 2000): Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11: 1301-1306.
Stark CE,Squire LR ( 2001): When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA 98: 12760-12766.
Clark VP,Keil K,Maisog JM,Courtney S,Ungerleider LG,Haxby JV ( 1996): Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography. Neuroimage 4: 1-15.
Nichols TE,Holmes AP ( 2002): Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp 15: 1-25.
Rizzolatti G,Luppino G ( 2001): The cortical motor system. Neuron 31: 889-901.
Fox PT,Huang A,Parsons LM,Xiong JH,Zamarippa F,Rainey L,Lancaster JL ( 2001): Location-probability profiles for the mouth region of human primary motor-sensory cortex: Model and validation. Neuroimage 13: 196-209.
Aoki T,Tsuda H,Takasawa M,Osaki Y,Oku N,Hatazawa J,Kinoshita H ( 2005): The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study. Exp Brain Res 160: 375-383.
Genovese CR,Lazar NA,Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
Indovina I,Sanes JN ( 2001): Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 140: 265-279.
Catalan MJ,Honda M,Weeks RA,Cohen LG,Hallett M ( 1998): The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(Pt 2): 253-264.
Jancke L,Loose R,Lutz K,Specht K,Shah NJ ( 2000a): Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 10: 51-66.
Laird AR,Fox PM,Price CJ,Glahn DC,Uecker AM,Lancaster JL,Turkeltaub PE,Kochunov P,Fox PT ( 2005): ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164.
Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233.
Raemaekers M,Vink M,Zandbelt B,van Wezel RJ,Kahn RS,Ramsey NF ( 2007): Test-retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage.2007; 36: 532-542.
Wilson SM,Saygin AP,Sereno MI,Iacoboni M ( 2004): Listening to speech activates motor areas involved in speech production. Nat Neurosci 7: 701-702.
Joseph JE ( 2001): Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cogn Affect Behav Neurosci 1: 119-136.
Wager TD,Smith EE ( 2003): Neuroimaging studies of working memory: A meta-analysis. Cogn Affect Behav Neurosci 3: 255-274.
Hasnain MK,Fox PT,Woldorff MG ( 1998): Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp 6: 301-315.
Aramaki Y,Honda M,Okada T,Sadato N ( 2006): Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex 16: 1338-1348.
Laird AR,Robbins JM,Li K,Price LR,Cykowski MD,Narayana S,Laird RW,Franklin C,Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. Neuroimage 41: 424-436.
Joliot M,Papathanassiou D,Mellet E,Quinton O,Mazoyer N,Courtheoux P,Mazoyer B ( 1999): FMRI and PET of self-paced finger movement: Comparison of intersubject stereotaxic averaged data. Neuroimage 10: 430-447.
Hanakawa T,Immisch I,Toma K,Dimyan MA,Van GP,Hallett M ( 2003): Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002.
Calautti C,Serrati C,Baron JC ( 2001): Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study. Stroke 32: 139-146.
Boecker H,Dagher A,Ceballos-Baumann AO,Passingham RE,Samuel M,Friston KJ,Poline J,Dettmers C,Conr
2004; 21
2002; 16
2004; 22
2002; 15
2001; 140
2006; 32
1997; 48
2004; 7
2004; 23
2003; 18
1999; 122
1998; 83
2000; 133
2001; 108
2005; 26
2003; 93
2000a; 10
2007; 35
2007; 36
2006a; 16
2007; 37
2005; 25
2008a; 41
2007; 28
2007; 212
1986; 83
2005; 142
2007; 1133
2000; 12
2000; 10
2000; 11
2006b; 16
2003; 3
1997; 17
1999; 10
2007; 2
2008; 20
1996; 4
1998; 121
1999; 92
2001; 13
2001; 14
2003; 89
1996; 7
2001; 98
2007; 17
2007; 18
2006; 16
2005; 115
2008b; 63
1994
2003
1999; 8
1996; 16
1999; 9
2005; 160
2002; 26
2000b; 38
2005; 19
1991; 65
2005; 167
2000; 30
2000; 83
2001; 1
2008; 41
2008; 212
1998; 7
1998; 6
2005; 17
2005; 57
2003; 22
2001; 31
1998; 79
2001; 32
2003; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Penny WD (e_1_2_7_68_1) 2003
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
Rottschy C (e_1_2_7_75_1) 2007; 212
Zilles K (e_1_2_7_92_1) 2003; 93
e_1_2_7_49_1
e_1_2_7_28_1
Kiebel S (e_1_2_7_52_1) 2003
Sadato N (e_1_2_7_77_1) 1996; 16
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Heim S (e_1_2_7_41_1)
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Ashburner J (e_1_2_7_6_1) 2003
References_xml – reference: Yoo SS,Wei X,Dickey CC,Guttmann CR,Panych LP ( 2005): Long-term reproducibility analysis of fMRI using hand motor task. Int J Neurosci 115: 55-77.
– reference: Wager TD,Jonides J,Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. Neuroimage 22: 1679-1693.
– reference: Laird AR,Fox PM,Price CJ,Glahn DC,Uecker AM,Lancaster JL,Turkeltaub PE,Kochunov P,Fox PT ( 2005): ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164.
– reference: Peyron R,Laurent B,Garcia-Larrea L ( 2000): Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30: 263-288.
– reference: Mechelli A,Crinion JT,Long S,Friston KJ,Lambon Ralph MA,Patterson K,McClelland JL,Price CJ ( 2005): Dissociating reading processes on the basis of neuronal interactions. J Cogn Neurosci 17: 1753-1765.
– reference: Otzenberger H,Gounot D,Marrer C,Namer IJ,Metz-Lutz MN ( 2005): Reliability of individual functional MRI brain mapping of language. Neuropsychology 19: 484-493.
– reference: Wager TD,Lindquist M,Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158.
– reference: Scheperjans F,Hermann K,Eickhoff SB,Amunts K,Schleicher A,Zilles K ( 2007): Observer-Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex. Cerebral Cortex.2008; 18: 846-867.
– reference: Ramsey NF,Kirkby BS,Van GP,Berman KF,Duyn JH,Frank JA,Mattay VS,Van Horn JD,Esposito G,Moonen CT,Weinberger DR ( 1996): Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF. J Cereb Blood Flow Metab 16: 755-764.
– reference: Sadato N,Campbell G,Ibanez V,Deiber M,Hallett M ( 1996): Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16: 2691-2700.
– reference: Joliot M,Papathanassiou D,Mellet E,Quinton O,Mazoyer N,Courtheoux P,Mazoyer B ( 1999): FMRI and PET of self-paced finger movement: Comparison of intersubject stereotaxic averaged data. Neuroimage 10: 430-447.
– reference: Nichols TE,Holmes AP ( 2002): Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp 15: 1-25.
– reference: Catalan MJ,Honda M,Weeks RA,Cohen LG,Hallett M ( 1998): The functional neuroanatomy of simple and complex sequential finger movements: A PET study. Brain 121(Pt 2): 253-264.
– reference: Wager TD,Smith EE ( 2003): Neuroimaging studies of working memory: A meta-analysis. Cogn Affect Behav Neurosci 3: 255-274.
– reference: Feredoes E,Postle BR ( 2007): Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single-subject and group-averaged approaches to fMRI group analysis. Neuroimage 35: 881-903.
– reference: Rottschy C,Eickhoff SB,Schleicher A,Mohlberg H,Kujovic M,Zilles K,Amunts K ( 2007): The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 212: 255-267.
– reference: Joseph JE ( 2001): Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cogn Affect Behav Neurosci 1: 119-136.
– reference: Larsson J,Gulyas B,Roland PE ( 1996): Cortical representation of self-paced finger movement. Neuroreport 7: 463-468.
– reference: Lehericy S,Bardinet E,Tremblay L,Van de Moortele PF,Pochon JB,Dormont D,Kim DS,Yelnik J,Ugurbil K ( 2006): Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex 16: 149-161.
– reference: Eickhoff SB,Schleicher A,Zilles K,Amunts K ( 2006b): The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex 16: 254-267.
– reference: la-Justina HM,Pastorello BF,Santos-Pontelli TE,Pontes-Neto OM,Santos AC,Baffa O,Colafemina JF,Leite JP,de Araujo DB ( 2008): Human variability of FMRI brain activation in response to oculomotor stimuli. Brain Topogr 20: 113-121.
– reference: Zilles K,Eickhoff S,Palomero-Gallagher N ( 2003): The human parietal cortex: A novel approach to its architectonic mapping. Adv Neurol 93: 1-21.
– reference: De Luca M,Smith S,De Stefano N,Federico A,Matthews PM ( 2005): Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167: 587-594.
– reference: Seitz RJ,Stephan KM,Binkofski F ( 2000): Control of action as mediated by the human frontal lobe. Exp Brain Res 133: 71-80.
– reference: Colebatch JG,Deiber MP,Passingham RE,Friston KJ,Frackowiak RS ( 1991): Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392-1401.
– reference: Genovese CR,Lazar NA,Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
– reference: Price CJ,Devlin JT,Moore CJ,Morton C,Laird AR ( 2005): Meta-analyses of object naming: Effect of baseline. Hum Brain Mapp 25: 70-82.
– reference: Jancke L,Specht K,Mirzazade S,Peters M ( 1999): The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study. Neuroimage 9: 497-507.
– reference: Raemaekers M,Vink M,Zandbelt B,van Wezel RJ,Kahn RS,Ramsey NF ( 2007): Test-retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage.2007; 36: 532-542.
– reference: Indovina I,Sanes JN ( 2001): Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 140: 265-279.
– reference: Buxton RB,Uludag K,Dubowitz DJ,Liu TT ( 2004): Modeling the hemodynamic response to brain activation. Neuroimage 23 ( Suppl 1): S220-S233.
– reference: Calautti C,Serrati C,Baron JC ( 2001): Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study. Stroke 32: 139-146.
– reference: Jancke L,Peters M,Himmelbach M,Nosselt T,Shah J,Steinmetz H ( 2000b): fMRI study of bimanual coordination. Neuropsychologia 38: 164-174.
– reference: Gelnar PA,Krauss BR,Sheehe PR,Szeverenyi NM,Apkarian AV ( 1999): A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10: 460-482.
– reference: Joliot M,Crivello F,Badier JM,Diallo B,Tzourio N,Mazoyer B ( 1998): Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. Neuroimage 7: 337-351.
– reference: Laird AR,Robbins JM,Li K,Price LR,Cykowski MD,Narayana S,Laird RW,Franklin C,Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. Neuroimage 41: 424-436.
– reference: Denslow S,Lomarev M,George MS,Bohning DE ( 2005): Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: An interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57: 752-760.
– reference: Fox PT,Huang AY,Parsons LM,Xiong JH,Rainey L,Lancaster JL ( 1999): Functional volumes modeling: Scaling for group size in averaged images. Hum Brain Mapp 8: 143-150.
– reference: Sadato N,Yonekura Y,Waki A,Yamada H,Ishii Y ( 1997): Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17: 9667-9674.
– reference: Farrell MJ,Laird AR,Egan GF ( 2005): Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. Hum Brain Mapp 25: 129-139.
– reference: Rounis E,Lee L,Siebner HR,Rowe JB,Friston KJ,Rothwell JC,Frackowiak RS ( 2005): Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage 26: 164-176.
– reference: Walters NB,Eickhoff SB,Schleicher A,Zilles K,Amunts K,Egan GF,Watson JDG: Observer independent analysis of high-resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas. Hum Brain Mapp 2007; 28: 1-8.
– reference: Caspers S,Eickhoff SB,Geyer S,Scheperjans F,Mohlberg H,Zilles K,Amunts K ( 2008): The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212: 481-495.
– reference: Malikovic A,Amunts K,Schleicher A,Mohlberg H,Eickhoff SB,Wilms M,Palomero-Gallagher N,Armstrong E,Zilles K ( 2007): Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cerebral Cortex 17: 562-574.
– reference: Jancke L,Loose R,Lutz K,Specht K,Shah NJ ( 2000a): Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 10: 51-66.
– reference: Gerardin E,Sirigu A,Lehericy S,Poline JB,Gaymard B,Marsault C,Agid Y,Le BD ( 2000): Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10: 1093-1104.
– reference: Seghier ML,Lazeyras F,Pegna AJ,Annoni JM,Zimine I,Mayer E,Michel CM,Khateb A ( 2004): Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp 23: 140-155.
– reference: Aoki T,Tsuda H,Takasawa M,Osaki Y,Oku N,Hatazawa J,Kinoshita H ( 2005): The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study. Exp Brain Res 160: 375-383.
– reference: Xiong J,Rao S,Jerabek P,Zamarripa F,Woldorff M,Lancaster J,Fox PT ( 2000): Intersubject variability in cortical activations during a complex language task. Neuroimage 12: 326-339.
– reference: Rizzolatti G,Luppino G ( 2001): The cortical motor system. Neuron 31: 889-901.
– reference: Boecker H,Dagher A,Ceballos-Baumann AO,Passingham RE,Samuel M,Friston KJ,Poline J,Dettmers C,Conrad B,Brooks DJ ( 1998): Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H2 15O PET. J Neurophysiol 79: 1070-1080.
– reference: Eickhoff SB,Amunts K,Mohlberg H,Zilles K ( 2006a): The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex 16: 268-279.
– reference: Muller JL,Roder CH,Schuierer G,Klein H ( 2002): Motor-induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study. Prog Neuropsychopharmacol Biol Psychiatry 26: 421-426.
– reference: Amunts K,Weiss PH,Mohlberg H,Pieperhoff P,Eickhoff S,Gurd J,Marshall JC,Shah NJ,Fink GR,Zilles K ( 2004): Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space-The roles of Brodmann areas 44 and 45. Neuroimage 22: 42-56.
– reference: Hammers A,Koepp MJ,Free SL,Brett M,Richardson MP,Labbe C,Cunningham VJ,Brooks DJ,Duncan J ( 2002): Implementation and application of a brain template for multiple volumes of interest. Hum Brain Mapp 15: 165-174.
– reference: Aramaki Y,Honda M,Okada T,Sadato N ( 2006): Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex 16: 1338-1348.
– reference: Fox PT,Huang A,Parsons LM,Xiong JH,Zamarippa F,Rainey L,Lancaster JL ( 2001): Location-probability profiles for the mouth region of human primary motor-sensory cortex: Model and validation. Neuroimage 13: 196-209.
– reference: Catalan MJ,Ishii K,Honda M,Samii A,Hallett M ( 1999): A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain 122 (Pt 3): 483-495.
– reference: Clark VP,Keil K,Maisog JM,Courtney S,Ungerleider LG,Haxby JV ( 1996): Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography. Neuroimage 4: 1-15.
– reference: Grefkes C,Nowak DA,Eickhoff SB,Dafotakis M,Kust J,Karbe H,Fink GR ( 2008b): Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236-246.
– reference: Hanakawa T,Immisch I,Toma K,Dimyan MA,Van GP,Hallett M ( 2003): Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89: 989-1002.
– reference: Eickhoff SB,Stephan KE,Mohlberg H,Grefkes C,Fink GR,Amunts K,Zilles K ( 2005): A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25: 1325-1335.
– reference: Hellier P,Barillot C,Corouge I,Gibaud B,Le GG,Collins DL,Evans A,Malandain G,Ayache N,Christensen GE,Johnson HJ ( 2003): Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22: 1120-1130.
– reference: Stark CE,Squire LR ( 2001): When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA 98: 12760-12766.
– reference: Grefkes C,Eickhoff SB,Nowak DA,Dafotakis M,Fink GR ( 2008a): Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41: 1382-1394.
– reference: Hasnain MK,Fox PT,Woldorff MG ( 1998): Intersubject variability of functional areas in the human visual cortex. Hum Brain Mapp 6: 301-315.
– reference: Kawashima R,Okuda J,Umetsu A,Sugiura M,Inoue K,Suzuki K,Tabuchi M,Tsukiura T,Narayan SL,Nagasaka T,Yanagawa I,Fujii T,Takahashi S,Fukuda H,Yamadori A ( 2000): Human cerebellum plays an important role in memory-timed finger movement: An fMRI study. J Neurophysiol 83: 1079-1087.
– reference: Grachev ID,Berdichevsky D,Rauch SL,Heckers S,Kennedy DN,Caviness VS,Alpert NM ( 1999): A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. Neuroimage 9: 250-268.
– reference: Grefkes C,Geyer S,Schormann T,Roland P,Zilles K ( 2001): Human somatosensory area 2: Observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14: 617-631.
– reference: Bookheimer SY,Zeffiro TA,Blaxton T,Malow BA,Gaillard WD,Sato S,Kufta C,Fedio P,Theodore WH ( 1997): A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology 48: 1056-1065.
– reference: Booth JR,Wood L,Lu D,Houk JC,Bitan T ( 2007): The role of the basal ganglia and cerebellum in language processing. Brain Res 1133: 136-144.
– reference: Blinkenberg M,Bonde C,Holm S,Svarer C,Andersen J,Paulson OB,Law I ( 1996): Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study. J Cereb Blood Flow Metab 16: 794-803.
– reference: Fox PT,Narayana S,Tandon N,Sandoval H,Fox SP,Kochunov P,Lancaster JL ( 2004): Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22: 1-14.
– reference: Logothetis NK ( 2003): The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23: 3963-3971.
– reference: Mattay VS,Callicott JH,Bertolino A,Santha AK,Van Horn JD,Tallent KA,Frank JA,Weinberger DR ( 1998): Hemispheric control of motor function: A whole brain echo planar fMRI study. Psychiatry Res 83: 7-22.
– reference: Gosain AK,Birn RM,Hyde JS ( 2001): Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging. Plast Reconstr Surg 108: 1136-1144.
– reference: Heim S,Eickhoff SB,Ischebeck AK,Friederici AD,Stephan KE,Amunts K: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp [Epub ahead of print] DOI.10.1002/hbm.20512
– reference: Wilson SM,Saygin AP,Sereno MI,Iacoboni M ( 2004): Listening to speech activates motor areas involved in speech production. Nat Neurosci 7: 701-702.
– reference: Kuhtz-Buschbeck JP,Mahnkopf C,Holzknecht C,Siebner H,Ulmer S,Jansen O ( 2003): Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. Eur J Neurosci 18: 3375-3387.
– reference: Turkeltaub PE,Eden GF,Jones KM,Zeffiro TA ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16: 765-780.
– reference: Fox PT,Raichle ME ( 1986): Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140-1144.
– reference: Riecker A,Groschel K,Ackermann H,Steinbrink C,Witte O,Kastrup A ( 2006): Functional significance of age-related differences in motor activation patterns. Neuroimage 32: 1345-1354.
– reference: Ardekani BA,Guckemus S,Bachman A,Hoptman MJ,Wojtaszek M,Nierenberg J ( 2005): Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67-76.
– reference: Vogt S,Buccino G,Wohlschlager AM,Canessa N,Shah NJ,Zilles K,Eickhoff SB,Freund HJ,Rizzolatti G,Fink GR ( 2007): Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 37: 1371-1383.
– reference: Kawashima R,Inoue K,Sugiura M,Okada K,Ogawa A,Fukuda H ( 1999): A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92: 107-112.
– reference: Lutz K,Specht K,Shah NJ,Jancke L ( 2000): Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11: 1301-1306.
– reference: Lerner A,Shill H,Hanakawa T,Bushara K,Goldfine A,Hallett M ( 2004): Regional cerebral blood flow correlates of the severity of writer's cramp symptoms. Neuroimage 21: 904-913.
– volume: 16
  start-page: 149
  year: 2006
  end-page: 161
  article-title: Motor control in basal ganglia circuits using fMRI and brain atlas approaches
  publication-title: Cerebral Cortex
– volume: 11
  start-page: 1301
  year: 2000
  end-page: 1306
  article-title: Tapping movements according to regular and irregular visual timing signals investigated with fMRI
  publication-title: Neuroreport
– volume: 31
  start-page: 889
  year: 2001
  end-page: 901
  article-title: The cortical motor system
  publication-title: Neuron
– volume: 26
  start-page: 164
  year: 2005
  end-page: 176
  article-title: Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex
  publication-title: Neuroimage
– volume: 18
  start-page: 3375
  year: 2003
  end-page: 3387
  article-title: Effector‐independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study
  publication-title: Eur J Neurosci
– volume: 57
  start-page: 752
  year: 2005
  end-page: 760
  article-title: Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)‐induced movement: An interleaved TMS/functional magnetic resonance imaging study
  publication-title: Biol Psychiatry
– volume: 9
  start-page: 497
  year: 1999
  end-page: 507
  article-title: The effect of finger‐movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study
  publication-title: Neuroimage
– volume: 17
  start-page: 562
  year: 2007
  end-page: 574
  article-title: Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5
  publication-title: Cerebral Cortex
– volume: 23
  start-page: S220
  issue: Suppl 1
  year: 2004
  end-page: S233
  article-title: Modeling the hemodynamic response to brain activation
  publication-title: Neuroimage
– volume: 16
  start-page: 2691
  year: 1996
  end-page: 2700
  article-title: Complexity affects regional cerebral blood flow change during sequential finger movements
  publication-title: J Neurosci
– volume: 25
  start-page: 70
  year: 2005
  end-page: 82
  article-title: Meta‐analyses of object naming: Effect of baseline
  publication-title: Hum Brain Mapp
– article-title: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 155
  year: 2005
  end-page: 164
  article-title: ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts
  publication-title: Hum Brain Mapp
– start-page: 263
  year: 1994
  end-page: 274
– volume: 17
  start-page: 9667
  year: 1997
  end-page: 9674
  article-title: Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements
  publication-title: J Neurosci
– volume: 7
  start-page: 463
  year: 1996
  end-page: 468
  article-title: Cortical representation of self‐paced finger movement
  publication-title: Neuroreport
– volume: 115
  start-page: 55
  year: 2005
  end-page: 77
  article-title: Long‐term reproducibility analysis of fMRI using hand motor task
  publication-title: Int J Neurosci
– start-page: 635
  year: 2003
  end-page: 655
– volume: 6
  start-page: 301
  year: 1998
  end-page: 315
  article-title: Intersubject variability of functional areas in the human visual cortex
  publication-title: Hum Brain Mapp
– volume: 16
  start-page: 765
  year: 2002
  end-page: 780
  article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation
  publication-title: Neuroimage
– volume: 89
  start-page: 989
  year: 2003
  end-page: 1002
  article-title: Functional properties of brain areas associated with motor execution and imagery
  publication-title: J Neurophysiol
– volume: 41
  start-page: 424
  year: 2008
  end-page: 436
  article-title: Modeling motor connectivity using TMS/PET and structural equation modeling
  publication-title: Neuroimage
– volume: 108
  start-page: 1136
  year: 2001
  end-page: 1144
  article-title: Localization of the cortical response to smiling using new imaging paradigms with functional magnetic resonance imaging
  publication-title: Plast Reconstr Surg
– volume: 37
  start-page: 1371
  year: 2007
  end-page: 1383
  article-title: Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise
  publication-title: Neuroimage
– volume: 25
  start-page: 129
  year: 2005
  end-page: 139
  article-title: Brain activity associated with painfully hot stimuli applied to the upper limb: A meta‐analysis
  publication-title: Hum Brain Mapp
– volume: 22
  start-page: 1
  year: 2004
  end-page: 14
  article-title: Column‐based model of electric field excitation of cerebral cortex
  publication-title: Hum Brain Mapp
– volume: 167
  start-page: 587
  year: 2005
  end-page: 594
  article-title: Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system
  publication-title: Exp Brain Res
– volume: 21
  start-page: 904
  year: 2004
  end-page: 913
  article-title: Regional cerebral blood flow correlates of the severity of writer's cramp symptoms
  publication-title: Neuroimage
– volume: 17
  start-page: 1753
  year: 2005
  end-page: 1765
  article-title: Dissociating reading processes on the basis of neuronal interactions
  publication-title: J Cogn Neurosci
– volume: 14
  start-page: 617
  year: 2001
  end-page: 631
  article-title: Human somatosensory area 2: Observer‐independent cytoarchitectonic mapping, interindividual variability, and population map
  publication-title: Neuroimage
– volume: 15
  start-page: 165
  year: 2002
  end-page: 174
  article-title: Implementation and application of a brain template for multiple volumes of interest
  publication-title: Hum Brain Mapp
– volume: 26
  start-page: 421
  year: 2002
  end-page: 426
  article-title: Motor‐induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 22
  start-page: 1679
  year: 2004
  end-page: 1693
  article-title: Neuroimaging studies of shifting attention: A meta‐analysis
  publication-title: Neuroimage
– volume: 7
  start-page: 701
  year: 2004
  end-page: 702
  article-title: Listening to speech activates motor areas involved in speech production
  publication-title: Nat Neurosci
– volume: 16
  start-page: 268
  year: 2006a
  end-page: 279
  article-title: The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results
  publication-title: Cerebral Cortex
– volume: 23
  start-page: 3963
  year: 2003
  end-page: 3971
  article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal
  publication-title: J Neurosci
– volume: 36
  start-page: 532
  year: 2007
  end-page: 542
  article-title: Test–retest reliability of fMRI activation during prosaccades and antisaccades
  publication-title: Neuroimage
– volume: 63
  start-page: 236
  year: 2008b
  end-page: 246
  article-title: Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging
  publication-title: Ann Neurol
– volume: 32
  start-page: 139
  year: 2001
  end-page: 146
  article-title: Effects of age on brain activation during auditory‐cued thumb‐to‐index opposition: A positron emission tomography study
  publication-title: Stroke
– volume: 32
  start-page: 1345
  year: 2006
  end-page: 1354
  article-title: Functional significance of age‐related differences in motor activation patterns
  publication-title: Neuroimage
– volume: 10
  start-page: 430
  year: 1999
  end-page: 447
  article-title: FMRI and PET of self‐paced finger movement: Comparison of intersubject stereotaxic averaged data
  publication-title: Neuroimage
– volume: 98
  start-page: 12760
  year: 2001
  end-page: 12766
  article-title: When zero is not zero: The problem of ambiguous baseline conditions in fMRI
  publication-title: Proc Natl Acad Sci USA
– volume: 142
  start-page: 67
  year: 2005
  end-page: 76
  article-title: Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans
  publication-title: J Neurosci Methods
– volume: 93
  start-page: 1
  year: 2003
  end-page: 21
  article-title: The human parietal cortex: A novel approach to its architectonic mapping
  publication-title: Adv Neurol
– volume: 1133
  start-page: 136
  year: 2007
  end-page: 144
  article-title: The role of the basal ganglia and cerebellum in language processing
  publication-title: Brain Res
– volume: 30
  start-page: 263
  year: 2000
  end-page: 288
  article-title: Functional imaging of brain responses to pain. A review and meta‐analysis (2000)
  publication-title: Neurophysiol Clin
– volume: 16
  start-page: 755
  year: 1996
  end-page: 764
  article-title: Functional mapping of human sensorimotor cortex with 3D BOLD fMRI correlates highly with H2(15)O PET rCBF
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 1
  year: 2007
  end-page: 8
  article-title: Observer independent analysis of high‐resolution MR images of the human cerebral cortex: delineation of cortical areas
  publication-title: Hum Brain Mapp
– volume: 4
  start-page: 1
  year: 1996
  end-page: 15
  article-title: Functional magnetic resonance imaging of human visual cortex during face matching: A comparison with positron emission tomography
  publication-title: Neuroimage
– volume: 140
  start-page: 265
  year: 2001
  end-page: 279
  article-title: Combined visual attention and finger movement effects on human brain representations
  publication-title: Exp Brain Res
– volume: 22
  start-page: 42
  year: 2004
  end-page: 56
  article-title: Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45
  publication-title: Neuroimage
– volume: 121
  start-page: 253
  issue: Pt 2
  year: 1998
  end-page: 264
  article-title: The functional neuroanatomy of simple and complex sequential finger movements: A PET study
  publication-title: Brain
– volume: 10
  start-page: 51
  year: 2000a
  end-page: 66
  article-title: Cortical activations during paced finger‐tapping applying visual and auditory pacing stimuli
  publication-title: Brain Res Cogn Brain Res
– volume: 9
  start-page: 250
  year: 1999
  end-page: 268
  article-title: A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks
  publication-title: Neuroimage
– volume: 10
  start-page: 460
  year: 1999
  end-page: 482
  article-title: A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks
  publication-title: Neuroimage
– volume: 133
  start-page: 71
  year: 2000
  end-page: 80
  article-title: Control of action as mediated by the human frontal lobe
  publication-title: Exp Brain Res
– volume: 2
  start-page: 150
  year: 2007
  end-page: 158
  article-title: Meta‐analysis of functional neuroimaging data: Current and future directions
  publication-title: Social Cogn Affect Neurosci
– volume: 35
  start-page: 881
  year: 2007
  end-page: 903
  article-title: Localization of load sensitivity of working memory storage: Quantitatively and qualitatively discrepant results yielded by single‐subject and group‐averaged approaches to fMRI group analysis
  publication-title: Neuroimage
– volume: 16
  start-page: 1338
  year: 2006
  end-page: 1348
  article-title: Neural correlates of the spontaneous phase transition during bimanual coordination
  publication-title: Cerebral Cortex
– volume: 7
  start-page: 337
  year: 1998
  end-page: 351
  article-title: Anatomical congruence of metabolic and electromagnetic activation signals during a self‐paced motor task: A combined PET‐MEG study
  publication-title: Neuroimage
– volume: 20
  start-page: 113
  year: 2008
  end-page: 121
  article-title: Human variability of FMRI brain activation in response to oculomotor stimuli
  publication-title: Brain Topogr
– volume: 18
  start-page: 846
  year: 2007
  end-page: 867
  article-title: Observer‐Independent Cytoarchitectonic Mapping of the Human Superior Parietal Cortex
  publication-title: Cerebral Cortex
– volume: 23
  start-page: 140
  year: 2004
  end-page: 155
  article-title: Variability of fMRI activation during a phonological and semantic language task in healthy subjects
  publication-title: Hum Brain Mapp
– volume: 160
  start-page: 375
  year: 2005
  end-page: 383
  article-title: The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study
  publication-title: Exp Brain Res
– volume: 38
  start-page: 164
  year: 2000b
  end-page: 174
  article-title: fMRI study of bimanual coordination
  publication-title: Neuropsychologia
– volume: 212
  start-page: 481
  year: 2008
  end-page: 495
  article-title: The human inferior parietal lobule in stereotaxic space
  publication-title: Brain Struct Funct
– volume: 65
  start-page: 1392
  year: 1991
  end-page: 1401
  article-title: Regional cerebral blood flow during voluntary arm and hand movements in human subjects
  publication-title: J Neurophysiol
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
– volume: 83
  start-page: 1079
  year: 2000
  end-page: 1087
  article-title: Human cerebellum plays an important role in memory‐timed finger movement: An fMRI study
  publication-title: J Neurophysiol
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 255
  year: 2003
  end-page: 274
  article-title: Neuroimaging studies of working memory: A meta‐analysis
  publication-title: Cogn Affect Behav Neurosci
– start-page: 725
  year: 2003
  end-page: 760
– volume: 25
  start-page: 1325
  year: 2005
  end-page: 1335
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: Neuroimage
– volume: 1
  start-page: 119
  year: 2001
  end-page: 136
  article-title: Functional neuroimaging studies of category specificity in object recognition: A critical review and meta‐analysis
  publication-title: Cogn Affect Behav Neurosci
– volume: 122
  start-page: 483
  issue: Pt 3
  year: 1999
  end-page: 495
  article-title: A PET study of sequential finger movements of varying length in patients with Parkinson's disease
  publication-title: Brain
– volume: 16
  start-page: 254
  year: 2006b
  end-page: 267
  article-title: The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions
  publication-title: Cerebral Cortex
– volume: 19
  start-page: 484
  year: 2005
  end-page: 493
  article-title: Reliability of individual functional MRI brain mapping of language
  publication-title: Neuropsychology
– volume: 48
  start-page: 1056
  year: 1997
  end-page: 1065
  article-title: A direct comparison of PET activation and electrocortical stimulation mapping for language localization
  publication-title: Neurology
– volume: 13
  start-page: 196
  year: 2001
  end-page: 209
  article-title: Location‐probability profiles for the mouth region of human primary motor‐sensory cortex: Model and validation
  publication-title: Neuroimage
– volume: 79
  start-page: 1070
  year: 1998
  end-page: 1080
  article-title: Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H2 15O PET
  publication-title: J Neurophysiol
– volume: 10
  start-page: 1093
  year: 2000
  end-page: 1104
  article-title: Partially overlapping neural networks for real and imagined hand movements
  publication-title: Cerebral Cortex
– start-page: 843
  year: 2003
  end-page: 850
– volume: 83
  start-page: 1140
  year: 1986
  end-page: 1144
  article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1120
  year: 2003
  end-page: 1130
  article-title: Retrospective evaluation of intersubject brain registration
  publication-title: IEEE Trans Med Imaging
– volume: 92
  start-page: 107
  year: 1999
  end-page: 112
  article-title: A positron emission tomography study of self‐paced finger movements at different frequencies
  publication-title: Neuroscience
– volume: 16
  start-page: 794
  year: 1996
  end-page: 803
  article-title: Rate dependence of regional cerebral activation during performance of a repetitive motor task: A PET study
  publication-title: J Cereb Blood Flow Metab
– volume: 8
  start-page: 143
  year: 1999
  end-page: 150
  article-title: Functional volumes modeling: Scaling for group size in averaged images
  publication-title: Hum Brain Mapp
– volume: 12
  start-page: 326
  year: 2000
  end-page: 339
  article-title: Intersubject variability in cortical activations during a complex language task
  publication-title: Neuroimage
– volume: 41
  start-page: 1382
  year: 2008a
  end-page: 1394
  article-title: Dynamic intra‐ and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM
  publication-title: Neuroimage
– volume: 212
  start-page: 255
  year: 2007
  end-page: 267
  article-title: The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas
  publication-title: Hum Brain Mapp
– volume: 83
  start-page: 7
  year: 1998
  end-page: 22
  article-title: Hemispheric control of motor function: A whole brain echo planar fMRI study
  publication-title: Psychiatry Res
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1460-9568.2003.03066.x
– ident: e_1_2_7_28_1
  doi: 10.1006/nimg.2000.0659
– ident: e_1_2_7_91_1
  doi: 10.1080/00207450490512650
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.83.4.1140
– ident: e_1_2_7_82_1
  doi: 10.1073/pnas.221462998
– ident: e_1_2_7_22_1
  doi: 10.1093/cercor/bhi105
– ident: e_1_2_7_54_1
  doi: 10.1007/s10548-007-0037-y
– ident: e_1_2_7_69_1
  doi: 10.1016/S0987-7053(00)00227-6
– ident: e_1_2_7_65_1
  doi: 10.1016/S0278-5846(01)00271-8
– volume: 93
  start-page: 1
  year: 2003
  ident: e_1_2_7_92_1
  article-title: The human parietal cortex: A novel approach to its architectonic mapping
  publication-title: Adv Neurol
– ident: e_1_2_7_29_1
  doi: 10.1002/hbm.20006
– ident: e_1_2_7_30_1
  doi: 10.1006/nimg.1999.0482
– ident: e_1_2_7_60_1
  doi: 10.1523/JNEUROSCI.23-10-03963.2003
– ident: e_1_2_7_13_1
  doi: 10.1007/s00429-008-0195-z
– ident: e_1_2_7_50_1
  doi: 10.1016/S0306-4522(98)00744-1
– ident: e_1_2_7_70_1
  doi: 10.1002/hbm.20132
– ident: e_1_2_7_63_1
  doi: 10.1016/S0925-4927(98)00023-7
– ident: e_1_2_7_72_1
  doi: 10.1097/00004647-199609000-00001
– ident: e_1_2_7_8_1
  doi: 10.1152/jn.1998.79.2.1070
– ident: e_1_2_7_38_1
  doi: 10.1002/hbm.10016
– ident: e_1_2_7_18_1
  doi: 10.1007/s00221-005-0059-1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jneumeth.2004.07.014
– ident: e_1_2_7_58_1
  doi: 10.1093/cercor/bhi089
– ident: e_1_2_7_9_1
  doi: 10.1212/WNL.48.4.1056
– start-page: 725
  volume-title: Human Brain Function
  year: 2003
  ident: e_1_2_7_52_1
– ident: e_1_2_7_41_1
  article-title: Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM
  publication-title: Hum Brain Mapp
– ident: e_1_2_7_27_1
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<143::AID-HBM12>3.0.CO;2-9
– ident: e_1_2_7_39_1
  doi: 10.1152/jn.00132.2002
– ident: e_1_2_7_15_1
  doi: 10.1093/brain/122.3.483
– ident: e_1_2_7_21_1
  doi: 10.1093/cercor/bhi106
– ident: e_1_2_7_37_1
  doi: 10.1002/ana.21228
– ident: e_1_2_7_87_1
  doi: 10.1093/scan/nsm015
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2006.12.029
– ident: e_1_2_7_81_1
  doi: 10.1007/s002210000402
– ident: e_1_2_7_57_1
  doi: 10.1097/00001756-199601310-00021
– ident: e_1_2_7_56_1
  doi: 10.1016/j.neuroimage.2008.01.065
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2003.12.031
– ident: e_1_2_7_10_1
  doi: 10.1016/j.brainres.2006.11.074
– ident: e_1_2_7_83_1
  doi: 10.1006/nimg.2002.1131
– ident: e_1_2_7_84_1
  doi: 10.1016/j.neuroimage.2007.07.005
– ident: e_1_2_7_64_1
  doi: 10.1162/089892905774589190
– ident: e_1_2_7_62_1
  doi: 10.1093/cercor/bhj181
– ident: e_1_2_7_88_1
  doi: 10.1002/hbm.20267
– ident: e_1_2_7_4_1
  doi: 10.1093/cercor/bhj075
– volume: 212
  start-page: 255
  year: 2007
  ident: e_1_2_7_75_1
  article-title: The ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas
  publication-title: Hum Brain Mapp
– ident: e_1_2_7_86_1
  doi: 10.1016/j.neuroimage.2004.03.052
– ident: e_1_2_7_48_1
  doi: 10.1006/nimg.1999.0483
– ident: e_1_2_7_24_1
  doi: 10.1002/hbm.20125
– ident: e_1_2_7_34_1
  doi: 10.1006/nimg.1998.0397
– ident: e_1_2_7_3_1
  doi: 10.1007/s00221-004-2008-9
– ident: e_1_2_7_16_1
  doi: 10.1006/nimg.1996.0025
– ident: e_1_2_7_44_1
  doi: 10.1006/nimg.1998.0426
– ident: e_1_2_7_7_1
  doi: 10.1097/00004647-199609000-00004
– ident: e_1_2_7_90_1
  doi: 10.1006/nimg.2000.0621
– ident: e_1_2_7_43_1
  doi: 10.1007/s002210100796
– ident: e_1_2_7_80_1
  doi: 10.1002/hbm.20053
– ident: e_1_2_7_61_1
  doi: 10.1097/00001756-200004270-00031
– ident: e_1_2_7_66_1
  doi: 10.1002/hbm.1058
– ident: e_1_2_7_23_1
  doi: 10.1007/978-1-4615-2546-2_48
– ident: e_1_2_7_17_1
  doi: 10.1152/jn.1991.65.6.1392
– start-page: 843
  volume-title: Human Brain Function
  year: 2003
  ident: e_1_2_7_68_1
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2004.07.013
– ident: e_1_2_7_14_1
  doi: 10.1093/brain/121.2.253
– start-page: 635
  volume-title: Human Brain Function
  year: 2003
  ident: e_1_2_7_6_1
– ident: e_1_2_7_31_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_7_12_1
  doi: 10.1161/01.STR.32.1.139
– ident: e_1_2_7_40_1
  doi: 10.1002/(SICI)1097-0193(1998)6:4<301::AID-HBM8>3.0.CO;2-7
– ident: e_1_2_7_46_1
  doi: 10.1016/S0028-3932(99)00062-7
– ident: e_1_2_7_71_1
  doi: 10.1016/j.neuroimage.2007.03.061
– ident: e_1_2_7_59_1
  doi: 10.1016/j.neuroimage.2003.10.019
– ident: e_1_2_7_78_1
  doi: 10.1523/JNEUROSCI.17-24-09667.1997
– ident: e_1_2_7_42_1
  doi: 10.1109/TMI.2003.816961
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2004.12.034
– ident: e_1_2_7_32_1
  doi: 10.1093/cercor/10.11.1093
– ident: e_1_2_7_45_1
  doi: 10.1016/S0926-6410(00)00022-7
– ident: e_1_2_7_51_1
  doi: 10.1152/jn.2000.83.2.1079
– ident: e_1_2_7_67_1
  doi: 10.1037/0894-4105.19.4.484
– ident: e_1_2_7_74_1
  doi: 10.1016/S0896-6273(01)00423-8
– ident: e_1_2_7_89_1
  doi: 10.1038/nn1263
– ident: e_1_2_7_19_1
  doi: 10.1016/j.biopsych.2004.12.017
– ident: e_1_2_7_55_1
  doi: 10.1002/hbm.20136
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2008.03.048
– ident: e_1_2_7_47_1
  doi: 10.1006/nimg.1998.0333
– ident: e_1_2_7_49_1
  doi: 10.3758/CABN.1.2.119
– ident: e_1_2_7_76_1
  doi: 10.1016/j.neuroimage.2005.01.037
– ident: e_1_2_7_35_1
  doi: 10.1006/nimg.2001.0858
– ident: e_1_2_7_85_1
  doi: 10.3758/CABN.3.4.255
– volume: 16
  start-page: 2691
  year: 1996
  ident: e_1_2_7_77_1
  article-title: Complexity affects regional cerebral blood flow change during sequential finger movements
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-08-02691.1996
– ident: e_1_2_7_33_1
  doi: 10.1097/00006534-200110000-00005
– ident: e_1_2_7_79_1
  doi: 10.1093/cercor/bhm116
– ident: e_1_2_7_73_1
  doi: 10.1016/j.neuroimage.2006.05.021
SSID ssj0011501
Score 2.551045
Snippet A widely used technique for coordinate‐based meta‐analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between...
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2907
SubjectTerms Adult
Algorithms
between-subject variability
Biological and medical sciences
Brain - anatomy & histology
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Computational Biology - methods
Computer Simulation
Data Interpretation, Statistical
Female
fMRI
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Meta-Analysis as Topic
Middle Aged
Models, Neurological
Nervous system
Nervous system involvement in other diseases. Miscellaneous
Neurology
permutation
PET
Positron-Emission Tomography - methods
Probability
Psychomotor Performance - physiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
random-effects
Uncertainty
variance
Title Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty
URI https://api.istex.fr/ark:/67375/WNG-R5V21TTD-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20718
https://www.ncbi.nlm.nih.gov/pubmed/19172646
https://www.proquest.com/docview/67616284
https://www.proquest.com/docview/745936878
https://www.proquest.com/docview/754550808
https://pubmed.ncbi.nlm.nih.gov/PMC2872071
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRUJc-Gn5MT9lhVDFxa1je9c2nEIhREjpoUqhByRr17tWozR21SQS5cQj8Bq8Fk_CzK7tEmgR4pbE43V2PDvzze7stwDPQxWpMNORr-Mi8GOphS95mfixwehSmiBQijY4j_bF8DB-f8SP1uBVuxfG8UN0E240Mqy_pgEu1Xz3gjT0WNFGcnSt6H-pVosA0UFHHUVAxyZbGGL9DD1wyyoUhLvdnSux6Bqp9TPVRso5qqd051pcBjz_rJ_8FdfawDS4BZ_aLrl6lOnOcqF2ii-_sT3-Z59vw80GsLK-s7A7sGaqDdjsV5isz87ZNrMlpHZufgOuj5qV-k34vldjWjtBMfPj6zeKlZrRHgo3A8xOJlP8K0SpzIjmw-2fZDOzkCgtG6IUVpfM8m3idTpLiVE560vWZ6g0Xc9QsqlGYS0zOnMPwqbM7HRi2U_a9o1tbk4F5PgjRnNXC7E4vwuHg7fjvaHfHAvhFwLTIV8hwhEx5wVHIzMIYbTApK8sC6FTYv-TRWi4CmItRYLfwqi054kkOi3iCL15dA_Wq7oyD4D1TKK0NJyrNIy1EmnMM46INMW0LjOy9OBFayB50XCm09EdJ7ljew5zfCO5fSMePOtETx1RyGVC29bKOgl5NqXKuoTnH_ff5Qf8Q9gbj9_kAw-2Vsywu8EiWgTNHjxt7TJHh0CrPLIy9XKOzYmeQNDhAbtCIonpGEfU1V9EOO12TwMUue9s_aJTmOAjihYeJCujoBMgwvLVK9Xk2BKXY3ZOakCtWiO_Wk_58PXIfnj476KP4IZb6cv8Hn8M64uzpXmCgHGhtqxn-AmEem8C
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVgIuPFoe5tGuEKq4uHUc79pBXEJLCNDkUKW0F2TtetdqlMapmkSinPgJ_A3-Fr-EmV3bJdAixC2Jx-vseHYeuzPfADwPVVOFLd30dZQFfiS18CXPYz8yaF1yEwRKUYFzry-6B9H7I360BK-qWhiHD1FvuNHKsPqaFjhtSG9foIYeK6okR916DVaoozch5-_u1-BR5OrYcAuNrN9CHVzhCgXhdn3rgjVaIcZ-puxIOUUG5a6zxWWu558ZlL96ttY0dW7Dp2pSLiNltDWfqa3sy294j_876ztwq_RZWdsJ2V1YMsUqrLULjNfH52yT2SxSuz2_Ctd75WH9GnzfmWBkO0Qy8-PrNzKXmlEZhdsEZifDEf4XQlVmhPThSijZ2MwkUssSK4VNcmYhN_E6tVNilNH6krUZck1PxkhZJqSwChyduQfhUGZ8OrQAKNX4xg43pRxy_BENukuHmJ3fg4POm8FO1y87Q_iZwIjIV-jkiIjzjKOcGfRitMC4L88zoRMCAJRZaLgKIi1FjN_CZm5bisQ6yaImKvTmfVguJoV5CKxhYqWl4VwlYaSVSCLe4uiUJhjZtYzMPXhRSUialbDp1L3jJHWAz2GKbyS1b8SDZzXpqcMKuYxo04pZTSHPRpRcF_P0sP823ecfw8ZgsJt2PFhfkMP6BuvUot_swUYlmCnqBDrokYWZzKc4nGgI9Ds8YFdQxBF1ckRe_YWEU8F7EiDJAyfsF5PCGB8daeFBvLAMagLCLF-8UgyPLXY5BujEBuSqlfKr-ZR2X_fsh0f_TroBN7qD3l66967_4THcdAd_Lb_Bn8Dy7GxunqL_OFPrVk38BBpxcx4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cNm4hMtmITTxki1NbSeBp7JSyqUVmjq2B6TIjh2t6ppWaysxnvgJ_A3-Fr-Ec-wko7AhxFvbnDj1yfG52Od8h5CnoWqqMNFNX7Ms8JnUwpc8j3xmwLrkJgiUwgLnXl90D9nbY368Ql5UtTAOH6LecMOVYfU1LvCpzvcuQENPFBaSg2q9RtaYCBLs29A-qLGj0NOx0RbYWD8BFVzBCgXhXn3rkjFaQ75-xuRIOQP-5K6xxWWe558JlL86ttYydW6ST9WcXELKaHcxV7vZl9_gHv9z0rfIjdJjpS0nYrfJiik2yGargGh9fE53qM0htZvzG2S9Vx7Vb5Lv-xOIa4dAZn58_YbGUlMsonBbwPR0OIK_gpjKFHE-XAElHZu5BGpZIqXQSU4t4CZcx2ZKFPNZn9MWBabpyRgoy3QUWkGjU_cgGMqMp0MLf1KNb-xwM8wghx_BnLtkiPn5HXLYeTXY7_plXwg_ExAP-QpcHME4zzhImQEfRguI-vI8EzpG-D-ZhYargGkpIvgWNnPbUCTSccaaoM6bd8lqMSnMfUIbJlJaGs5VHDKtRMx4wsEljSGuS4zMPfKsEpA0K0HTsXfHaergnsMU3khq34hHntSkU4cUchnRjpWymkKejTC1LuLpUf91esA_ho3BoJ12PLK1JIb1DdalBa_ZI9uVXKagEfCYRxZmspjBcKIhwOvwCL2CImLYxxF49RcSjuXucQAk95ysX0wKInxwo4VHoqVVUBMgYvnylWJ4YpHLITxHNgBXrZBfzae0-7JnPzz4d9Jtsv6h3Unfv-m_e0iuu1O_xG_wR2R1frYwj8F5nKstqyR-AoAEcc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinate-based+activation+likelihood+estimation+meta-analysis+of+neuroimaging+data%3A+A+random-effects+approach+based+on+empirical+estimates+of+spatial+uncertainty&rft.jtitle=Human+brain+mapping&rft.au=Eickhoff%2C+Simon+B&rft.au=Laird%2C+Angela+R&rft.au=Grefkes%2C+Christian&rft.au=Wang%2C+Ling+E&rft.date=2009-09-15&rft.issn=1065-9471&rft.volume=30&rft.issue=9&rft.spage=2907&rft.epage=2926&rft_id=info:doi/10.1002%2Fhbm.20718&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon