n‐dimensional hypervolume

AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorl...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 23; no. 5; pp. 595 - 609
Main Authors Blonder, Benjamin, Lamanna, Christine, Violle, Cyrille, Enquist, Brian J
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2014
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. INNOVATION: We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. MAIN CONCLUSIONS: We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.
AbstractList Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high-dimensional or holey datasets. Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusions We show that our method (implemented as the 'hypervolume' R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. [PUBLICATION ABSTRACT]
AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. INNOVATION: We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. MAIN CONCLUSIONS: We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.
The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high-dimensional or holey datasets. We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. We show that our method (implemented as the 'hypervolume' R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.
Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusions We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed.
Author Violle, Cyrille
Blonder, Benjamin
Lamanna, Christine
Enquist, Brian J.
Author_xml – sequence: 1
  fullname: Blonder, Benjamin
– sequence: 2
  fullname: Lamanna, Christine
– sequence: 3
  fullname: Violle, Cyrille
– sequence: 4
  fullname: Enquist, Brian J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28409432$$DView record in Pascal Francis
BookMark eNqNks1uEzEUhS1UJNKWBWuEQEKV6GKS69-ZWZKqpEgRIEGBneXx2MVhMk7tSUt2PEKfsU-Ck0mKVIHgLmxL9ztHV-d6H-21vjUIPcEwxKlGF6YaYoKZeIAG6RRZQWixd_cmXx-h_RhnAMAZFwP0tL39eVO7uWmj861qXnxbLUy48s1ybg7RQ6uaaB5v7wN0_ub008lZNn0_eXvyepppgbHICK-ZrgxgzErDGVQYQIOtSkGFZUSVYKEqDCZVWVqma0zrnBFiaksKUHVFD9Cr3ncR_OXSxE7OXdSmaVRr_DJKXKYijHPyb5QToKIAjv8DxSLnnJI1-vIeOvPLkNLYUECTaQ6JOtpSKmrV2KBa7aJcBDdXYSVJwaBkdD3jqOd08DEGY6V2nepSvF1QrpEY5HpVMq1KblaVFMf3FDvTP7Fb92vXmNXfQTk5He8Uz3rFLHY-_J6XAWXA1_2s77vYmR93fRW-S5HTnMsv7yZSnJU5_TAey8-Jf97zVnmpLkLK4PwjAczSpyo45QX9BSWPwuw
CODEN GEBIFS
CitedBy_id crossref_primary_10_1016_j_jcss_2016_02_004
crossref_primary_10_1111_ddi_12605
crossref_primary_10_1371_journal_pone_0285945
crossref_primary_10_1098_rsbl_2019_0011
crossref_primary_10_1111_oik_08249
crossref_primary_10_1016_j_actao_2016_06_011
crossref_primary_10_1016_j_flora_2019_03_002
crossref_primary_10_1093_jpe_rty018
crossref_primary_10_1016_j_ecolind_2018_09_048
crossref_primary_10_1002_ece3_10614
crossref_primary_10_1111_ddi_13949
crossref_primary_10_15406_jbmoa_2018_06_00180
crossref_primary_10_1016_j_foreco_2017_02_047
crossref_primary_10_1111_jeb_14084
crossref_primary_10_3390_rs14174287
crossref_primary_10_1016_j_actao_2018_02_007
crossref_primary_10_1016_j_cub_2021_07_080
crossref_primary_10_1080_17550874_2019_1646831
crossref_primary_10_1111_oik_07026
crossref_primary_10_1093_botlinnean_boac031
crossref_primary_10_3897_pls2021581_02
crossref_primary_10_1111_fwb_13605
crossref_primary_10_1016_j_jmsy_2020_12_019
crossref_primary_10_1111_ddi_12982
crossref_primary_10_1007_s10021_021_00654_4
crossref_primary_10_1111_ele_14262
crossref_primary_10_1002_ece3_3444
crossref_primary_10_1111_ecog_01433
crossref_primary_10_1038_s41559_024_02426_4
crossref_primary_10_1016_j_biocon_2019_108215
crossref_primary_10_1098_rspb_2015_0973
crossref_primary_10_1007_s10933_025_00354_2
crossref_primary_10_1177_19400829231225236
crossref_primary_10_1111_nph_18418
crossref_primary_10_1093_isd_ixad008
crossref_primary_10_1093_cz_zoaa045
crossref_primary_10_1016_j_scitotenv_2019_135443
crossref_primary_10_1038_s41598_024_82158_4
crossref_primary_10_1111_eva_12392
crossref_primary_10_1073_pnas_2119828119
crossref_primary_10_1007_s00442_020_04654_4
crossref_primary_10_1049_pel2_12842
crossref_primary_10_1111_oik_10688
crossref_primary_10_1002_ece3_6729
crossref_primary_10_1038_s41598_022_26937_x
crossref_primary_10_1016_j_tfp_2022_100260
crossref_primary_10_1093_jpe_rtab086
crossref_primary_10_1111_2041_210X_14310
crossref_primary_10_1071_IS17090
crossref_primary_10_1111_geb_13086
crossref_primary_10_1111_ele_14368
crossref_primary_10_3389_fevo_2022_921480
crossref_primary_10_1016_j_ecolmodel_2015_06_002
crossref_primary_10_1016_j_cie_2024_109925
crossref_primary_10_1111_ecog_01696
crossref_primary_10_1016_j_baae_2022_03_009
crossref_primary_10_1093_zoolinnean_zlaa070
crossref_primary_10_1002_ece3_6859
crossref_primary_10_1002_ece3_6978
crossref_primary_10_1016_j_ecolmodel_2022_110242
crossref_primary_10_1111_2041_210X_14209
crossref_primary_10_1038_s41467_024_47295_4
crossref_primary_10_1093_jpe_rty053
crossref_primary_10_1371_journal_pone_0175138
crossref_primary_10_1038_s41586_021_03871_y
crossref_primary_10_1016_j_tree_2016_02_003
crossref_primary_10_1111_brv_12526
crossref_primary_10_3389_fevo_2020_00243
crossref_primary_10_1016_j_isci_2024_111426
crossref_primary_10_1007_s10021_022_00782_5
crossref_primary_10_1016_j_pbi_2014_02_009
crossref_primary_10_7717_peerj_15020
crossref_primary_10_1111_jvs_12392
crossref_primary_10_1016_j_cub_2019_07_059
crossref_primary_10_3389_fevo_2022_944116
crossref_primary_10_1111_ecog_03986
crossref_primary_10_1111_jbi_14500
crossref_primary_10_1111_jbi_13656
crossref_primary_10_1111_jbi_13777
crossref_primary_10_3389_fvets_2021_698767
crossref_primary_10_1002_ecs2_3052
crossref_primary_10_1038_s41559_023_02155_0
crossref_primary_10_1016_j_ecolmodel_2019_01_020
crossref_primary_10_1016_j_foreco_2023_121205
crossref_primary_10_1007_s10530_024_03444_w
crossref_primary_10_1007_s00285_022_01763_x
crossref_primary_10_3389_fevo_2022_803822
crossref_primary_10_1093_jpe_rtac031
crossref_primary_10_1111_2041_210X_13363
crossref_primary_10_1098_rspb_2021_1290
crossref_primary_10_1016_j_ecolind_2018_11_069
crossref_primary_10_3390_insects15040250
crossref_primary_10_1111_ddi_12545
crossref_primary_10_1002_npp2_12
crossref_primary_10_1007_s10980_020_01005_9
crossref_primary_10_1016_j_ppees_2017_01_004
crossref_primary_10_1016_j_gecco_2024_e03170
crossref_primary_10_1111_ddi_13518
crossref_primary_10_1111_ddi_13638
crossref_primary_10_1002_ecs2_4253
crossref_primary_10_1111_jvs_13018
crossref_primary_10_3390_d16080510
crossref_primary_10_7717_peerj_7042
crossref_primary_10_1111_jbi_13761
crossref_primary_10_1016_j_soilbio_2022_108674
crossref_primary_10_1016_j_ecolind_2019_105692
crossref_primary_10_1002_ppp3_10523
crossref_primary_10_1007_s10021_017_0147_7
crossref_primary_10_1007_s12080_019_00433_x
crossref_primary_10_1016_j_tree_2023_04_015
crossref_primary_10_3390_ijgi13030099
crossref_primary_10_1002_ece3_3010
crossref_primary_10_1111_ecog_01464
crossref_primary_10_1111_jbi_13987
crossref_primary_10_3390_biology11081219
crossref_primary_10_1002_ece3_3138
crossref_primary_10_1016_j_gecco_2024_e03059
crossref_primary_10_1111_ecog_02671
crossref_primary_10_1016_j_limno_2022_126035
crossref_primary_10_1093_aob_mcx222
crossref_primary_10_1111_1365_2745_14005
crossref_primary_10_1007_s10530_024_03290_w
crossref_primary_10_1111_ibi_12842
crossref_primary_10_1007_s13127_021_00486_z
crossref_primary_10_1002_ecm_70008
crossref_primary_10_1111_evo_14638
crossref_primary_10_1093_biolinnean_blx001
crossref_primary_10_1016_j_fecs_2023_100097
crossref_primary_10_1002_ece3_9244
crossref_primary_10_1098_rspb_2022_0391
crossref_primary_10_3389_fevo_2018_00219
crossref_primary_10_1016_j_baae_2017_08_008
crossref_primary_10_1080_14772000_2017_1403496
crossref_primary_10_1111_ivb_12280
crossref_primary_10_1080_01140671_2021_1951306
crossref_primary_10_1111_gcb_16666
crossref_primary_10_1007_s10531_024_02961_3
crossref_primary_10_1111_ddi_13772
crossref_primary_10_1111_1365_2435_13361
crossref_primary_10_1111_aec_12752
crossref_primary_10_1111_jbi_13618
crossref_primary_10_1038_s41559_021_01513_0
crossref_primary_10_1111_geb_13717
crossref_primary_10_1111_jbi_13616
crossref_primary_10_1111_nph_19482
crossref_primary_10_1098_rstb_2019_0215
crossref_primary_10_1038_s41477_023_01588_6
crossref_primary_10_1111_2041_210X_12865
crossref_primary_10_1111_icad_12248
crossref_primary_10_1111_jbi_13861
crossref_primary_10_1111_2041_210X_12862
crossref_primary_10_1007_s11368_018_1990_7
crossref_primary_10_1111_1365_2435_13007
crossref_primary_10_1016_j_cub_2023_01_066
crossref_primary_10_1093_aob_mcad029
crossref_primary_10_3390_f5112626
crossref_primary_10_1111_geb_12611
crossref_primary_10_1016_j_scitotenv_2022_155102
crossref_primary_10_1111_geb_12610
crossref_primary_10_3389_fvets_2020_519059
crossref_primary_10_1086_705898
crossref_primary_10_1038_s42003_023_04415_y
crossref_primary_10_1111_1365_2656_13159
crossref_primary_10_1002_lno_12441
crossref_primary_10_1002_1438_390X_12001
crossref_primary_10_1016_j_ecolmodel_2021_109671
crossref_primary_10_1038_s41598_019_56515_7
crossref_primary_10_1016_j_ecolind_2023_110900
crossref_primary_10_1126_science_adk7898
crossref_primary_10_1111_1365_2435_14344
crossref_primary_10_1016_j_catena_2024_108698
crossref_primary_10_1111_ddi_13431
crossref_primary_10_1111_ddi_13798
crossref_primary_10_3389_fpls_2024_1506418
crossref_primary_10_1016_j_tree_2015_06_003
crossref_primary_10_1016_j_foreco_2017_11_042
crossref_primary_10_1016_j_tree_2023_01_003
crossref_primary_10_1111_mec_14764
crossref_primary_10_1111_oik_06919
crossref_primary_10_1038_s42003_023_04940_w
crossref_primary_10_1111_ecog_06287
crossref_primary_10_1038_nature16489
crossref_primary_10_1111_ecog_06283
crossref_primary_10_1111_gcb_16684
crossref_primary_10_1016_j_tree_2015_06_006
crossref_primary_10_1111_1365_2435_14477
crossref_primary_10_1111_evo_13734
crossref_primary_10_1016_j_ecolind_2018_11_059
crossref_primary_10_1038_s41467_020_19031_1
crossref_primary_10_1007_s00442_025_05680_w
crossref_primary_10_1111_nph_18005
crossref_primary_10_1186_s40462_023_00412_2
crossref_primary_10_1111_ddi_13207
crossref_primary_10_1111_geb_13809
crossref_primary_10_1007_s10750_021_04586_x
crossref_primary_10_1590_2675_2824072_23199
crossref_primary_10_1111_ele_14430
crossref_primary_10_1016_j_quascirev_2018_08_015
crossref_primary_10_1016_j_tree_2018_04_001
crossref_primary_10_1016_j_scitotenv_2022_159513
crossref_primary_10_1086_717411
crossref_primary_10_1016_j_cie_2023_109860
crossref_primary_10_1111_gcb_13042
crossref_primary_10_1111_geb_12425
crossref_primary_10_1016_j_ecolind_2024_112296
crossref_primary_10_3897_aca_5_e82941
crossref_primary_10_1371_journal_pclm_0000022
crossref_primary_10_1111_ele_12462
crossref_primary_10_1038_s41467_020_18695_z
crossref_primary_10_3389_fmars_2021_656300
crossref_primary_10_3390_d12040162
crossref_primary_10_3390_insects14020123
crossref_primary_10_1038_s41559_024_02547_w
crossref_primary_10_1080_14772000_2024_2366215
crossref_primary_10_1111_avsc_12448
crossref_primary_10_1111_1462_2920_15147
crossref_primary_10_1111_geb_13507
crossref_primary_10_1111_geb_12536
crossref_primary_10_5194_bg_18_1161_2021
crossref_primary_10_1002_jwmg_22317
crossref_primary_10_1007_s10750_021_04681_z
crossref_primary_10_1016_j_ecolind_2022_108643
crossref_primary_10_1038_s41467_021_26537_9
crossref_primary_10_1111_ecog_03900
crossref_primary_10_1111_jbi_13804
crossref_primary_10_1016_j_ympev_2018_06_019
crossref_primary_10_1038_s41598_023_48204_3
crossref_primary_10_1111_ecog_01961
crossref_primary_10_1016_j_avrs_2023_100131
crossref_primary_10_1038_s41598_023_46336_0
crossref_primary_10_1016_j_ympev_2023_107979
crossref_primary_10_1002_ecy_2162
crossref_primary_10_1016_j_asoc_2018_03_025
crossref_primary_10_1016_j_cub_2021_08_035
crossref_primary_10_1111_fwb_14210
crossref_primary_10_1038_s41467_019_09721_w
crossref_primary_10_1111_1365_2435_14437
crossref_primary_10_1111_ele_13778
crossref_primary_10_1111_1365_2435_13220
crossref_primary_10_1111_jbi_12703
crossref_primary_10_3390_earth3040063
crossref_primary_10_1002_ece3_4612
crossref_primary_10_1073_pnas_1415442111
crossref_primary_10_1002_ecm_1294
crossref_primary_10_1111_ecog_07179
crossref_primary_10_1007_s11356_024_32076_9
crossref_primary_10_1111_ele_14508
crossref_primary_10_1111_ecog_07294
crossref_primary_10_1080_09670262_2024_2442041
crossref_primary_10_1111_ddi_13471
crossref_primary_10_1111_gcb_16638
crossref_primary_10_1002_ecs2_3549
crossref_primary_10_1002_ecs2_3305
crossref_primary_10_1111_geb_13722
crossref_primary_10_1111_mec_14717
crossref_primary_10_1111_fwb_14350
crossref_primary_10_1002_ecy_4321
crossref_primary_10_1111_1365_2745_14089
crossref_primary_10_1111_2041_210X_13424
crossref_primary_10_3389_fpls_2017_01242
crossref_primary_10_1016_j_scitotenv_2023_167510
crossref_primary_10_1111_2041_210X_13665
crossref_primary_10_1111_geb_13840
crossref_primary_10_1007_s10340_023_01627_3
crossref_primary_10_1111_1365_2435_14442
crossref_primary_10_1111_1365_2745_14082
crossref_primary_10_1111_1365_2435_14201
crossref_primary_10_1111_avsc_12353
crossref_primary_10_1002_aps3_11612
crossref_primary_10_1111_icad_12250
crossref_primary_10_1111_ele_13631
crossref_primary_10_1111_ecog_04006
crossref_primary_10_1007_s10531_022_02447_0
crossref_primary_10_1016_j_ejor_2020_12_018
crossref_primary_10_1016_j_gloplacha_2024_104669
crossref_primary_10_1038_s41467_023_42745_x
crossref_primary_10_1016_j_ecoinf_2023_102127
crossref_primary_10_1016_j_scitotenv_2019_134801
crossref_primary_10_1111_oik_05415
crossref_primary_10_3832_ifor4406_017
crossref_primary_10_1007_s10914_020_09515_8
crossref_primary_10_1655_HERPMONOGRAPHS_D_20_00010
crossref_primary_10_3372_wi_49_49308
crossref_primary_10_1016_j_gecco_2023_e02699
crossref_primary_10_1038_s41586_024_07731_3
crossref_primary_10_1111_1365_2435_13882
crossref_primary_10_1111_1365_2435_13527
crossref_primary_10_1111_geb_12581
crossref_primary_10_1002_ecs2_3422
crossref_primary_10_1111_geb_12580
crossref_primary_10_1111_geb_13428
crossref_primary_10_1086_685444
crossref_primary_10_1111_ele_12556
crossref_primary_10_1007_s00227_021_03920_0
crossref_primary_10_1111_1365_2745_12802
crossref_primary_10_1111_jbi_12910
crossref_primary_10_1016_j_ecolind_2020_106517
crossref_primary_10_3390_jof10030206
crossref_primary_10_1002_lno_11867
crossref_primary_10_1016_j_ympev_2022_107557
crossref_primary_10_1002_ecm_1545
crossref_primary_10_1111_gcb_16375
crossref_primary_10_1093_aob_mcz140
crossref_primary_10_3732_ajb_1500483
crossref_primary_10_1038_s41598_019_51927_x
crossref_primary_10_1080_01650521_2021_1948654
crossref_primary_10_1111_mec_16424
crossref_primary_10_1111_icad_12619
crossref_primary_10_1111_gcb_17130
crossref_primary_10_1016_j_tree_2016_07_001
crossref_primary_10_1016_j_tree_2016_07_003
crossref_primary_10_1111_nph_20050
crossref_primary_10_1038_s41598_022_15949_2
crossref_primary_10_1111_oik_05670
crossref_primary_10_1371_journal_pone_0295182
crossref_primary_10_1111_1365_2435_14646
crossref_primary_10_1007_s00442_020_04628_6
crossref_primary_10_1016_j_tplants_2022_12_013
crossref_primary_10_1111_ddi_13286
crossref_primary_10_1093_ornithology_ukab077
crossref_primary_10_1007_s10750_019_04079_y
crossref_primary_10_1016_j_rse_2021_112505
crossref_primary_10_1111_ele_12537
crossref_primary_10_1016_j_eswa_2021_116391
crossref_primary_10_1002_ecy_2349
crossref_primary_10_1002_ece3_7256
crossref_primary_10_1111_jav_01153
crossref_primary_10_1093_sysbio_syab080
crossref_primary_10_1111_jzs_12534
crossref_primary_10_1016_j_foreco_2025_122658
crossref_primary_10_1007_s10584_021_03091_3
crossref_primary_10_1111_ecog_06349
crossref_primary_10_1002_ecy_2676
crossref_primary_10_1038_s41467_020_16778_5
crossref_primary_10_1111_ele_13715
crossref_primary_10_1111_jbi_14074
crossref_primary_10_1007_s11368_017_1706_4
crossref_primary_10_1016_j_scitotenv_2024_172206
crossref_primary_10_1111_ddi_13294
crossref_primary_10_1371_journal_pone_0206138
crossref_primary_10_3389_fevo_2022_863669
crossref_primary_10_1111_1365_2435_13614
crossref_primary_10_1111_ele_12753
crossref_primary_10_1016_j_scitotenv_2022_154696
crossref_primary_10_1038_s41598_018_22178_z
crossref_primary_10_1111_ecog_03187
crossref_primary_10_1073_pnas_1317722111
crossref_primary_10_1111_ele_13726
crossref_primary_10_1002_lno_12638
crossref_primary_10_1007_s10750_019_04021_2
crossref_primary_10_1016_j_scitotenv_2020_138815
crossref_primary_10_1111_jbi_13092
crossref_primary_10_1111_geb_12492
crossref_primary_10_1111_jav_01248
crossref_primary_10_1101_cshperspect_a041449
crossref_primary_10_1016_j_biocon_2021_109326
crossref_primary_10_1002_ece3_8132
crossref_primary_10_1002_ajb2_1213
crossref_primary_10_1111_1365_2745_12755
crossref_primary_10_3390_ijgi9120764
crossref_primary_10_1007_s10750_024_05565_8
crossref_primary_10_1111_2041_210X_12604
crossref_primary_10_7717_peerj_3364
crossref_primary_10_1111_nph_16952
crossref_primary_10_1016_j_ins_2020_08_080
crossref_primary_10_1111_jbi_13087
crossref_primary_10_3390_f11080894
crossref_primary_10_1109_TCC_2024_3437484
crossref_primary_10_3389_fmicb_2016_01174
crossref_primary_10_1002_ecs2_3944
crossref_primary_10_1038_s41467_019_10284_z
crossref_primary_10_1093_jpe_rtu044
crossref_primary_10_1111_aec_13078
crossref_primary_10_3389_fmars_2022_914475
crossref_primary_10_1093_jeb_voad001
crossref_primary_10_1111_ecog_06238
crossref_primary_10_1002_ajb2_1572
crossref_primary_10_3389_fpls_2023_1243209
crossref_primary_10_1007_s10021_023_00825_5
crossref_primary_10_1111_2041_210X_12611
crossref_primary_10_1111_ele_12617
crossref_primary_10_1016_j_catena_2025_108852
crossref_primary_10_1111_oik_07882
crossref_primary_10_1186_s12862_021_01877_8
crossref_primary_10_1111_jse_12690
crossref_primary_10_1111_1365_2435_13807
crossref_primary_10_1002_ece3_4594
crossref_primary_10_1002_ece3_8830
crossref_primary_10_1111_1365_2745_12536
crossref_primary_10_3389_fmicb_2021_769304
crossref_primary_10_1002_ecy_2876
crossref_primary_10_1016_j_hal_2023_102424
crossref_primary_10_1002_ecy_1782
crossref_primary_10_1111_oik_06348
crossref_primary_10_1002_ece3_8837
crossref_primary_10_1111_zsc_12179
crossref_primary_10_1007_s12080_019_0432_5
crossref_primary_10_1016_j_soilbio_2019_107545
crossref_primary_10_1071_IS21054
crossref_primary_10_1111_jbi_15005
crossref_primary_10_1073_pnas_2205315120
crossref_primary_10_1111_jbi_14151
crossref_primary_10_1126_science_aaw1605
crossref_primary_10_1080_14772000_2020_1739777
crossref_primary_10_1111_2041_210X_13398
crossref_primary_10_1016_j_ecolmodel_2023_110323
crossref_primary_10_1111_geb_13031
crossref_primary_10_1007_s11427_021_2135_3
crossref_primary_10_35885_1684_7318_2021_1_79_88
crossref_primary_10_1002_ece3_7871
crossref_primary_10_1038_s41467_021_22023_4
crossref_primary_10_1073_pnas_1405766111
crossref_primary_10_1002_ecs2_1506
crossref_primary_10_1016_j_ecss_2023_108524
crossref_primary_10_1111_jfb_14188
crossref_primary_10_1111_ecog_06938
crossref_primary_10_1016_j_ecolind_2017_01_029
crossref_primary_10_1016_j_ppees_2021_125612
crossref_primary_10_1111_ecog_03782
crossref_primary_10_1007_s10980_020_01141_2
crossref_primary_10_1038_ncomms13965
crossref_primary_10_3390_land11040572
crossref_primary_10_1890_14_0589_1
crossref_primary_10_1111_geb_13146
crossref_primary_10_1111_jbi_14383
crossref_primary_10_1134_S1062359021030109
crossref_primary_10_1111_jbi_14143
crossref_primary_10_1111_jbi_14264
crossref_primary_10_1111_tbed_13306
crossref_primary_10_1111_btp_13125
crossref_primary_10_1111_cobi_14277
crossref_primary_10_1038_s41598_020_64568_2
crossref_primary_10_7717_peerj_11370
crossref_primary_10_1016_j_scitotenv_2024_177128
crossref_primary_10_1016_j_envexpbot_2018_06_011
crossref_primary_10_1098_rspb_2021_0200
crossref_primary_10_1002_ece3_4014
crossref_primary_10_1016_j_ppees_2024_125798
crossref_primary_10_1111_ecog_03457
crossref_primary_10_1111_ecog_03331
crossref_primary_10_1016_j_biocon_2023_110361
crossref_primary_10_1111_jvs_13217
crossref_primary_10_7717_peerj_7923
crossref_primary_10_1016_j_ecolmodel_2024_110865
crossref_primary_10_1111_ele_12926
crossref_primary_10_1111_geb_13376
crossref_primary_10_1111_oik_04066
crossref_primary_10_1111_1365_2435_12982
crossref_primary_10_1007_s10530_022_02904_5
crossref_primary_10_1111_ecog_06718
crossref_primary_10_1515_ijb_2017_0028
crossref_primary_10_1016_j_avrs_2025_100222
crossref_primary_10_3390_su14148362
crossref_primary_10_1038_s41598_018_20823_1
crossref_primary_10_1111_1365_2656_13816
crossref_primary_10_1111_geb_12396
crossref_primary_10_1086_690292
crossref_primary_10_1111_geb_13484
crossref_primary_10_1111_2041_210X_13074
crossref_primary_10_7717_peerj_15679
crossref_primary_10_1002_ece3_9604
crossref_primary_10_1016_j_jaridenv_2024_105236
crossref_primary_10_1111_ecog_02268
crossref_primary_10_3389_fmars_2017_00235
crossref_primary_10_1111_ecog_04563
crossref_primary_10_1111_jvs_12667
crossref_primary_10_1098_rspb_2016_2116
crossref_primary_10_1007_s10682_015_9774_7
crossref_primary_10_1111_jeb_13626
crossref_primary_10_2981_wlb_00275
crossref_primary_10_1002_ece3_8882
crossref_primary_10_1002_ece3_7671
crossref_primary_10_1007_s00035_017_0198_6
crossref_primary_10_1016_j_gecco_2024_e03361
crossref_primary_10_1002_ajb2_1146
crossref_primary_10_1111_ddi_12815
crossref_primary_10_7717_peerj_15422
crossref_primary_10_1643_h2020139
crossref_primary_10_1002_ajb2_70005
crossref_primary_10_1111_ecog_03464
crossref_primary_10_1007_s00227_018_3408_x
crossref_primary_10_3390_ecologies2010002
crossref_primary_10_1111_nph_16567
crossref_primary_10_1016_j_scitotenv_2020_141260
crossref_primary_10_1016_j_biocon_2019_108388
crossref_primary_10_1002_ecm_1622
crossref_primary_10_1111_brv_12380
crossref_primary_10_1007_s12237_024_01361_8
crossref_primary_10_1071_MF18339
crossref_primary_10_1098_rstb_2023_0324
crossref_primary_10_1007_s11692_020_09510_0
crossref_primary_10_1111_ecog_01075
crossref_primary_10_1111_ecog_07612
crossref_primary_10_1111_geb_13293
crossref_primary_10_1111_jbi_14694
crossref_primary_10_1111_jbi_14212
crossref_primary_10_5852_ejt_2022_833_1887
crossref_primary_10_1086_731477
crossref_primary_10_1371_journal_pone_0235060
crossref_primary_10_3390_d12120447
crossref_primary_10_1111_ddi_12835
crossref_primary_10_1007_s10750_016_2836_1
crossref_primary_10_1093_biolinnean_blab132
crossref_primary_10_1146_annurev_ecolsys_110316_023003
Cites_doi 10.1111/j.1466-8238.2011.00698.x
10.1086/414425
10.2307/1934875
10.1101/SQB.1957.022.01.039
10.1016/0022-5193(74)90053-8
10.1111/j.1541-0420.2012.01824.x
10.1111/j.1461-0248.2006.00924.x
10.1146/annurev.es.14.110183.002043
10.2307/2528823
10.1111/j.1558-5646.2008.00482.x
10.1111/j.1365-2486.2011.02451.x
10.1016/j.tree.2012.07.006
10.1016/S0169-5347(97)01098-7
10.1515/9780691187051
10.1890/07-2153.1
10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
10.1093/jpe/rtp007
10.1073/pnas.0901650106
10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
10.2307/1937153
10.1073/pnas.0901637106
10.2307/1934142
10.1086/282515
10.1111/j.1365-2656.2007.01271.x
10.1146/annurev.ecolsys.33.010802.150452
10.5962/bhl.title.65458
10.1111/j.1461-0248.2012.01852.x
10.2307/1936632
10.1007/BF00039976
10.1086/282860
10.1111/j.0030-1299.2008.16776.x
10.1111/1365-2435.12034
10.1146/annurev.ecolsys.110308.120159
10.1093/aob/mcm069
10.1126/science.147.3663.1294
10.1017/S0094837300026932
10.2307/2411924
10.1111/j.1365-2745.2012.01966.x
10.1073/pnas.69.5.1109
10.2307/1943043
10.1007/s00442-005-0151-z
10.1038/nature12142
10.1016/j.ecolmodel.2004.07.012
10.1002/joc.1276
10.1016/0040-5809(82)90039-9
10.1126/science.1215933
10.23943/princeton/9780691136868.001.0001
10.1111/j.2006.0906-7590.04596.x
10.1126/science.285.5431.1265
10.1111/j.1472-4642.2008.00482.x
10.1126/science.277.5330.1300
10.1111/j.1365-2435.2010.01727.x
10.1080/01621459.1996.10476908
10.1890/11-1930.1
10.1890/07-1206.1
10.1111/j.2006.0030-1299.14425.x
10.2307/1934144
10.1111/j.1558-5646.1975.tb00211.x
10.1146/annurev.ecolsys.28.1.129
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
F1W
H95
L.G
7S9
L.6
DOI 10.1111/geb.12146
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 609
ExternalDocumentID 3257208911
28409432
10_1111_geb_12146
GEB12146
24034056
ark_67375_WNG_6H973PBB_V
US201400085358
Genre technicalNote
GrantInformation_xml – fundername: National Science Foundation Macrosystems award
– fundername: NSF
– fundername: Marie Curie International Outgoing Fellowship
– fundername: 7th European Community Framework Program
– fundername: University of Maine's Sustainability Solutions Initiative
GroupedDBID -~X
.3N
.GA
.Y3
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
IHE
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
0R~
AAHBH
ABXSQ
ADACV
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
BSCLL
HGLYW
IPSME
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
F1W
H95
L.G
7S9
L.6
ID FETCH-LOGICAL-c6116-25d4cbe01149e540b100c0fb9636f42a90f0b8e12b99f4cd13d7422edf280adb3
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 18:32:56 EDT 2025
Thu Jul 10 17:07:42 EDT 2025
Fri Jul 11 10:15:32 EDT 2025
Fri Jul 25 04:28:32 EDT 2025
Wed Apr 02 07:25:07 EDT 2025
Tue Jul 01 01:46:04 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Wed Jan 22 16:23:04 EST 2025
Thu Jul 03 22:44:34 EDT 2025
Wed Oct 30 09:50:21 EDT 2024
Wed Dec 27 19:03:39 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Density estimation
Hole
kernel density estimation
niche overlap
Biogeography
Ecology
Overlap
Modeling
morphospace
hypervolume
Hutchinson
Spatial distribution
Geographic distribution
Ecological niche
niche
Environmental niche modelling
species distribution modelling
Distribution range
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6116-25d4cbe01149e540b100c0fb9636f42a90f0b8e12b99f4cd13d7422edf280adb3
Notes http://dx.doi.org/10.1111/geb.12146
NSF
Marie Curie International Outgoing Fellowship
ark:/67375/WNG-6H973PBB-V
ArticleID:GEB12146
University of Maine's Sustainability Solutions Initiative
istex:B38821AE806E7463B97810AE1CBFCF9119E29FF0
National Science Foundation Macrosystems award
7th European Community Framework Program
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.12146
PQID 1510352070
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_1999924552
proquest_miscellaneous_1520368051
proquest_miscellaneous_1516755321
proquest_journals_1510352070
pascalfrancis_primary_28409432
crossref_citationtrail_10_1111_geb_12146
crossref_primary_10_1111_geb_12146
wiley_primary_10_1111_geb_12146_GEB12146
jstor_primary_24034056
istex_primary_ark_67375_WNG_6H973PBB_V
fao_agris_US201400085358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650.
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.-A., Molino, J.-F., Sabatier, D., Savolainen, V. & Chave, J. (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690-701.
Maynard-Smith, J., Burian, R. & Kauffman, S. (1985) Developmental constraints and evolution. Quarterly Review of Biology, 60, 265-287.
Brown, W. & Wilson, E. (1956) Character displacement. Systematic Zoology, 5, 49-64.
Salazar-Ciudad, I. & Marin-Riera, M. (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature, 497, 361-364.
Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471.
Pigliucci, M. (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Annals of Botany, 100, 433-438.
Hijmans, R.J., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
Kattge, J., Díaz, S., Lavorel, S. et al. (2011) TRY: a global database of plant traits. Global Change Biology, 17, 2905-2935.
Gavrilets, S. (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton, NJ.
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
Laughlin, D.C., Joshi, C., Van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
Findley, J. (1973) Phenetic packing as a measure of faunal diversity. The American Naturalist, 107, 580-584.
Raup, D. & Michelson, A. (1965) Theoretical morphology of the coiled shell. Science, 147, 1294-1295.
Snodgrass, R. & Heller, E. (1904) Papers from the Hopkins-Stanford Galapagos expedition, 1898-99 XVI. Birds. Proceedings of the Washington Academy of Science, 5, 231-372.
Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
Little, E.L., Jr (1977) Atlas of United States trees. US Department of Agriculture, Forest Service, Washington, DC.
Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. (2007) Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology, 76, 977-985.
Lessard, J.P., Belmaker, J., Myers, J.A., Chase, J.M. & Rahbek, C. (2012) Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600-607.
Hurlbert, S.H. (1978) The measurement of niche overlap and some relatives. Ecology, 59, 67-77.
Van Valen, L. (1974) Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45, 235-247.
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.
Rubin, D. (1996) Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489.
Gavrilets, S. (1997) Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307-312.
Tilman, D. (1982) Resource competition and community structure. Princeton University Press, Princeton.
Bonser, S.P. (2006) Form defining function: interpreting leaf functional variability in integrated plant phenotypes. Oikos, 114, 187-190.
Doledec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in community analysis: a new method. Ecology, 81, 2914-2927.
Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ.
Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220.
Abrams, P. (1980) Some comments on measuring niche overlap. Ecology, 61, 44-49.
Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos, 117, 1533-1541.
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
Ricklefs, R.E. & Travis, J. (1980) A morphological approach to the study of avian community organization. The Auk, 97, 321-338.
Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
Colwell, R.K. & Futuyma, D.J. (1971) On the measurement of niche breadth and overlap. Ecology, 52, 567-576.
Violle, C. & Jiang, L. (2009) Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93.
Austin, M., Cunningham, R. & Fleming, P. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55, 11-27.
Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758.
Peterson, A.T. (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267.
Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences USA, 106, 19651-19658.
Ricklefs, R.E. & O'Rourke, K. (1975) Aspect diversity in moths: a temperate-tropical comparison. Evolution, 29, 313-324.
Villéger, S., Mason, N.W.H. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281.
Abrams, P. (1983) The theory of limiting similarity. Annual Review of Ecology, Evolution, and Systematics, 14, 359-376.
Whittaker, R. & Niering, W. (1965) Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46, 429-452.
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
Silverman, B.W. (1992) Density estimation for statistics and data analysis. Chapman & Hall, London.
Foote, M. (1997) The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129-152.
Guo, Q., Kelly, M. & Graham, C.H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75-90.
Elith, J., Graham, C., Anderson, R. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Gower, J. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871.
Green, R.H. (1971) A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada. Ecology, 52, 544-556.
Boucher, F.C., Thuiller, W., Arnoldi, C., Albert, C.H. & Lavergne, S. (2013) Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27, 382-391.
Hutchinson, G. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S. & Lavorel, S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883.
May, R.M. & MacArthur, R.H. (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA, 69, 1109-1113.
Maguire, B. (1967) A partial analysis of the niche. The American Naturalist, 101, 515-526.
Mouillot, D., Stubbs, W., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. & Chi, T.D. (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145, 345-353.
Pacala, S. & Roughgarden, J. (1982) The evolution of resource partitioning in a multidimensional resource space. Theoretical Population Biology, 22, 127-145.
Austin, M., Nicholls, A. & Margules, C. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161-177.
1965; 147
2009; 40
2013; 69
2013; 27
1973; 107
2007; 100
1997; 277
1999; 285
1932
1985; 60
2012; 15
2011; 17
2007; 76
1983; 14
1990; 60
2005; 25
1977
1971; 52
2005; 182
1974; 45
2010; 24
2005; 145
1984; 55
1997; 12
1982; 22
1967; 101
1986
2006; 29
2008; 117
1982
2012; 27
2012; 335
2009; 19
2008; 62
2012; 21
2012; 100
2012
1971; 27
2000; 26
2011
1980; 61
2006; 9
2002; 33
2008; 14
1997; 28
1994
2004
1978; 59
1992
1996; 91
1972; 69
2006; 114
1957; 22
2012; 93
1965; 46
1980; 97
2006; 87
1975; 29
2013; 497
2000; 81
2008; 89
1904; 5
2009; 2
1956; 5
2009; 106
e_1_2_6_32_1
Snodgrass R. (e_1_2_6_58_1) 1904; 5
e_1_2_6_30_1
Nix H. (e_1_2_6_40_1) 1986
e_1_2_6_19_1
Ricklefs R.E. (e_1_2_6_53_1) 1980; 97
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Ricklefs R. (e_1_2_6_51_1) 1994
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Wright S. (e_1_2_6_69_1) 1932
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Silverman B.W. (e_1_2_6_57_1) 1992
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Shan H. (e_1_2_6_56_1) 2012
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_42_1
Tilman D. (e_1_2_6_60_1) 1982
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Mouillot, D., Stubbs, W., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. & Chi, T.D. (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145, 345-353.
– reference: Austin, M., Nicholls, A. & Margules, C. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161-177.
– reference: Maynard-Smith, J., Burian, R. & Kauffman, S. (1985) Developmental constraints and evolution. Quarterly Review of Biology, 60, 265-287.
– reference: Rubin, D. (1996) Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489.
– reference: Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
– reference: Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
– reference: Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.-A., Molino, J.-F., Sabatier, D., Savolainen, V. & Chave, J. (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690-701.
– reference: Violle, C. & Jiang, L. (2009) Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93.
– reference: Colwell, R.K. & Futuyma, D.J. (1971) On the measurement of niche breadth and overlap. Ecology, 52, 567-576.
– reference: Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497.
– reference: Pacala, S. & Roughgarden, J. (1982) The evolution of resource partitioning in a multidimensional resource space. Theoretical Population Biology, 22, 127-145.
– reference: Gavrilets, S. (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton, NJ.
– reference: Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. (2007) Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology, 76, 977-985.
– reference: Abrams, P. (1983) The theory of limiting similarity. Annual Review of Ecology, Evolution, and Systematics, 14, 359-376.
– reference: Findley, J. (1973) Phenetic packing as a measure of faunal diversity. The American Naturalist, 107, 580-584.
– reference: Ricklefs, R.E. & Travis, J. (1980) A morphological approach to the study of avian community organization. The Auk, 97, 321-338.
– reference: Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
– reference: Guo, Q., Kelly, M. & Graham, C.H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75-90.
– reference: Lessard, J.P., Belmaker, J., Myers, J.A., Chase, J.M. & Rahbek, C. (2012) Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600-607.
– reference: Van Valen, L. (1974) Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45, 235-247.
– reference: Little, E.L., Jr (1977) Atlas of United States trees. US Department of Agriculture, Forest Service, Washington, DC.
– reference: Elith, J., Graham, C., Anderson, R. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
– reference: Laughlin, D.C., Joshi, C., Van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
– reference: Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471.
– reference: Boucher, F.C., Thuiller, W., Arnoldi, C., Albert, C.H. & Lavergne, S. (2013) Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27, 382-391.
– reference: Villéger, S., Mason, N.W.H. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
– reference: Gower, J. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871.
– reference: Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220.
– reference: Austin, M., Cunningham, R. & Fleming, P. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55, 11-27.
– reference: Hijmans, R.J., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
– reference: Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758.
– reference: Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences USA, 106, 19651-19658.
– reference: Snodgrass, R. & Heller, E. (1904) Papers from the Hopkins-Stanford Galapagos expedition, 1898-99 XVI. Birds. Proceedings of the Washington Academy of Science, 5, 231-372.
– reference: Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S. & Lavorel, S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
– reference: Hutchinson, G. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
– reference: Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281.
– reference: Gavrilets, S. (1997) Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307-312.
– reference: Silverman, B.W. (1992) Density estimation for statistics and data analysis. Chapman & Hall, London.
– reference: Whittaker, R. & Niering, W. (1965) Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46, 429-452.
– reference: Maguire, B. (1967) A partial analysis of the niche. The American Naturalist, 101, 515-526.
– reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
– reference: Abrams, P. (1980) Some comments on measuring niche overlap. Ecology, 61, 44-49.
– reference: Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650.
– reference: Raup, D. & Michelson, A. (1965) Theoretical morphology of the coiled shell. Science, 147, 1294-1295.
– reference: Bonser, S.P. (2006) Form defining function: interpreting leaf functional variability in integrated plant phenotypes. Oikos, 114, 187-190.
– reference: Green, R.H. (1971) A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada. Ecology, 52, 544-556.
– reference: Kattge, J., Díaz, S., Lavorel, S. et al. (2011) TRY: a global database of plant traits. Global Change Biology, 17, 2905-2935.
– reference: Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883.
– reference: May, R.M. & MacArthur, R.H. (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA, 69, 1109-1113.
– reference: Pigliucci, M. (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Annals of Botany, 100, 433-438.
– reference: Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos, 117, 1533-1541.
– reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
– reference: Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ.
– reference: Salazar-Ciudad, I. & Marin-Riera, M. (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature, 497, 361-364.
– reference: Ricklefs, R.E. & O'Rourke, K. (1975) Aspect diversity in moths: a temperate-tropical comparison. Evolution, 29, 313-324.
– reference: Peterson, A.T. (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267.
– reference: Brown, W. & Wilson, E. (1956) Character displacement. Systematic Zoology, 5, 49-64.
– reference: Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539.
– reference: Tilman, D. (1982) Resource competition and community structure. Princeton University Press, Princeton.
– reference: Doledec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in community analysis: a new method. Ecology, 81, 2914-2927.
– reference: Foote, M. (1997) The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129-152.
– reference: Hurlbert, S.H. (1978) The measurement of niche overlap and some relatives. Ecology, 59, 67-77.
– year: 2011
– volume: 24
  start-page: 1192
  year: 2010
  end-page: 1201
  article-title: A multi‐trait approach reveals the structure and the relative importance of intra‐ vs. interspecific variability in plant traits
  publication-title: Functional Ecology
– volume: 81
  start-page: 2914
  year: 2000
  end-page: 2927
  article-title: Niche separation in community analysis: a new method
  publication-title: Ecology
– volume: 52
  start-page: 544
  year: 1971
  end-page: 556
  article-title: A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada
  publication-title: Ecology
– year: 2012
  article-title: Macroecological life‐history trait database for birds, reptiles, and mammals
– volume: 497
  start-page: 361
  year: 2013
  end-page: 364
  article-title: Adaptive dynamics under development‐based genotype–phenotype maps
  publication-title: Nature
– volume: 93
  start-page: 1527
  year: 2012
  end-page: 1539
  article-title: Uses and misuses of bioclimatic envelope modeling
  publication-title: Ecology
– volume: 62
  start-page: 2868
  year: 2008
  end-page: 2883
  article-title: Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution
  publication-title: Evolution
– volume: 100
  start-page: 690
  year: 2012
  end-page: 701
  article-title: Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities
  publication-title: Journal of Ecology
– start-page: 4
  year: 1986
  end-page: 15
– volume: 27
  start-page: 382
  year: 2013
  end-page: 391
  article-title: Unravelling the architecture of functional variability in wild populations of L
  publication-title: Functional Ecology
– volume: 76
  start-page: 977
  year: 2007
  end-page: 985
  article-title: Low functional diversity and no redundancy in British avian assemblages
  publication-title: Journal of Animal Ecology
– volume: 27
  start-page: 857
  year: 1971
  end-page: 871
  article-title: A general coefficient of similarity and some of its properties
  publication-title: Biometrics
– volume: 27
  start-page: 600
  year: 2012
  end-page: 607
  article-title: Inferring local ecological processes amid species pool influences
  publication-title: Trends in Ecology and Evolution
– volume: 60
  start-page: 265
  year: 1985
  end-page: 287
  article-title: Developmental constraints and evolution
  publication-title: Quarterly Review of Biology
– volume: 277
  start-page: 1300
  year: 1997
  end-page: 1302
  article-title: The influence of functional diversity and composition on ecosystem processes
  publication-title: Science
– volume: 2
  start-page: 87
  year: 2009
  end-page: 93
  article-title: Towards a trait‐based quantification of species niche
  publication-title: Journal of Plant Ecology
– volume: 145
  start-page: 345
  year: 2005
  end-page: 353
  article-title: Niche overlap estimates based on quantitative functional traits: a new family of non‐parametric indices
  publication-title: Oecologia
– volume: 22
  start-page: 127
  year: 1982
  end-page: 145
  article-title: The evolution of resource partitioning in a multidimensional resource space
  publication-title: Theoretical Population Biology
– year: 1982
– volume: 107
  start-page: 580
  year: 1973
  end-page: 584
  article-title: Phenetic packing as a measure of faunal diversity
  publication-title: The American Naturalist
– volume: 89
  start-page: 2290
  year: 2008
  end-page: 2301
  article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology
  publication-title: Ecology
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species' distributions from occurrence data
  publication-title: Ecography
– volume: 59
  start-page: 67
  year: 1978
  end-page: 77
  article-title: The measurement of niche overlap and some relatives
  publication-title: Ecology
– volume: 14
  start-page: 763
  year: 2008
  end-page: 773
  article-title: Effects of sample size on the performance of species distribution models
  publication-title: Diversity and Distributions
– year: 2004
– volume: 21
  start-page: 481
  year: 2012
  end-page: 497
  article-title: Measuring ecological niche overlap from occurrence and spatial environmental data
  publication-title: Global Ecology and Biogeography
– volume: 52
  start-page: 567
  year: 1971
  end-page: 576
  article-title: On the measurement of niche breadth and overlap
  publication-title: Ecology
– volume: 69
  start-page: 274
  year: 2013
  end-page: 281
  article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
  publication-title: Biometrics
– volume: 22
  start-page: 415
  year: 1957
  end-page: 427
  article-title: Concluding remarks
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 69
  start-page: 1109
  year: 1972
  end-page: 1113
  article-title: Niche overlap as a function of environmental variability
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 106
  start-page: 19644
  year: 2009
  end-page: 19650
  article-title: Niches and distributional areas: concepts, methods, and assumptions
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 55
  start-page: 11
  year: 1984
  end-page: 27
  article-title: New approaches to direct gradient analysis using environmental scalars and statistical curve‐fitting procedures
  publication-title: Vegetatio
– volume: 114
  start-page: 187
  year: 2006
  end-page: 190
  article-title: Form defining function: interpreting leaf functional variability in integrated plant phenotypes
  publication-title: Oikos
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY: a global database of plant traits
  publication-title: Global Change Biology
– volume: 182
  start-page: 75
  year: 2005
  end-page: 90
  article-title: Support vector machines for predicting distribution of sudden oak death in California
  publication-title: Ecological Modelling
– volume: 5
  start-page: 49
  year: 1956
  end-page: 64
  article-title: Character displacement
  publication-title: Systematic Zoology
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 28
  start-page: 129
  year: 1997
  end-page: 152
  article-title: The evolution of morphological diversity
  publication-title: Annual Review of Ecology and Systematics
– start-page: 1303
  year: 2012
  end-page: 1310
– volume: 285
  start-page: 1265
  year: 1999
  end-page: 1267
  article-title: Conservatism of ecological niches in evolutionary time
  publication-title: Science
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data
  publication-title: Ecological Applications
– volume: 97
  start-page: 321
  year: 1980
  end-page: 338
  article-title: A morphological approach to the study of avian community organization
  publication-title: The Auk
– volume: 14
  start-page: 359
  year: 1983
  end-page: 376
  article-title: The theory of limiting similarity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 29
  start-page: 313
  year: 1975
  end-page: 324
  article-title: Aspect diversity in moths: a temperate–tropical comparison
  publication-title: Evolution
– start-page: 13
  year: 1994
  end-page: 41
– volume: 26
  start-page: 194
  year: 2000
  end-page: 220
  article-title: Responses of plant populations and communities to environmental changes of the late Quaternary
  publication-title: Paleobiology
– year: 1977
– year: 1992
– volume: 61
  start-page: 44
  year: 1980
  end-page: 49
  article-title: Some comments on measuring niche overlap
  publication-title: Ecology
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 100
  start-page: 433
  year: 2007
  end-page: 438
  article-title: Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form
  publication-title: Annals of Botany
– volume: 15
  start-page: 1291
  year: 2012
  end-page: 1299
  article-title: A predictive model of community assembly that incorporates intraspecific trait variation
  publication-title: Ecology Letters
– volume: 147
  start-page: 1294
  year: 1965
  end-page: 1295
  article-title: Theoretical morphology of the coiled shell
  publication-title: Science
– volume: 106
  start-page: 19651
  year: 2009
  end-page: 19658
  article-title: Hutchinson's duality: the once and future niche
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 46
  start-page: 429
  year: 1965
  end-page: 452
  article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope
  publication-title: Ecology
– start-page: 355
  year: 1932
  end-page: 366
– volume: 101
  start-page: 515
  year: 1967
  end-page: 526
  article-title: A partial analysis of the niche
  publication-title: The American Naturalist
– volume: 45
  start-page: 235
  year: 1974
  end-page: 247
  article-title: Multivariate structural statistics in natural history
  publication-title: Journal of Theoretical Biology
– volume: 87
  start-page: 1465
  year: 2006
  end-page: 1471
  article-title: A trait‐based test for habitat filtering: convex hull volume
  publication-title: Ecology
– volume: 335
  start-page: 1344
  year: 2012
  end-page: 1348
  article-title: Climatic niche shifts are rare among terrestrial plant invaders
  publication-title: Science
– volume: 60
  start-page: 161
  year: 1990
  end-page: 177
  article-title: Measurement of the realized qualitative niche: environmental niches of five species
  publication-title: Ecological Monographs
– volume: 9
  start-page: 741
  year: 2006
  end-page: 758
  article-title: Functional diversity: back to basics and looking forward
  publication-title: Ecology Letters
– volume: 91
  start-page: 473
  year: 1996
  end-page: 489
  article-title: Multiple imputation after 18+ years
  publication-title: Journal of the American Statistical Association
– volume: 12
  start-page: 307
  year: 1997
  end-page: 312
  article-title: Evolution and speciation on holey adaptive landscapes
  publication-title: Trends in Ecology and Evolution
– volume: 5
  start-page: 231
  year: 1904
  end-page: 372
  article-title: Papers from the Hopkins–Stanford Galapagos expedition, 1898–99 XVI. Birds
  publication-title: Proceedings of the Washington Academy of Science
– volume: 117
  start-page: 1533
  year: 2008
  end-page: 1541
  article-title: On the identification of the most suitable traits for plant functional trait analyses
  publication-title: Oikos
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1466-8238.2011.00698.x
– ident: e_1_2_6_38_1
  doi: 10.1086/414425
– ident: e_1_2_6_67_1
  doi: 10.2307/1934875
– ident: e_1_2_6_30_1
  doi: 10.1101/SQB.1957.022.01.039
– ident: e_1_2_6_62_1
  doi: 10.1016/0022-5193(74)90053-8
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1541-0420.2012.01824.x
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1461-0248.2006.00924.x
– ident: e_1_2_6_3_1
  doi: 10.1146/annurev.es.14.110183.002043
– ident: e_1_2_6_25_1
  doi: 10.2307/2528823
– ident: e_1_2_6_65_1
  doi: 10.1111/j.1558-5646.2008.00482.x
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– volume-title: Resource competition and community structure
  year: 1982
  ident: e_1_2_6_60_1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.tree.2012.07.006
– ident: e_1_2_6_23_1
  doi: 10.1016/S0169-5347(97)01098-7
– ident: e_1_2_6_24_1
  doi: 10.1515/9780691187051
– ident: e_1_2_6_47_1
  doi: 10.1890/07-2153.1
– volume: 5
  start-page: 231
  year: 1904
  ident: e_1_2_6_58_1
  article-title: Papers from the Hopkins–Stanford Galapagos expedition, 1898–99 XVI. Birds
  publication-title: Proceedings of the Washington Academy of Science
– volume-title: Density estimation for statistics and data analysis
  year: 1992
  ident: e_1_2_6_57_1
– ident: e_1_2_6_17_1
  doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
– ident: e_1_2_6_64_1
  doi: 10.1093/jpe/rtp007
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.0901650106
– ident: e_1_2_6_18_1
  doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
– ident: e_1_2_6_2_1
  doi: 10.2307/1937153
– ident: e_1_2_6_59_1
  doi: 10.1073/pnas.0901637106
– ident: e_1_2_6_26_1
  doi: 10.2307/1934142
– ident: e_1_2_6_36_1
  doi: 10.1086/282515
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2656.2007.01271.x
– volume: 97
  start-page: 321
  year: 1980
  ident: e_1_2_6_53_1
  article-title: A morphological approach to the study of avian community organization
  publication-title: The Auk
– ident: e_1_2_6_66_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_6_35_1
  doi: 10.5962/bhl.title.65458
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1461-0248.2012.01852.x
– ident: e_1_2_6_29_1
  doi: 10.2307/1936632
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00039976
– ident: e_1_2_6_21_1
  doi: 10.1086/282860
– ident: e_1_2_6_10_1
  doi: 10.1111/j.0030-1299.2008.16776.x
– ident: e_1_2_6_12_1
  doi: 10.1111/1365-2435.12034
– ident: e_1_2_6_19_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– start-page: 355
  volume-title: Proceedings of the Sixth International Congress on Genetics
  year: 1932
  ident: e_1_2_6_69_1
– ident: e_1_2_6_48_1
  doi: 10.1093/aob/mcm069
– ident: e_1_2_6_49_1
  doi: 10.1126/science.147.3663.1294
– ident: e_1_2_6_31_1
  doi: 10.1017/S0094837300026932
– start-page: 4
  volume-title: Atlas of elapid snakes of Australia
  year: 1986
  ident: e_1_2_6_40_1
– ident: e_1_2_6_14_1
  doi: 10.2307/2411924
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2745.2012.01966.x
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.69.5.1109
– ident: e_1_2_6_7_1
  doi: 10.2307/1943043
– ident: e_1_2_6_39_1
  doi: 10.1007/s00442-005-0151-z
– ident: e_1_2_6_55_1
  doi: 10.1038/nature12142
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ecolmodel.2004.07.012
– ident: e_1_2_6_28_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_41_1
  doi: 10.1016/0040-5809(82)90039-9
– ident: e_1_2_6_46_1
  doi: 10.1126/science.1215933
– ident: e_1_2_6_45_1
  doi: 10.23943/princeton/9780691136868.001.0001
– ident: e_1_2_6_20_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_6_44_1
  doi: 10.1126/science.285.5431.1265
– start-page: 1303
  volume-title: Proceedings of the 29th International Conference on Machine Learning
  year: 2012
  ident: e_1_2_6_56_1
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1472-4642.2008.00482.x
– ident: e_1_2_6_61_1
  doi: 10.1126/science.277.5330.1300
– ident: e_1_2_6_8_1
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2435.2010.01727.x
– ident: e_1_2_6_54_1
  doi: 10.1080/01621459.1996.10476908
– ident: e_1_2_6_5_1
  doi: 10.1890/11-1930.1
– ident: e_1_2_6_63_1
  doi: 10.1890/07-1206.1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.2006.0030-1299.14425.x
– ident: e_1_2_6_15_1
  doi: 10.2307/1934144
– start-page: 13
  volume-title: Ecological morphology: integrative organismal biology
  year: 1994
  ident: e_1_2_6_51_1
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1558-5646.1975.tb00211.x
– ident: e_1_2_6_22_1
  doi: 10.1146/annurev.ecolsys.28.1.129
SSID ssj0005456
Score 2.59744
Snippet AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,...
Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,...
Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,...
The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 595
SubjectTerms anatomy and morphology
Animal and plant ecology
Animal, plant and microbial ecology
Biogeography
Biological and medical sciences
community ecology
data collection
Datasets
Density
Density estimation
Ecological genetics
Ecological modeling
Ecological niches
Environmental niche modelling
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Geometry
hole
Hutchinson
hypervolume
kernel density estimation
MACROECOLOGICAL METHODS
Methods and techniques (sampling, tagging, trapping, modelling...)
morphospace
niche
niche overlap
Phenotypic traits
species distribution modelling
Synecology
Title n‐dimensional hypervolume
URI https://api.istex.fr/ark:/67375/WNG-6H973PBB-V/fulltext.pdf
https://www.jstor.org/stable/24034056
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12146
https://www.proquest.com/docview/1510352070
https://www.proquest.com/docview/1516755321
https://www.proquest.com/docview/1520368051
https://www.proquest.com/docview/1999924552
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UguCLrdWlqbWuItKXlGQyuQw-ubLtIlhEXd0HYZjJzFSoZGUvUH3yJ_gb-0t6zuSyXdEivgXyJSRnzjnzneTMNwDPWKS1yIUJkY3bkLPIhoJzHWrSVspFVBaO1g6_Oc1GY_56kk424EW7FqbWh-g-uFFk-HxNAa70_FqQn1lN0gic5LapV4sI0buVdBQxg3plURbiJDhpVIWoi6e7cm0uuuXUFBkqGfeibU6kTkk1R2O5epeLNRp6ncz62eh4Cz6371E3oZwfLRf6qPzxm8Tjf77oNtxtWGr_Ze1W92DDVjtwe-gVrr_vQG-4Wh6HsCY_zO_DY_S6fnX585ehTQNqwY_-Fyx1Z3UWfADj4-GHV6Ow2YIhLLM4zkKWGl5qS1WTsEjudBxFZeQ0hm3mOFMicpEubMy0EI6XJk4M1trMGseKSBmd9GCzmlZ2F_raidKYokgcM9wUuULmpawWsXE4XKUL4LAdDFk2-uS0TcZX2dYpaAjpDRHA0w76rRbl-BNoF0dUqjNMlnL8nlEpSQQzSYsAnvth7i5Ws3NqcMtT-en0RGYjkSdvBwP5MYCe94MOSOqFSHHx5gdrjrEC-II5YQHst54im6wwlzHJF6YMs2wAT7rTGM_0k0ZVdrr0GKzh0oTFN2Ho93GB-fQGDDJ_rK3TFB_l0LvX300lT4YDf7D379CHcIdMWvd-7sPmYra0j5CfLfSBD8QrYSIw6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RQheuBSiupQ2IIT64mq9vq7EC0FpA7QRggbyglZe726RipwqFwl44hP4Rr6EmfUlDYIK8RYp4yienZk9x549A_CEM6VEKrSPaNz4EWfGF1GkfEXaSqlgRWbp7PDJMBmMolfjeLwGz5qzMJU-RPvAjTLD1WtKcHogfSnLz4wibYQoWYdrNNHbEaq3S_EowgbV2aLEx21wXOsKUR9Pe-nKbrRu8wliVHLvl6Y9kXol8xm6y1ZzLlaA6GU46_ajw9vwsbmTqg3l_GAxVwfFt99EHv_3Vu_ArRqodp9XkXUX1ky5Cdf7TuT66yZ0-ssTcmhWl4jZPdjDwOuWP7__0DQ3oNL86H5CtjutCuF9GB32T18M_HoKg18kQZD4PNZRoQwRJ2EQ36mAsYJZhZmb2IjnglmmMhNwJYSNCh2EGuk2N9ryjOVahR3YKCel2YKusqLQOstCy3WkszRH8JUbJQJtcb0K68F-sxqyqCXKaVLGZ9lQFXSEdI7w4HFrelHpcvzJaAuXVOZnWC_l6B0nNkkYM4wzD566dW4vzqfn1OOWxvLD8EgmA5GGb3o9-d6DjguE1pAEDBHl4o_vrkTG0sBx5pB7sNOEiqwLw0wGpGAYcyy0Hjxqv8aUpvc0eWkmC2eDNC4OeXCVDb1BzrCkXmGD4B_pdRzjX9l38fV3V8mjfs992P530z24MTg9OZbHL4evH8BNcm_VCroDG_PpwjxEuDZXuy4rfwFb1TUD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RSBeChSiupQ2IIT64mq9vsQrnghNGm5RBYTmAWnl9e4WqcipcpGAJz6Bb-RLmFlf0iCoEG-WfGzZszOzZ-zZswCPOVNKdIT2kY0bP-LM-CKKlK9IW6kjWJ5aWjv8ZpgMRtHLcTxeg6f1WphSH6L54EaR4fI1BfiFtpeC_MwokkaIknW4FiUsJZc-ervUjiJqUC4tSnycBceVrBC18TSXrkxG6zabIEUl636puxOpVTKbobVsuc3FCg-9zGbddNS_BR_rFym7UM4PF3N1mH_7TePxP9_0NmxWNLX9rPSrO7Bmii243nMS11-3oNVbro9DWJUgZndhH92uXfz8_kPTrgGl4kf7E9a60zIN3oNRv_f--cCv9mDw8yQIEp_HOsqVobJJGGR3KmAsZ1Zh3CY24plglqnUBFwJYaNcB6HGYpsbbXnKMq3CFmwUk8JsQ1tZkWudpqHlOtJpJ0PqlRklAm1xuHLrwUE9GDKvBMppn4zPsi5U0BDSGcKDRw30olTl-BNoG0dUZmeYLeXoHadakhhmGKcePHHD3FycTc-pw60Ty9PhsUwGohOedLvygwct5wcNkOQLkePizfdWHGMJcBVzyD3YrT1FVmlhJgPSL4w5plkPHjanMaDpL01WmMnCYbCIi0MeXIWh_8cpJtQrMEj9sbiOY3yUA-defzeVPO513cHOv0P34cbJUV--fjF8dR9uknXLPtBd2JhPF-YBcrW52nMx-QurizO7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+n-dimensional+hypervolume&rft.jtitle=Global+ecology+and+biogeography&rft.au=Blonder%2C+Benjamin&rft.au=Lamanna%2C+Christine&rft.au=Violle%2C+Cyrille&rft.au=Enquist%2C+Brian+J.&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=5&rft.spage=595&rft.epage=609&rft_id=info:doi/10.1111%2Fgeb.12146&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6H973PBB_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon