n‐dimensional hypervolume
AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorl...
Saved in:
Published in | Global ecology and biogeography Vol. 23; no. 5; pp. 595 - 609 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2014
John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. INNOVATION: We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. MAIN CONCLUSIONS: We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. |
---|---|
AbstractList | Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high-dimensional or holey datasets. Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusions We show that our method (implemented as the 'hypervolume' R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. [PUBLICATION ABSTRACT] AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. INNOVATION: We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. MAIN CONCLUSIONS: We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high-dimensional or holey datasets. We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. We show that our method (implemented as the 'hypervolume' R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high-dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative biology, community ecology and niche theory. However, extant methods to sample from hypervolumes or measure their geometry perform poorly on high‐dimensional or holey datasets. Innovation We first highlight the conceptual and computational issues that have prevented a more direct approach to measuring hypervolumes. Next, we present a new multivariate kernel density estimation method that resolves many of these problems in an arbitrary number of dimensions. Main conclusions We show that our method (implemented as the ‘hypervolume’ R package) can match several extant methods for hypervolume geometry and species distribution modelling. Tools to quantify high‐dimensional ecological hypervolumes will enable a wide range of fundamental descriptive, inferential and comparative questions to be addressed. |
Author | Violle, Cyrille Blonder, Benjamin Lamanna, Christine Enquist, Brian J. |
Author_xml | – sequence: 1 fullname: Blonder, Benjamin – sequence: 2 fullname: Lamanna, Christine – sequence: 3 fullname: Violle, Cyrille – sequence: 4 fullname: Enquist, Brian J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28409432$$DView record in Pascal Francis |
BookMark | eNqNks1uEzEUhS1UJNKWBWuEQEKV6GKS69-ZWZKqpEgRIEGBneXx2MVhMk7tSUt2PEKfsU-Ck0mKVIHgLmxL9ztHV-d6H-21vjUIPcEwxKlGF6YaYoKZeIAG6RRZQWixd_cmXx-h_RhnAMAZFwP0tL39eVO7uWmj861qXnxbLUy48s1ybg7RQ6uaaB5v7wN0_ub008lZNn0_eXvyepppgbHICK-ZrgxgzErDGVQYQIOtSkGFZUSVYKEqDCZVWVqma0zrnBFiaksKUHVFD9Cr3ncR_OXSxE7OXdSmaVRr_DJKXKYijHPyb5QToKIAjv8DxSLnnJI1-vIeOvPLkNLYUECTaQ6JOtpSKmrV2KBa7aJcBDdXYSVJwaBkdD3jqOd08DEGY6V2nepSvF1QrpEY5HpVMq1KblaVFMf3FDvTP7Fb92vXmNXfQTk5He8Uz3rFLHY-_J6XAWXA1_2s77vYmR93fRW-S5HTnMsv7yZSnJU5_TAey8-Jf97zVnmpLkLK4PwjAczSpyo45QX9BSWPwuw |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1016_j_jcss_2016_02_004 crossref_primary_10_1111_ddi_12605 crossref_primary_10_1371_journal_pone_0285945 crossref_primary_10_1098_rsbl_2019_0011 crossref_primary_10_1111_oik_08249 crossref_primary_10_1016_j_actao_2016_06_011 crossref_primary_10_1016_j_flora_2019_03_002 crossref_primary_10_1093_jpe_rty018 crossref_primary_10_1016_j_ecolind_2018_09_048 crossref_primary_10_1002_ece3_10614 crossref_primary_10_1111_ddi_13949 crossref_primary_10_15406_jbmoa_2018_06_00180 crossref_primary_10_1016_j_foreco_2017_02_047 crossref_primary_10_1111_jeb_14084 crossref_primary_10_3390_rs14174287 crossref_primary_10_1016_j_actao_2018_02_007 crossref_primary_10_1016_j_cub_2021_07_080 crossref_primary_10_1080_17550874_2019_1646831 crossref_primary_10_1111_oik_07026 crossref_primary_10_1093_botlinnean_boac031 crossref_primary_10_3897_pls2021581_02 crossref_primary_10_1111_fwb_13605 crossref_primary_10_1016_j_jmsy_2020_12_019 crossref_primary_10_1111_ddi_12982 crossref_primary_10_1007_s10021_021_00654_4 crossref_primary_10_1111_ele_14262 crossref_primary_10_1002_ece3_3444 crossref_primary_10_1111_ecog_01433 crossref_primary_10_1038_s41559_024_02426_4 crossref_primary_10_1016_j_biocon_2019_108215 crossref_primary_10_1098_rspb_2015_0973 crossref_primary_10_1007_s10933_025_00354_2 crossref_primary_10_1177_19400829231225236 crossref_primary_10_1111_nph_18418 crossref_primary_10_1093_isd_ixad008 crossref_primary_10_1093_cz_zoaa045 crossref_primary_10_1016_j_scitotenv_2019_135443 crossref_primary_10_1038_s41598_024_82158_4 crossref_primary_10_1111_eva_12392 crossref_primary_10_1073_pnas_2119828119 crossref_primary_10_1007_s00442_020_04654_4 crossref_primary_10_1049_pel2_12842 crossref_primary_10_1111_oik_10688 crossref_primary_10_1002_ece3_6729 crossref_primary_10_1038_s41598_022_26937_x crossref_primary_10_1016_j_tfp_2022_100260 crossref_primary_10_1093_jpe_rtab086 crossref_primary_10_1111_2041_210X_14310 crossref_primary_10_1071_IS17090 crossref_primary_10_1111_geb_13086 crossref_primary_10_1111_ele_14368 crossref_primary_10_3389_fevo_2022_921480 crossref_primary_10_1016_j_ecolmodel_2015_06_002 crossref_primary_10_1016_j_cie_2024_109925 crossref_primary_10_1111_ecog_01696 crossref_primary_10_1016_j_baae_2022_03_009 crossref_primary_10_1093_zoolinnean_zlaa070 crossref_primary_10_1002_ece3_6859 crossref_primary_10_1002_ece3_6978 crossref_primary_10_1016_j_ecolmodel_2022_110242 crossref_primary_10_1111_2041_210X_14209 crossref_primary_10_1038_s41467_024_47295_4 crossref_primary_10_1093_jpe_rty053 crossref_primary_10_1371_journal_pone_0175138 crossref_primary_10_1038_s41586_021_03871_y crossref_primary_10_1016_j_tree_2016_02_003 crossref_primary_10_1111_brv_12526 crossref_primary_10_3389_fevo_2020_00243 crossref_primary_10_1016_j_isci_2024_111426 crossref_primary_10_1007_s10021_022_00782_5 crossref_primary_10_1016_j_pbi_2014_02_009 crossref_primary_10_7717_peerj_15020 crossref_primary_10_1111_jvs_12392 crossref_primary_10_1016_j_cub_2019_07_059 crossref_primary_10_3389_fevo_2022_944116 crossref_primary_10_1111_ecog_03986 crossref_primary_10_1111_jbi_14500 crossref_primary_10_1111_jbi_13656 crossref_primary_10_1111_jbi_13777 crossref_primary_10_3389_fvets_2021_698767 crossref_primary_10_1002_ecs2_3052 crossref_primary_10_1038_s41559_023_02155_0 crossref_primary_10_1016_j_ecolmodel_2019_01_020 crossref_primary_10_1016_j_foreco_2023_121205 crossref_primary_10_1007_s10530_024_03444_w crossref_primary_10_1007_s00285_022_01763_x crossref_primary_10_3389_fevo_2022_803822 crossref_primary_10_1093_jpe_rtac031 crossref_primary_10_1111_2041_210X_13363 crossref_primary_10_1098_rspb_2021_1290 crossref_primary_10_1016_j_ecolind_2018_11_069 crossref_primary_10_3390_insects15040250 crossref_primary_10_1111_ddi_12545 crossref_primary_10_1002_npp2_12 crossref_primary_10_1007_s10980_020_01005_9 crossref_primary_10_1016_j_ppees_2017_01_004 crossref_primary_10_1016_j_gecco_2024_e03170 crossref_primary_10_1111_ddi_13518 crossref_primary_10_1111_ddi_13638 crossref_primary_10_1002_ecs2_4253 crossref_primary_10_1111_jvs_13018 crossref_primary_10_3390_d16080510 crossref_primary_10_7717_peerj_7042 crossref_primary_10_1111_jbi_13761 crossref_primary_10_1016_j_soilbio_2022_108674 crossref_primary_10_1016_j_ecolind_2019_105692 crossref_primary_10_1002_ppp3_10523 crossref_primary_10_1007_s10021_017_0147_7 crossref_primary_10_1007_s12080_019_00433_x crossref_primary_10_1016_j_tree_2023_04_015 crossref_primary_10_3390_ijgi13030099 crossref_primary_10_1002_ece3_3010 crossref_primary_10_1111_ecog_01464 crossref_primary_10_1111_jbi_13987 crossref_primary_10_3390_biology11081219 crossref_primary_10_1002_ece3_3138 crossref_primary_10_1016_j_gecco_2024_e03059 crossref_primary_10_1111_ecog_02671 crossref_primary_10_1016_j_limno_2022_126035 crossref_primary_10_1093_aob_mcx222 crossref_primary_10_1111_1365_2745_14005 crossref_primary_10_1007_s10530_024_03290_w crossref_primary_10_1111_ibi_12842 crossref_primary_10_1007_s13127_021_00486_z crossref_primary_10_1002_ecm_70008 crossref_primary_10_1111_evo_14638 crossref_primary_10_1093_biolinnean_blx001 crossref_primary_10_1016_j_fecs_2023_100097 crossref_primary_10_1002_ece3_9244 crossref_primary_10_1098_rspb_2022_0391 crossref_primary_10_3389_fevo_2018_00219 crossref_primary_10_1016_j_baae_2017_08_008 crossref_primary_10_1080_14772000_2017_1403496 crossref_primary_10_1111_ivb_12280 crossref_primary_10_1080_01140671_2021_1951306 crossref_primary_10_1111_gcb_16666 crossref_primary_10_1007_s10531_024_02961_3 crossref_primary_10_1111_ddi_13772 crossref_primary_10_1111_1365_2435_13361 crossref_primary_10_1111_aec_12752 crossref_primary_10_1111_jbi_13618 crossref_primary_10_1038_s41559_021_01513_0 crossref_primary_10_1111_geb_13717 crossref_primary_10_1111_jbi_13616 crossref_primary_10_1111_nph_19482 crossref_primary_10_1098_rstb_2019_0215 crossref_primary_10_1038_s41477_023_01588_6 crossref_primary_10_1111_2041_210X_12865 crossref_primary_10_1111_icad_12248 crossref_primary_10_1111_jbi_13861 crossref_primary_10_1111_2041_210X_12862 crossref_primary_10_1007_s11368_018_1990_7 crossref_primary_10_1111_1365_2435_13007 crossref_primary_10_1016_j_cub_2023_01_066 crossref_primary_10_1093_aob_mcad029 crossref_primary_10_3390_f5112626 crossref_primary_10_1111_geb_12611 crossref_primary_10_1016_j_scitotenv_2022_155102 crossref_primary_10_1111_geb_12610 crossref_primary_10_3389_fvets_2020_519059 crossref_primary_10_1086_705898 crossref_primary_10_1038_s42003_023_04415_y crossref_primary_10_1111_1365_2656_13159 crossref_primary_10_1002_lno_12441 crossref_primary_10_1002_1438_390X_12001 crossref_primary_10_1016_j_ecolmodel_2021_109671 crossref_primary_10_1038_s41598_019_56515_7 crossref_primary_10_1016_j_ecolind_2023_110900 crossref_primary_10_1126_science_adk7898 crossref_primary_10_1111_1365_2435_14344 crossref_primary_10_1016_j_catena_2024_108698 crossref_primary_10_1111_ddi_13431 crossref_primary_10_1111_ddi_13798 crossref_primary_10_3389_fpls_2024_1506418 crossref_primary_10_1016_j_tree_2015_06_003 crossref_primary_10_1016_j_foreco_2017_11_042 crossref_primary_10_1016_j_tree_2023_01_003 crossref_primary_10_1111_mec_14764 crossref_primary_10_1111_oik_06919 crossref_primary_10_1038_s42003_023_04940_w crossref_primary_10_1111_ecog_06287 crossref_primary_10_1038_nature16489 crossref_primary_10_1111_ecog_06283 crossref_primary_10_1111_gcb_16684 crossref_primary_10_1016_j_tree_2015_06_006 crossref_primary_10_1111_1365_2435_14477 crossref_primary_10_1111_evo_13734 crossref_primary_10_1016_j_ecolind_2018_11_059 crossref_primary_10_1038_s41467_020_19031_1 crossref_primary_10_1007_s00442_025_05680_w crossref_primary_10_1111_nph_18005 crossref_primary_10_1186_s40462_023_00412_2 crossref_primary_10_1111_ddi_13207 crossref_primary_10_1111_geb_13809 crossref_primary_10_1007_s10750_021_04586_x crossref_primary_10_1590_2675_2824072_23199 crossref_primary_10_1111_ele_14430 crossref_primary_10_1016_j_quascirev_2018_08_015 crossref_primary_10_1016_j_tree_2018_04_001 crossref_primary_10_1016_j_scitotenv_2022_159513 crossref_primary_10_1086_717411 crossref_primary_10_1016_j_cie_2023_109860 crossref_primary_10_1111_gcb_13042 crossref_primary_10_1111_geb_12425 crossref_primary_10_1016_j_ecolind_2024_112296 crossref_primary_10_3897_aca_5_e82941 crossref_primary_10_1371_journal_pclm_0000022 crossref_primary_10_1111_ele_12462 crossref_primary_10_1038_s41467_020_18695_z crossref_primary_10_3389_fmars_2021_656300 crossref_primary_10_3390_d12040162 crossref_primary_10_3390_insects14020123 crossref_primary_10_1038_s41559_024_02547_w crossref_primary_10_1080_14772000_2024_2366215 crossref_primary_10_1111_avsc_12448 crossref_primary_10_1111_1462_2920_15147 crossref_primary_10_1111_geb_13507 crossref_primary_10_1111_geb_12536 crossref_primary_10_5194_bg_18_1161_2021 crossref_primary_10_1002_jwmg_22317 crossref_primary_10_1007_s10750_021_04681_z crossref_primary_10_1016_j_ecolind_2022_108643 crossref_primary_10_1038_s41467_021_26537_9 crossref_primary_10_1111_ecog_03900 crossref_primary_10_1111_jbi_13804 crossref_primary_10_1016_j_ympev_2018_06_019 crossref_primary_10_1038_s41598_023_48204_3 crossref_primary_10_1111_ecog_01961 crossref_primary_10_1016_j_avrs_2023_100131 crossref_primary_10_1038_s41598_023_46336_0 crossref_primary_10_1016_j_ympev_2023_107979 crossref_primary_10_1002_ecy_2162 crossref_primary_10_1016_j_asoc_2018_03_025 crossref_primary_10_1016_j_cub_2021_08_035 crossref_primary_10_1111_fwb_14210 crossref_primary_10_1038_s41467_019_09721_w crossref_primary_10_1111_1365_2435_14437 crossref_primary_10_1111_ele_13778 crossref_primary_10_1111_1365_2435_13220 crossref_primary_10_1111_jbi_12703 crossref_primary_10_3390_earth3040063 crossref_primary_10_1002_ece3_4612 crossref_primary_10_1073_pnas_1415442111 crossref_primary_10_1002_ecm_1294 crossref_primary_10_1111_ecog_07179 crossref_primary_10_1007_s11356_024_32076_9 crossref_primary_10_1111_ele_14508 crossref_primary_10_1111_ecog_07294 crossref_primary_10_1080_09670262_2024_2442041 crossref_primary_10_1111_ddi_13471 crossref_primary_10_1111_gcb_16638 crossref_primary_10_1002_ecs2_3549 crossref_primary_10_1002_ecs2_3305 crossref_primary_10_1111_geb_13722 crossref_primary_10_1111_mec_14717 crossref_primary_10_1111_fwb_14350 crossref_primary_10_1002_ecy_4321 crossref_primary_10_1111_1365_2745_14089 crossref_primary_10_1111_2041_210X_13424 crossref_primary_10_3389_fpls_2017_01242 crossref_primary_10_1016_j_scitotenv_2023_167510 crossref_primary_10_1111_2041_210X_13665 crossref_primary_10_1111_geb_13840 crossref_primary_10_1007_s10340_023_01627_3 crossref_primary_10_1111_1365_2435_14442 crossref_primary_10_1111_1365_2745_14082 crossref_primary_10_1111_1365_2435_14201 crossref_primary_10_1111_avsc_12353 crossref_primary_10_1002_aps3_11612 crossref_primary_10_1111_icad_12250 crossref_primary_10_1111_ele_13631 crossref_primary_10_1111_ecog_04006 crossref_primary_10_1007_s10531_022_02447_0 crossref_primary_10_1016_j_ejor_2020_12_018 crossref_primary_10_1016_j_gloplacha_2024_104669 crossref_primary_10_1038_s41467_023_42745_x crossref_primary_10_1016_j_ecoinf_2023_102127 crossref_primary_10_1016_j_scitotenv_2019_134801 crossref_primary_10_1111_oik_05415 crossref_primary_10_3832_ifor4406_017 crossref_primary_10_1007_s10914_020_09515_8 crossref_primary_10_1655_HERPMONOGRAPHS_D_20_00010 crossref_primary_10_3372_wi_49_49308 crossref_primary_10_1016_j_gecco_2023_e02699 crossref_primary_10_1038_s41586_024_07731_3 crossref_primary_10_1111_1365_2435_13882 crossref_primary_10_1111_1365_2435_13527 crossref_primary_10_1111_geb_12581 crossref_primary_10_1002_ecs2_3422 crossref_primary_10_1111_geb_12580 crossref_primary_10_1111_geb_13428 crossref_primary_10_1086_685444 crossref_primary_10_1111_ele_12556 crossref_primary_10_1007_s00227_021_03920_0 crossref_primary_10_1111_1365_2745_12802 crossref_primary_10_1111_jbi_12910 crossref_primary_10_1016_j_ecolind_2020_106517 crossref_primary_10_3390_jof10030206 crossref_primary_10_1002_lno_11867 crossref_primary_10_1016_j_ympev_2022_107557 crossref_primary_10_1002_ecm_1545 crossref_primary_10_1111_gcb_16375 crossref_primary_10_1093_aob_mcz140 crossref_primary_10_3732_ajb_1500483 crossref_primary_10_1038_s41598_019_51927_x crossref_primary_10_1080_01650521_2021_1948654 crossref_primary_10_1111_mec_16424 crossref_primary_10_1111_icad_12619 crossref_primary_10_1111_gcb_17130 crossref_primary_10_1016_j_tree_2016_07_001 crossref_primary_10_1016_j_tree_2016_07_003 crossref_primary_10_1111_nph_20050 crossref_primary_10_1038_s41598_022_15949_2 crossref_primary_10_1111_oik_05670 crossref_primary_10_1371_journal_pone_0295182 crossref_primary_10_1111_1365_2435_14646 crossref_primary_10_1007_s00442_020_04628_6 crossref_primary_10_1016_j_tplants_2022_12_013 crossref_primary_10_1111_ddi_13286 crossref_primary_10_1093_ornithology_ukab077 crossref_primary_10_1007_s10750_019_04079_y crossref_primary_10_1016_j_rse_2021_112505 crossref_primary_10_1111_ele_12537 crossref_primary_10_1016_j_eswa_2021_116391 crossref_primary_10_1002_ecy_2349 crossref_primary_10_1002_ece3_7256 crossref_primary_10_1111_jav_01153 crossref_primary_10_1093_sysbio_syab080 crossref_primary_10_1111_jzs_12534 crossref_primary_10_1016_j_foreco_2025_122658 crossref_primary_10_1007_s10584_021_03091_3 crossref_primary_10_1111_ecog_06349 crossref_primary_10_1002_ecy_2676 crossref_primary_10_1038_s41467_020_16778_5 crossref_primary_10_1111_ele_13715 crossref_primary_10_1111_jbi_14074 crossref_primary_10_1007_s11368_017_1706_4 crossref_primary_10_1016_j_scitotenv_2024_172206 crossref_primary_10_1111_ddi_13294 crossref_primary_10_1371_journal_pone_0206138 crossref_primary_10_3389_fevo_2022_863669 crossref_primary_10_1111_1365_2435_13614 crossref_primary_10_1111_ele_12753 crossref_primary_10_1016_j_scitotenv_2022_154696 crossref_primary_10_1038_s41598_018_22178_z crossref_primary_10_1111_ecog_03187 crossref_primary_10_1073_pnas_1317722111 crossref_primary_10_1111_ele_13726 crossref_primary_10_1002_lno_12638 crossref_primary_10_1007_s10750_019_04021_2 crossref_primary_10_1016_j_scitotenv_2020_138815 crossref_primary_10_1111_jbi_13092 crossref_primary_10_1111_geb_12492 crossref_primary_10_1111_jav_01248 crossref_primary_10_1101_cshperspect_a041449 crossref_primary_10_1016_j_biocon_2021_109326 crossref_primary_10_1002_ece3_8132 crossref_primary_10_1002_ajb2_1213 crossref_primary_10_1111_1365_2745_12755 crossref_primary_10_3390_ijgi9120764 crossref_primary_10_1007_s10750_024_05565_8 crossref_primary_10_1111_2041_210X_12604 crossref_primary_10_7717_peerj_3364 crossref_primary_10_1111_nph_16952 crossref_primary_10_1016_j_ins_2020_08_080 crossref_primary_10_1111_jbi_13087 crossref_primary_10_3390_f11080894 crossref_primary_10_1109_TCC_2024_3437484 crossref_primary_10_3389_fmicb_2016_01174 crossref_primary_10_1002_ecs2_3944 crossref_primary_10_1038_s41467_019_10284_z crossref_primary_10_1093_jpe_rtu044 crossref_primary_10_1111_aec_13078 crossref_primary_10_3389_fmars_2022_914475 crossref_primary_10_1093_jeb_voad001 crossref_primary_10_1111_ecog_06238 crossref_primary_10_1002_ajb2_1572 crossref_primary_10_3389_fpls_2023_1243209 crossref_primary_10_1007_s10021_023_00825_5 crossref_primary_10_1111_2041_210X_12611 crossref_primary_10_1111_ele_12617 crossref_primary_10_1016_j_catena_2025_108852 crossref_primary_10_1111_oik_07882 crossref_primary_10_1186_s12862_021_01877_8 crossref_primary_10_1111_jse_12690 crossref_primary_10_1111_1365_2435_13807 crossref_primary_10_1002_ece3_4594 crossref_primary_10_1002_ece3_8830 crossref_primary_10_1111_1365_2745_12536 crossref_primary_10_3389_fmicb_2021_769304 crossref_primary_10_1002_ecy_2876 crossref_primary_10_1016_j_hal_2023_102424 crossref_primary_10_1002_ecy_1782 crossref_primary_10_1111_oik_06348 crossref_primary_10_1002_ece3_8837 crossref_primary_10_1111_zsc_12179 crossref_primary_10_1007_s12080_019_0432_5 crossref_primary_10_1016_j_soilbio_2019_107545 crossref_primary_10_1071_IS21054 crossref_primary_10_1111_jbi_15005 crossref_primary_10_1073_pnas_2205315120 crossref_primary_10_1111_jbi_14151 crossref_primary_10_1126_science_aaw1605 crossref_primary_10_1080_14772000_2020_1739777 crossref_primary_10_1111_2041_210X_13398 crossref_primary_10_1016_j_ecolmodel_2023_110323 crossref_primary_10_1111_geb_13031 crossref_primary_10_1007_s11427_021_2135_3 crossref_primary_10_35885_1684_7318_2021_1_79_88 crossref_primary_10_1002_ece3_7871 crossref_primary_10_1038_s41467_021_22023_4 crossref_primary_10_1073_pnas_1405766111 crossref_primary_10_1002_ecs2_1506 crossref_primary_10_1016_j_ecss_2023_108524 crossref_primary_10_1111_jfb_14188 crossref_primary_10_1111_ecog_06938 crossref_primary_10_1016_j_ecolind_2017_01_029 crossref_primary_10_1016_j_ppees_2021_125612 crossref_primary_10_1111_ecog_03782 crossref_primary_10_1007_s10980_020_01141_2 crossref_primary_10_1038_ncomms13965 crossref_primary_10_3390_land11040572 crossref_primary_10_1890_14_0589_1 crossref_primary_10_1111_geb_13146 crossref_primary_10_1111_jbi_14383 crossref_primary_10_1134_S1062359021030109 crossref_primary_10_1111_jbi_14143 crossref_primary_10_1111_jbi_14264 crossref_primary_10_1111_tbed_13306 crossref_primary_10_1111_btp_13125 crossref_primary_10_1111_cobi_14277 crossref_primary_10_1038_s41598_020_64568_2 crossref_primary_10_7717_peerj_11370 crossref_primary_10_1016_j_scitotenv_2024_177128 crossref_primary_10_1016_j_envexpbot_2018_06_011 crossref_primary_10_1098_rspb_2021_0200 crossref_primary_10_1002_ece3_4014 crossref_primary_10_1016_j_ppees_2024_125798 crossref_primary_10_1111_ecog_03457 crossref_primary_10_1111_ecog_03331 crossref_primary_10_1016_j_biocon_2023_110361 crossref_primary_10_1111_jvs_13217 crossref_primary_10_7717_peerj_7923 crossref_primary_10_1016_j_ecolmodel_2024_110865 crossref_primary_10_1111_ele_12926 crossref_primary_10_1111_geb_13376 crossref_primary_10_1111_oik_04066 crossref_primary_10_1111_1365_2435_12982 crossref_primary_10_1007_s10530_022_02904_5 crossref_primary_10_1111_ecog_06718 crossref_primary_10_1515_ijb_2017_0028 crossref_primary_10_1016_j_avrs_2025_100222 crossref_primary_10_3390_su14148362 crossref_primary_10_1038_s41598_018_20823_1 crossref_primary_10_1111_1365_2656_13816 crossref_primary_10_1111_geb_12396 crossref_primary_10_1086_690292 crossref_primary_10_1111_geb_13484 crossref_primary_10_1111_2041_210X_13074 crossref_primary_10_7717_peerj_15679 crossref_primary_10_1002_ece3_9604 crossref_primary_10_1016_j_jaridenv_2024_105236 crossref_primary_10_1111_ecog_02268 crossref_primary_10_3389_fmars_2017_00235 crossref_primary_10_1111_ecog_04563 crossref_primary_10_1111_jvs_12667 crossref_primary_10_1098_rspb_2016_2116 crossref_primary_10_1007_s10682_015_9774_7 crossref_primary_10_1111_jeb_13626 crossref_primary_10_2981_wlb_00275 crossref_primary_10_1002_ece3_8882 crossref_primary_10_1002_ece3_7671 crossref_primary_10_1007_s00035_017_0198_6 crossref_primary_10_1016_j_gecco_2024_e03361 crossref_primary_10_1002_ajb2_1146 crossref_primary_10_1111_ddi_12815 crossref_primary_10_7717_peerj_15422 crossref_primary_10_1643_h2020139 crossref_primary_10_1002_ajb2_70005 crossref_primary_10_1111_ecog_03464 crossref_primary_10_1007_s00227_018_3408_x crossref_primary_10_3390_ecologies2010002 crossref_primary_10_1111_nph_16567 crossref_primary_10_1016_j_scitotenv_2020_141260 crossref_primary_10_1016_j_biocon_2019_108388 crossref_primary_10_1002_ecm_1622 crossref_primary_10_1111_brv_12380 crossref_primary_10_1007_s12237_024_01361_8 crossref_primary_10_1071_MF18339 crossref_primary_10_1098_rstb_2023_0324 crossref_primary_10_1007_s11692_020_09510_0 crossref_primary_10_1111_ecog_01075 crossref_primary_10_1111_ecog_07612 crossref_primary_10_1111_geb_13293 crossref_primary_10_1111_jbi_14694 crossref_primary_10_1111_jbi_14212 crossref_primary_10_5852_ejt_2022_833_1887 crossref_primary_10_1086_731477 crossref_primary_10_1371_journal_pone_0235060 crossref_primary_10_3390_d12120447 crossref_primary_10_1111_ddi_12835 crossref_primary_10_1007_s10750_016_2836_1 crossref_primary_10_1093_biolinnean_blab132 crossref_primary_10_1146_annurev_ecolsys_110316_023003 |
Cites_doi | 10.1111/j.1466-8238.2011.00698.x 10.1086/414425 10.2307/1934875 10.1101/SQB.1957.022.01.039 10.1016/0022-5193(74)90053-8 10.1111/j.1541-0420.2012.01824.x 10.1111/j.1461-0248.2006.00924.x 10.1146/annurev.es.14.110183.002043 10.2307/2528823 10.1111/j.1558-5646.2008.00482.x 10.1111/j.1365-2486.2011.02451.x 10.1016/j.tree.2012.07.006 10.1016/S0169-5347(97)01098-7 10.1515/9780691187051 10.1890/07-2153.1 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 10.1093/jpe/rtp007 10.1073/pnas.0901650106 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2 10.2307/1937153 10.1073/pnas.0901637106 10.2307/1934142 10.1086/282515 10.1111/j.1365-2656.2007.01271.x 10.1146/annurev.ecolsys.33.010802.150452 10.5962/bhl.title.65458 10.1111/j.1461-0248.2012.01852.x 10.2307/1936632 10.1007/BF00039976 10.1086/282860 10.1111/j.0030-1299.2008.16776.x 10.1111/1365-2435.12034 10.1146/annurev.ecolsys.110308.120159 10.1093/aob/mcm069 10.1126/science.147.3663.1294 10.1017/S0094837300026932 10.2307/2411924 10.1111/j.1365-2745.2012.01966.x 10.1073/pnas.69.5.1109 10.2307/1943043 10.1007/s00442-005-0151-z 10.1038/nature12142 10.1016/j.ecolmodel.2004.07.012 10.1002/joc.1276 10.1016/0040-5809(82)90039-9 10.1126/science.1215933 10.23943/princeton/9780691136868.001.0001 10.1111/j.2006.0906-7590.04596.x 10.1126/science.285.5431.1265 10.1111/j.1472-4642.2008.00482.x 10.1126/science.277.5330.1300 10.1111/j.1365-2435.2010.01727.x 10.1080/01621459.1996.10476908 10.1890/11-1930.1 10.1890/07-1206.1 10.1111/j.2006.0030-1299.14425.x 10.2307/1934144 10.1111/j.1558-5646.1975.tb00211.x 10.1146/annurev.ecolsys.28.1.129 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K F1W H95 L.G 7S9 L.6 |
DOI | 10.1111/geb.12146 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 1466-822X |
EndPage | 609 |
ExternalDocumentID | 3257208911 28409432 10_1111_geb_12146 GEB12146 24034056 ark_67375_WNG_6H973PBB_V US201400085358 |
Genre | technicalNote |
GrantInformation_xml | – fundername: National Science Foundation Macrosystems award – fundername: NSF – fundername: Marie Curie International Outgoing Fellowship – fundername: 7th European Community Framework Program – fundername: University of Maine's Sustainability Solutions Initiative |
GroupedDBID | -~X .3N .GA .Y3 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AIRJO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 FBQ FEDTE G-S GODZA GTFYD HF~ HGD HQ2 HTVGU HVGLF HZI IHE IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM 0R~ AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K F1W H95 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c6116-25d4cbe01149e540b100c0fb9636f42a90f0b8e12b99f4cd13d7422edf280adb3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:32:56 EDT 2025 Thu Jul 10 17:07:42 EDT 2025 Fri Jul 11 10:15:32 EDT 2025 Fri Jul 25 04:28:32 EDT 2025 Wed Apr 02 07:25:07 EDT 2025 Tue Jul 01 01:46:04 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Wed Jan 22 16:23:04 EST 2025 Thu Jul 03 22:44:34 EDT 2025 Wed Oct 30 09:50:21 EDT 2024 Wed Dec 27 19:03:39 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Density estimation Hole kernel density estimation niche overlap Biogeography Ecology Overlap Modeling morphospace hypervolume Hutchinson Spatial distribution Geographic distribution Ecological niche niche Environmental niche modelling species distribution modelling Distribution range |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6116-25d4cbe01149e540b100c0fb9636f42a90f0b8e12b99f4cd13d7422edf280adb3 |
Notes | http://dx.doi.org/10.1111/geb.12146 NSF Marie Curie International Outgoing Fellowship ark:/67375/WNG-6H973PBB-V ArticleID:GEB12146 University of Maine's Sustainability Solutions Initiative istex:B38821AE806E7463B97810AE1CBFCF9119E29FF0 National Science Foundation Macrosystems award 7th European Community Framework Program ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.12146 |
PQID | 1510352070 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1999924552 proquest_miscellaneous_1520368051 proquest_miscellaneous_1516755321 proquest_journals_1510352070 pascalfrancis_primary_28409432 crossref_citationtrail_10_1111_geb_12146 crossref_primary_10_1111_geb_12146 wiley_primary_10_1111_geb_12146_GEB12146 jstor_primary_24034056 istex_primary_ark_67375_WNG_6H973PBB_V fao_agris_US201400085358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773. Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.-A., Molino, J.-F., Sabatier, D., Savolainen, V. & Chave, J. (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690-701. Maynard-Smith, J., Burian, R. & Kauffman, S. (1985) Developmental constraints and evolution. Quarterly Review of Biology, 60, 265-287. Brown, W. & Wilson, E. (1956) Character displacement. Systematic Zoology, 5, 49-64. Salazar-Ciudad, I. & Marin-Riera, M. (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature, 497, 361-364. Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471. Pigliucci, M. (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Annals of Botany, 100, 433-438. Hijmans, R.J., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Kattge, J., Díaz, S., Lavorel, S. et al. (2011) TRY: a global database of plant traits. Global Change Biology, 17, 2905-2935. Gavrilets, S. (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton, NJ. Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. Laughlin, D.C., Joshi, C., Van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299. Findley, J. (1973) Phenetic packing as a measure of faunal diversity. The American Naturalist, 107, 580-584. Raup, D. & Michelson, A. (1965) Theoretical morphology of the coiled shell. Science, 147, 1294-1295. Snodgrass, R. & Heller, E. (1904) Papers from the Hopkins-Stanford Galapagos expedition, 1898-99 XVI. Birds. Proceedings of the Washington Academy of Science, 5, 231-372. Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539. Little, E.L., Jr (1977) Atlas of United States trees. US Department of Agriculture, Forest Service, Washington, DC. Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. (2007) Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology, 76, 977-985. Lessard, J.P., Belmaker, J., Myers, J.A., Chase, J.M. & Rahbek, C. (2012) Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600-607. Hurlbert, S.H. (1978) The measurement of niche overlap and some relatives. Ecology, 59, 67-77. Van Valen, L. (1974) Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45, 235-247. Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. Rubin, D. (1996) Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489. Gavrilets, S. (1997) Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307-312. Tilman, D. (1982) Resource competition and community structure. Princeton University Press, Princeton. Bonser, S.P. (2006) Form defining function: interpreting leaf functional variability in integrated plant phenotypes. Oikos, 114, 187-190. Doledec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in community analysis: a new method. Ecology, 81, 2914-2927. Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ. Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220. Abrams, P. (1980) Some comments on measuring niche overlap. Ecology, 61, 44-49. Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos, 117, 1533-1541. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. Ricklefs, R.E. & Travis, J. (1980) A morphological approach to the study of avian community organization. The Auk, 97, 321-338. Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197. Colwell, R.K. & Futuyma, D.J. (1971) On the measurement of niche breadth and overlap. Ecology, 52, 567-576. Violle, C. & Jiang, L. (2009) Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93. Austin, M., Cunningham, R. & Fleming, P. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55, 11-27. Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758. Peterson, A.T. (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267. Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences USA, 106, 19651-19658. Ricklefs, R.E. & O'Rourke, K. (1975) Aspect diversity in moths: a temperate-tropical comparison. Evolution, 29, 313-324. Villéger, S., Mason, N.W.H. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301. Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281. Abrams, P. (1983) The theory of limiting similarity. Annual Review of Ecology, Evolution, and Systematics, 14, 359-376. Whittaker, R. & Niering, W. (1965) Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46, 429-452. Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. Silverman, B.W. (1992) Density estimation for statistics and data analysis. Chapman & Hall, London. Foote, M. (1997) The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129-152. Guo, Q., Kelly, M. & Graham, C.H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75-90. Elith, J., Graham, C., Anderson, R. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. Gower, J. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871. Green, R.H. (1971) A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada. Ecology, 52, 544-556. Boucher, F.C., Thuiller, W., Arnoldi, C., Albert, C.H. & Lavergne, S. (2013) Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27, 382-391. Hutchinson, G. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S. & Lavorel, S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201. Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883. May, R.M. & MacArthur, R.H. (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA, 69, 1109-1113. Maguire, B. (1967) A partial analysis of the niche. The American Naturalist, 101, 515-526. Mouillot, D., Stubbs, W., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. & Chi, T.D. (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145, 345-353. Pacala, S. & Roughgarden, J. (1982) The evolution of resource partitioning in a multidimensional resource space. Theoretical Population Biology, 22, 127-145. Austin, M., Nicholls, A. & Margules, C. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161-177. 1965; 147 2009; 40 2013; 69 2013; 27 1973; 107 2007; 100 1997; 277 1999; 285 1932 1985; 60 2012; 15 2011; 17 2007; 76 1983; 14 1990; 60 2005; 25 1977 1971; 52 2005; 182 1974; 45 2010; 24 2005; 145 1984; 55 1997; 12 1982; 22 1967; 101 1986 2006; 29 2008; 117 1982 2012; 27 2012; 335 2009; 19 2008; 62 2012; 21 2012; 100 2012 1971; 27 2000; 26 2011 1980; 61 2006; 9 2002; 33 2008; 14 1997; 28 1994 2004 1978; 59 1992 1996; 91 1972; 69 2006; 114 1957; 22 2012; 93 1965; 46 1980; 97 2006; 87 1975; 29 2013; 497 2000; 81 2008; 89 1904; 5 2009; 2 1956; 5 2009; 106 e_1_2_6_32_1 Snodgrass R. (e_1_2_6_58_1) 1904; 5 e_1_2_6_30_1 Nix H. (e_1_2_6_40_1) 1986 e_1_2_6_19_1 Ricklefs R.E. (e_1_2_6_53_1) 1980; 97 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 Ricklefs R. (e_1_2_6_51_1) 1994 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Wright S. (e_1_2_6_69_1) 1932 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Silverman B.W. (e_1_2_6_57_1) 1992 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Shan H. (e_1_2_6_56_1) 2012 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_42_1 Tilman D. (e_1_2_6_60_1) 1982 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Mouillot, D., Stubbs, W., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. & Chi, T.D. (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145, 345-353. – reference: Austin, M., Nicholls, A. & Margules, C. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161-177. – reference: Maynard-Smith, J., Burian, R. & Kauffman, S. (1985) Developmental constraints and evolution. Quarterly Review of Biology, 60, 265-287. – reference: Rubin, D. (1996) Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489. – reference: Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773. – reference: Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. – reference: Baraloto, C., Hardy, O.J., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.-A., Molino, J.-F., Sabatier, D., Savolainen, V. & Chave, J. (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100, 690-701. – reference: Violle, C. & Jiang, L. (2009) Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93. – reference: Colwell, R.K. & Futuyma, D.J. (1971) On the measurement of niche breadth and overlap. Ecology, 52, 567-576. – reference: Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. – reference: Pacala, S. & Roughgarden, J. (1982) The evolution of resource partitioning in a multidimensional resource space. Theoretical Population Biology, 22, 127-145. – reference: Gavrilets, S. (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton, NJ. – reference: Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. (2007) Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology, 76, 977-985. – reference: Abrams, P. (1983) The theory of limiting similarity. Annual Review of Ecology, Evolution, and Systematics, 14, 359-376. – reference: Findley, J. (1973) Phenetic packing as a measure of faunal diversity. The American Naturalist, 107, 580-584. – reference: Ricklefs, R.E. & Travis, J. (1980) A morphological approach to the study of avian community organization. The Auk, 97, 321-338. – reference: Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. – reference: Guo, Q., Kelly, M. & Graham, C.H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75-90. – reference: Lessard, J.P., Belmaker, J., Myers, J.A., Chase, J.M. & Rahbek, C. (2012) Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600-607. – reference: Van Valen, L. (1974) Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45, 235-247. – reference: Little, E.L., Jr (1977) Atlas of United States trees. US Department of Agriculture, Forest Service, Washington, DC. – reference: Elith, J., Graham, C., Anderson, R. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. – reference: Laughlin, D.C., Joshi, C., Van Bodegom, P.M., Bastow, Z.A. & Fulé, P.Z. (2012) A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299. – reference: Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471. – reference: Boucher, F.C., Thuiller, W., Arnoldi, C., Albert, C.H. & Lavergne, S. (2013) Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology, 27, 382-391. – reference: Villéger, S., Mason, N.W.H. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301. – reference: Gower, J. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871. – reference: Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194-220. – reference: Austin, M., Cunningham, R. & Fleming, P. (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio, 55, 11-27. – reference: Hijmans, R.J., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197. – reference: Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758. – reference: Colwell, R.K. & Rangel, T.F. (2009) Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences USA, 106, 19651-19658. – reference: Snodgrass, R. & Heller, E. (1904) Papers from the Hopkins-Stanford Galapagos expedition, 1898-99 XVI. Birds. Proceedings of the Washington Academy of Science, 5, 231-372. – reference: Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S. & Lavorel, S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201. – reference: Hutchinson, G. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. – reference: Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281. – reference: Gavrilets, S. (1997) Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307-312. – reference: Silverman, B.W. (1992) Density estimation for statistics and data analysis. Chapman & Hall, London. – reference: Whittaker, R. & Niering, W. (1965) Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46, 429-452. – reference: Maguire, B. (1967) A partial analysis of the niche. The American Naturalist, 101, 515-526. – reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. – reference: Abrams, P. (1980) Some comments on measuring niche overlap. Ecology, 61, 44-49. – reference: Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650. – reference: Raup, D. & Michelson, A. (1965) Theoretical morphology of the coiled shell. Science, 147, 1294-1295. – reference: Bonser, S.P. (2006) Form defining function: interpreting leaf functional variability in integrated plant phenotypes. Oikos, 114, 187-190. – reference: Green, R.H. (1971) A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada. Ecology, 52, 544-556. – reference: Kattge, J., Díaz, S., Lavorel, S. et al. (2011) TRY: a global database of plant traits. Global Change Biology, 17, 2905-2935. – reference: Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883. – reference: May, R.M. & MacArthur, R.H. (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA, 69, 1109-1113. – reference: Pigliucci, M. (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Annals of Botany, 100, 433-438. – reference: Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W. & Stadler, J. (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos, 117, 1533-1541. – reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. – reference: Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ. – reference: Salazar-Ciudad, I. & Marin-Riera, M. (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature, 497, 361-364. – reference: Ricklefs, R.E. & O'Rourke, K. (1975) Aspect diversity in moths: a temperate-tropical comparison. Evolution, 29, 313-324. – reference: Peterson, A.T. (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267. – reference: Brown, W. & Wilson, E. (1956) Character displacement. Systematic Zoology, 5, 49-64. – reference: Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527-1539. – reference: Tilman, D. (1982) Resource competition and community structure. Princeton University Press, Princeton. – reference: Doledec, S., Chessel, D. & Gimaret-Carpentier, C. (2000) Niche separation in community analysis: a new method. Ecology, 81, 2914-2927. – reference: Foote, M. (1997) The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129-152. – reference: Hurlbert, S.H. (1978) The measurement of niche overlap and some relatives. Ecology, 59, 67-77. – year: 2011 – volume: 24 start-page: 1192 year: 2010 end-page: 1201 article-title: A multi‐trait approach reveals the structure and the relative importance of intra‐ vs. interspecific variability in plant traits publication-title: Functional Ecology – volume: 81 start-page: 2914 year: 2000 end-page: 2927 article-title: Niche separation in community analysis: a new method publication-title: Ecology – volume: 52 start-page: 544 year: 1971 end-page: 556 article-title: A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada publication-title: Ecology – year: 2012 article-title: Macroecological life‐history trait database for birds, reptiles, and mammals – volume: 497 start-page: 361 year: 2013 end-page: 364 article-title: Adaptive dynamics under development‐based genotype–phenotype maps publication-title: Nature – volume: 93 start-page: 1527 year: 2012 end-page: 1539 article-title: Uses and misuses of bioclimatic envelope modeling publication-title: Ecology – volume: 62 start-page: 2868 year: 2008 end-page: 2883 article-title: Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution publication-title: Evolution – volume: 100 start-page: 690 year: 2012 end-page: 701 article-title: Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities publication-title: Journal of Ecology – start-page: 4 year: 1986 end-page: 15 – volume: 27 start-page: 382 year: 2013 end-page: 391 article-title: Unravelling the architecture of functional variability in wild populations of L publication-title: Functional Ecology – volume: 76 start-page: 977 year: 2007 end-page: 985 article-title: Low functional diversity and no redundancy in British avian assemblages publication-title: Journal of Animal Ecology – volume: 27 start-page: 857 year: 1971 end-page: 871 article-title: A general coefficient of similarity and some of its properties publication-title: Biometrics – volume: 27 start-page: 600 year: 2012 end-page: 607 article-title: Inferring local ecological processes amid species pool influences publication-title: Trends in Ecology and Evolution – volume: 60 start-page: 265 year: 1985 end-page: 287 article-title: Developmental constraints and evolution publication-title: Quarterly Review of Biology – volume: 277 start-page: 1300 year: 1997 end-page: 1302 article-title: The influence of functional diversity and composition on ecosystem processes publication-title: Science – volume: 2 start-page: 87 year: 2009 end-page: 93 article-title: Towards a trait‐based quantification of species niche publication-title: Journal of Plant Ecology – volume: 145 start-page: 345 year: 2005 end-page: 353 article-title: Niche overlap estimates based on quantitative functional traits: a new family of non‐parametric indices publication-title: Oecologia – volume: 22 start-page: 127 year: 1982 end-page: 145 article-title: The evolution of resource partitioning in a multidimensional resource space publication-title: Theoretical Population Biology – year: 1982 – volume: 107 start-page: 580 year: 1973 end-page: 584 article-title: Phenetic packing as a measure of faunal diversity publication-title: The American Naturalist – volume: 89 start-page: 2290 year: 2008 end-page: 2301 article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology publication-title: Ecology – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species' distributions from occurrence data publication-title: Ecography – volume: 59 start-page: 67 year: 1978 end-page: 77 article-title: The measurement of niche overlap and some relatives publication-title: Ecology – volume: 14 start-page: 763 year: 2008 end-page: 773 article-title: Effects of sample size on the performance of species distribution models publication-title: Diversity and Distributions – year: 2004 – volume: 21 start-page: 481 year: 2012 end-page: 497 article-title: Measuring ecological niche overlap from occurrence and spatial environmental data publication-title: Global Ecology and Biogeography – volume: 52 start-page: 567 year: 1971 end-page: 576 article-title: On the measurement of niche breadth and overlap publication-title: Ecology – volume: 69 start-page: 274 year: 2013 end-page: 281 article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology publication-title: Biometrics – volume: 22 start-page: 415 year: 1957 end-page: 427 article-title: Concluding remarks publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 69 start-page: 1109 year: 1972 end-page: 1113 article-title: Niche overlap as a function of environmental variability publication-title: Proceedings of the National Academy of Sciences USA – volume: 106 start-page: 19644 year: 2009 end-page: 19650 article-title: Niches and distributional areas: concepts, methods, and assumptions publication-title: Proceedings of the National Academy of Sciences USA – volume: 55 start-page: 11 year: 1984 end-page: 27 article-title: New approaches to direct gradient analysis using environmental scalars and statistical curve‐fitting procedures publication-title: Vegetatio – volume: 114 start-page: 187 year: 2006 end-page: 190 article-title: Form defining function: interpreting leaf functional variability in integrated plant phenotypes publication-title: Oikos – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY: a global database of plant traits publication-title: Global Change Biology – volume: 182 start-page: 75 year: 2005 end-page: 90 article-title: Support vector machines for predicting distribution of sudden oak death in California publication-title: Ecological Modelling – volume: 5 start-page: 49 year: 1956 end-page: 64 article-title: Character displacement publication-title: Systematic Zoology – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 28 start-page: 129 year: 1997 end-page: 152 article-title: The evolution of morphological diversity publication-title: Annual Review of Ecology and Systematics – start-page: 1303 year: 2012 end-page: 1310 – volume: 285 start-page: 1265 year: 1999 end-page: 1267 article-title: Conservatism of ecological niches in evolutionary time publication-title: Science – volume: 19 start-page: 181 year: 2009 end-page: 197 article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data publication-title: Ecological Applications – volume: 97 start-page: 321 year: 1980 end-page: 338 article-title: A morphological approach to the study of avian community organization publication-title: The Auk – volume: 14 start-page: 359 year: 1983 end-page: 376 article-title: The theory of limiting similarity publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species publication-title: Annual Review of Ecology and Systematics – volume: 29 start-page: 313 year: 1975 end-page: 324 article-title: Aspect diversity in moths: a temperate–tropical comparison publication-title: Evolution – start-page: 13 year: 1994 end-page: 41 – volume: 26 start-page: 194 year: 2000 end-page: 220 article-title: Responses of plant populations and communities to environmental changes of the late Quaternary publication-title: Paleobiology – year: 1977 – year: 1992 – volume: 61 start-page: 44 year: 1980 end-page: 49 article-title: Some comments on measuring niche overlap publication-title: Ecology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 100 start-page: 433 year: 2007 end-page: 438 article-title: Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form publication-title: Annals of Botany – volume: 15 start-page: 1291 year: 2012 end-page: 1299 article-title: A predictive model of community assembly that incorporates intraspecific trait variation publication-title: Ecology Letters – volume: 147 start-page: 1294 year: 1965 end-page: 1295 article-title: Theoretical morphology of the coiled shell publication-title: Science – volume: 106 start-page: 19651 year: 2009 end-page: 19658 article-title: Hutchinson's duality: the once and future niche publication-title: Proceedings of the National Academy of Sciences USA – volume: 46 start-page: 429 year: 1965 end-page: 452 article-title: Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope publication-title: Ecology – start-page: 355 year: 1932 end-page: 366 – volume: 101 start-page: 515 year: 1967 end-page: 526 article-title: A partial analysis of the niche publication-title: The American Naturalist – volume: 45 start-page: 235 year: 1974 end-page: 247 article-title: Multivariate structural statistics in natural history publication-title: Journal of Theoretical Biology – volume: 87 start-page: 1465 year: 2006 end-page: 1471 article-title: A trait‐based test for habitat filtering: convex hull volume publication-title: Ecology – volume: 335 start-page: 1344 year: 2012 end-page: 1348 article-title: Climatic niche shifts are rare among terrestrial plant invaders publication-title: Science – volume: 60 start-page: 161 year: 1990 end-page: 177 article-title: Measurement of the realized qualitative niche: environmental niches of five species publication-title: Ecological Monographs – volume: 9 start-page: 741 year: 2006 end-page: 758 article-title: Functional diversity: back to basics and looking forward publication-title: Ecology Letters – volume: 91 start-page: 473 year: 1996 end-page: 489 article-title: Multiple imputation after 18+ years publication-title: Journal of the American Statistical Association – volume: 12 start-page: 307 year: 1997 end-page: 312 article-title: Evolution and speciation on holey adaptive landscapes publication-title: Trends in Ecology and Evolution – volume: 5 start-page: 231 year: 1904 end-page: 372 article-title: Papers from the Hopkins–Stanford Galapagos expedition, 1898–99 XVI. Birds publication-title: Proceedings of the Washington Academy of Science – volume: 117 start-page: 1533 year: 2008 end-page: 1541 article-title: On the identification of the most suitable traits for plant functional trait analyses publication-title: Oikos – ident: e_1_2_6_13_1 doi: 10.1111/j.1466-8238.2011.00698.x – ident: e_1_2_6_38_1 doi: 10.1086/414425 – ident: e_1_2_6_67_1 doi: 10.2307/1934875 – ident: e_1_2_6_30_1 doi: 10.1101/SQB.1957.022.01.039 – ident: e_1_2_6_62_1 doi: 10.1016/0022-5193(74)90053-8 – ident: e_1_2_6_50_1 doi: 10.1111/j.1541-0420.2012.01824.x – ident: e_1_2_6_42_1 doi: 10.1111/j.1461-0248.2006.00924.x – ident: e_1_2_6_3_1 doi: 10.1146/annurev.es.14.110183.002043 – ident: e_1_2_6_25_1 doi: 10.2307/2528823 – ident: e_1_2_6_65_1 doi: 10.1111/j.1558-5646.2008.00482.x – ident: e_1_2_6_32_1 doi: 10.1111/j.1365-2486.2011.02451.x – volume-title: Resource competition and community structure year: 1982 ident: e_1_2_6_60_1 – ident: e_1_2_6_34_1 doi: 10.1016/j.tree.2012.07.006 – ident: e_1_2_6_23_1 doi: 10.1016/S0169-5347(97)01098-7 – ident: e_1_2_6_24_1 doi: 10.1515/9780691187051 – ident: e_1_2_6_47_1 doi: 10.1890/07-2153.1 – volume: 5 start-page: 231 year: 1904 ident: e_1_2_6_58_1 article-title: Papers from the Hopkins–Stanford Galapagos expedition, 1898–99 XVI. Birds publication-title: Proceedings of the Washington Academy of Science – volume-title: Density estimation for statistics and data analysis year: 1992 ident: e_1_2_6_57_1 – ident: e_1_2_6_17_1 doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 – ident: e_1_2_6_64_1 doi: 10.1093/jpe/rtp007 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.0901650106 – ident: e_1_2_6_18_1 doi: 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2 – ident: e_1_2_6_2_1 doi: 10.2307/1937153 – ident: e_1_2_6_59_1 doi: 10.1073/pnas.0901637106 – ident: e_1_2_6_26_1 doi: 10.2307/1934142 – ident: e_1_2_6_36_1 doi: 10.1086/282515 – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2656.2007.01271.x – volume: 97 start-page: 321 year: 1980 ident: e_1_2_6_53_1 article-title: A morphological approach to the study of avian community organization publication-title: The Auk – ident: e_1_2_6_66_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_2_6_35_1 doi: 10.5962/bhl.title.65458 – ident: e_1_2_6_33_1 doi: 10.1111/j.1461-0248.2012.01852.x – ident: e_1_2_6_29_1 doi: 10.2307/1936632 – ident: e_1_2_6_6_1 doi: 10.1007/BF00039976 – ident: e_1_2_6_21_1 doi: 10.1086/282860 – ident: e_1_2_6_10_1 doi: 10.1111/j.0030-1299.2008.16776.x – ident: e_1_2_6_12_1 doi: 10.1111/1365-2435.12034 – ident: e_1_2_6_19_1 doi: 10.1146/annurev.ecolsys.110308.120159 – start-page: 355 volume-title: Proceedings of the Sixth International Congress on Genetics year: 1932 ident: e_1_2_6_69_1 – ident: e_1_2_6_48_1 doi: 10.1093/aob/mcm069 – ident: e_1_2_6_49_1 doi: 10.1126/science.147.3663.1294 – ident: e_1_2_6_31_1 doi: 10.1017/S0094837300026932 – start-page: 4 volume-title: Atlas of elapid snakes of Australia year: 1986 ident: e_1_2_6_40_1 – ident: e_1_2_6_14_1 doi: 10.2307/2411924 – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-2745.2012.01966.x – ident: e_1_2_6_37_1 doi: 10.1073/pnas.69.5.1109 – ident: e_1_2_6_7_1 doi: 10.2307/1943043 – ident: e_1_2_6_39_1 doi: 10.1007/s00442-005-0151-z – ident: e_1_2_6_55_1 doi: 10.1038/nature12142 – ident: e_1_2_6_27_1 doi: 10.1016/j.ecolmodel.2004.07.012 – ident: e_1_2_6_28_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_41_1 doi: 10.1016/0040-5809(82)90039-9 – ident: e_1_2_6_46_1 doi: 10.1126/science.1215933 – ident: e_1_2_6_45_1 doi: 10.23943/princeton/9780691136868.001.0001 – ident: e_1_2_6_20_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_6_44_1 doi: 10.1126/science.285.5431.1265 – start-page: 1303 volume-title: Proceedings of the 29th International Conference on Machine Learning year: 2012 ident: e_1_2_6_56_1 – ident: e_1_2_6_68_1 doi: 10.1111/j.1472-4642.2008.00482.x – ident: e_1_2_6_61_1 doi: 10.1126/science.277.5330.1300 – ident: e_1_2_6_8_1 – ident: e_1_2_6_4_1 doi: 10.1111/j.1365-2435.2010.01727.x – ident: e_1_2_6_54_1 doi: 10.1080/01621459.1996.10476908 – ident: e_1_2_6_5_1 doi: 10.1890/11-1930.1 – ident: e_1_2_6_63_1 doi: 10.1890/07-1206.1 – ident: e_1_2_6_11_1 doi: 10.1111/j.2006.0030-1299.14425.x – ident: e_1_2_6_15_1 doi: 10.2307/1934144 – start-page: 13 volume-title: Ecological morphology: integrative organismal biology year: 1994 ident: e_1_2_6_51_1 – ident: e_1_2_6_52_1 doi: 10.1111/j.1558-5646.1975.tb00211.x – ident: e_1_2_6_22_1 doi: 10.1146/annurev.ecolsys.28.1.129 |
SSID | ssj0005456 |
Score | 2.59744 |
Snippet | AIM: The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,... Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,... Aim The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology,... The Hutchinsonian hypervolume is the conceptual foundation for many lines of ecological and evolutionary inquiry, including functional morphology, comparative... |
SourceID | proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 595 |
SubjectTerms | anatomy and morphology Animal and plant ecology Animal, plant and microbial ecology Biogeography Biological and medical sciences community ecology data collection Datasets Density Density estimation Ecological genetics Ecological modeling Ecological niches Environmental niche modelling Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques Geometry hole Hutchinson hypervolume kernel density estimation MACROECOLOGICAL METHODS Methods and techniques (sampling, tagging, trapping, modelling...) morphospace niche niche overlap Phenotypic traits species distribution modelling Synecology |
Title | n‐dimensional hypervolume |
URI | https://api.istex.fr/ark:/67375/WNG-6H973PBB-V/fulltext.pdf https://www.jstor.org/stable/24034056 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12146 https://www.proquest.com/docview/1510352070 https://www.proquest.com/docview/1516755321 https://www.proquest.com/docview/1520368051 https://www.proquest.com/docview/1999924552 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UguCLrdWlqbWuItKXlGQyuQw-ubLtIlhEXd0HYZjJzFSoZGUvUH3yJ_gb-0t6zuSyXdEivgXyJSRnzjnzneTMNwDPWKS1yIUJkY3bkLPIhoJzHWrSVspFVBaO1g6_Oc1GY_56kk424EW7FqbWh-g-uFFk-HxNAa70_FqQn1lN0gic5LapV4sI0buVdBQxg3plURbiJDhpVIWoi6e7cm0uuuXUFBkqGfeibU6kTkk1R2O5epeLNRp6ncz62eh4Cz6371E3oZwfLRf6qPzxm8Tjf77oNtxtWGr_Ze1W92DDVjtwe-gVrr_vQG-4Wh6HsCY_zO_DY_S6fnX585ehTQNqwY_-Fyx1Z3UWfADj4-GHV6Ow2YIhLLM4zkKWGl5qS1WTsEjudBxFZeQ0hm3mOFMicpEubMy0EI6XJk4M1trMGseKSBmd9GCzmlZ2F_raidKYokgcM9wUuULmpawWsXE4XKUL4LAdDFk2-uS0TcZX2dYpaAjpDRHA0w76rRbl-BNoF0dUqjNMlnL8nlEpSQQzSYsAnvth7i5Ws3NqcMtT-en0RGYjkSdvBwP5MYCe94MOSOqFSHHx5gdrjrEC-II5YQHst54im6wwlzHJF6YMs2wAT7rTGM_0k0ZVdrr0GKzh0oTFN2Ho93GB-fQGDDJ_rK3TFB_l0LvX300lT4YDf7D379CHcIdMWvd-7sPmYra0j5CfLfSBD8QrYSIw6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RQheuBSiupQ2IIT64mq9vq7EC0FpA7QRggbyglZe726RipwqFwl44hP4Rr6EmfUlDYIK8RYp4yienZk9x549A_CEM6VEKrSPaNz4EWfGF1GkfEXaSqlgRWbp7PDJMBmMolfjeLwGz5qzMJU-RPvAjTLD1WtKcHogfSnLz4wibYQoWYdrNNHbEaq3S_EowgbV2aLEx21wXOsKUR9Pe-nKbrRu8wliVHLvl6Y9kXol8xm6y1ZzLlaA6GU46_ajw9vwsbmTqg3l_GAxVwfFt99EHv_3Vu_ArRqodp9XkXUX1ky5Cdf7TuT66yZ0-ssTcmhWl4jZPdjDwOuWP7__0DQ3oNL86H5CtjutCuF9GB32T18M_HoKg18kQZD4PNZRoQwRJ2EQ36mAsYJZhZmb2IjnglmmMhNwJYSNCh2EGuk2N9ryjOVahR3YKCel2YKusqLQOstCy3WkszRH8JUbJQJtcb0K68F-sxqyqCXKaVLGZ9lQFXSEdI7w4HFrelHpcvzJaAuXVOZnWC_l6B0nNkkYM4wzD566dW4vzqfn1OOWxvLD8EgmA5GGb3o9-d6DjguE1pAEDBHl4o_vrkTG0sBx5pB7sNOEiqwLw0wGpGAYcyy0Hjxqv8aUpvc0eWkmC2eDNC4OeXCVDb1BzrCkXmGD4B_pdRzjX9l38fV3V8mjfs992P530z24MTg9OZbHL4evH8BNcm_VCroDG_PpwjxEuDZXuy4rfwFb1TUD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB21RSBeChSiupQ2IIT64mq9vsQrnghNGm5RBYTmAWnl9e4WqcipcpGAJz6Bb-RLmFlf0iCoEG-WfGzZszOzZ-zZswCPOVNKdIT2kY0bP-LM-CKKlK9IW6kjWJ5aWjv8ZpgMRtHLcTxeg6f1WphSH6L54EaR4fI1BfiFtpeC_MwokkaIknW4FiUsJZc-ervUjiJqUC4tSnycBceVrBC18TSXrkxG6zabIEUl636puxOpVTKbobVsuc3FCg-9zGbddNS_BR_rFym7UM4PF3N1mH_7TePxP9_0NmxWNLX9rPSrO7Bmii243nMS11-3oNVbro9DWJUgZndhH92uXfz8_kPTrgGl4kf7E9a60zIN3oNRv_f--cCv9mDw8yQIEp_HOsqVobJJGGR3KmAsZ1Zh3CY24plglqnUBFwJYaNcB6HGYpsbbXnKMq3CFmwUk8JsQ1tZkWudpqHlOtJpJ0PqlRklAm1xuHLrwUE9GDKvBMppn4zPsi5U0BDSGcKDRw30olTl-BNoG0dUZmeYLeXoHadakhhmGKcePHHD3FycTc-pw60Ty9PhsUwGohOedLvygwct5wcNkOQLkePizfdWHGMJcBVzyD3YrT1FVmlhJgPSL4w5plkPHjanMaDpL01WmMnCYbCIi0MeXIWh_8cpJtQrMEj9sbiOY3yUA-defzeVPO513cHOv0P34cbJUV--fjF8dR9uknXLPtBd2JhPF-YBcrW52nMx-QurizO7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+n-dimensional+hypervolume&rft.jtitle=Global+ecology+and+biogeography&rft.au=Blonder%2C+Benjamin&rft.au=Lamanna%2C+Christine&rft.au=Violle%2C+Cyrille&rft.au=Enquist%2C+Brian+J.&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=5&rft.spage=595&rft.epage=609&rft_id=info:doi/10.1111%2Fgeb.12146&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6H973PBB_V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |